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PREFACE

This dissertation is original work by the author, Subhajit Das. Portions of this dissertation
have been published, or have been submitted for review prior to publication. There have
been significant contributions by co-authors for portions of this work, which have been noted
in the relevant sections.
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Not everything that can be counted counts, and not everything that
counts can be counted.

-Albert Einstein
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SUMMARY

Recent visual analytic (VA) systems rely on machine learning (ML) to allow users to

perform a variety of data analytic tasks, e.g., biologists clustering genome samples, medical

practitioners predicting the diagnosis for a new patient, ML practitioners tuning models’

hyperparameter settings, etc. These VA systems support interactive construction of models

to people (I call them power users) with a diverse set of expertise in ML; from non-experts,

to intermediates, to expert ML users. Through my research, I designed and developed VA

systems for power users empowering them to communicate their preferences to interactively

construct machine learning models for their analytical tasks. In this process, I design algo-

rithms to incorporate user interaction data in machine learning modeling pipelines. Specif-

ically, I deployed and tested (e.g., task completion times, user satisfaction ratings, success

rate in finding user-preferred models, model accuracies) two main interaction techniques,

multi-model steering, and interactive objective functions to facilitate specification of user

goals and objectives to underlying model(s) in VA. However, designing these VA systems for

power users poses various challenges, such as addressing diversity in user expertise, metric

selection, user modeling to automatically infer preferences, evaluating the success of these

systems, etc. Through this work I contribute a set of VA systems that support interactive

construction and selection of supervised and unsupervised models using tabular data. In

addition, I also present results/findings from a design study of interactive ML in a specific

domain with real users and real data.

xix



CHAPTER I

INTRODUCTION

People work with data for numerous reasons such as exploratory data analysis, sense-
making, predictive modeling, and tradeoff analysis for decision making, etc. For example,
realtors look at real estate data to identify houses to sell or buy or to find neighborhoods
where property prices may rise or fall. Various data analytics and visualization tools (e.g.,
Tableau, Spotfire, MS Excel, etc.) support these data analysis workflows. However, with
the advent of faster machines, cheaper memory, and easier access to heterogeneous large
data sources, current data analysis approaches can utilise more complex methods [118],
which can empower users to explore data with a new perspective. Recent work in the field
of visual analytic (VA) systems addresses this challenge by designing novel visual data anal-
ysis interfaces and interaction techniques that support advanced statistical methods such
as machine learning (ML) to gain insight from the data. These systems facilitate analytical
tasks such as prediction, grouping/clustering, graph matching, metric learning, labeling,
etc. For example, realtors may use a VA system to interactively construct a regression
model to predict the price of a house; this may help them decide on whether to buy a
potential property or not. In this research I have investigated how people can interactively
construct, and select machine learning models (supervised and unsupervised) using tabular
data and a visual interface (without explicitly writing code).

1.1 Problem Statement

The advent of data and machine learning (ML) has impacted various domains, such as in
health care, where machine learning is used to predict patient diseases or to find similar
patients to prescribe diagnosis. Similarly, self-driving cars rely on advanced ML models
that are very efficient to segment images in real time to detect on road obstacles such as
other cars or people etc. All of these mission-critical decision-making tasks are driven by
complex ML models, which people in different domains are using for various use cases.
Here a ML model refers to: (1) a mapping of the data (e.g., images of animals, properties of
houses, etc.), to an output or a variable in the data that people may wish to predict (e.g.,
labels of images such as cat or dog), (2) a low dimensional representation of the input data,
or (3) a characterization of the data that tells association, or grouping between the data
items. In practical applications the process of constructing these models follows a complex
modeling pipeline (see Figure 1), that includes problem specification, data acquisition, data
processing, model selection, model validation, and model deployment for production.

However, end-users who need ML often only take part when specifying problems or
acquiring data; or they only take part when models are deployed, and they provide feedback
to further improve their performance as they use it. Current workflows of model construction
do not let end-users be part of the modeling phase where they can directly adjust a model’s
behavior when required. In comparison, ML practitioners and data scientists take part in
modeling and deploying models using sophisticated software systems. However, they usually
do not acquire data or might not know much about the domain in which the model is to
be used. Thus, these users cannot independently process the data to build ML solutions.
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They rely on domain experts for this part. This is where the problem is; people who need
ML are still not active participants of this modeling process. Either they build models or
acquire/provide data.

If people who are end-users (e.g., doctors, lawyers, analysts) only provide data, but are
unable to: (1) adjust model(s) behavior or (2) interactively probe or construct models to
verify if it learned the right characteristics of the data, they might not use it in their
analysis process. For example, if a medical practitioner cannot not probe a model to
verify its behavior, they may not use it to predict patient diagnosis. Similarly, if they
construct a model using any of the current Auto-ML tools such as H2O, Auto-Weka, etc.
and intend to improve the model in some aspects, they may have to rely on ML practitioners
or learn to write code. Other potential users of interactive ML systems, can be expert
ML users such as data scientists. When these users construct model(s) they may want
to use a graphical user interface that not only speeds their current processes of model
construction, but also allows them to explore various model options along with the training
data. This can help them in many day to day model building tasks such as debugging
models, exploring a number of model hyperparameterizations, exploratory data analysis for
feature extraction/construction, reporting model outputs to other team members and/or
end-users.

To resolve this gap, researchers and scholars have been working to incorporate research
and insights from HCI and Machine Learning community, to include humans in the loop of
ML modeling [99] also called human-centered ML or interactive ML [75], where users can
actively take part in every aspect of modeling. Along this process, humans can bring in
domain expertise to the model training process, and also help in finding the right data for
the task as opposed to the conventional process of utilizing lots of data with the possibility of
noise in it. Using this workflow humans can interactively build better performing models and
using domain knowledge can probe models to ensure that they can be trustfully deployed
in real-world applications. In essence, including humans in every stage of the modeling
pipeline has many advantages, which based on the literature review of current VA systems,
seems to require further research.

Figure 1: A typical ML modeling pipeline that is used to construct and deploy ML models in
practical applications.

1.2 Vision: Machine Learning for Power Users

In this research I am motivated to include humans in the loop of ML modeling. Usually, THE
process of model construction is iterative (see Figure 2), where per iteration, people test
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Table 1: Study by Yang et al. interviewed ML users from various professions, who use
ML-based processes to solve a diverse set of problems [248].

Profession
Example
ML Problem

Professional
Software Engineer

Bug Report
classifier

Project
Manager

User Feedback
Classifier

Manager
HR Policy
QA bot

Business
Analytics

Predictive Machine
Maintainence

Artist
Emotion Classifier
for wearables Machine

Botanist
Predictive plant
nutrient maintenance

Academic
Researcher

Sensor signal
classifier maintenance

Clinical
Researcher

Prognostic classifier
classifier maintenance

Mechanical
Engineer

Insurance Risk
Estimate

different hypotheses, model types, and hyperparameter settings to improve model perfor-
mance (such as accuracy, or other defined performance parameter). Typically this workflow
includes programming/coding by experienced ML practitioners or experts; however, when
this process is made interactive, e.g., using graphical user interface (GUI) widgets, end-users
such as analysts can be active participants to adjust/steer and select models suited their
goals. While existing VA systems support ML-based processes for various data analysis
goals, interactive construction, selection, and steering of ML models for personalized user
goals is under-explored; it needs further research to make ML accessible for various use
cases and problem domains.

Motivated to make ML modeling pipelines interactive, first through prototyping a set
of VA systems, I sought to empower people to specify input (through interaction with a
visual interface, without writing code) to ML problems such as provide labels, weight data
instances, specify relevant features, etc. Along the process, I designed algorithms that model
end-users behavior based on choices they make as they interact with such VA systems. In
this workflow, user interactions were logged and further analyzed in real time to provide
personalized model recommendations; by inferring or predicting their choices with the goal
to empower them to select or interactively construct models.

However, as good as it sounds, I was curious to investigate who are these end-users.
Who are these people who need to be empowered to specify their preferences to ML models
(interactively)? Based on the literature review (Chapter 2), people who need ML include ML
practitioners who validate models by interactively tuning their hyperparameters, medical
practitioners interactively constructing classifiers to predict a suitable diagnosis for patients,
hobbyist artists who construct models to deploy creating art projects using technology, data
scientists interacting with Auto-ML to test various model hypothesis, and so forth. Along
the same lines, Yang et al. conducted a survey study of 100 such users (e.g., software
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engineers, artists, botanists, etc., see Table 1) who use machine learning for various tasks
[248].

Figure 2: The top row shows a traditional machine learning process, which is linear. The bottom
row shows an interactive machine learning process that includes interactions as input, then model
update, then change in output. The process is iterated until the user is satisfied with the output.
[10]

These users construct ML models from various sources such as, ready to use scripts/codes
from the web, Auto-ML tools such as Auto Weka [82], consulting with ML practitioners,
utilising self-written codes, etc. In this research, VA systems that I build are designed for
these users who I also call ”power users”.

Power users exhibit a wide spectrum in their expertise or skillsets in ML. While some
are ML practitioners/experts, referred to as expert ML users, others are domain experts or
end-users or analysts, who need ML for analytical tasks, but do not know how to code ML
applications. These people utilise ML as a black-box tool to support their goals as non-
experts in ML as referred here [248]. Within these two extremes, there are intermediate
users who know programming/coding but do not theoretically know ML (e.g., software
developer users of the system Gestalt [168]). My research explores interactive techniques
to design systems that support people to interactively construct ML models for diverse set
of use cases.

My research supports power users in communicating their preferences (data analysis
goals) to ML models, and empowers them to interactively construct, select, and steer (ad-
just) these models using VA systems. To that end, I investigate numerous interactive VA
techniques such as model selection, multi-model steering, interactive objective functions,
and conflict resolution in objective specifications (see Section 1.3). Through this research, I
explain each of these techniques using prototype VA systems that are further deployed and
tested with real users (see Figure 4 for the systems I built that support various user tasks).
I validated the effectiveness of these systems by collecting and analysing data to measure
task completion times, user satisfaction ratings, success rates of finding a user-preferred
model(s), model accuracies along with qualitative user feedback about the system’s usabil-
ity. I describe lessons learned from the evaluation of these systems that further enriched my
understanding of how power users communicate their preferences to ML models through
the designed interactive techniques.

1.3 Terminologies

In the following, I define a set of terminologies seminal to the contributions of this thesis,
and to ensure readability of the rest of the document.
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Model: A model is a mapping from an input space to an output space. In the context of
machine learning, an input space is the input data (i.e., images of animals), while an output
space is a variable in the data that users wish to predict (i.e., labels of images such as cat
or dog) or a low dimensional representation of the input data. Mathematically, a learning
algorithm A maps a training set Dtrain to a model f by searching through a parameter
space. A model is described by its parameters θ, while a learning algorithm is described
by its hyper-parameters λ. A model parameter is internal to a model, where its value can
be estimated from the data. Model parameters refer to values that are learned during the
training of a model, such as coefficients, while hyperparameters are typically determined
through some process external to training, such as cross-validation.

Figure 3: Simplified view of a hyper-dimensional model space, showing three of its dimensions.
Orange spheres represent different models in this view.

Model Space: A model is constructed by a careful selection of a learning algorithm and
associated hyperparameters. VA systems adjust the underlying model(s) by dynamically
changing it’s hyperparameters or choosing a new learning algorithm. Various combination
of learning algorithms and hyperparameters give rise to a vast number of different model
types. These different models constitute an exhaustive high dimensional model space from
which various models can be sampled using a unique combination of a learning algorithm,
and its associated hyperparameters. For example, a support vector machine model uses
a poly kernel function with other hyperparameters such as C-value, gamma, etc. I define
this space of different model types as model space. This also goes along with the definition
of model space defined by Eli et al. [30]. In this high dimensional model space, a model
is plotted as a point (see the gray box in Figure 5). It is noteworthy to emphasize that
this model space is hyperdimensional with densely plotted models, owing to a plethora of
continuous and discrete hyperparameter variables (see Figure 3).
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Figure 4: Summarizes VA systems that I have developed as part of this research, and various user
tasks it supports. The rows lists user tasks and the columns lists implication on the system.

Furthermore, in the model space, power users may search for models based on their
complexity or performance in terms of compute time. For example, power users may prefer
a model that finishes its task in an hour as opposed to a model that takes months to run
at the cost of some loss in its accuracy. However, conventionally an expert ML practitioner
might select a more accurate model even if it takes significantly longer compute time. Thus
the definition of a desired or optimal model (from the model space) may be different based
on the needs/goals of the user.
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Figure 5: Summary of my thesis work explaining my primary research question: How do power
users communicate their preferences to models?

Model Selection: Different types of machine learning models can be constructed for the
same data, problem, and task. For example, a classification task on a tabular data can
be supported by a Decision Tree, Random Forest, or a Support Vector Machine (SVM)
model. This requires making an informed decision to select the right model for the task and
the data. Selecting a model for the said task is called model selection. Inherently, model
selection is a complex process conventionally done by experienced ML practitioners. Model
selection requires critical evaluation of models, iterative exploration of their performance or
behavior, and understanding the problem domain correctly.

Model steering: When a model is selected, users can inspect its performance by reviewing
defined metrics such as cross-validation score or by reviewing the model’s output, such as
predicted labels on an input image data. If users are not satisfied with the output, they may
need to refine the performance of the model. Conventionally, experienced ML practitioners
make such adjustments by changing the model’s learning algorithm, hyperparameters, or by
defining a different cost/objective function to update the underlying parameters. However,
in VA systems end-users can adjust model performance by directly interacting with the
visual data representations/encodings, also known as direct manipulation based interaction
(see Chapter 2). For example, in the visual analytic system Dis-function users can drag
two circles in a scatterplot closer to specify their similarity to each other [29]. In response,
the system updates model parameters to achieve the specified goal (see Figure 6). This
approach to adjust a model by interacting with visual data representations in an interface
is called model steering. However there are various ways model steering can be deployed
in a VA system. For instance, a VA system embedded with a predefined single ML model
exhibits single-model steering. On the other hand, recently there are VA systems which
facilitate construction of multiple ML models to satisfy user objectives such as Clustervi-
sion, Hypermoval, etc. [131, 179]. These systems, in response to user interactions, update
model hyperparameters of multiple ML models simultaneously to automatically adjust their
behavior. This approach is called multi-model steering.

Model selection and multi-model steering are very similar yet distinct concepts. While
model selection investigates finding the right model for the data, task, and the problem
domain, model steering facilitates improving/adjusting model behavior by updating its
hyperparameters and parameters. However, both of these techniques help users to find the
right (optimal) model based on the choices they specify. In addition, both model selection

7



and model steering help users interactively navigate the model space in search of regions
where the likelihood of finding better models is higher. In essence, these techniques deploy
statistical methods based on specified user interactions triggering smarter searches in the
densely plotted high dimensional model space (see Figure 5).

Figure 6: The interface of Dis-function, a VA system that enables users to change the underlying
function in a model. Users can specify similarity or dissimilarity between data items by dragging
points in the scatterplot on the left. [29]

Interactive Objective Functions: While multi-model steering was effective, it seemed
from the interactions in the other systems, that users can specify a range of implicit feed-
backs that often are not communicated back to the user. In some cases, users may not
understand how each of these preferences affect each other, and more importantly often
these preferences when applied together may conflict with one another. Every ML model
uses an objective function, often called loss or cost function. Through my research, I pro-
totyped a novel VA technique called interactive construction of objective functions. This
technique visualizes an objective function showing it’s sub-objectives/component objectives,
and constraints. Furthermore, it allows users to interactively specify these sub-objectives
to suit desired goals. Interactive construction of objective functions allows modeling ML
solutions that cater to specific user requirements. Visual representation of the objective
function explicitly show users the set of constraints or sub-objectives that are satisfied or
vice versa. The interactive objective function may also reveal conflicting sub-objectives
which may present to users the need to review their preferences further. To my knowl-
edge, this technique is not practiced, applied, or deployed in any existing VA system in
the literature of visual analytics. Through this work, I showed interactive objective func-
tions empowers people to better satisfy personalised goals (using Auto-ML model solvers)
as opposed to relying on stand-alone Auto-ML workflows.
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1.4 Current Approaches in Visual Analytics

Over the years, VA systems have helped users glean insights and discover hidden patterns in
data. These systems have shown to handle massive, heterogeneous, and dynamic sources of
data by presenting visual data representations (data items encoded as visual graphical user
elements) integrated with user interactions. They facilitate users to process and analyze vast
amount of information fluidly [117] by facilitating visual data analysis. Further, these visual
data representations help reduce users cognitive load to process massive information from
dynamic and heterogeneous data sources. VA systems support a wide array of tasks ranging
from high to low such as, data exploration, data comparison, ranking, summarization,
storytelling, making sense of large data, etc. [67, 87, 90, 151, 219, 221]. Extending this
list of data analysis tasks, recent VA systems have integrated ML-based methods. ML in
VA gave rise to interactive machine learning (IML) systems [76] which allows advanced
data analysis tasks such as, classification, regression, clustering, graph matching, etc. [10,
106, 188]. For example, using a system like Hypermoval [179] users can construct and
review multiple regression models. Past efforts in integrating ML models with VA systems
visually represented model outputs as graphical encodings, just like visually encoding data
values. For example, researchers visualized decision boundaries by plotting data points as
dots in a scatterplot, and encoding decision surfaces as a line separating the dots [80, 191].
This method can be easily used to represent output from a diverse set of ML models
(e.g., SVM, Decision Trees, Neural Networks, etc). However, these visualization techniques
do not explain the internal operation/reasoning of a model [116]. Consequently, visual
representations of ML models in current VA systems can be made more intuitive than
several of the existing visualization solutions such as decision surface view, ROC curves,
cost curves, etc. [64]. Furthermore, along with the visual representation, user interaction
is very crucial in integrating ML in VA. While the former allows users to visually explore
and perceive the data or the model, the later helps the user to demonstrate intent to adjust
model performance/behavior by direct manipulation of visual data representations as seen
in these works [31, 69, 70, 71, 136].

Conventionally building a machine learning model is a complex process requiring spe-
cific knowledge about the theory and application of machine learning processes. A typical
workflow of this complex ML model construction includes - data collection, data cleaning,
data annotation/labeling, feature extraction, feature selection, feature transformation/pre-
processing, and selecting appropriate learning algorithms with associated hyperparameters.
Finally, the process ends with hyperparameter tuning to get best performance in terms of
accuracy or other defined measures. Evidently, the complexity of model construction is
beyond the purview of end-users such as, domain experts or users who do not have the
appropriate skillsets or training. Without VA systems, typically any end-user involvement
in the model building pipeline is mediated by ML experts. In this process, the mere con-
tribution of end-users can be summarized as: (1) data preparation, (2) answer data-related
questions, and (3) review model output mediated by an ML practitioner/developer [10].
This can be changed if visual analytic systems allow power users perform similar opera-
tions that are usually performed today by expert ML users through coding or programming
techniques.

Holzinger et al. showed four types of ML methods in practice (see Figure 7): (1) Unsu-
pervised ML: methods which does not require human input and is completely automatic, as
it does not need a human to label the data. Human experts only review the results of this
method in the end. (2) Supervised ML: humans label training data and often select features
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Figure 7: Four different ML-pipelines shown. The colored dots represent input training data, the
human head icon figuratively represents the involvement of a human in the model building pipeline.
Towards the left is the model output, towards the right is the input to the models. In between lies
all the complex computations that drive the models. A unsupervised, B supervised, e.g., humans
provide labels for training data and/or select features, C semi-supervised, D the interactive ML
approach where humans also actively participate in the logics behind the models using interactive
techniques [99].

for the ML models to use to make predictions on a test data set. A good example of this
kind is the classification task. (3) Semi-supervised ML: this approach fuses the previous two
approaches by learning on data which has a mix of labeled and unlabeled data items. Model
learns the data and predicts labels on unlabeled data points based on similarity. (4) Interac-
tive ML or Human-centered ML: this approach includes a human as an active participant in
the model construction process. Here humans communicate preferences using interactions,
to directly affect the internal operations of a model, i.e., distance or loss functions or specify
the weightings of data items or features, etc. (see Figure 7). This is ongoing research where
various approaches and methods are being invented, tested, and deployed to solve a number
of domain problems, see Chapter 2 for further details. In my research, I seek to investigate
this approach further, by including humans in the loop of model construction by designing
novel UI and interactive techniques. in human-centered ML systems to empower end-users
collaborate with machines to construct robust ML solutions.

1.5 Challenges

While the idea of interactive machine learning is promising in theory, there are various
challenges to the design and deployment of such systems, explained further below:

Expertise: Users who need access to ML may exhibit varying expertise/skillsets in ML.
For example, while some users are experts in ML (e.g., data scientists, ML practitioners),
others are intermediates who may have programming experience with limited training in
data science or ML. (e.g., Gestalt is a visual analytic tool for software developers to debug
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models). The third type of users are people who have no data science/ML experience
i.e., non-experts in ML. Patel et al. described three difficulties in visual analytics systems
for non-experts based on a study that tested ML-based VA’s. These were: (1) difficulty
in applying iteration in the model exploration process, (2) difficulty in interpreting ML
models, and (3) difficulty in gauging ML model performance [170]. As a solution, they
proposed to build a library of generic models, that non-experts can use off the shelf for
model exploration. Further, a survey conducted by Yang et al. highlighted that designing
novel interactions and interfaces for ML tools for non-experts is vital, or else users are prone
to make mistakes (due to lack of technical expertise) [248]. Compared to these set of users,
expert ML users may also use VA systems to construct models, debug it’s performance,
or may rapidly experiment with new hypotheses [188, 232]. As such, diversity in users’
expertise poses a challenge to the design of future VA systems that provides affordances to
model construction/selection.

User preference modeling: In VA systems, user preferences or intents guide how models
can be adjusted to specified goals. Thus it is critical to understand how VA systems auto-
matically infer or capture user preferences based on how users interact with these systems
[184]. In the past, user preferences have been modeled successfully in various domains such
as recommender systems. For example, Middleton et al. described two approaches to model
user preferences, which often is also termed as user modeling: (1) Knowledge-based and (2)
Behavior-based. The knowledge-based technique builds a static model of users and dy-
namically matches users with a closest fitting model. On the other hand, a behavior-based
approach tracks the behavior of the user when they interact with the system [155]. Based on
the usage, this approach utilizes ML-based techniques to predict items users will be inter-
ested in such as web pages or products to buy. Other works in user modeling can be found
here for reference [6, 125, 135, 172]. While useful, these methods model user preferences
that are not applied to systems where the users’ primary task is to construct a model. In
interactive systems that support model construction, it is a challenge to correctly identify
and estimate what kind of interactive controls users wish to have that interactively adjusts
models [116]. Furthermore, it is vital to understand how to translate these interactions into
mathematical processes that drive ML algorithms to support the desired task. Through my
thesis, I seek to address various interactive techniques to infer user preferences to adjust
underlying models in VA.

Metric Selection: VA systems integrated with ML models, have shown to perform better
than fully automated online model training workflows in supporting user goals. For instance,
in this work [8], a physician’s expert knowledge is embedded in the data extraction process
using a visual interface showing excellent results. However, users of these systems being
novices in ML may pick less effective metrics to evaluate or verify model performance.
Conventional “accuracy” prediction metric, values each data instance equally, while real
application scenarios might wish for selective weighting of data instances based on either
cost of mislabelling of important data instances or as specified by the user. For example,
in a spam detection problem, classifying relevant emails as spam is more expensive than
vice versa. It shows that the cost of misclassification is uneven by data instances. Thus
choosing correct metrics to select models is vital to build models that are more personalised
and domain-specific. However, it is a challenge to define these metrics that can be used
for model selection. Conventionally when ML experts train models they rely on traditional
metrics for model selection such as log scores, prediction accuracies, F-measures, ROC
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curves, etc. [64, 220, 234]. However, when non-experts or domain experts interact with ML
systems, many users utilize perceived percentage accuracy as the only measure to gauge
model performance, often leading to selection of sub-optimal models [116]. Furthermore,
unlike ML practitioners, non-experts are driven by subjective preferences and preconceived
notions (also called domain knowledge). This poses a problem in defining appropriate
metrics for model selection, making it difficult to infer what is the right model for the
task [116]. Through this research I seek to understand the right metric for power users
to evaluate and select a model for various tasks by designing and testing prototype VA
systems.

Testing VA Systems: Even though there are established metrics in ML (e.g., accuracy,
precision, etc.), there are none which captures subjective choices of end-users. For example,
in a design study with biologists for a clustering task [51], we observed that users were driven
by their subjective expectations to select clustering models as opposed to rely on known
metrics such as, silhouette score, homogeneity index, etc. Lack of appropriate metrics makes
it hard to design experiments to gauge the correctness of results in VA systems. One solution
to this may be to conduct longitudinal studies with domain experts. However, establishing
a relationship with domain experts to evaluate such systems is time-intensive and depends
on the availability of such users. In addition, the evaluation results are difficult to replicate
and compare with previous studies, due to the subjective nature of the feedback. While
processes that includes ML modeling in the context of VA, incorporates domain knowledge
to improve model predictions [16] there is no substantial evidence on the effectiveness,
or better performance of such approaches over automated/conventional ML pipelines [99].
Through this research, I have collaborated with domain experts [51, 52] to design VA
systems that incorporate ML-based data analytic processes to help them accomplish desired
tasks. I used the feedback from these design studies as a means to evaluate and further
improve the designed VA systems.

1.6 Research Questions

My primary research question is - How can people communicate their preferences to con-
struct machine learning models suited to their data analytic goals? To answer this research
question I have addressed the following more specific research questions:

• Q1.What are the various techniques of interactive model construction and selection
in human-centered machine learning?

• Q2.How effective are multi-model steering and interactive model selection in support-
ing domain experts to construct clustering models?

• Q3.What are the interactive techniques that empower people translate their prefer-
ences into objective functions?

• Q4.How can interactive visual interfaces help users to detect and resolve conflicts in
objective functions?

Answering these questions I built new processes to include humans in the ML modeling
pipeline by developing workflows in which user interaction data can inform ML algorithms.
Specifically, my work guides users in model steering, objective function creation, and model
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Figure 8: Workflow to empower power users communicate their preferences (data analysis goals)
to models.

selection through the use of visual interfaces, without writing code to build supervised
(classification and regression) and unsupervised models (clustering) using tabular data (see
Figure 8).

1.7 Thesis Statement

New visual analytic systems should allow users to interactively construct, adjust, and select
multiple machine learning models with more granular controls (in comparison to current
systems such as Auto-ML platforms) to attain personal analytical goals.

1.8 Thesis Outline

Below I outline steps I conducted as part of this thesis:

Studied current interactive ML systems: I started this research by studying visual-
ization techniques, user interactions, and usability issues in current ML-based VA systems.
I conducted an extensive literature review to understand the current space of VA systems
that allow interactive construction of ML models supporting various analytical tasks, use
cases, data types, problem categories, and catering to users with diverse expertise. For
example, in a system like Interaxis [121], users drag and drop data points to different re-
gions of a scatterplot, triggering the system to learn a function, which closely imitates the
user’s goals and constraints. Similarly, another VA system, Clustervision [131] allows data
scientists or domain experts with some data science expertise to explore multiple clustering
algorithms and steer them based on specified interactions. In VA systems like these, users
interact with the visual encodings or data marks to communicate their preferences to adjust
the underlying models. Based on the demonstrated interactions the interface updates the
visual encodings to reflect the change in the model outputs. Next, users inspect the visual
encodings to verify if the model improved or not or if the model confirms to their expec-
tations. This process continues until the user is satisfied by the model. In Chapter 2, I
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summarize my research findings from the extensive study of current VA techniques/systems.

Designed and tested VA systems: To seek solutions to various challenges in ML-based
VA systems (as described in section 1.5), I designed and prototyped a series of VA sys-
tems that enable interactive model construction and selection. While in theory, this may
seem promising and relatively straight forward, in practice, while designing these systems, I
sought to answer or balance a wide range of questions pertaining to the interaction design,
usability, usefulness, and computational feasibility. For example, how do people inspect or
interpret output from multiple ML models? How do they select models from a wide range
of model options/types? What are the metrics that are meaningful to people that can be
used to select these models? What are the metrics to capture the subjective aspects of the
user preferences? How do people steer multiple models if a single pre-defined model is inad-
equate to support their data analytic tasks? These are merely a small subset of questions
that needed further investigation, as I brainstormed VA solutions for people needing ML.
Furthermore, I evaluated these prototype VA systems by conducting research experiments
to find answers to some of these questions. Based on the experiment results (e.g., from
quantitative data analysis or qualitative user responses/feedback), I further refined and op-
timized these systems empowering power users to interactively construct models without
the need to program or code or learn extensive data science skills. In this context, though
these users may or may not be data scientists, I expected that they should have elementary
data analysis skills using tools such as Tableau, Power BI, MS Excel, etc. This ensures
that they can relatively quickly learn the interactions in the deployed systems and inter-
pret visualisations that are designed to communicate model outputs and other associated
information to make an informed decision in selecting models.

Worked with power users: As aforementioned, the target users for my research are
people or analysts who need ML-based data analysis approaches. Furthermore, they may or
may not be data scientists, but they have real data, real problems that need ML solutions,
and context-specific domain knowledge to inform the underlying ML processes. Seeking to
understand how power users interact with VA systems, I followed a design study protocol
by developing a VA system incorporating some of the techniques I invented/investigated
as part of this thesis (see Figure 2). Specifically, I worked with biologists at the Georgia
Institute of Technology who intended to explore a genome (GWAS) dataset by using the
designed interactive visual cluster analysis tool called Geono-Cluster. As part of this col-
laboration, I conducted observational studies and interviews to gather user requirements
to further understand the context/problem better. Based on user feedback, I iteratively
refined the prototype with the goal to help biologists construct an ”optimal” clustering
model. I describe this collaborative experience and outcome in detail in Chapter 4.

1.9 Contributions

In this research I have examined two principal interaction techniques, multi-model steering
and interactive objective functions. While multi-model steering describes capturing implicit
user interactions such as providing labels, weights to data items or features, etc. to interac-
tively adjust multiple models’ behavior, interactive objective functions explicitly let users
create loss functions that Auto-ML systems can solve for, to find user-preferred models that
solve their data analytic goals. In the following I list the contributions of this thesis:
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1. This research contributes a series of VA systems and studies on interaction design
and algorithmic techniques to understand how end users can interact with multiple
ML models using visual interfaces. These studies further confirm interactive processes
that allows people to intelligently navigate an overtly large model space to find ML
models supporting their data analytic goals.

2. Through this research I validated multi-model steering and interactive model selection
techniques with domain experts using real-world data on a year long design study.
This study showed how these methods can be deployed in real-world where ML can
provide practical analytical solutions.

3. Furthermore, to my knowledge this research is the first to present a visual interface in
creating interactive objective functions for multi-model based classifier construction.
Extending this work, this research also contributes a novel algorithm and interactive
workflow to detect and resolve conflicts in user-defined objective functions.

The above contributions help power users interactively construct and select ML models
using VA systems. More importantly, interacting with the visual interface elements, these
users can interactively adjust models’ behavior until they are satisfied with the models’ out-
put that supports their analytical tasks (see Figure 5). Through quantitative measurements
and qualitative observations from multiple controlled-lab user studies, I found that the inter-
action techniques from this research helped people to find an optimal/suitable model from
an overtly large space of possible ML models. The problem of finding a suitable model from
this high dimensional, infinitely large model space without any computational guidance or
statistical method is similar to finding a needle in a haystack. On one end, analysts can
navigate this model space by randomly sampling new models and testing their performance
in terms of accuracy (or other user-defined metrics). However, random navigation of the
model space (an approach similar to finding a needle in a haystack) does not guarantee to
find the optimal model for the desired task. To combat that, conventionally ML practition-
ers/developers navigate the model space using data science principles in search of regions
(sub-space of the model space) that contain better performing models [77, 166]. However,
through the work of this research, people can interactively navigate this high dimensional
model space to find a suitable model for their analytical task.

1.10 Scope and Limitations

My research investigates novel interaction and interface solutions for web-based desktop
applications. Any other touch-based platforms, such as mobile applications or speech-based
interfaces, are outside the purview of my research work. Further, to prototype and test
VA techniques or systems, I scope my research exploration to medium size datasets (e.g.,
a dataset with few hundred thousand data samples). VA systems that are designed for big
data are out of the scope of this work. Furthermore, my research focuses on: (1) Commu-
nicating user preferences to ML models, and (2) Interactively constructing ML models for
various data analytic tasks. It barely touches on model interpretability towards the end
of my research. However, designing systems that supports in-depth model explanations is
beyond the scope of this research.
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CHAPTER II

RELATED WORK

In this chapter, I discuss various efforts in visual analytics to bring machine learning to
the masses. These VA systems range from single to multi to automated systems. Many of
these efforts are done in conjunction with domain experts. In the following I summarize
literature review of applied machine learning using visual analytic systems.

2.1 Interactive model construction in Visual Analytics

Interactive model construction has been a flourishing avenue of research in the recent past.
In general, the design of such systems make use of both explicit user interactions such as
specifying parameters via graphical widgets (e.g., sliders), or implicit feedback including
demonstration-based interactions or eye movements to provide guidance on model selection
and steering. These types of systems build many kinds of models, including metric learning
[29], decision trees [236], and dimensional reduction [69, 121, 133]. For example, Jeong
et al. presented iPCA (see Figure 9-(a)) to show how directly manipulating the weights
of attributes via control panels helps people adjust principal component analysis [105].
Similarly, Amershi et al. presented an overview of the interactive model building process
[10].

Stumpf et al. conducted experiments to understand the interaction between users and
machine learning based systems [224]. Their results showed that a collaborative shared
intelligence-based framework grounded in user interactions could help both users and sys-
tems. Stumpf et al. conducted a think-aloud study to understand the forms of feedback
humans might give to machines [223]. They found that these included suggestions for
re-weighting of features, proposals for new features and feature combinations, relational
features, and wholesale changes to the learning algorithm. They showed that user feed-
back has the potential to significantly improve machine learning systems, but that learning
algorithms need to be extended in several ways to be able to assimilate this feedback [223].

Figure 9: Shows (a) iPCA interactive VA. (b) Interaxis system allowing interaction based scaling
of axis on the fly.
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One of the core functionalities in these VA systems is the ability to steer ML models
interactively. Interactive model steering can be done via demonstration-based interaction.
The core principle in these approaches is that users do not adjust the values of model pa-
rameters directly, but instead visually demonstrate partial results from which the models
learn the parameters [29, 69, 70, 71, 136]. For instance, Brown et al. showed how reposi-
tioning points in a scatterplot can be used to demonstrate an appropriate distance function
[29]. It saves the user the hassle to manipulating model hyperparameters directly to reach
their goal. Similarly, Kim et al. presented InterAxis [121], which showed how users can
drag data objects to the high and low locations on both axes of a scatterplot to help them
interpret, define, and change axes with respect to a linear dimension reduction technique
(see Figure 9-(b)). Using this simple interaction, the user can define constraints which
informed the underlying model to understand how the user is clustering the data. Wen-
skovitch and North used the concept of observation level interaction in their work by having
the user define clusters in the visualized dataset [245]. By visually interacting with data
points, users are able to construct a projection and a clustering algorithm that incorporated
their preferences. There are also work in the literature which shows benefits from directly
manipulating a visual glyph to interact with the system, as opposed to control panel style
user input [24, 71, 115, 189, 200]. From a user experience perspective, my research aligns
closely with these demonstration-based techniques. Interaction techniques prototyped by
my research does not presume our users have expertise in model building or steering, but
rather let them manipulate the visual results of the models to incrementally refine and steer
them.

2.2 Single model based systems

The list of works mentioned above represents single model based VA systems helping non-
experts build and adjust model parameters by either a control panel or through UI elements
which enables them interactively demonstrate feedback. The spectrum of problem types
these systems solve is adequately wide. It includes ranking [240], metric learning[29], deci-
sion trees [236], dimensional reduction [69, 121, 133], feature selection [105], weight space
exploration [166] and many more. For instance, Podium [240], is driven by a single linear
SVM model with the goal to compute attribute weights based on users subjective preference
of multi-attribute data items.

In all of these examples, the model infers parameters based on users demonstration of
intent by direct manipulation of graphical widgets. Mühlbacher et al. [159] explained in-
creased user involvement in black-box algorithms, using parameter refinement to change the
underlying models. Pezzotti et al. [176] have shown a single user steerable model to provide
feedback to tSNE models for dimensionality reduction. Similarly, in an interactive recom-
mender system, a user can provide continuous feedback by recording additional choices, or
by explicitly scoring (liking/disliking) individual items [104]. My research contribution is
distinct from these as I am empowering users to communicate their preferences to multiple
ML models (as opposed to a single ML model) with the goal to select a model appropriate
for the task and the problem domain.

2.3 Multi-model based systems

Recently multi-model based VA have been explored which comprises of VA’s that account
for multiple ML models simultaneously to support desired user tasks and goals. Some
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multi-model VA systems use multiple models for the same task. For example, Hypertuner
[232] looked at tuning multiple machine learning model’s hyperparameters. Other multi-
model VA systems account for one model for one task, thus supporting multiple tasks in a
single VA system. For instance, the system StarSpire from Bradel et al. showed utilizing
semantic interactions to steer multiple text analytic models from a set of demonstrations
available to users [27]. While effective, their system is scoped to text analytics, handling text
corpora at multiple levels of scale. All of these works are very close to my research as they
investigate adjusting multiple ML models to support user goals. They also support model
space traversal by tuning hyperparameters to find models that best support user-defined
constraints.

Figure 10: Shows (a) Ensemble Matrix allowing users to look at multiple ensemble options. (b)
Model Space viewer showing component ML models of an ensemble ML model.

Furthermore, Shneider et al. showed visual integration of data and model space (See
Figure 10-(b)), by allowing users identify effective component models on data items from a
classification model ensemble [204]. Patel et al. showed an example technique to work with
multiple model systems helping users understand the relationship between data, models,
and features [169]. Piringer et al. showed an interactive visual analytic system helping
multiple regression model comparison and validation in an interactive fashion [179]. Their
technique specifically uses a comparison of multiple model outputs to help users select the
best model. Similarly, Cutura et al. prototyped an interactive multi-model selection tool
focused on the comparison of multiple dimensionality reduction models [190]. Kwon et
al. [132] showed a tool to visually identify and select an appropriate cluster model from
multiple clustering algorithms and parameter combinations. However, their work targeted
data scientists as the user, while we are aiming to build techniques for domain experts
without formal data science training.

2.4 Model Space and Model Ensembles

In the literature, there is ample contribution in model space and parameter space analysis
to traverse the model space. Sedlmair et al. [206] defined visual parameter analysis as a
variation of model parameters, generating a diverse range of model outputs for each such
combination of parameters. Their work investigated the relationship between the input and
the output within the described parameter space.

The topic of model ensembles is related to multi-model steering and model-tuning.
Model ensembles increase model performance by fusing multiple model’s strength. Different
strategies yield different kinds of model ensemble [112, 113]. For example, Potter et al. [182]
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showed an interactive ensemble model to allow focus and discovery of simulation outcomes.
Datta et al. built a system CommunityDiff, showing a mechanism to visualize ensemble
space by using a weighted combination of various algorithms to aid identifying patterns,
commonalities, and differences in the space of community detection problem type [56].
Talbot et al. [228] built an interactive ensemble matrix system as seen in Figure 10-(a)
visualizing confusion matrices to allow insight gain on various component classifiers. Model
ensembles can be built by training the component models on different subset of data [28, 81],
or by using different algorithms [130, 246] for each model type (e.g., by using bagging [28]).
Through my research I am interested in making contribution in this space by: (1) inventing
a technique to search through multiple types of models (i.e., Random Forest models with
various hyperparameter and parameter settings), and (2) interpret subjective preferences
from user interaction as feedback on all models causing hyperparameter tuning directly
changing model behavior in parallel.

Figure 11: Auto-Weka interface that allows users to automatically build machine learning models
by specifying input data and the machine learning task.

2.5 Automated Model Selection Systems

Model building requires selecting a model type, finding a suitable library, and then searching
through the hyperparameter spaces for an optimal setting to fit their data. For non-experts,
this task can amount to many iterations of trial and error. In order to combat this guessing
game, non-experts could use automated model selection tools such as AutoWeka [128, 231],
SigOpt [167], HyperOpt [22, 127], and AUTO-SKLEARN [78].These tools execute intelligent
searches over the model space and hyperparameter spaces, providing an optimal model
for the given problem type and dataset (Refer the interface of Auto-Weka in Figure11).
AlphaD3M, is another automatic machine learning system that utilises meta reinforcement
learning on sequence models. Their technique uses edit operations performed over ML
pipelines to explain the underlying processes [63].
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These systems also called Auto-ML is impacting substantially not only to include non-
experts in constructing models, but also by helping data scientists be more productive, and
efficient. It empowers users to test multiple hypotheses and parallelise their process to search
for optimal models. Comparing these Auto-ML systems however, is nearly impossible, as
each of these are designed and implemented differently and do not share a common interface
or protocol to compare results. Another problem in this space, is to debug a black-boxed
Auto-ML system. Usually, developers go through system logs to evaluate the efficiency of the
underlying model search process, diversity of models accessed, how well the selected model
represents all the class categories in the input data. Analysing logs is a tedious process, and
often out of the skillset of users who are novices in machine learning. Large corporations such
as Google, build their own internal tools to explain some of these systems. For example,
Google Vizier, an internal platform at Google, performs black-box optimization to tune
parameters across all various ML models, and further supports explainability to the Google
Cloud Platform [88]. However, these tools are all based on optimization of an objective
function which takes into account only features or attributes that are quantifiable. This
means that such systems ignore the domain expertise of users, which is often not directly
encoded in the data. Instead, my work explores how to incorporate this domain expertise
through user feedback that is integrated into the model selection process.

Figure 12: Stacgenvis system empowers users in dynamically managing data instances, selecting
the most relevant features for a given data set, and finally interactively selecting models for their
problem [39].

2.6 Human-centered machine learning

Human-Centered Machine Learning studies frameworks of machine learning that include a
human in the process [11, 12, 198]. A related area of study is the modification of algorithms
to account for human intent. Sacha et al. showed how visual analytic based processes could
allow interaction between automated algorithms and visualizations for effective data analysis
[198]. They examined the criteria for model evaluation on an interactive supervised learning
system. They found users evaluate models by conventional metrics, such as accuracy and
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cost, as well as new criteria such as unexpectedness. Sun et al. developed Label-and-
Learn, allowing users to label data facilitated by interactive visualizations [226]. Their
goal was to allow users to determine a classifier’s success and to analyze the performance
benefits of adding expert labels [226]. Bernard et al. emphasized the knowledge generation
process of users performing a visual interactive labeling task, as opposed to conventional
machine learning methods [23]. Ren et al. explained debugging multiple classifiers using
an interactive tool called Squares [188]. Stackgenvis is a visual interface that empowers
users to select optimal models, organize data instances, and select relevant features to train
models [39] (see Figure 12).

Holzinger et al. discussed how automatic machine learning methods are useful and
discussed their uses in various domains [99]. They noted that these systems generally
benefit from large static training sets, which ignore frequent use cases where extensive data
generation would be prohibitively expensive or unfeasible. In the cases of smaller datasets
or rare events, automatic machine learning suffers from insufficient training samples. They
claim such an NP-hard problem can be successfully solved by interactive machine learning
via input and assistance from a human agent [99]. This concept of computational models
fostering human and machine collaboration is further explored in [49]. Through research
investigations, I seek to extend these formalizations by considering human interaction as an
estimation of a loss function of the models viewed by the user. In doing so, we generalize
human-centered machine learning to multiple models.

2.7 Domain applications of machine learning

Machine learning has impacted many domains, where doomain experts extensively use
ML models and pipelines to make informed decisions, in their analytical tasks, such as
clustering data to understand associations and relationships between instances and features,
or sentiment classification of text data to make sense of peoples’ opinion on a topic on social
media. In the following, I describe relevant applications of ML in bio informatics and public
policy, as I learned through research collaborations with these domain experts.
Bio-informatics: Through my research, I have worked closely with biology researchers to
help them interactively cluster data [51]. I learned there are many interactive tools that
assists users to interactively cluster data (e.g., [19, 37, 58, 66, 92, 100, 131, 146, 162, 197,
208, 245]), a summary of which is presented here. An early tool to cluster gene datasets
is realized in the Hierarchical Clustering Explorer [211] which uses interactive coordinated
displays including dendrograms and 2D scatter-grams to support exploration of hierarchical
clustering of gene expression datasets. Further, consensus clustering method was shown by
Monti et al. [158] as a means to help users in analysis and guidance to select a model from
available clustering methods. Their method allows a consensus across multiple iterations of
clustering algorithms, in order to evaluate the stability of found clusters. XcluSim [150] is a
tool for bio-informatics data helping users to compare multiple clustering results, supporting
a diverse set of algorithms. XcluSim combines several small sub-views to form a multi-view
layout for cluster evaluation. Another platform, called StratomeX [139] is an interactive
visualization application that enables users to explore the relationships of sub-types across
multiple genomic data types. StratomeX is mainly designed to support tasks with “com-
parative nature” (e.g., evaluate how well two or more stratification’s support each other).
CComViz [107] is a different application that uses the parallel sets technique to compare
clustering results. Kern et al. proposed novel methods for evaluating and comparing cluster
results and implemented their methods into StratomeX.
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Clusterophile [58] and Clusterophile 2 [37] are both designed to enable users to explore
different choices of clustering parameters and reason about clustering instances in relation to
data dimensions. iVisClustering [134] is a tool that enables document clustering based on a
widely used topic modeling method called latent Dirichlet allocation (LDA). Hu et al. [100]
and Guo [92] developed interactive tools that enable users to select features while clustering
their data. ClusterSculptor [162] is another tool that aids data scientists in the derivation of
classification hierarchies in cluster analysis. VisBricks [138] provides multiform visualization
for the data represented by clusters (it enables users to select which visualization technique
to use for which cluster). While these tools support biologists cluster data, we realized
that interactive visual analytic systems needs to be designed to reduce users’ cognitive cost
as they interact, and enhance interaction expressivity by implementing novel interactions
that trigger underlying models to incorporate user preferences, without users’ having to go
through navigational menus, control panels, or selecting model hyperparameters.

Public Policy/Urban Planning: Recently, I have worked with urban planners who use
large scale social media data to mine peoples’ opinion and use this information to design
new urban policies [52]. Here I summarize, application of machine learning in public policy.
Urban planners use large scale social media data [145, 148, 194] to get access to citizens’
opinion [26, 140, 161] on topics related to their domain. In this process, they use various
ML modeling techniques (e.g., topic models, sentiment classification, text summarization,
etc.) and visualizations to make sense of the data and the results from the model [123].
For example, Zhang et al. discussed engaging citizens and other stakeholders in discussion
related to spatial planning. In doing so, they demonstrated the application of a web-based
toolkit applying hierarchical topic modeling. Their work highlighted three key methods:
harvesting geo-social media data from an online resource, identifying text-based social media
messages that relate to spatial planning topics, and semi-automatically summarising the
contents to explore the themes that appear in the public input.[254]. Other approaches
of topic modeling in urban planning using social media data can be seen here [95, 153].
Furthermore, the sentiment classification task has proven to be pivotal for urban planners
to understand peoples’ sentiment [123, 145, 180, 194]. For example, Paul et al. prototyped
Compass, a deep learning based technique of spatio-temporal sentiment analysis from large-
scale social media data, on the topic of US Election in 2016 [171]. While these works prove
the application and use of ML in the domain of public policy and urban planning through
research we realized further work is needed to ensure domain experts access to ML-based
technologies which entails being able to adjust models, reason about the models that they
select, and interactively navigate the space of model options.

2.8 Interpretability and explainability in machine learning

An aspect of this research helps users to reason about models. While simpler models such
as decision trees, or linear regression models are easier to explain or interpret, more complex
models such as ensemble models (boosted trees or random forests), and deep neural networks
are considerably difficult to interpret. The underlying decision making processes of such
models are black-box to the user, which is an open research area in human-centered machine
learning. In the following I provide a brief overview of model interpretability to get a better
sense of what others in the research community have addressed over the years. A model
can be explained by: (1) either using inherently interpretable models (surrogate decision
trees, linear models, additive models etc., or (2) using post-hoc analysis methods to analyze
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trained deep neural networks or other similarly complex models to help users interpret them
[65]. Furthermore, past efforts in post-hoc model interpretation can be categorised as local
and global explanation techniques. Local explanation techniques show a model’s reasoning
process in relation to each data instance. Global explanation techniques aim to provide an
understanding of the models’ behaviour as a whole and analyze what knowledge has been
acquired after training.

Interpretable models: This category includes models that are inherently interpretable,
such as decision trees, rule-based models [137], additive models [34], sparse linear models,
etc. [235]. Compared to neural networks or ensemble models, these models comprises
of internal components that can be directly inspected and interpreted by the user. For
example, users can probe various branches in a decision tree, or visualize feature weights
in a linear model. While these models help users make sense of the model predictions, the
performance accuracy falls behind compared to state of the art complex models such as
deep neural networks. However, owing to the benefits of simpler models, recently a number
of neural network architectures also utilises interpretable components such as attention
modules [247] or prototype layers [38, 96, 143, 156] for easy human interpretability. As
useful these additions are to the network architecture, these models may need to balance
between model performance (i.e., accuracy) and interpretability.

Locally explainable models: This approach includes explaining a pre-trained ML
models’ reasoning process with respect to input data instances. In this space, a frequently
used technique is to calculate and visualise feature attributions [13, 17, 73, 149, 185, 209,
216, 217, 227]. Feature attributions can be computed by slightly perturbing the input fea-
tures for each instance to verify how the models’ prediction response varies accordingly
[126, 217]. In the context of deep neural networks, feature attribution can be computed by
back-propagating through the network [209]. Another technique in this category includes
sampling features in the neighborhood of an instance to compose an additional training
set. An interpretable surrogate model is re-trained using the same training set such that it
mimics the original models’ performance accuracy. Using this approach an original models’
prediction can be explained by an interpretable model (e.g., linear regression) that is rela-
tively easier to inspect [192]. A major flaw in this approach is that local explanations are
shown to be less reliable and consistent as the explanations holds true only for a specific
set of data instances. The explanations do not hold true for other similar data items in the
training set. In other words, for two data instances from the same class label, the explana-
tions may strikingly contrast from one another. In addition, it could also be badly impacted
by adversarial perturbations [84, 122] and confirmation biases [5]. Another drawback of this
approach is that users have to go through the tedious process of manually inspecting each
data instance to make sense of the model.

Globally explainable models: This approach focuses on explaining models’ behavior by
showing a global overview, rather than describing predictions of local instances or input re-
gions [65]. For deep neural networks, a particular set of global model explanation techniques
focus on understanding the latent representations learned by the neural network through
activation maximization techniques [252] which calculate inputs that can maximally acti-
vate each individual neurons in intermediate layers in a neural network. There are also
concept-based explanations that show how models’ makes predictions globally by recover-
ing relevant concepts [85, 120, 249, 256] that are understandable to humans. For example,
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Figure 13: Concepts learned from input images data using the concept activation vector technique
[120].

the technique interpretable basis decomposition (IBD) explains image classification model
by showing relevant concepts that are human-interpretable [256]. In particular, concept
activation vectors (CAV) are discussed by Kim et al. [120] (see Figure 13) as a framework
to interpret latent representations in deep neural networks. This technique has been shown
to be implemented by using supervised approaches where data with human-annotated con-
cepts is available [120], or by unsupervised techniques (e.g., clustering) to retrieve relevant
concepts directly from the training data [85].

2.9 User Preference in Objective Functions

In machine learning, users solve various problems which are context-dependent and personal
[7]. For example, a problem scenario in ML to enable personalized interactions of a robot
with autistic children [196] is entirely different from that of constructing a classifier person-
alized for patients with an Alzheimer’s disease [74]. Diverse problem scenarios create an
opportunity to specify a diverse set of user preferences. These preferences are the building
blocks to construct an objective function. We studied the literature to understand what
kind of specifications users can provide to construct a robust ML model such as a classifier
[43, 233, 248, 258]. The following summarizes relevant past efforts to capture novel user
preferences. Kapoor et al. discussed, often users have to rely on the overall classification
accuracy of predictive models instead of relying on predictions generated by marginal mod-
els. Marginal models compute accuracy by taking the number of correctly labeled instances
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of test data divided by the total number of instances the model has classified [116]. This
often leads to a bad model selection. Zhu et al. described the machine teaching paradigm
where a machine teacher (usually a domain expert) shows informative data instances of
positive and negative class labels to maximize the distance between the classes[258]. These
specifications directly affect how a model learns from the training data.

Lime, a submodular optimization technique, helped users to interpret models by ex-
plaining the prediction of a model on a set of data instances [193] that are relevant to them.
Tamuz et al. showed an adaptive algorithm that estimated a similarity matrix from human
judgments based on comparisons of triples [229]. To paraphrase, the authors asked users
- ”is object A similar to B or C?” . Applying the same ideology in classification tasks a
user can specify data instances that similar and should be predicted in the same class label
or vice versa. The system Flock asked crowd workers to define the reason behind a pair of
instances to be in a positive class and vice versa. Their method captured features specified
by crowd workers when automated feature extraction was not feasible [45].

Kapoor et al. discussed if users can understand the model behavior, they can assess the
possible next moves to adjust the model further [116]. For example, users can evaluate a
model if it correctly predicts similar data instances in the same class label or not. If certain
data instances are not in the same class label, users may provide additional examples in
order to refine the model’s characterization of the data. We realize that unlike conventional
model building pipeline which relies on metrics such as precision, recall or cross-validation
scores, non-expert users can assess the quality of models based on preferences they specify
as part of an objective function.

2.10 Many-objective optimization systems

Various techniques have been used to visualize solution sets from an objection function
space such as MDS, RadViz, Bubble chart, Parallel coordinates, Self-organizing map, etc.
A detailed comparison is provided here [98]. Further, He et al. proposed a new visualization
technique to map solutions from a high-dimensional objective space to a 2D polar coordinate
plot. Their method helped understand trade-offs between objectives and find desirable
solutions [97]. Sahu et al. showed the use of a radar chart to visualize many-objective
solution spaces [199]. Walker et al. visualized a set of mutually non-dominating solutions
They used Radviz visualization to show multi-objective solutions and introduced techniques
to measure the similarity of non-dominating solutions [239].

Many researchers have looked at measures to assess the diversity of Pareto-optimal solu-
tions in multi-objective optimization problems [141, 142]. While these works have looked at
visualizing the solution space (mostly non-dominating Pareto-optimal sets) in an objective
function, we are interested in visualizing only a subset of solutions of the order of k = 1to15.
We thus used two effective visualization techniques to display the Pareto-optimal ML mod-
els - (1) Parallel coordinate plot and (2) Radial chart or Star plot view. Further, we intend
to help users construct the objective function as opposed to only view its solution space.
To our knowledge, the construction of objective functions by non-experts using interactive
visualization techniques is missing in the literature.

2.11 Conflicts in multi-objective objective functions

Below we summarize, a set of works from various domains where people have addressed
conflicts in objective specification by incorporating various learning techniques. In many
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practical real world ML applications such as in finance, transportation, engineering, medical
diagnosis, etc. requires addressing multiple user goals that may often conflict with one
another [144]. Often these goals are specified to the system using a multi-objective objective
function representation [47, 175]. In such multi-objective objective functions, it is considered
as ‘k’ (number of objectives) increases, the power of finding dominant solutions diminishes
as satisfying each of the objectives becomes mathematically intractable [57]. Purshouse
et al. confirmed that multiple objectives may be conflicted with one another; resolving
conflict may show better performance in one objective than others. However, in some cases
they may also show harmony that both objectives sees improved performance [183]. A
few approaches to address better performance with a large number of conflicted objectives
includes: (1) multi-start strategies of the optimization process [101], and (2) purely random
search for objective functions with more than 10 objectives [124].

In this context, Zhang et al. defined conflict analysis as a method to find conflicts,
reason about it, and then resolve it [253]. Bell et al. further describes conflicts in decision
making and provides an overview of quantitative approaches to address them in optimiza-
tion problems [21]. Reed et al. explored scatterplot charts to visually inspect the set of
conflicting objectives to solve a ground water monitoring and optimization problem [187]
(e.g., discovered a conflict between cost and uncertainty). In machine learning, there is
a recent interest in multi-objective machine learning optimization functions, which tack-
les conflicting user objectives. For example, minimizing the number of features and the
maximizing feature quality are two conflicting objectives. In model selection, there is the
conflict between model complexity and model accuracy (more complex, more accurate the
model) [108, 109]. Multi-task learning is another avenue where multiple tasks are solved
jointly using a multi-objective optimization paradigm; however these tasks often conflict
with one another that needs a tradeoff analysis [210]. A common solution is to utilise a
proxy objective to minimise a weighted linear combination (per task) of loss. Sener et
al. showed a solution to the conflicting objectives by solving for pareto optimal solutions
[210]. We observed that there are many areas in decision making, and in machine learning
where conflicting objectives play a critical role. In the past, authors worked around it using
elementary visualisations as a means to allow users perform tradeoff analysis, were users
inspect a set of pareto optimal model options. More importantly, none of the work in the
past has specifically worked towards conflict detection and resolution in objective functions,
specifically designed for machine learning model selection, a problem that we specifically
solve in this thesis.
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CHAPTER III

MODEL CONSTRUCTION AND SELECTION IN VISUAL
ANALYTICS

Q1: What are the various techniques of interactive model construction and selection
in human-centered machine learning?

This chapter describes my research to answer what are the various approaches to in-
teractive model construction and selection in VA systems? First, I explain the concept of
model selection and then I describe the spectrum of model selection in VA systems. Fur-
ther, I describe two model selection techniques that I prototyped and evaluated. Finally, I
summarize how people select models using interactive visual interfaces.

3.1 Model Selection and Model Steering

3.1.1 Types of Model Selection

The choice of model is critical in an interactive ML workflow. What if the model chosen
is sub-optimal for the task, dataset, or question being asked? What if instead of parame-
terizing and adjusting a chosen model, a different model provides a better fit? Thus a VA
system needs to deploy computational techniques to select models that non-experts can use.
This process is called model selection.

Figure 14: Various ways people select models in visual analytics.

There are many ways by which a model can be selected (refer Figure 14) from the overtly
vast model space further explained below:

• Manual Model Selection: In this method, the task of model construction and
selection of an optimal model is passed on to the users. Users manually construct
models by picking a learning algorithm and a set of hyperparameters either from a
control panel style user interface or by writing programs/scripts through a text editor.
They evaluate different models by reviewing their output on an underlying dataset
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Figure 15: In manual model selection, models are sampled from the model space by manually
specifying hyperparameter settings. At the next iteration, totally new models can be sampled by
manual specification of new hyperparameter values.

(train and test) or by inspecting models performance on a chosen metric (i.e., cross-
validation score, F1-Score, etc.). While useful, this approach is traditionally followed
by ML practitioners/developers who know how to code/program and understand data
science/ML theories (refer Figure 15).

Figure 16: Semi-automatic model selection changes the models in the model space per iteration
by configuring new hyperparameter settings using model steering approaches.

• Semi-Automatic Model Selection: In a semi-automatic model selection approach,
a user interactively constructs models and adjusts their performance until they are sat-
isfied. In this approach, a model solver in a VA system performs model construction,
hyperparameter tuning, and model selection based on a pre-defined metric. Often
the model metrics are inferred based on demonstrated user interactions. In some
systems, users can interactively specify model metrics to guide the system to select
models aligning with their preferences and choices (refer Figure 16). In my research,
I deployed a semi-automatic model selection technique in a VA tool called BEAMES
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[50], aiding selection, inspection, and steering of multiple regression models from the
model space (explained later in the chapter).

• Automated Model Selection: Automated model selection is facilitated by auto-
ML platforms such as, [22, 127, 167]. For example, Auto-Weka [128, 231] provides an
auto-ML classifier, which requires users to input a dataset, and provide the attribute
name of the target label. Next, the auto classifier searches within a domain(an input)
range of each hyperparameter values to find a model with the right combination of
hyperparameters such that it maximizes or minimizes the specified metric to evaluate
the model such as, cross-validation score, training accuracy or testing accuracy, etc.
Next, Auto-Weka iterates until the maximum number of iteration limit is hit, or the
chosen metric does not change per iteration. Finally, Auto-Weka responds with an
optimal model and the predicted label output for training and test set. There are
other auto-ML tools which non-experts can use such as Hyperopt, Sigopt, BigML,
etc. (refer chapter 2), all of which follow a similar workflow.

3.1.2 What is Model Steering?

In a semi-automatic model selection approach, users interact with VA systems to adjust
model behavior; this phenomena is explained by model steering. Precisely model steering
helps systems to interpret and translate user interactions into actions that change the under-
lying numerical processes that drive these models. Various user interactions contain critical
information about the users thinking processes, approaches, and the path they traverse to
derive insights [61, 178]. Some real-world applications of a model steering approach can be
seen here [83, 154, 177, 215]

Along the same lines, Liere et al. have defined computational steering as a process to
enable users to change parameters of simulations on the fly [160, 237]. Their work empha-
sizes the concept that simulations run over many iterations, where users may need to update
parameters before completion. We ground our concept of model steering in this prior work
and refer to it as a process in which a model’s parameters are changed to produce updated
results iteratively, and multi-model steering as a process in which a model’s hyperparame-
ters, and parameters are changed (see Figure 17). Model parameters refer to values that are
learned during training of a model, such as coefficients, while hyperparameters are typically
determined through some process external to training, such as cross-validation.

Thus model steering helps people incrementally build machine learning models that are
tailored to their domain and task. Existing visual analytic tools allow people to steer a
single model that is pre-defined by a system developer or a ML practitioner. However, if
this single pre-defined model is inadequate to correctly characterize the data (poor fit to
the underlying data), users may see sub-optimal performance/results. In my research, I am
investigating novel techniques to search the model space based on inferred user preferences
to find models that satisfies users subjective requirements.

I begin by investigating semi-automatic and automatic model selection in VA both of
which uses interactive model steering. BEAMES, a VA tool that I protoyped presents a
technique to allow users to inspect and steer multiple machine learning models [50]. The
technique steers and samples models from a broader set of learning algorithms and model
types. The system allows users to perform regression via a multi-model steering and a
semi-automatic model selection approach, explained further below.
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Figure 17: Types of model steering as seen in multi-model and single-model based VA systems.

3.2 BEAMES - inspect, steer, and select regression models

The visual analytic technique presented in BEAMES allows domain experts to inspect
regression models by checking a model’s predicted output on a tabular data. The underlying
technique in BEAMES searches the model space for models that more closely adhere to data
items and attributes the user is interested in. This human-in-the-loop process allows domain
experts to explore a myriad of models for a regression task, and add domain expertise into
the model building process to produce models which adhere to their subjective and objective
preferences (see Figure 18).

Figure 18: Working process of BEAMES incorporating model steering, inspection and selection
for a regression task.

BEAMES is designed to help users define critical data instances on which the perfor-
mance of a model is crucial. Accurate prediction of critical data instances can increase
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user’s trust in the model. Our technique allows people to steer and inspect multiple mod-
els. BEAMES assists the inspection process by recommending models (from a collection
of models) which successfully make predictions on the critical data instances with zero or
relatively low error value. Showing a wide spectrum of models for the given regression prob-
lem can be beneficial to domain experts who otherwise would not be aware of the many
possibilities and permutations of models. Being able to filter the data by instances and
filter models by their performance (by simple double range sliders and toggle switches for
categorical items), users can drill down to models which are successful and can validate
them by checking their results on critical data instances. Further, users can add domain
knowledge in this model construction process e.g, they may specify features that are more
important than others, or data instances that are more important to correctly predict.

The technique prototyped in BEAMES has the following primary components: i) inter-
active weighting of critical data instances, ii) interactive feature selection with weights, iii)
interactive model selection, and iv) building model ensembles.

3.2.1 User Interface

The user interface of BEAMES consists of four primary views: a data table, a model view,
a control panel, and a model detail view.
Data Table: Users can see training, test, and hold out set in the data table view which fol-
lows a standard spreadsheet style (See Figure 20-(b)). The columns show three-state toggle
switches enabling users to emphasize, de-emphasize, or discard an attribute. Further using
a slider they can specify attribute weights. Users can specify certain data instances which
they think should be correctly predicted by the model, also called critical data instances.
Hovering over any data instance, the system shows which models correctly predicted this
instance.
Model View: Each regression model is shown as a circular glyph in the model view
(encoded color shows the average residual error, see Figure 20-(a)). Hovering over any of
the circle shows model details such as its learning algorithm, mean squared error, number
of data instances correctly predicted, etc. Clicking on a circle allows users to inspect the
model, as it adds the predicted value column in the data table view (e.g., housing price on
a housing data set). Users can interact with these models in numerous ways as explained
in the next section. Further inspecting a model opens the model detail view for detailed
analysis.

Figure 19: (a) Shows the model detail view. (b) Bar chart showing residual error per data
instance. (c) Scatterplot showing relationship between two selected data attributes.
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Model Detail View: This view shows a scatterplot with a line showing how well the
model fits the data. Further, it shows a bar chart highlighting residuals at data instance
level. Finally users can also inspect relationship between a pairs of attributes through a
scatterplot (See Figure 19-(a)).
Control Panel: The control panel contains frequently used operations such as filtering
data instances, and checking attribute weights. Models can be filtered by model accuracy,
average residual scores, or desired number of correctly predicted instances (See Figure 20-
(c)).

Figure 20: The BEAMES user interface for multi-model steering, selection, and inspection for
regression tasks. The model view (A) shows circular glyphs representing regression models color
coded by residual error. The data table (B) shows training, test, and application data sets. The
control panel (C) allows users to filter models and critical instances, and change feature weights (D).

3.2.2 User Interactions

User interactions in BEAMES are designed to update the underlying models via both in-
teractive model steering and selection. This section describes these interactions.
Save Models: Users can save any model Mi in the model view. The system saves its
learning algorithm Li and the set of hyperparameters represented as [λ1, λ2, λ3...λm]. At
each iteration, BEAMES shows saved models with an orange stroke aorund it as seen in
Figure 21-(b).
Like Models: Users can like a model Mi in the model view (see Figure 21-(d)). In
response the probability pd of the learning algorithm that produced that model is increased
by a factor rf . We randomly set the value of rf by using a threshold ε. With trial and
error, we found ε = 0.1 showed promising results (certainty to select model’s with higher
accuracy is more). Likewise, the hyperparameters λi of that algorithm are sampled from
within a threshold region of the hyperparameters used in the liked model. This ensures that
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Figure 21: Circles represent regression models. (a) Recommended models to the user (b) Saved
models by the user (c) Models picked by the user to create an ensemble model (d) Models liked by
the user.

a large share of the new sampled models are from the neighboring regions of the model’s
users liked. However, the technique still randomly samples other model types to ensure
diverse choices in model selection.
Adjust Data Instance or Attribute Weight: Users can adjust the weights of data
instances and attributes by adjusting the respective sliders (See Figure 24-(a)). As a result,
all the available M models are retrained using N training instances with user specified
features Ak, where Ak ⊂ A, W is user-specified feature weights, and Ω is data instance
weights.
Ensemble Models: Users can select (by a pick interaction) G models to build a model
ensemble (See Figure 21-(c)). The system uses each component model mj to build a model
ensemble E. Using a bagging technique from [28], BEAMES assigns a higher probability
to sample data instance di, whose weight ωi have been increased by the user. The final
ensemble model E’s output is the weighted average of the predictions of the models in the
ensemble. Further, when users are satisfied with a model, they can directly export the
model for future use.

3.2.3 Usage Scenario

Amy is a real estate agent who reviews existing and new properties to analyze their market
prices in the city. However, not being a data scientist she is not conversant with complex
modeling techniques, which can help her accurately predict property prices or property
ratings in the future. Amy loads the Ames, Iowa housing dataset [102] in BEAMES. The
data set is automatically split into training (750 samples, 36 attributes) and test set (200
samples, 36 attributes) by BEAMES. It has a target attribute namely SalePrice that
contains the property price of each house. Every row in the data is a property (a house)
described by attributes such as property size, fireplaces, year built, number of bedrooms, etc.

Next, BEAMES builds 64 regression models, each randomly sampled using a combi-
nation of learning algorithms (linear, ridge, and bayesian regression) and hyperparameter
values (alpha, lambda, tol, etc.). As Amy is not formally trained in the specifics of the
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Figure 22: View showing Amy loads BEAMES to find 64 regression models. (a) Recommended
Models (b) Amy hovers over a critical data instance. (c) Amy clicks model 29 and saves it. (D)
Amy clicks on model 45 and inspects the output.

models, she begins her exploration by how well specific models predict property sale prices.
In the model view (See Figure 20-(a)), she sees the collection of models as circular glyphs
color encoded by their residual error scores. Browsing the colors of the circular glyphs
(representing models), Amy decides to start inspecting the yellow colored ones, which has
lower average residual error.

Amy inspects model 45 (Avg. Residual Error of 521, see Figure 22-(d)), as it has
accurately predicted over 300 entries on her training data while errored on the rest of the
entries from the training set. Next, she inspects model 29 with a much lower average
residual error 105.7 and finds that most of the data instances are predicted accurately (See
Figure 22-(c)). However, to double-check if some of the known data instances were correctly
predicted, she uses the filter panel on the left. She sees that the model 29 did not correctly
predict most of these data instances which are critical to her.

By hovering over these critical data instances (See Figure 22-(b)), BEAMES shows
models that Amy should inspect, as they made correct predictions on those instances (See
Figure 22-(a)). Amy reviews a few of the suggested models. She finds that the recommended
models performed better for the critical instances, though they had higher overall average
residual errors. Next, Amy clicks on the three state toggle button on these data instances
to emphasize them and specify sample weight using a slider. In addition, Amy thinks the
property price should be most strongly defined by the numberofbedrooms, garageArea,
2ndfloorarea attributes. She again uses the slider to increase their weight, while reducing
the weight on frontPorchSize and DrivewayQuality.

BEAMES updates the model view with newly computed models. Amy quickly looks
over the collection to find many models have scores close to 0. She finds two models
from these which correctly predicted the critical data instances. She saves them from the
collection. Next she evaluates them on the test set. Clicking on these models, Amy finds

34



the prediction on the test data is a bit off. For example, property id. 104 shows a predicted
price of $141,345, while the actual price is $99,322.

Confused to find the relatively poor performance on the test set, Amy uses the con-
trol panel to see the importance of the features in the horizontal bar chart. She sees the
relatively strong weight on the numberofbedrooms attribute (as she intended previously).
She adds increases weightings on few other relevant attributes i.e, overallPropertyRating,
numberOfF loors, distanceToTransit. Next, she discards a few training data samples
thinking the prices on those properties are noise in the data. She likes a few models based
on their performance. Further, she picks a few models to create an ensemble from these
liked models and generates more models.

Amy browses the newly computed models. She sees a brown colored circular glyph,
representing an ensemble model built from the models she picked. She clicks on it and finds
that it shows a very accurate prediction on the training data. Amy confirms the same on
the model detail view, as the line fits the set of points (representing actual ground truth
values). Similarly, she sees almost 0 average residual error from the bar chart view. Amy
is happy with the models and saves a few (including the model ensemble). She loads a new
data set with same attributes (See Figure 23-(a)). She clicks on the saved models to see
predictions on the new dataset (See Figure 23-(b)). At this point, Amy has models to help
her predict house prices, which informs her how housing prices may change.

Figure 23: Amy loads the application data set to apply the saved models and see predicted
output. (a) Horizontal panel storing models saved by Amy. (b) Predicted output (“sale price”)
when a model is selected.

3.2.4 Technique

Data: We define our full data set as C data instances, which is then split in N training,
K test, and B application data instabces (C = N + K + B). Users train models on the
training set D containing N data instances, then validate on the test set T containing K
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data instances. When they find an acceptable model they export it or use it on application
data set H containing B data instances.
Model Sampling: We define a model Mi as a function f : X 7→ Y, mapping from the
input space X to the prediction space Y. Here, the prediction space is R and each model
mi is a regression model. For the modeling algorithms we used Scikit Learn’s machine
learning package [32]. Each model is sampled by combining a learning algorithm lk from a
set of J algorithms (hand picked by us for the regression task). Tested algorithms include
Linear Regression, Ridge Regression, and Bayesian Regression. Each learning algorithm
comes with their own set of hyperparameters λm. A sampled model is defined as mi 7→
Model(lk, [λk1, λk2, λk3....]).

The system initiates with randomly sampled S models. We’d like the sampling distribu-
tion to be uniform across algorithms such that users can inspect a wide spectrum of model
outputs for the given regression problem. For that reason, we initialize probability pk to
sample a learning algorithm lk (for a model mi) from J possible models as 1/J .
Updating training data: Users can load training data D on the data table. Every data
sample is initially set to an equal weight of ωi = 0.5. However, users can interactively set
weights on the samples between 0 and 1. 0 meaning to discard the data sample in training,
while 1 is to place the highest strength to the learning from the sample.

Figure 24: (a) The data table view showing the toggle switches (green, white and red) for features.
The sliders allow users to add weights to the data samples and attributes.(b) Similar toggle switches
and sliders for data samples. (c) From left : Column 1 is the predicted output, Column 2 is the
residual error, Column 3 is the ground truth value to predict, in this case sale price of a house

User driven feature engineering: Similar to the weighting of data instances, users can
emphasize, discard or weight quantitative features (see Figure 24-(b)). Using the UI toggle
buttons, users can specify if they want to emphasize or discard a feature for model training
(see Figure 24-(a)). Discarding a feature removes it from the set A. Emphasizing a feature
reveals a weight slider, which the user can set between -1 and 1. Setting a weight of -1
enforces the model to place a higher emphasis on lower values of the attribute than others.

The instance and attribute weights assigned by the user directly affect the computation
of the y dependent variable similar to the work by Cleveland [46]. The loss for each model
is a weighted least squares loss. Thus, the different regression models solve the following
regression problem:

min
N∑
i=0

ωi ∗ (ŷi − yi)2
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where,

ŷi = b0 +
M∑
i=0

bi ∗ xi ∗ wi

ωi is the user-defined weights for data instance i, b0 is the intercept, bi is the coefficients
of the attributes learned by the model, and wi are the user’s attribute weights.

3.2.5 Discussion

Model Interpretability: The technique in BEAMES helps users understand the model
output with respect to ground truth, without the need to interpret the internal complexities
of the models. This is in contrast to conventional view of model comprehensibility and
interpretability, which emphasizes methods to understand the learning of a model by the
user [48, 86]. While our work begins to explore this space, there is more work needed to
find how users understand and interpret models by observing outputs, helping them in this
semi-automatic model selection process.
Why not Automate?: Model selection processes greatly benefit if a model sub-space is
discovered from the otherwise large and exhaustive model space, either by inferring user
interactions or by direct specifications from users; both of these methods require deploying
a semi-automatic model selection approach. Further automated processes bring other chal-
lenges. For example, one of the feedback from participants in the user study conducted by
Talbot et al. was why not automate everything as opposed to adopting a semi-automatic
process [228]? The authors asserted that even though some features in their system could
have been automated, there were both interaction and engineering challenges to address if
their system was fully automated (i.e., computational costs affecting interactions). As such,
automating everything might require exhaustive exploration of an overtly large model space
rendering the process computationally expensive and often intractable. On the other hand
semi-automatic processes makes it computationally efficient and reasonable to search over
a sub-space rather than the overtly large model space often finding acceptable solutions
within a reasonable compute time.
User Involvement: While useful, the semi-automatic approach in BEAMES requires a
considerable user involvement in the model building pipeline, which has its pros and cons.
On the pros side, the user is empowered to pick an optimal model themselves. They inspect
models one by one and pick a model which suits their goals. The system guides the user
by recommending models to help them discover, which model to review or inspect. On the
cons side, it adds extra work on the user’s end. They need to manually inspect and review
models to find the one that best fits their subjective preferences. It may be less productive
if the user is not skilled enough to understand the differences between models or interpret
shown model outputs correctly. They might end up selecting a sub-optimal or a completely
random model.

Seeking to further ease users’ role in model selection and model space navigation, I
prototyped Gaggle (described in the next section), a VA system that increases automation
in model selection with the goal to simplify usability and complexity of user interactions in
multi-model systems.

3.3 Gaggle - interactive navigation of model space

Recent multi-model visual analytics systems make use of multiple machine learning models
to better fit the data as opposed to traditional single, pre-defined model systems. However,
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while multi-model visual analytic systems can be effective, their added complexity poses
usability concerns, as users are required to interact with the parameters of multiple models
or inspect multiple models. Further, the advent of various model algorithms and associated
hyperparameters creates an exhaustive model space to sample models from. This poses
complexity to navigate the model space to find the right model for the data and the task. I
prototyped Gaggle, a multi-model visual analytic system that enables users to interactively
navigate the model space. In addition, translating user interactions into inferences, Gaggle
automatically finds the best model from the high-dimensional model space to support vari-
ous user tasks. Further, through a quantitative and qualitative user study, I show how this
approach helps users to find an optimal (preferred) model for a classification and ranking
task.

3.3.1 Overview

In Gaggle, we attempt to solve the problem where the right model to use for a problem is not
known a priori. In such cases, one needs to navigate the model space to find a fitting model
for the task or the problem. Gaggle enables users to classify and rank data items, where
each of these two tasks are supported by finding the appropriate classification and ranking
model. To keep the interactivity simple, supported interactions operate on data cases which
serve as demonstrations to sample a new model from the model space. For example, users
can drag data items into specific classes to record classification task’s user preferences.
Similarly, users can demonstrate that specific items should be higher or lower within a
class by dragging them on top of each other. Gaggle’s interactive model space navigation
technique applies user feedback by sampling a new set of hyperparameters of a classification
and a ranking model every time users interact with the data. Furthermore, based on model
performance metrics inferred from user interactions, our technique automatically selects the
best model from these candidate models as seen in Figure 25.

In addition, Gaggle addresses a common problem of datasets that either lack adequate
ground truth, or do not have it [186, 230, 251]. To resolve this problem, Gaggle allows
users to iteratively define classes and add labels. On each iteration, users add labels to data
items and then build a classification model. After they finish the classification of data items,
users are able to rank data items within each class based on criteria relevant to their task
or domain. The need for model space navigation is exemplified in this iterative exploration
and model building scenario. During this process, users may change their task definition
slightly or learn new information about their data. In these cases, their user feedback may
be better modeled by a different model hyperparameterization than their feedback earlier
in the process. Updating the class definition or showing better examples directly affects the
underlying decision boundary, which the classifier needs to map correctly. For example, in
the first iteration, a linear decision boundary might characterize the data. However, when
new examples for classes are provided the decision boundary might be better approximated
using a polynomial or radial surface (refer Figure 26). In situations like this, our interactive
navigation of model space approach benefits the user by finding the correct hyperparameter
settings through Gaggle’s automatic model selection technique.

3.3.2 User Interface and Interactions

Gaggle’s interface has the following main components:
Data Viewer: The main view of Gaggle is the data viewer which shows data items within
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Figure 25: Workflow shown in Gaggle supporting multi-model steering of classification and rank-
ing models.

each class (see Figure 27-(a)). Visually each class is represented with a differently colored
rectangular bin. Users can add, remove, or rename classes at any point during data explo-
ration and drag data instances to bins to assign labels (see Figure 27-(i,h)). Further they
can re-order instances by dragging them higher or lower within a bin to specify relative
ranking order of items. Next, users can trigger Gaggle to construct classification and rank-
ing models. Using a multi-model steering technique (defined later in this chapter) Gaggle
finds an optimal model for each model type.
Attribute Viewer: Users can hover over data items in the data viewer to see attribute
details on the right (see Figure 28-(a)). Every quantitative attribute is shown as a glyph
on a horizontal line. The position of the glyph on the horizontal line shows the value of the
attribute in comparison to other data instances (see Figure 27-(b)). The color encodes the
data instance’s attribute quality in comparison to all other instances (i.e., green, yellow,
and red encodes high, mid, and low values respectively).
Data Recommendations: When users drag data instances to a different bin, Gaggle
recommends similar data instances which can also be added (see Figure 29). This is to
expedite class assignment. The similarity is computed based on the total distance Da of
each attribute di of the moved data instance to other instances in the data.
Interacted Row Visualization : Any interactions user perform on the data viewer is
shown on the interacted row visualization (see Figure 27-(c)). It shows data items users
interacted with along with any mismatch in its class labels (comparing user-assigned labels
as ground truth with predicted labels from a classification model). Similarly, it shows user
demonstrated rank order and predicted rank order from a ranking model. The color blue
indicates a close match while pink shows a strong mismatch in class label and rank order.
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Figure 26: A hypothetical binary classification problem shows how different model hyperparam-
eters may be needed to model the changing user interest at each iteration. Blue and orange points
represent positive and negative classes; white points represent data items not interacted with.

Interactions: Gaggle lets users provide feedback to models through a set of interactions
explained here:

• Assign Class Labels: Users can reassign classes by dragging data items from one
class to another. They can also add or remove classes. These interactions provide
constraints to steer the hyperparameters of the classification model.

• Reorder Items within Classes: Users can reorder data items within classes to change
their ranking by drag-drop data items (see Figure 27-(g)). This feedback is incorpo-
rated as training data for the Ranking model.

• Pin Data Items: When sure of a class assignment of a data item, the user can pin
it to the respective class bin. It ensures that data item will always be assigned that
class in every subsequent iteration.

• Constrain Classification Model: When satisfied by the classification model, users can
constrain the last best classifier. It allows users to move on to show ranking examples.

3.3.3 Usage Scenario

Problem Space: Lets understand how Gaggle can support interactive navigation of the
model space. Imagine Jonathan runs a sports camp for baseball players. Being an expert in
his field Jonathan knows which features from the data are important to his assessments but
also has prior subjective knowledge about the players. In his day to day work, Jonathan
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Figure 27: The Gaggle user interface allowing people to interactively navigate a model space to
support interactive classification and ranking of data points.

needs to judge areas in which the players need further improvement. He would like to
do this by placing players into different categories: “Best Players”, “In-form Players” and
“Struggling Players”.
User-Provided Labeling: Jonathan starts by importing the dataset of baseball players
(data publicly available from OpenML [238]). The data contains 400 players (represented
as rows) and 17 attributes of both categorical and quantitative types. The dataset does
not have any ground truth labels. He sees the list of all the players in the Data Viewer
(Figure 29-B). He creates the three classes mentioned above and drags respective players
in these bins or classes to add labels. Knowing Ernie Banks and Carl Yastrzemski as
very highly rated players, he places them in the “Best Players” class. Gaggle shows him
recommendations of similar players for labeling (Figure 29-A).
Automated Model Generation: Jonathan clicks the build model button from the Side
Bar (Figure 27-F). Based on Jonathan’s interaction so far, Gaggle constructs the model
space comprising of multiple classification and ranking models. Gaggle runs its optimizer
to navigate the model space based on Jonathan’s interaction to automatically find the
best performing model, out of an exhaustive search of over 200 models. When the system
responds, Jonathan continues his analysis of the data. He finds player Ernie Banks is
misclassified and places him in the “In-form Players” class instead of the “Best Players”
class. He moves Ernie Banks and similar other misclassified players to the correct class
label and asks Gaggle to find a model that takes his feedback into account.

Gaggle continues navigating the model space to look for regions where better-performing
classifiers and ranking models are more likely. Eventually, it finds a new model and shows
Jonathan the updated state of the training data in the data viewer. He reviews the results to
find that many of the previously misclassified players are correctly labeled and pins them to
ensure they do not change labels in future iterations Next, he looks at the attribute viewer
(Figure 27-B) in search of players with high “batting average” and “home runs” values. He
moves players that match his criteria into respective labels (e.g., placing Sam West and Bill
Madock in the “In-Form Players” class). After Gaggle responds with a new optimal model,
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Figure 28: (a) The attribute viewer showing details of each Player on hover. (b) Pin icon, allows
pinning a data item to a class bin (c) Set of input control buttons.

he verifies the results returned by the model in the interacted row visualization (Figure 27-
C). Content with the model, he accepts the classification model and moves on to rank the
players within each class.

For each class, Jonathan drags players up and down to demonstrate his understanding
of the ranking of players within classes. He iterates to check the updated optimal ranking
model built by Gaggle. He checks the interacted row visualization to find where the model
ranked each of the players he interacted with. It shows him expected player rank and
assigned player rank (by the current model). He moves player Norm Cash and Walker
Cooper to the top of the “struggling players” class, and moves player Hal Chase in the “best
players” class down. He iterates further and sees that most of the players are relatively at
the correct ranked spot. As a result, Gaggle helped Jonathan navigate the model space to
classify and rank players solely based on his prior subjective domain knowledge.

3.3.4 Technique

Bayesian Optimization: To facilitate interactive user feedback and navigation of the
model space, Gaggle uses a Bayesian optimization technique [174, 218]. This navigation is
initiated by sampling models from the model space as shown in Figure 30. Gaggle seeds
the optimization technique by providing: a learning algorithm A, a domain range Dr for
each hyperparameter, and the total number of models to sample n for both classification
and ranking models. The Bayesian optimization module randomly picks a hyperparameter
combination hp1, hp2 and hp3. For example, a model M1 can be sampled by providing
“criteria type” = gini, “max-depth” = 30, and “min-samples-leaf” = 12 (“criteria type”,
“max-depth”, and “min-samples-leaf” are the hyperparameters used in Gaggle). Likewise,
the Bayesian optimization module samples M1, M2, M3, M4 ... Mn models. For each such
model, it also computes and stores the cross-validation score defined as cv1,cv2,cv3, ... cvn.

The Bayesian optimization approach uses a Gaussian process to find an expected im-
provement point in the search space over current observations. For example, a current
observation could be mapped to a machine learning model, and its metric for evaluation of
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Figure 29: Gaggle’s recommendation dialog box.

the expected probability will be the model’s cross-validation score. Using this technique,
the optimization process ensures consistently better models are sampled by finding regions
in the model space where best performing models are more likely to be found (see Fig-
ure 25). Next, the Bayesian optimization module finds the model with the best score (see
Figure 31). Gaggle performs this process for both classification and ranking models.
Classification Model Technique: Gaggle begins with an unlabeled dataset. As the user
interacts with a dataset of n items, labels are added. For example, if the user interacts with
e data items, they become part of the training set for the classification model. The rest
of the instances n − e, are used as a test set to assign labels from the trained model. If e
is lower than a threshold value t, then Gaggle automatically finds s similar data instances
to the interacted items and places them in the training set along with the interacted data
items (s gets the label from the most similar labeled data item in e). The similarity is
measured by the cosine distance function using the features of the interacted samples. This
ensures that there are enough training samples to train the classification model effectively.
As the user iterates and interacts with more data instances, the size of the training set
grows, and test set shrinks, helping build a more robust classifier. For each classification
model, Gaggle also determines the class probabilities Pij , representing the probability of
item i classified into class j.(e.g., P10, P20, P31, P41, P50, P61, ...etc.) The class probability is
used to augment the ranking computation as they represent the confidence the model has
over a data instance to be a member of a said class.
Ranking Model Technique: Gaggle’s approach to aid interactive navigation of the model
space for the ranking task is inspired by[110, 240]; which helps users to subjectively rank
multi-attribute data instances. However, unlike these works, Gaggle constructs the model
space using a random forest model (a similar approach to [257]) to classify between pairs
of data instances Ri and Rj . While we tested both of these approaches, we adhered to
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Figure 30: Model space navigation approach using Bayesian optimization to find the best per-
forming model based on user-defined metrics.

random forest models owing to it’s better performance with various datasets. Using this
technique, a model predicts if Ri should be placed above or below Rj . It continues to
follow the same strategy between all the interacted data samples and the rest of the data
set. Further, Gaggle augments this ranking with a feature selection method based on the
interacted rows. For example, assume a user moves Ri from rank Bi to Bj where i > j
(the row is meant to have a higher rank). The feature selection technique checks all the
quantitative attributes of Ri, and retrieves m = 3 (the value of m is learnt by heuristics
and can be adjusted) quantitative attributes Q1, Q2, and Q3 which best represents why Ri
should be higher in rank than Rj These features are the ones in which Ri is better than Rj
(user can specify higher or lower value of an attribute is better or worse). If i < j (or if the
row was meant to have a lower rank), Gaggle again retrieves m = 3 features.

We do the same for all the interacted rows, and finally, we get a set of features (Fs, by
taking the common features from each individually interacted row) that defines the user’s
intended ranked order. In this technique, if a feature satisfies one interaction but fails on
another, they are left out. Only the common features across interacted items get selected.
The set of selected features Fs are then used to build the random forest model for the
ranking task. Using the class probabilities (from the classifier) and the ranking models,
Gaggle ranks the data instances within each class. A ranking model assigns a ranking score
Eij (ith instance, of jth class) to each data instance. A final ranking score is computed by
combining the ranking score of a data instance Ri and its class probability Pij , derived from
the classification model. It is represented as Rni = Eij ∗Wr + Pij ∗ (1 −Wr) where Rni is
new rank, Wr is the weight of the rank score and 1−Wr is the weight of the classification
probability (see Figure 31). Based on the final ranking score Rni the dataset is sorted and
presented to the user.

3.4 Gaggle - Evaluation

We conducted a quantitative and qualitative user study to evaluate Gaggle’s automatic
model space navigation technique to support the classification and ranking tasks. One of
the motivation of the study was to get user feedback/responses to Gaggle’s system features,
interaction design, and workflow. Further, collecting observational data we sought to test
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Figure 31: Ranking score computation using both the classification and the ranking model aug-
mented by the bayesian optimization approach in Gaggle.

if our technique helped users in finding an optimal model. We also collected log data and
user preference ratings to analyse the data quantitatively.

3.4.1 Participants

We recruited 22 graduate and undergraduate students (14 male, 8 female). The inclusion
criteria were that participants should be non-experts in ML, and have adequate knowledge
of movies and cities (datasets used for the study). All participants rated themselves fluent
in English. None of the participants used Gaggle prior to the study. We compensated the
participants with a $10 Amazon gift card. The study was conducted in a lab environment
using a laptop with a 17-inch display and a mouse. The full experiment lasted 60-70 minutes.

3.4.2 Study Design

Participants were asked to complete 4 tasks: multi-class classification of data items (3
classes), ranking the classified data items, binary classification of items, and ranking the
classified data items. Participants performed the above 4 tasks on 2 datasets, Movies [3] and
Cities [2]. To reduce learning and ordering effects, the order of the datasets were randomized.
In total, each participant performed 8 tasks, 4 per dataset. We began each study with a
practice session to teach users about the workflow and interaction capabilities of Gaggle.
During this session, participants performed 4 tasks (printed on a sheet of paper). The
tasks took 15 minutes, and they included multi-class classification + ranking, and binary
classification + ranking on the Cars dataset [1]. We encouraged participants to ask as many
questions as they want to clarify system usability or interaction issues. We proceeded to
the experimental sessions only when participants were confident enough to use the system
correctly.

In the experimental session, participants were asked to build a multi-class classifier and
rank data items within the specified classes. Next they performed a binary classification
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and ranking task on the same dataset. Then they repeated the same set of tasks on the
other dataset. The movies data had 210 items, with 11 attributes, while the cities dataset
had 140 items with 45 attributes. We asked participants to create specific classes for each
dataset. For the Movies dataset multi-class labels were sci-fi, horror/thriller, and misc,
and fun-cities, work-cities, and misc for the Cities dataset. For the binary classification
task, the given labels were popular and unpopular (for Movies dataset), and western and
non-western (for Cities dataset).

3.4.3 Data Collection and Analysis

We collected subjective feedback and observational data through the study. We encouraged
participants to think aloud while they interacted with Gaggle. During the experiment
sessions, we observed the participants silently in an unobtrusive way to not interrupt their
flow. We audio and video recorded every participant’s screen. We collected qualitative
feedback through a semi-structured interview comprising of open-ended questions at the
end of the study. We asked questions such as: What were you thinking while using Gaggle
to classify data items?, What was your experience working with Gaggle?, etc. Further, after
each trial per dataset, we asked participants to fill a questionnaire containing likert scale
and true/false type questions. At the end of the study, we saved a set of .csv files storing
the classified and ranked data.

For quantitative assessment, we primarily rely on log data which stores model hyper-
parameters per iteration, class labels of the data items per iteration, the model’s learning
algorithm, data items users interacted with, etc. We considered five dependent variables for
this study: Model accuracy (classification): the accuracy of the model in predicting correct
labels, Model accuracy (ranking): the accuracy of the ranking model Perceived accuracy
(classification): number of correctly labeled data items (as obtained from the 15 data
points we ask users to label), Perceived accuracy (ranking): number of correctly ranked
data items (as obtained from the questionnaire after each session), and User preference:
preference rating of the system (see Figure 34) provided by the user as a feedback from the
questionnaire.

3.4.4 Quantitative Data Analysis

The study also had a quantitative part, the goal of which was to compare our multi-model
based interactive model space navigation technique with a single pre-defined model based
approach in VA systems. To further understand how non-experts select models in VA
systems, with this quantitative study we intended to understand how the current methods of
model selection compare against each other. Specifically, this quantitative study compared
a multi-model selection with a single model selection approach to learn the trade-offs and
answer: (1) how non-experts select models in VA?, and (2) when one approach is preferable
over the other?

We refer the multi-model selection approach as MMS and the single model selection
approach as SMS. Both conditions use Gaggle’s user interface and interactions to minimize
the potential confounds caused by different tools, and isolate the effect of MMS. For the
SMS condition, Gaggle used a pre-selected ML model. The hyperparameters for this model
were chosen by training the model with a preset target label as the ground truth, using SK-
Learn’s random search technique [205] to find a hyperparameter combination with the best
cross-validation score. This provided the SMS condition with a realistic starting model for
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Figure 32: Average Model and Perceived Accuracy of SMS and MMS technique.

the task. The MMS technique performed interactive model space navigation as described
in Section 3.3.4. Participants used Gaggle with MMS and SMS condition, one after another
to perform the described set of tasks. The order of the systems were randomized to remove
any ordering effects.

The primary research questions our study answered were:
Q1 How and when does model switching occur in the MMS condition?
Q2 How does performance compare between the MMS and SMS conditions?

Overall, we hypothesize that MMS will outperform SMS, as it interactively searches through
a larger model space in each iteration, and should thus fit the user’s preferences more closely.
To understand this in more detail, our study tests the following hypotheses:
H1 MMS will outperform SMS (with respect to accuracy) for the combined task of clas-

sification (both multi-class and binary) and ranking.
H2 For multi-class classification and ranking problems, MMS will outperform SMS with

respect to accuracy.
H3 For binary classification and ranking problems, MMS will outperform SMS with re-

spect to accuracy.

Defining Task Accuracy: We compare SMS and MMS with respect to which one is more
capable of building a model that satisfies various user-defined constraints. We analyze and
report accuracy for each task (ranking and classification) using the metrics model accuracy
and perceived accuracy. We compared the model accuracy and perceived accuracy for each
interface and tested for statistically significant differences. Figure 32 shows model and
perceived accuracy for each task.
Task Accuracy Across All Tasks: To test H1, we conducted a Friedman Test for
Repeated-Measures and found a significant difference in model accuracy between the in-
terface type SMS (M = 0.512 [0.477, 0.547]) and MMS (M = 0.786 [0.732, 0.840]) for
all four tasks combined. Post-hoc Wilcoxon signed-rank tests with Bonferroni correction
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Table 2: The mean, SD, and p-value for all tasks combined for both SMS and MMS. All
p-values are Bonferroni-corrected.

Tasks Single-Model
(SMS)

Multi-
Model
(MMS)

p-val

Model Accuracy
All tasks

M = 0.512
SD = 0.035

M = 0.786
SD = 0.054

< 0.05

Perceived Accuracy
All Tasks

M = 0.410
SD = 0.004

M = 0.721
SD = 0.013

< 0.05

Table 3: Mean, SD, and p-values of perceived accuracy for classification and ranking using
SMS and MMS. All p-values are Bonferroni-corrected.

Tasks (Perceived Accu-
racy)

Single-Model
(SMS)

Multi-
Model
(MMS)

p-val

Multi-class classification
M = 0.324
SD = 0.121

M = 0.611
SD = 0.100

p < 0.05

Multi-class ranking
M = 0.418
SD = 0.055

M = 0.578
SD = 0.210

p < 0.05

Binary classification
M = 0.592
SD = 0.101

M = 0.622
SD = 0.051

= 0.98

Binary ranking
M = 0.583
SD = 0.087

M = 0.654
SD = 0.212

= 0.92

found statistical significance (M(p < 0.05)). We used the Friedman Test for Repeated-
Measures as it is a good indicator of statistical significance for multi-class classifiers with
multiple datasets as suggested by[59]. Similarly, we conducted Friedman Test for Repeated-
Measures with Post-hoc Wilcoxon signed-rank tests for perceived accuracy for SMS (M =
0.410 [0.406, 0.414]) and MMS (M = 0.721 [0.708, 0.734]). We found MMS significantly
outperformed SMS for all tasks (M(p < 0.05)), confirming H1 (see Table 2).

Task Accuracy for Multi-class Classification: To test H2, we conducted a Friedman
Test for Repeated-Measures using model accuracy between the two conditions to determine
effects specifically on multi-class classification and ranking tasks. The results show that
participants performed significantly better with MMS (M = 0.824 [0.821, 0.827]) than the
SMS (M = 0.623 [0.618, 0.628]) for multi-class classification with M(p < 0.05). Similarly,
results for the multi-class ranking indicate M(p < 0.05). Then we conduct a Friedman
Test for Repeated-Measures between the two interfaces to determine effects on multi-class
classification and ranking tasks with respect to perceived accuracy. These results confirm
H2. See Table 3 for results.
Task Accuracy for Binary Classification: We followed a similar process of analysis
for binary classification and ranking tasks. The Friedman Test for Repeated-Measures with
post-hoc Wilcoxon signed-rank tests with Bonferroni correction on model accuracy could not
prove the statistical significance (p = 0.73 for binary classification and p = 1.03 for binary
ranking task) across SMS and MMS. Similarly we did not observe statistical significance on
perceived accuracy (p = 0.98 for binary classification, and p = 1.43 for binary ranking task).
Thus, we cannot conclude that MMS outperformed SMS with respect to model accuracy
for binary classification and ranking tasks. These results do not confirm H3 (see Table 4).

Model Switching Behavior: For all participants, the MMS technique resulted in model
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Table 4: Mean, SD, and p-values of model accuracy for both classification and ranking using
SMS and MMS. All p-values are Bonferroni-corrected.

Tasks (Model Accuracy) Single-Model
(SMS)

Multi-
Model
(MMS)

p-val

Multi-class classification
M = 0.623
SD = 0.005

M = 0.824
SD = 0.003

< 0.05

Multi-class ranking
M = 0.781
SD = 0.040

M = 0.912
SD = 0.023

< 0.05

Binary classification
M = 0.725
SD = 0.120

M = 0.810
SD = 0.076

= 0.73

Binary ranking
M = = 0.81
SD = 0.034

M = 0.832
SD = 0.233

= 0.92

Table 5: The change in hyperparameters in MMS and change in cross validation score per
iteration for both SMS and MMS

Iter.
SMS
Score

SMS
Hyperparam

MMS
Score

MMS
Hyperparam

1 0.76
MaxDepth = 4
Criteria = ‘entropy’
MinSamples = 10

0.58
MaxDepth = 2
Criteria = ‘entropy’
MinSamples = 3

2 0.45
MaxDepth = 4
Criteria = ‘entropy’
MinSamples = 10

0.55
MaxDepth = 12
Criteria = ‘gini’
MinSamples = 8

3 0.45
MaxDepth = 4
Criteria = ‘entropy’
MinSamples = 10

0.62
MaxDepth = 22
Criteria = ‘entropy’
MinSamples = 10

4 0.32
MaxDepth = 4
Criteria = ‘entropy’
MinSamples = 10

0.68
MaxDepth = 24
Criteria = ‘entropy’
MinSamples = 10

switching. For participants using the Movies dataset (multi-class classification task) the
max-depth hyperparameter changed values (ranging from from 3 to 18). Similarly, for the
Cities dataset (multi-class classification task) the hyperparameter Criteria ranged from
entropy to gini. The min-samples hyperparameter varied within the range of 5 to 36 for
both datasets. For the binary classification task, max-depth ranged from 4 to 9 for both
datasets. Also we noticed the criteria hyperparameter switching from gini to entropy for
both datasets for the binary classification task.

On average the hyperparameters switched M = 9.34 [7.49, 11.19] times to support the
multi-class classification and ranking task, while the average change wasM = 5.41 [4.89, 5.93]
for binary classification and ranking task. On the other hand, SMS adhered to the pre-
defined hyperparameter setting in each iteration. Though on certain iterations SMS was
able to satisfy the majority of the user constraints, however, more frequently SMS failed
to satisfy most of the user constraints. For example in the classification task in SMS, the
model showed very low cross-validation score (higher is better, see Table 5). This is ex-
plainable from the fact that the pre-defined hyperparameter settings in SMS could model
the correct decision boundary only on some iterations (as observed from the log-data). On
the other hand, for each iteration the MMS technique searched for an optimal model which
best characterized the decision boundary of the data. Thus, the decision boundary changed
per iteration as the user provided new examples.
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Model Performance over time: We compare the model performance in terms of the
number of wrongly predicted labels for interacted data instances per iteration. For the
multi-class classification task, SMS model output was inconsistent which meant on some
iterations the model correctly predicted most of the data items, but the prediction quality
may drop in later iterations (see Figure 33). In comparison to SMS, MMS showed a more
consistent performance gain, meaning the number of correctly predicted labels improved
over time. However, for the binary classification task, the model performance for SMS and
MMS were comparable (see Figure 33). The results indicate that binary class labels were
relatively easier to predict for SMS even if the underlying model’s decision boundary was
not the best representation of the actual decision boundary of the data instances.

Figure 33: The number of correctly predicted labels for interacted data items.

Number of iterations: Using the SMS technique, participants iterated more (compared
to the MMS technique) until they found an acceptable ML model. For example, the average
number of iterations and standard deviation for the multi-class classification task on the
Movies dataset was M = 3.85 [3.31, 3.49] with MMS, compared to M = 6.36 [5.08, 7.64]
with SMS. Thus compared to MMS, users had to iterate more with SMS to adjust the model
behavior by showing meaningful examples to suit their goals.

User Preferences Rating: We collected user preference rating for all four tasks (see
Figure 34). The scores were between 1-5 (1 meaning least preferred, 5 meaning highly
preferred). We found the user preference rating for multi-class classification (3.97) and
binary classification (4.17), task very close to each other. Though in general users ap-
proved Gaggle’s simplicity to allow them to classify and rank data samples, they seemed to
prefer Gaggle for the binary classification and ranking task owing to higher accuracy and
consistently matching users interpretation of the data.

3.4.5 Qualitative Feedback

Here we describe the qualitative feedback from the participants.

Drag and drop interaction: All the participants liked the drag and drop interaction to
demonstrate examples to the system. “I like the drag items feature, it feels very natural to
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Figure 34: User preference for SMS vs MMS for all four tasks.

move data items around showing the system quickly what I want” (P8). However, with a
long list of items in one class, it can become difficult to move single items. One participant
suggested, “I would prefer to select a bunch of data all at once and then drag-drop them as
a collection”.

Need for Filtering: Participants found the design of the attribute viewer helpful to find
representative data items to label. “Seeing the attributes with red, yellow, and green color
encoding helped me understand movies which are high or poorly rated .... ” (P14). However,
others pointed out that filtering the data by attributes and working on the subset P19 said
“Setting a filter range by attribute would have shown me all the cities with English speaking
population ... ” A goal of the current design was to encourage users to think at the data
item level, however filtering functionality may improve performance by allowing users to
focus on subsets.

Ease of system use: Our design goals included shielding users from the complexity of
model building and model selection as much as possible. We focused on designing the system
in a way that encourages users to think about their prior knowledge and communicate that
to the system. Most participants found the system easy to use. P12 said “The process is very
fluid and interactive. It is simple and easy to learn quickly.” P12 added “While the topic
of classification and ranking models is new to me, I find the workflow and the interaction
technique very easy to follow. I can relate to the use case and see how it [Gaggle] can help
me explore data in other scenarios.”

Recommended items: Recommending data while dragging items into various labels
helped users find correct data items to label. P12 said “I liked the recommendation feature,
which most of the time was accurate to my expectation. However, I would expect something
like that for ranking also ....” P2 added “I found many examples from the recommendation
panel and I did not have to scroll down. I felt it was intelligent to adapt to my already
shown examples.”
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User-defined Constraints: The interacted row visualization helped users understand the
constraints they placed on the classification and ranking models. P14 said “The interacted
row visualization shows me clearly what constraints are met and what did not. I can keep
track of the number of blue encodings to know how many are correctly predicted”. Even
though the green highlights in the data viewer also mark the interacted data items, the
interacted row view shows a list of all correct or incorrect matches in terms of classification
and ranking. P3 remarked “Without the interacted row view, I cannot keep track of all the
data items I interacted with, especially when the number of items I interacted was over 20.”

Labeling Strategy Few participants changed their strategy to label items as they inter-
acted with Gaggle. They expected it might confuse the system. However, to their surprise,
Gaggle adapted to the interactions and still satisfied most of the user-defined class defini-
tions. P17 said In the movies data set, I was classifying sci-fi, and thriller movies differently
at first, but later I changed based on recent movies that I saw. I was surprised to see Gaggle
still got almost all the expected labels right for non-interacted movies....

3.5 Summary

This chapter explained model selection and its relevance to finding optimal models for non-
experts. Further, I discussed the full spectrum of model selection showing the pros and cons
of each approach. Through BEAMES I learned a semi-automatic model selection technique
guides users to discover an optimal model, but it may entail significant user involvement
to inspect models and their outputs. To combat this problem I prototyped an interactive
model space navigation technique using an automated model selection approach in Gaggle
to simplify user interactions of multi-model VA systems. Current VA techniques rely on a
pre-selected model for a designated task or problem. However, these systems may fail if the
selected model does not suit the task or users goals. As a solution, the presented technique
in Gaggle helps users to automatically find a model satisfying specified preferences by
interactively navigating the high-dimensional model space. Specifically, these approaches
are well-suited for situations where there is no (or inadequate) ground truth, the quality
of training data is questionable, or the end user knows more about the data than what is
explicitly contained in the training set.
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CHAPTER IV

EVALUATING MULTI-MODEL STEERING AND MODEL
SELECTION WITH DOMAIN EXPERTS

Q2: How effective are multi-model steering and interactive model selection in sup-
porting domain experts to construct clustering models?

This chapter describes a domain study with biology researchers. This was conducted
to evaluate: (1) multi-model steering and (2) model selection techniques, previously proto-
typed for classification and regression tasks. In this study we designed an interactive visual
clustering system specifically for biology researchers at the Georgia Institute of Technology.

4.1 Problem Statement

Clustering is the task of summarizing and aggregating complex multi-dimensional data
in such a way that items in the same group are more similar to each other than those
in different groups. As such, clustering has a widespread application in several domains
including biology [164], chemistry [62], and social sciences [18]. Domain experts often want
to perform clustering to find groups of data items that share common characteristics with
respect to data attributes. For example, a biologist who wants to investigate genome data
can cluster gene sequential data according to similarity between their expression profiles.

Though clustering plays a pivotal role in biologists’ data exploration, it takes non-
trivial efforts for biologists to find the best grouping in their data using existing tools.
Visual cluster analysis is currently performed either programmatically or through menus
and dialogues in many tools, which require parameter adjustments over several steps of
trial-and-error. Based on our collaborations with a group of biologists, we found that they
use tools like SAS and/or programming languages like R to run cluster analysis on their
data. These tools require users to specify clustering algorithms and parameters in written
scripts. The absence of user-friendly tools may increase execution costs and impede the
adoption of clustering methods for data exploration in addition to being time-consuming,
cumbersome, and often error-prone. One of the biologists stated that: “my process [data
exploration process] is sometimes slow. [...] I search for code snippets online. After finding
the code, it takes 2 or 3 trials to get the code working.”

Existing visual analytic systems that support visual clustering are often complex, and
require careful tuning, selection, and parameterization of the clustering models (e.g., [33,
37, 41, 60, 105, 131, 212]). Interaction complexity in such systems often poses fundamental
usability challenges for those domain experts who may not have formal data science train-
ing [68]. Furthermore, it is challenging for domain experts to directly apply their knowledge
into the clustering processes. For example, biologists exploring genome data might want
to merge two clusters because of the similarity of evolutionary history of the genes located
in two clusters. Alternatively, they might want to subdivide a specific cluster to estimate
the disease risk of genes in different sub-clusters in a specific population. However, many of
existing tools do not provide visual guidance on how to reach desirable results or translate
users’ analytic goals into a proper setting of algorithm and parameter.
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4.2 Interactive Visual Clustering

As a solution we designed Geono-Cluster, a novel visual analysis tool designed to support
cluster analysis for biologists who do not have formal data science training. Geono-Cluster
enables biologists to apply their domain expertise into clustering results by visually demon-
strating how their expected clustering outputs should look like with a small sample of data
instances. Using multi-model steering and a semi-automatic model selection approach, the
system translates user interactions into numerical processes that update the underlying
cluster distance functions. Further, the system predicts users’ intentions and generates po-
tential clustering results. Using the system, users can create, evaluate, and refine clustering
results in order to gradually reach the most optimal clustering result for their analysis goals.

We have developed Geono-Cluster in collaboration with biologists investigating disease
risks frequency across different populations. We closely followed the design study proto-
col [207] to derive system requirements, tasks to be supported, and design guidelines based
on feedback from biologists. Instead of requiring biologists to transform their clustering
tasks into system specifications by going through layers of menus or programming it, Geono-
Cluster allows biologists to directly apply their domain expertise by visually demonstrating
how their expected changes should look like (e.g., dragging one cluster and dropping it over
another cluster to show their interest in merging the clusters). To evaluate our approach,
we then conducted a qualitative study with six expert biologists at the Georgia Institute of
Technology. In this evaluation, we observed how our tool helps biologists to cluster their
data and identify challenges they encounter while using our tool.

4.3 Background

Researchers have been investigating various techniques and approaches to facilitate inter-
action in clustering analysis, with the goal of bringing a human in the loop. Effective
user interaction is critical to the exploratory data analysis process, and thus to the suc-
cess of the visual analytic systems for visual clustering. A large body of previous work
designed and implemented interactive tools to support interactive visual clustering and
analysis (e.g., [19, 37, 56, 58, 66, 92, 100, 131, 146, 162, 197, 208, 245]). Clusterophile [58]
and Clusterophile 2 [37] are both designed to enable users to explore different choices of
clustering parameters and reason about clustering instances in relation to data dimensions.
iVisClustering [134] is another tool that supports document clustering based on a widely
used topic modeling method called latent Dirichlet allocation (LDA). Hu et al. [100] and
Guo [92] separately developed interactive tools that allow users to select features while
clustering their data. ClusterSculptor [162] is another tool that aids data scientists in the
derivation of classification hierarchies in cluster analysis.

There exist some visualization tools that are designed for clustering analysis of biological
data. StratomeX [139] is an interactive visualization tool that enables users to explore
the relationships of sub-set data samples across multiple genomic data types. StratomeX
is mainly designed to support tasks with “comparative nature” (e.g., evaluate how well
two or more stratifications support each other). CComViz [107] is a different application
that uses the parallel sets technique to compare clustering results. Kern et al. proposed
novel methods for evaluating and comparing cluster results and implemented their methods
into StratomeX [119]. XcluSim [150] is another tool for bioinformatics data helping users
to compare multiple clustering results, supporting a diverse set of algorithms. Geono-
Cluster differentiates itself from the aforementioned work mainly by supporting biologists’
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visual clustering analysis by interaction with data items that do not require specification
and inspection of cluster model algorithms, hyperparameters, parameters or performance
metrics. Furthermore, unlike existing tools, Geono-Cluster enhances user interaction by
enabling users to interactively define clustering results by their demonstration on data
items, which is more user-friendly and easy to understand for domain experts.

4.4 Formative Assessment

In this section, we conduct a formative assessment to characterize our domain experts’
workflow, derive tasks and requirements from it, and generate design guidelines to design
Geono-Cluster.

4.4.1 Characterizing domain experts, data, and tasks

The dataset used by the biologists is from GWAS Catalog [4], which includes published SNPs
(single-nucleotide polymorphisms) and association studies. During data analysis, biologists
often focus on certain features of their dataset such as, disease/trait, SNP identification
number, risk allele frequency, p-value, and odds ratio/beta. Focusing on those values, they
try to answer questions like, how and why disease risk frequencies differ across populations,
what are the statistical power to detect those known SNPs, and how well associations found
in one population can transfer/replicate well to another population. We collaborated with
the biologists over 13 months to design and build solutions for supporting interactive visual
clustering of disease risk factors. To answer such questions, researchers cluster their data to
investigate patterns and relationships of position on the genome, risk allele, and risk allele
frequencies that impact diseases risk frequencies across different populations. This is an
iterative process and biologists frequently create customized clusters, merge/split clusters,
and investigate sub-clusters within a specific cluster to test their hypotheses based on their
expertise.

4.4.2 Tasks and Requirements

Following a user-centered method [163], we began our iterative design process by investi-
gating current practices, needs, and challenges. We conducted multiple group discussions
with two biologists at the Georgia Institute of Technology. We started our discussions with
the biologists by asking them: 1) what kinds of questions do they ask and answer while
exploring their data? 2) why do they perform clustering tasks during their analysis? and
3) how do they currently create clusters? Then, we freely continued our conversation that
touched upon the tools, analytic methods, and challenges they face during the process. We
took notes during all the group discussions. We then read through our notes to gain a
better understanding of the requirements and challenges these biologists encounter while
clustering their data. Below we describe three commonly performed clustering operations:

T1: Hand-craft, Merge, and Split Clusters: Biologists apply their domain knowledge
to create customized clusters to better understand which factor(s) is causing the ascertain-
ment bias on the dataset that are being used popularly. For example, one of the biologist
stated: “Given the identified SNPs [single-nucleotide polymorphisms] that are associated
with common disease and traits, it’s interesting to create a cluster of SNPs.” In addition,
biologists apply their domain expertise to merge or split two or more clusters depending
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on how related they think the clusters are based on given feature(s). Another biologist re-
ported that “In my new project, we are comparing Africans to non-Africans. In this case I
merge Americans, East Asians, and Europeans as one cluster, and compare that to Africans
data.”

T2: Divide each cluster to sub-clusters: Biologists often investigate sub-clusters within
a specific cluster to: 1) understand which other factors can affect the cluster, 2) see trends
and patterns in the sub-clusters, with respect to chosen features, and 3) further investigate
the risk of disease across subset of data within a cluster.

T3: Adjust feature contributions: Biologists need to easily see by how much different
attributes contribute to computing a cluster. Moreover, they often need to adjust the
importance of different features used for computing a cluster. Biologists currently have
to programmatically iteratively adjust the importance of features, execute the code, and
visualize the outcome.

4.4.3 Design Guidelines

We needed to explore alternatives and make design decisions to better support the afore-
mentioned tasks for non-experts. We developed a set of design guidelines to inform those
interested in developing visual analytic tools for domain experts (in particular biologists)
based on existing systems and our experiences through several design iterations with the
biologists.

G1: Translate user interactions (from demonstrations) using multi-model steer-
ing and a semi-automatic model selection: Instead of requiring domain experts to
specify the clustering models by programming or going through layers of menus, the tool
should provide an environment that enables domain experts to visually demonstrate how
the expected clustering outcomes should look like. By translating the input user interac-
tions, the system could estimate the user’s intention and generate appropriate results using
multi-model steering and a semi-automatic model selection that I have deployed before in
my research.

G2: Allow user interaction to drive recommendations: As domain experts explore
their data, their interests will evolve. Thus, the clustering models should be recommended
that adapt to users’ analytic goals. To steer the multiple cluster models users can specify
their expected visual outcomes by directly manipulating the visual elements representing
data items and clusters (e.g., move one or more points from one cluster to another). In
addition, users can also directly adjust feature contributions to update the clustering results.

G3: Enhance interpretability of recommendations: Recommended clustering results
should be presented in a transparent manner so that users can extract the most contribut-
ing features used for clustering results. This requires recommended clustering results to
communicate distributions of feature values of members in different clusters clearly.

4.5 Geono-Cluster

4.5.1 User Interface

Geono-Cluster’s interface consists of four views: a Cluster View, a Recommendation Panel,
a Table View, and an Attribute Panel. See Figure 35 for more details.
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Recommendation Panel

Attribute Panel

Table View

Cluster View

Figure 35: The Geono-Cluster user interface consists of a Cluster View, a Recommendation
Panel, a Table View, and an Attribute Panel. Cluster view visualizes the clustered data and pro-
vide a medium for users to provide visual demonstrations. Recommendation panel shows different
clustering results based on the demonstrations provided by users. Table view shows a tabular repre-
sentation of the loaded dataset. Attribute Panel lists the attributes of the loaded dataset and their
weights.

Cluster View visualizes the clustered data as Figure 35 shows. For testing their hypothe-
ses, biologists often perform actions at the level of data items (e.g., move data items from
one cluster to another). We visually present each cluster and its members on the Cluster
View. The colored circles in each group represent members of a cluster; the surrounding
hull represents the cluster. Users can hover over a circle, which prompts relevant attribute
details of the data. Users can specify the number of clusters using the slider shown on the
top-left. Cluster View is an environment similar to a spatial workspace in which users can
move data items to structure their information and provide visual demonstrations (G1).
For example, a biologist might notice a set of data items should not be in a specific cluster.
Thus, she can demonstrate that those points belong to a different cluster by dragging them
from one cluster to another. The system uses the visual demonstrations provided by the
users to steer the underlying recommendation engine (G2).

The Cluster View shows an overview of the clustering results and then encourages users
to query additional information (e.g., tooltips, attribute distribution histograms) as they
explore the data. The visual representation of the Cluster View powered by a force-directed
layout algorithm shows the size and shape of each cluster, the number of clusters, and an
overview of clustered data items without overwhelming users with too much information.
Furthermore, the design encourages cluster-level interactions such as merging two clusters,
or splitting a cluster to refine or customize a cluster. Within each cluster the position of
the node (a data item) placed at the center represents a stronger cluster membership than
those that are on the periphery. This allows users to understand the clustering probabilities
of each data item in relation to others. However, each cluster in the layout is positioned
by the force-directed layout simulation that does not capture if two clusters are similar
or different. We deliberately restricted ourselves to communicate that information as we

57



Figure 36: A Users can select a subset of data items from the table view, shown with green
highlight. B The system finds similar data items and places them in one single cluster. B Recom-
mendation panel showing how the data set can be clustered using other feature combinations and
cluster models based on demonstrated interactions.

intended users to inspect differences between clusters by viewing the thumbnail previews of
recommended models.
Recommendation Panel shows different clustering results. Based on users’ demonstra-
tions on the Cluster View, the system recommends a set of appropriate clustering outputs
(see Figure 35). To compute the recommended clustering results, the underlying recom-
mendation engine takes into account different (1) clustering techniques/algorithms; (2)
combinations of attributes/features; and (3) clustering hyperparameters (i.e., varying ’k’
for k-means clustering technique). Read section 4.5.3 for more details.

During the design process of Geono-Cluster, we examined different ways of presenting
recommended clusters. We first considered showing all the recommended clustering re-
sults as small thumbnails in the Recommendation Panel. The biologists liked the idea and
the way that we recommended clustering results. However, the main challenge that biolo-
gists encountered was that they were not able to infer detailed information from the small
thumbnails. Thus, they requested adding textual description of details about each cluster-
ing result in the recommendation. Currently, each thumbnail includes a textual description
about the number of clusters, features used to compute the clustering recommendations,
and a visualization of the clustering result showing distribution of data items over clusters
(G3).

Initially, we designed the recommendation module to update the view with new clus-
tering recommendations whenever users show their demonstrations and/or adjust feature
contributions. However, our users revealed that such approaches may distract their ongoing
investigations on the current results. Thus, we compute cluster recommendations in the
background but do not show the results immediately. Once the computation is done, a
notification pops up, encouraging users to explore the results on demand by toggling the
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‘show recommendations’ button (see Figure 36-C).

Figure 37: Megan clicks on the ”+” icon to open the sub-cluster panel for clusters 1 and 4. Bar
chart views showing comparisons of the feature Average-Risk-Allele between Cluster 1 and 4.

Table View shows a tabular representation of the loaded dataset where each row is a data
item (see Figure 35). The initial version of Geono-Cluster did not include the Table View.
However, biologists requested adding this view since it enabled them to check the raw data.
The table updates on user’s interaction on Cluster View. For example, selecting the hull of
a specific cluster updates the Table View to show the details of items in the selected cluster.
Users can click on a cell to find similar rows whose value are similar to the value of the
item in that cell. This operation works on both quantitative and categorical data types.
For categorical and ordinal data attributes we consider two data items similar if there is an
exact match between them. For the numerical variables we define a threshold to measure
similarity between two values. This technique allows users to filter and select a subset of
data instances (enables selection of multiple rows simultaneously, see Figure 36-A).

Attribute Panel lists the attributes of the loaded data set as Figure 35 shows. Users
can turn on and off a set of attributes which directly affects the clustering algorithm.
Furthermore, users can also adjust attribute contributions, specifying relative importance
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of the selected attributes to define cluster memberships (G2).

A B

Figure 38: A Lasso selection B The system finds similar data items and places them in one single
cluster. B Recommendation panel showing various ways the data set can be clustered using other
feature combinations and cluster models.

4.5.2 Interactions

In this section we discuss how Geono-Cluster supports interactive operations commonly
performed by biologists.

Merging and Splitting Clusters (T1): Users can merge two clusters by drag-and-
dropping the cluster on top of another cluster. Further they can drag a point out of the
cluster and drop into either i) another cluster or ii) blank space. Drag-and-drop items
into blank space is translated as forming a new cluster of the selected items outside the
current cluster (see Figure 36-B). Demonstration-based cluster customization enables users
to interact with the data directly and removes any mid-level instruments such as control
panels or menus.

The merge interaction is derived from the previous work by Sarvghad et al. [203], in
which they enabled HIV researchers to merge bars in bar charts by dragging one bar and
dropping it over another bar. Biologists liked this interaction design and found it “direct
and intuitive”. To Split clusters, we initially enabled biologists to select the data items by
clicking on each circle representing a data item. However, biologists found it cumbersome
and time-consuming. So, we implemented the lasso-selection so that users can select mul-
tiple data items easily (see Figure 38-A). This operation allows user to brush over a set of
data samples (represented as circles) in the Cluster view. In response the system extracts
those samples from the current cluster and places them in a new cluster. If data samples
from multiple clusters are selected (using lasso selection), then the system makes a new
cluster from these lasso picked data samples.

Sub Clustering (T2): Hovering over a cluster reveals a plus button. Users can click on
it to open a sub-cluster panel on the cluster view, which shows subgroups of the data items
within the selected cluster. In addition, a bar chart shows the distribution of a chosen
attribute. Alongside, text description highlights the attributes that were used to compute
the sub-clusters. Given that the users are non experts in data science, we do not present
the quality metrics (e.g., silhouette scores and homogeneity score). Instead, we describe
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cluster models by showing thumbnail previews of clustering results with text descriptions
as Figure 37 shows.

Delete data items or Clusters (T3): Our discussion with biologists revealed that they
sometimes need to ‘exclude’ data items or clusters from their analysis while testing a hy-
pothesis. Using the delete button (drag-drop data samples or clusters on the delete button)
they can remove subset data items from the Cluster View.
Creating Customized Clusters: Users can select a subset of data items by clicking on
the rows shown on Table View (each row represents a data item). After selecting a subset
of rows, users can drag-and-drop them on the cluster view to demonstrate their interest in
creating a cluster view, in which all the selected data items fall in the same cluster. Users
can iteratively repeat the process, and each drag-and-drop operation forms a new cluster
in the Cluster View.

4.5.3 Computational Techniques

This section describes the underlying computational techniques which enable Geono-Cluster
to recommend cluster models by incrementally steering (multiple cluster models) them
to adhere to demonstrated user preferences. Our cluster model recommendation process
includes the human in the loop. On a high level, the user shows their intentions on a cluster
layout. Based on the operations, Geono-Cluster models multiple cluster algorithms and
finds top k closest cluster models to the users’ intention. Then, the user can refine the
results through a series of customizations (instrumented through the interactions described
above). In response, Geono-Cluster automatically finds close variants of cluster models
and updates the recommendations in the Recommendation Panel. In summary, the system
finds a set of cluster models with a distance function that reflects user-demonstrated cluster
assignments.

Multiple clustering models: The clustering task begins when the user requests a new
cluster layout (when they press the cluster button in the interface). In response, Geono-
Cluster generates multiple clustering models M . Each cluster model Mi in M (M1, M2, M3,
M4, ... MT ) is defined by a careful combination of a learning algorithm ωi and a set of p hy-
perparameters φ, defined as φi1, φi2, φi3, φi4, ... φip. Applied clustering algorithms include
K-Means, DBScan, Agglomerative Clustering, and Spectral Clustering. In the evaluation
of the system, we used K-Means cluster model as we observed through our design-study
that most of our users are familiar with packages in “R” to use K-Means clustering (with
default parameterization) to cluster the genome data. However, depending on the need of
the user and the data used, Geono-Cluster can be extended to use other clustering methods.
Nevertheless, each algorithm has its hyperparameters. For example, K-Means is a learning
algorithm with ”k” and the ”max-iteration” value as an input hyperparameter. Further-
more, each model Mi in M is assigned a metric score Si to compute S, which defines the
quality of the clustering output (a higher Si means a better cluster definition). Geono-
Cluster uses Scikit-Learn’s ML package to construct and evaluate the cluster models using
various quality metrics (e.g., Silhouette Coefficient, Davies-Bouldin index).

Recommendation Technique: Geono-Cluster ranks the models in M by their scores S
explained below, and visualizes the best clustering layout in the Cluster View. Further,
the system allows the user to inspect top f best cluster models from the ranked models M ,
through the Recommendation Panel (see Figure 35-a). If a user makes any customization to
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the shown cluster model Mc (e.g., merge or split clusters), the system automatically updates
the recommendations by computing a new set of M cluster models, except the model Mc,
which is currently shown in the Cluster View. Per iteration, the system updates S and the
ranking of the models M based on user interactions with the data. Next it visualizes the
best model in M in the Cluster View and shows thumbnail previews of the top f models in
the Recommendation Panel (G2).

Geono-Cluster’s model recommendation finds the closest fitting cluster assignments,
whenever the user customizes the current cluster layout in the Cluster View. However, there
can be scenarios that no cluster recommendation matches the user’s intended changes. This
may occur when users seek clustering results, which are mathematically infeasible. There
could be various reasons for it, such as, users may have a different understanding of the
data than what the data actually contains, or the data may have noise, etc. In such cases,
users may need to be educated to understand the reasons for a different clustering result,
which we plan to integrate in the workflow in the future. Currently, in such cases, Geono-
Cluster still responds with the nearest best clustering output, though it may not resemble
the layout shown by the user. Furthermore, to ensure users can see unexpected clustering
results (to ideate and explore), every few iterations the system also recommends a set of
cluster models that are randomly parameterized and thus clusters the data in an unexpected
way. While our approach may seem similar to active learning (AL) [213] as in both, users
specify feedback to the input data that drives the generation of a model. However, in our
case the data does not have class labels. Furthermore, in AL, the system “asks” users to
give feedback on specific data points, while in our technique users have the freedom to
interactively explore and provide feedback any time along the process.

Clustering Metric: Initially the system does not have cluster assignments or labels for
any of the data instances. Thus to compute S the initial cluster models M , are evaluated
using the Silhouette Score metric [157]. This metric is computed using the mean intra-
cluster distance, and the mean nearest-cluster distance for every data instance. As users
interact and assign clusters to a set of data instances I, Geono-Cluster applies two types of
metrics to calculate S. To compute the first metric S1, the system finds all the correlational
features fck and non-correlational features fc

′
k that describes each cluster (k = 0 to g

clusters). Here, fck and fc
′
k defines how the user characterises each cluster. Next, when

M is computed the system computes the correlational features fcik and fc
′
ik. The system

compares fck with fcik (and fc
′
k with fc

′
ik) for each model in M to derive the clustering

metric S1, that describes how closely the cluster model Mi adheres to the clusters defined
by the user (S1 is normalized between 0− 1, higher is a better model). The second metric
S2 is based on the labels assigned to data items by users for I. The system finds other data
instances J = N − I (N is all data instances) that are similar to the user interacted data
instances using cosine similarity distance metric based on their attribute values (categorical
variables are one-hot encoded). We apply a similarity threshold β to find a satisfactory
number of similar data instances, the value of which is set empirically with multiple trials
on the GWAS data. The current prototype does not allow users to interactively control
this threshold. However, in future on users request it can be interactively specified using
a slider widget. The system automatically assigns to these similar data instances (J) the
same class assignments that the users assigned to I. Next using this labelled data, the
system applies Homogeneity index score [157] to compute S2. This metric uses true labels
and assigned labels by the system (when a cluster model Mi is applied to the data) to give
a score to each model in M . The final score S is defined as the weighted linear combination:
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S = λ1 ∗ S1 + λ2 ∗ S2. Here the weights λ1 and λ2 are hyperparameters that are assigned
based on how well the clustering outputs satisfied the biologists’ expectations.

User driven feature selection: A cluster model Mi is driven by a set of features F =
fi1, fi2,fi3,fi4 ....... fik as input to compute the distance function which assigns a set of
data items D to individual clusters C. In Geono-Cluster, the set of features F is either
computed using feature selection methods e.g., “select K Best” [173], “PCA” [152] or can
be retrieved from users if they specify a set of features and their relative weights (from the
Attribute Panel supporting the task T3). When users specify a set of k features Fu = fi1,
fi2,fi3,fi4 ... fik with respective weights for each feature (Wu = wi1, wi2,wi3,wi4 ... wik, the
system updates the distance function in the clustering algorithm. The distance function is

represented as
∑k

i=1

∑n
j=1

∥∥∥x(j)i ∗ w(j)
i − cj

∥∥∥2, where cj , is the jth cluster centroid and w
(j)
i

is the user assigned feature weight.

Sub Clustering: When triggered by users, the system builds a sub-cluster model Msi, for
data instances E, member of a selected cluster Ci. Unlike the set of main cluster models
M , only a single sub-cluster model is generated per cluster (T2). For sub-clustering we
relied on the parameterization of the best-recommended cluster model for the entire data
i.e, best-found parameterization of the K-Means cluster model. To avoid further compute
times that may impact real-time interactions, we did not construct and test multiple cluster
models for sub-clustering. However, clicking on the ”add subcluster” button again for the
same selected cluster Ci, the system recomputes the sub-cluster model Msi, by randomly
choosing a new set of a learning algorithm ω and hyperparameters φ; e.g., it picks a new
”k” on the ”K-Means” cluster model. This technique allows users to rapidly browse a large
set of sub-cluster models.

Similar item selection: Users click on a cell (qj) of a quantitative attribute on the Table
View to select a value vj of the data item di. Geono-Cluster finds a set of r data instances,
U = da,db,dc ... dr, each of whose value vj falls within a threshold range, say [+eps,−eps].
The parameter eps is set for each quantitative attribute Q by heuristics and can be adjusted.
This technique allows users to pick data instances which are similar, based on the selected
quantitative attribute qj . Further, users can select another quantitative attribute cell qk.
Next, from the set of selected data instances U , the system finds all instances V which fall
within a threshold range of the value selected for attribute qk. Here the size of V is less
than that of U . This technique allow users to filter and select a subset of data instances
V from the Table View. For categorical features X, Geono-Cluster performs exact feature
value matching instead of matching data items based on a predefined range. Users can
drag-drop these V data items to the Cluster View as a single cluster (C = C1). They can
continue selecting another set of data items, then add them to the cluster view as a new
cluster (C = C1, C2). Users complete the data exploration or they can request the system
to find a model Mi iteratively (T3).

Scalability: Unsupervised learning is expensive. As the number of data items increases, the
cost of cluster assignments also grows higher. Geono-cluster can run cluster computations
for approximately 3000 data items without major delays. For the scope of our study, the
number of data items seem practical.
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4.6 Evaluation

To evaluate Geono-Cluster, we performed a qualitative assessment with six biologists to
collect subjective feedback and observational data. Our study had two main goals: (1)
collect qualitative feedback on Geono-Cluster’s features and design, and (2) observe how
experts perform visual clustering analysis using Geono-Cluster. In particular, our study
indicates how Geono-Cluster helps domain experts gain insights into data by interactively
building clusters.

4.6.1 Participants and Setting

We recruited 6 biologists (4 male and 2 female). They had 1−2 years of experiences working
with Gene related datasets (all with graduate degrees related to Biology, Bio-Statistics or
Bio-Informatics). They had not participated in our preliminary evaluation of Geono-Cluster
and were also not involved in the design of Geono-Cluster. All participants were familiar
with the concept of data clustering and had previous experience with data grouping with
at least one data analysis tool (e.g., SAS, R, etc.). Further, as they had previously worked
with GWAS catalogue data, they were familiar with all the data attributes in the dataset.
During the entire study participants used a computer with 17-inch screen and used a mouse
to interact with the system. The study took approximately 50 minutes and we rewarded
each participant with a $ 20 Amazon gift card.

4.6.2 Procedure

Introduction and Training: Participants were briefed about the purpose of the study and
their rights. After filling out the study consent form and a questionnaire on demographics,
we asked participants to watch a tutorial video of Geono-Cluster. The video walked the
participants through different features and interactions provided by the tool. After watching
the video, we asked participants to work with the tool for 10 minutes. In addition, we
encouraged the participants to ask as many questions as they want during this stage.

Main Study: The participants were asked to explore the GWAS Cataloge [4] data that
includes published SNPs and association studies. In particular, we asked the participants
to imagine their colleagues asked them to analyze the dataset using the visualization tool
for 30 minutes and report their findings. Participants were instructed to verbalize analytical
questions they have about the data, the tasks they perform to answer those questions, and
their answers to those questions in a think-aloud manner. In addition, we instructed them
to come up with data-driven findings rather than making preconceived assumptions about
the data. The interviewer facilitated participants’ verbal reports by asking questions like
“what are you trying to do?”, “what are your thoughts now?”, “what do you think about
current groupings?”. We tried to avoid interrupting the participants as much as possible
during their data exploration process. However, we sometimes reminded that this is a
think-aloud study and they need to verbalize their thoughts.

Follow-up Interview: After each participant complete the task, the experimenters asked
the participants open-ended questions such as Tell me about your experience with this tool?,
What did you like or dislike about this tool?, Did this tool help you in your data exploration?
If so how?, Is there anything else that you want to add?, What are the most interesting
things you found from data? How did the tool help you discover such findings?, and What
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are the major obstacles/roadblocks while using the tool to solve your problems? How did
you go around (resolve) the issue? Do you have ideas to improve the tool? Finally, the
experimenter thanked the participants who received a $ 20 value Amazon gift card.

4.6.3 Data Collection and Method of Analysis

We screen- and audio-recorded the whole study. During the main study, the experimenter
took notes while participants interact with the system. We also collected feedback from a
semi-structured interview with open-ended questions at the end of the study. We analyzed
around 300 minutes of screen-capture videos from six participants. First, one of the authors
transcribed the audio recording of the study. Then, two coders (first and second authors)
read the transcribed data (including the think-aloud sessions and the interview responses)
to parse a set of meaningful text snippets. After reading the data, each of the coders
independently assigned codes (a word or phrase) to best describe the text snippets. Finally
we consolidated the codes from the two authors by focusing on the aspects of the responses
which highlighted positive or negative feedback with respect to usability of the system, easy
of use, learning curve, future feature requests or strategies pertaining to exploratory data
analysis using clustering models. In the following section, we use P1 to P6 to respectively
denote the participants one to six who participated in the evaluation.

4.6.4 Results and Feedback

Overall, all participants found Geono-Cluster easy to use and effective in performing cluster
analysis tasks. However, a few of them experienced difficulties in interpreting the recom-
mendations made by the system. Below, we categorize and discuss the findings of our
qualitative study in more details.

System usability: All participants found Geono-cluster’s workflow easy to use, intuitive,
and engaging. P2 remarked “I can keep trying new ideas to quickly test different ways to
cluster this data.” P4 said “It’s so easy to use, I can quickly iterate and learn about the data
much faster, than using packages in R to cluster data.” Further, many other participants
found visualization to be a very good medium to learn about the data by exploring different
clustering results. P5 said “I never knew that I can use visual methods to explore clustering
result. Currently I use R to cluster my data, then export a CSV file to my team-mates.”

Consistency with user mental model: Participants found the design and workflow of
Geono-Cluster consistent with their mental model and expectations. In particular, partici-
pants found that it is intuitive to visually demonstrate tasks such as creating, merging, and
splitting clusters by demonstration. For example, P3 mentioned: “it feels intuitive to merge
clusters by dragging and dropping one cluster over another one. [...] this is what I would
expect to happen.” P5 stated: “I liked the idea of creating a cluster of items by moving the
data items from this table to the empty space [dragging the data items from the Table View
and dropping them on the Cluster View to create a cluster].”

Perceived control over data analysis process: While using Geono-Cluster, P1, P4,
and P5 commented on their level of control over the data analysis that resulted from their
freedom in interacting with visualizations instead of going through layers of menu items.
For example, P1 mentioned: “This is great because I can construct my own cluster and
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tell the system how I want my clustering outcome looks like.” P4 stated: “It is a powerful
idea to enable analysts to use their knowledge about the data items to interactively create
clusters. I specifically like how this allows merging and splitting clusters.” The level of
interaction directness [20] with the visual representation contributes towards increasing the
perceived control of the participants over the data analysis process.

Difficulty in splitting a cluster: Overall, participants found the lasso interaction intu-
itive and easy to use. However, with lasso selection participants were not very exact about
the data items that they wanted to select. For example, after selecting a subset of data
items, P3 noted: “It is hard to be exact with this selection. I don’t want this specific point to
be selected.” In such cases, participants had to either deselect the items that were selected
incorrectly by clicking on them or try to lasso select again. Going forward, we envision
designing advanced interaction techniques for easier selection of data items that are located
in a close distance from one another.

Interpretability of recommendations: While using Geono-Cluster, participants were
sometimes unsure why the system suggested specific recommendations. While designing
Geono-Cluster, we decided to show each recommendation as a thumbnail that uses the nat-
ural language to explain the most representative features used for the clustering. In addition,
each recommendations shows the resulting outcome of the recommended cluster. Although
some participants liked how the recommendations were presented, two participants could
not immediately understand why specific recommendations were suggested. For example,
P2 mentioned: “I understand what each cluster represents which is good, but I am not sure
why these recommendations.” and P3 stated: “I am curious how these recommendations
are added.”. Going forward, we suggest systems to explore design alternatives to explain the
reasoning behind recommendations. In situations when the system does not find any clus-
ter recommendations that matches user’s demonstrated changes, Geono-cluster shows the
nearest best clustering layout. In the future, we are thinking of explicitly communicating
this conflict in textual description.

Custom labeling and annotation feature: Two participants found that with growing
number of clusters, it became hard for them to remember what each cluster represents
and how specific data items became part of a cluster. Thus, they suggested adding a
feature that enables them to annotate and label the clusters and to record the operations
performed on clusters beforehand. For example, P6 said “it will be nice to know what
each cluster represents, meaning every cluster should have an annotation, or users can add
custom annotations. May be label the cluster by the most prominent feature of the cluster.”
P3 mentioned: “Is there a way to label each cluster?”

4.7 Observations

Our user study reveals that participants usually began exploring the data by framing a
hypothesis, asking the questions they want to know, and then performing a set of tasks (as
described in section 4.4.2) through Geono-cluster’s interface to find the answers. Interest-
ingly, we observed that participants often took two different approaches to perform visual
data clustering: Top-down and Bottom-up. Below, we describe each approach in more
details.
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4.7.1 Top-down Visual Data Clustering Approach

P1 started their data analysis process by asking “How does the gene samples differ in disease
risk factor by regions and chromosome factors?” To that end, P1 clustered data items by
selecting a set of features from the Attribute Panel and then pressed the Cluster button.
Next, he checked the recommended cluster layouts from the Recommendation Panel to
explore other clustering results based on another set of features. In response, he updated
the list of features to cluster the data by and triggered Geono-Cluster to generate a new
cluster layout. P4 also followed the same approach; however, he did not have any question
to begin with. He initialized the process by pressing the cluster button to start with an
initial clustering. Next, he hovered over data items in each cluster to familiarize himself
with the data items and find similarity or dissimilarity. He also checked the Table View to
compare different data items from various clusters. If the clusters did not match his mental
model, he would adjust the features from the Attribute panel. He would then preview the
recommended clustering options to further explore a wide range of cluster outputs. This
process continued until he was satisfied with the clusters and had a better sense of the data.

A main point here is that in the top-down approach participants mostly avoided inter-
action at the data item level, but instead they dealt with the full range of features from the
Attribute Panel. P1 also verified this point by saying: “I relied on cluster button to cluster
the data, as I do not specifically know much about the data items, so did not use the table’s
drag-drop feature. Similarly, I did not customize the clusters by using lasso or drag-drop
feature initially. I rather re-computed the clusters based on a new set of features that I spec-
ify.” However, P1 later confirmed that over iterations when he was more confident about
the data, he started using the split and merge operations to customize shown clusters.

4.7.2 Bottom-up Visual Data Clustering Approach

Remaining participants (P2, P3, P5, and P6) followed the Bottom-up approach, in which
they mainly relied on interaction at the data item level. They first created a customized
cluster by dragging data items from the Table View and dropping them on the Main view
as opposed to relying on the cluster button. These participants often interacted with data
items to demonstrate their expected outcome.

P2 started her clustering analysis by asking “How does the gene samples derived from
humans/monkeys (ANC) vary from gene samples derived from mixing humans and monkeys
(DER) with respect to various diseases?”. To answer the question, P2 placed all the ANC
gene samples into one cluster and a few DER gene samples into another cluster from the
Table View. P2 remarked: “my strategy is to select a set of data points [items] based on the
gene’s ancestry, then drag-drop to create a cluster”. P2 then previewed the recommenda-
tions to explore other options to cluster the data based on his specification of clusters. In
this process, P2 did merge/split clusters to test different ideas to cluster the data using the
lasso-selection and the cluster drag-drop feature. P2 said: “I also rely on the lasso tool to
define other clusters from this, if the cluster appears too big”.

P6 also followed the same approach. P6 mentioned: “I want to know if the gene with
chromosome factor higher than 6 sampled from America, have higher cancer risk factor?
To seek an answer, I find the Table View’s data item selection feature quite useful, as I
can define my own clusters based on chromosome value or the region the gene was sampled
from.” P6 checked the recommendations, however in some cases, P6 did not agree with
the recommendations or the features that were used to derive the results. To provide his
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feedback for updated results, he customized the best-perceived cluster layout by splitting
the existing clusters using the lasso tool and merging smaller clusters into one.

4.7.3 Commonalities in Visual Clustering Approaches

Despite differences in the two clustering approaches discussed above, there were common-
alities in how participants clustered their data. In both approaches, participants relied on
the cluster recommendations to explore alternative approaches to cluster or learn about the
features in the data that affected the cluster definitions. Furthermore, in both approaches,
users found customizing clusters very helpful. Operations such as lasso-selection and merge
were instrumental in expressing their intentions to steer cluster models. For instance, P3
said: “My strategy is to compare different populations by Region and compare their risk-
allele-freq. To do that, I often split/merge clusters to show the system how I want the
clusters to look like.”

4.7.4 Discussion

Model Feedback and Interpretation: Periodic discussion and informal inputs from the
biologists clarified that model interpretation and feedback (to the model) is of critical value
to them. For example, when Geono-Cluster shows a set of clustering recommendations,
users may need to know how they differ from each other, or what logic was implanted to
define the displayed clusters. There are many ways to explain this to the user; however, we
only selected methods which does not require any technical expertise from the user. Our
final design explains a cluster by using a natural language-based approach to communicate
the features that were used to compute the clustering distance function. The intentional
shielding of technical information, such as silhouette coefficient, exact feature weights, etc.
is to provide a high-level model explanation and not intimidate/overwhelm them with a bag
of information that they cannot perceive any way. Our qualitative feedback hints that our
approach made Geono-Cluster not only easy to use but also an engaging tool to continue
data exploration by rapidly testing different ideas to cluster the data.

Cluster Model Comparison: While viewing multiple clustering results show different
ways to partition the data, model comparison to understand trade-offs between these clus-
tering options is critical. However, in our current prototype we do not support explicit
cluster model comparison. For example, users cannot perform a pairwise comparison of
two cluster models side by side, or they cannot select a few chosen cluster models to see
the results in a way which facilitates direct comparison. Based on our interviews with the
biologists, comparing cluster models was not posed as a requirement to us. Therefore, we
deliberately did not include cluster model comparison as one of the design goals of the sys-
tem. However, as visual analytics researchers, we understand that being able to compare
multiple cluster models, may positively aid model selection and enhance the tools use case.

4.8 Summary

The collaboration with the biologists helped us evaluate our multi-model steering and semi-
automatic model selection approaches in real settings. Through this study we clarify as-
sumptions/speculations made when we crafted these technologies. Based on observations
and user feedback, we realized there is a wide opportunity for interactive systems that fa-
cilitate model construction for non-experts. Further, we noticed a number of other aspects
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to the problem of interactive model construction. For example, explaining actions of a
model deemed useful for non-experts. Geono-Cluster explains a cluster model by highlight-
ing the top k features that were used to compute the underlying distance function using
a natural language expression. Though the simplicity of the explanation was helpful for
non-experts, in certain cases this posed a very limited explanation of a clustering model.
For example, two cluster models may be based on the same set of features, but the defined
clusters may be strikingly different. In addition, annotation of the visual encodings repre-
senting model output (the clustered layout) also seemed desirable to the biologists. In the
study, some participants expressed their interest in having a feature that enables them to
annotate different clusters based on their prior knowledge or insights they gained during
data analysis. For instance, one participant mentioned her interest in annotating clusters
based on prominent features to help understand cluster compositions easily. We understood
that annotation of model outputs is an important functionality that non-experts can use to
further communicate their preferences and also to present analytic results to continue their
task.

The study also revealed an interesting challenge that many interactive ML systems face,
that is - scalability. The current interface and the supported interactions (e.g., split and
merge technique) is tested with 3000 (approximately) data items. However, we understand
that as the size of the data grows, the interaction techniques such as drag-and-drop inter-
action and lasso-selection tool may be less responsive. This is a concerning challenge for
multi-model based VA systems that incorporate custom optimizations derived from user
interactions.

In this chapter we described Geono-Cluster that is designed to help biologists visually
cluster their data for exploratory analysis. The proposed technique leverage the domain
knowledge of the users by allowing a multi-model steering based semi-automatic model
selection approach which recommends models according to users’ intent. Domain study of
these interactive VA techniques of model steering and selection facilitated learning trade-offs
of these approaches in a real domain to solve a real problem. Based on collaborative studies
with biologists, we built a set of task requirements and design guidelines for our prototype.
The technique shown exemplifies a model of interaction which allows non-experts in data
science interactively construct clustering models by specifying their preferences. This spares
them the burden of going through layers of menus and control panels to transform their
expectations to outputs or to comprehend complex model parameters or metrics to find the
right clustering model.
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CHAPTER V

INTERACTIVE OBJECTIVE FUNCTIONS IN VISUAL ANALYTICS

Q3: What are the interactive techniques that empower people translate their prefer-
ences into objective functions?

This chapter describes research addressing interactive techniques in VA that enable users
to interactively create objective functions to construct classifiers satisfying their preferences.

5.1 Background

5.1.1 Interactive Objective Functions

Machine learning models are driven by the design of objective functions which act as the
mathematical expression of preferences, goals, and constraints. ML pipelines must adhere to
these considerations when learning from training data to create models. Further, objective
functions drive a wide range of ML models serving a specific task, for example, we can input
an objective function to any classification model to achieve desired behavior.

However, the specification of such intricate objective functions is difficult for non-experts
who are machine learning novices. For instance, creating custom objective functions re-
quires translating one’s preferences, goals, and constraints into mathematical expressions
by writing code. To support interaction with objective functions or to support interactive
construction of objective functions, we need interactive visual interfaces which can help
non-experts expressively communicate their preferences or intents to the underlying mod-
els. Interactive objective functions can serve as the medium through which people can
directly communicate their domain expertise, preferences, and other relevant information
to the system. In this chapter, I explain how objective functions can be visualized and
made interactive in VA to empower non-experts construct robust ML models.

Types of optimization: Objective functions optimize ML models to conform to user goals.
I categorize these model optimizations as external and internal optimization. In the former,
an objective function is specified to an Auto-ML model solver, which constructs multiple
ML models; then ranks these models by scores computed by the objective function. Next,
the system selects top k models with the best performance score. In this approach, models
are treated as a black box, meaning internal configuration of the model is not changed
or affected; only the model’s hyperparameters and learning algorithms are configured to
construct new models that may better satisfy user goals. This process follows an iterative
search through the high-dimensional model space until a close-fitting model is found (refer
Figure 39).

The internal optimization approach optimizes the internal state of a model such as its
parameters, weights, and decision making processes to satisfy goals specified in the objec-
tive function. For example, in a decision tree model, if the user specifies feature weights or
provides a list of important features by order, then we use this knowledge of feature impor-
tance to split the decision nodes, instead of using the ”criteria” hyperparameter (accepted
values are ‘’gini” or ‘’entropy”) to find features to split nodes by. A similar interactive
classification construction using decision trees was shown here [15].

70



Figure 39: Model sampling from the model space using interactive objective function approach.
In this option new models are constructed. New regions of best performing models are found based
on specified objective function.

The external optimization technique does not guarantee an optimal model can be found
within a specified compute time. However, this technique is model agnostic, meaning
that any Auto-ML model solver can take an objective function (specified interactively)
to steer/select a set of candidate ML models. On the other hand, internal optimization
methods are model specific and may not generalize across different variants of ML models.
Thus while an internal optimization approach empowers more flexibility to adjust models,
its operations cannot be abstracted to test a diverse set of models using the same VA system.

5.1.2 What is Model Specification?

My research focus resides on user preferences, which are subjective and thus hard to interpret
or quantify. In this context I explore techniques that translate user preferences into a set of
requirements that a ML model should satisfy. I term this phenomenon as model specification.
Precisely model specification formalizes user goals/constraints in a mathematical form that
models can optimize for. This optimization process may include steering multiple models
or utilising an Auto-ML module to select an optimal (preferred) model that satisfies user
goals. Model specification accounts for requirements that this optimization process needs
to solve for; the optimization process triggers Auto-ML model solver to sample models that
are closer to the specifications.

5.2 Challenges in Interactive Objective Functions

While interactive construction of objective functions may sound promising, the implemen-
tation of them poses various challenges, some of which are discussed here.

• R1 - Model tradeoffs and conflicting objectives: In multi-objective optimiza-
tion, conflicting objectives and constraints is a major area of concern. In order to
make an informed decision, reconciling multiple conflicting objectives is one of the
main challenges for users. For example, consider a simpler example from a housing
dataset, where a user might want to buy a house within a low budget, with a good
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view in the city center. However, the specified preferences conflict with each other
(low price vs. good view vs. location). Solving such a query requires matching users’
every requirements, which may result in 0 search results. On the other hand the
system might report back a set of houses, that satisfies some requirements but not
all. These solutions that satisfy some objectives (not all) are called pareto optimal
solutions [199]. In various real-world problems users often run multiple model simu-
lations to explore the space of decision choices they have [25]. Using the interactive
objective function technique, VA systems can select multiple model options (pareto
optimal in nature) as candidate models supporting users’ analytical goals. However,
a core research challenge lies in that how to explicitly explain such conflicts to users
and facilitate model tradeoff analysis through an intuitive visual interface.

• R2 - Spectrum of objectives and constraints: Objective functions require ob-
jectives and constraints that they should solve. To understand what these different
set of objectives and constraints are, we need more research to study how they (ob-
jectives and constraints) vary by the given task, data type, or the problem domain.
Machine learning models are driven by a wide array of objective functions such as lin-
ear, quadratic, polynomial, hinge loss, log loss etc. [195]. Usually, an ML practitioner
picks one of the types of objective function based on the data type, the task, and the
problem domain. However, when objective functions are made interactive, it becomes
challenging to decide on the right objective function type that may best support user
goals. Furthermore, user objectives and constraints are not known apriori as they
are specified when users interact with VA systems. To understand which objective
function type supports which type of user-defined objectives and constraints, and to
know what are the various kinds of objectives users can specify for a specific task
(e.g., classification, regression, etc.), we need to study the space of objectives and
constraints that users can specify (categorised by task and data type).

• R3 - Design space of interactive objective functions: Objective functions con-
tain complex mathematical terms (also called sub-objectives) that pose a challenge
when we need to visualize them in a form that is understandable by non-experts. The
sub-objectives in objective functions have mathematical implications, but when shown
in its pure form may overwhelm non-experts. However, to our knowledge, the visual
design of objective functions in VA is not explored. Thus further research is needed
to understand the design space of interactive objective functions in VA. For example,
regularizers such as L2, L1, etc. are hard to describe or visualize to non-experts,
but are an integral part of any objective function in machine learning. This requires
extensive research to understand how objective functions can be visualized such that
it effectively captures user preferences, specifies those preferences to Auto-ML model
solvers, and does not overwhelm users. Furthermore, users need to know what are the
implications and use-case of specified sub-objectives or constraints in the objective
function. If users do not know what are the sub-objectives in an objective function,
they may struggle to decipher if the objective function captures there preferences cor-
rectly. Here, I think educating non-experts about objective functions, sub-objectives,
and other related terminologies (explained in a more straightforward language) may
help in creating a better user experience in systems supporting interactive construc-
tion of objective functions. For example, to educate users about objective functions,
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a VA system can guide users by showing notifications or recommendations of sub-
objectives or constraints that they can add, remove, or update. Through my research,
I seek to discover various ways ML objective functions can be visually represented
and made interactive without overwhelming non-experts.

• R4 - Evaluation of objective functions: Correctly capturing user preferences to
translate them into an objective function is a difficult task. We need more research to
understand how to evaluate the interactive objective functions to probe it’s correct-
ness, validity, and fitness to the task, data, and the problem domain. Consider, we
design a VA system that helps users interactively construct an objective function. In
that system, users can also visually see specified sub-objectives in the objective func-
tion. However, how do we know that the objective function correctly captured the
user-defined objectives and constraints? How do we ensure that the shape and form
of the objective function is of the correct type to minimize the loss in communicating
user preferences to the underlying model(s)? There can be various ways to evaluate
interactive objective functions with users. For example, controlled lab studies are one
viable option where we invite users to interact with a deployed system and ask them to
perform a set of pre-defined tasks. Next we ask them questions about their experience
and collect qualitative feedback or store log-data, and run quantitative data analysis
to seek desired findings, prove the hypothesis to answer specific research questions.
However, we need to research extensively to find a logical and scientifically correct
method to evaluate interactive objective functions.

• R5 - Domain study of objective functions: Studying objective functions through
the lens of domain experts who have domain problems and real-world data can validate
assumptions, design choices, and rationale behind the implementation of interactive
objective functions. But both in HCI and VA, domain studies are difficult for many
reasons such as access to domain experts, time, cost-effectiveness, etc. However,
if feasible, through domain studies of objective function we may seek answers to
questions such as Does interactive objective functions make sense to domain experts
(who are also non-experts in ML)?, Do they understand the structural components of
an objective function such as sub-objectives, decision variables, constraints etc.?, How
do domain experts interact with the data to adjust the objective functions to correctly
specify their preferences? We need to evaluate interactive objective functions within
specific domains to answer such questions.

Table 6 shows two prototype VA systems that I deployed to test, and address the afore-
mentioned research challenges. This chapter explains QUESTO, while the next explains
CACTUS, both of which addresses some of these research challenges. To begin, the next
section describes a taxonomy of user-defined objectives for a classification task motivated
to address research challenge - R2.

5.3 Taxonomy of Constraints

Machine learning algorithms allow for flexible specification of information about data, ex-
ternal knowledge, and context-specific goals and other meta-information through the design
of the objective functions that they solve. Our approach of interactive construction of ob-
jective functions by users follows a semantic interaction design [72] in that user interactions
over data elements in the visualization are translated into objective function terms, that
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Table 6: Prototype VA systems in my research that address various research challenges seen
in interactive objective functions.

System Evaluation
Research
Challenges

Status

QUESTO Correctness and effective-
ness of Objective Functions

R2, R3, and R4 � Completed

CACTUS Effectiveness of conflict res-
olution and detection

R1 and R4 � Completed

captures user-defined constraints. However, there are numerous constraints or specifica-
tions that can be added to objective functions. For example, in a classification task, a user
might prefer models which correctly predict specific critical data instance [193], expect to
see similar data instances placed in the same class [116, 229], remove data instances which
are noise/outliers [228], etc. Based on a literature review of previous work focused on inter-
active machine learning for non-experts (e.g., [116, 193, 248, 258]), we derived a taxonomy
of constraints that can be combined to create objective functions for classification.

Taxonomy Process: Our taxonomy categorizes user preferences based on constraint type
to help users build classification models. We studied 61 papers from visual analytics and
interactive machine learning area, which included 18 VA systems to formulate the set of
constraints under this taxonomy. Using an affinity diagramming approach, we clustered
similar papers or VA systems with similar interactions together. For example, based on the
literature, we derived constraints such as Critical that represents data instances which users
find important to be correctly predicted, Candidate that captures data instances which are
strong representatives of a class label (and not necessarily Critical). Further, we iteratively
refined these clusters (of paper/VA systems or techniques) until we were satisfied with the
relationship between the members of the clusters. We scoped our set of constraints to those
which are specified on a models’ output relative to the training data. Finally, we derived
15 constraints users can define, organized into 4 categories described below (refer Table 7).
To understand the taxonomy, consider the task of a user is to build a supervised model
(classification) by demonstrating interactions in any interactive VA system.

1. Instance-based: This objective allows users to specify that the classifier should
perform well on a set of data instances. While many of the constraints in this section
involve adjusting weights on specified data instances, we categorized them separately
based on how they are revealed in the user interface and the user task supported.

-Similarity: This constraint captures the degree of similarity (or difference) between
data items. A user specifies a set of similar data instances and expects them to be
predicted in the same class label. Users can also specify pairs of data items to be
predicted in different classes under this constraint type. Likewise, users may specify a
list of pairs of data instances. Each pair represents data items which must be predicted
in different classes. However, in both cases (“similar” and “different”) users do not
specify the class in which the specified data instances should be placed. There are
various VA systems/techniques where similarity and difference between data samples
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was sought from users to construct models. For example, Tamuz et al. discussed
a similarity matrix to infer if an object ”A” is similar to ”B” or ”C” for a user.
They asked users: ”is object A similar to B or C?” [229] to infer the similarity matrix.
Another system Flock asked crowd workers to specify paired examples to define similar
or different instances of positive or negative class [45].

-Candidate: This constraint type refers to user feedback on a set of data instances
from the training set, which are good representatives of their class. Based on prior
knowledge/domain expertize users specify this constraint to inform the system of data
instances which represents a given class well. This constraint type was discussed by
Zhu et al. [258] in the context of machine teaching.

-Critical: This constraint lets users specify a set of data instances to show that
correct prediction of these are critical for them. This constraint can be specified when
users want a set of data instances to be correctly classified, while the accuracy of other
data instances is less important. For example, consider a financial analysis scenario
where a company needs a classifier to predict which clients should be granted a loan.
The analyst might know a few clients who are more profitable than others. Thus,
he or she might prefer a classifier that correctly predicts these clients than the less
profitable ones. Users can assess constructed classifiers based on how accurately they
predict the specified critical data instances. Other researchers have looked at critical
data instances. For example, Lime is a ML algorithm which helps users to interpret
models by explaining their predictions on data instances that are critical [193].

-Ignore: This constraint specifies if the user intends to remove noisy or outlier data
instances from the training set. Removal of noise or an outlier increases the accuracy
of prediction and the power of the model to generalize on unseen data items. This
constraint may also include specification of data instances whose prediction (correct
or incorrect) is irrelevant to users. Elzen et al. prototyped a system BaobabView that
enables users to inspect outliers and noisy data samples through dot plots to improve
interactive construction of decision trees [236].

Table 7: Taxonomy of constraints defining categories and sub-categories. For each sub-
category, it lists relevant works in VA literature that show similar constraint specification.

Category Sub-Category Relevant Works

Instance-based Similarity [44, 45, 56, 119, 121, 229]
Candidate [44, 121, 240, 258]
Critical [50, 116, 193, 204]
Ignore [56, 119, 236]

Feature-based Feature Selection [15, 45, 129, 147],
Correlation and Variance [15, 94],

Train-objectives
Accuracy, Precision,
Recall, and F1-Score

[129, 193, 228, 244, 255]
[42, 79]

Test-objectives
Test-Accuracy, Test-Precision,
Test-Recall, and Test-F1-Score

[14, 79, 181, 201, 214, 243]

2. Feature-based: This category includes items which users can specify to help a model
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in its learning process. The following constraints defined under this category operates
at the level of the features (or attributes).

-Feature selection: This constraint allows users to specify features that are impor-
tant for classification. A classifier will only use the specified features when it is learning
the data. This constraint is derived from the previous work in the literature showing
the value of human-centered feature selection in model construction [45, 129, 147].

-Correlation and Variance: This constraint allows users to specify correlation
and variance in the features, based on their domain expertise. Users specify perceived
correlation between features and variance per feature in the data. Correlation and
Variance are based on the user’s domain knowledge and not necessarily grounded
in the training data. For example, a financial analyst might know that experienced
bank customers in the age group of 40−50 are more likely to spend economically and
pay on time. Thus the features age and payment are correlated based on the domain
knowledge of the user, which may or may not be present in the data. In the literature,
Hall showed a feature selection method based on correlation in the data[94]. Instead
of computing correlation in the features from the training data, this constraint enables
users to specify correlation and variance in the data, an information that affects how
the model learns from the data.

3. Train-objectives:

ML models can be evaluated using conventional model metrics or constraints such as
Accuracy, Precision, Recall, and F1-Score. When applied to the training set, we
consider them Train-objectives.

4. Test-objectives: When the aforemention metrics (Accuracy, Precision, Recall,
and F1-Score) are applied to the test or validation set, we consider them Test-
objectives. Together these two objectives (Train and Test objectives) help users control
for model overfitting. Using the Train-objectives users can verify how well the model is
learning from the data, while using the Test-objectives they can validate if the model
generalises well on unseen samples. For example, one can first find models with high
training accuracy (i.e., low bias), then tune the hyperparameters to achieve a high
test set accuracy (i.e., low variance), and finally weight or rank these constraints to
find classifiers that show an optimal tradeoff between bias and variance.

Discussion: It is difficult to construct a taxonomy that perfectly characterizes a domain
or every ML problem/task. To our knowledge, in the VA community there is no taxonomy
that categorizes user-defined constraints specified to interactively construct classification
models. Our exercise while captures how the other VA researchers have utilised user-
defined constraints, has a set of drawbacks. For example, constructing a taxonomy for such
a task that may also be further categorized based on user expertise in ML (non-experts,
intermediates, to expert ML practitioners). From the extensive literature review and prior
experience in the field, we formalized the taxonomy of constraints, though the categories in
it are not exhaustive. We believe this is one of the approaches to categorize the user-defined
constraints to understand how to build VA systems and interactions that can capture user
preferences to hep users construct and select classifiers. That being said, we are aware that
more research is needed to further refine (add, remove or update) these categories as new
VA systems/techniques are formulated.
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This taxonomy of user-defined constraints (for classification tasks) helped us under-
stand and address the research challenge R2. While the taxonomy was for a specific ML
task, moving forward, we need similar taxonomies for other ML tasks such as clustering,
regression, graph matching, etc. However, we can expect that many of these task-specific
taxonomies may show overlapping constraints. For example, the constraint type Similarity
is relevant and useful for a clustering task too. Furthermore, building on this taxonomy, I
designed a VA system QUESTO specifically supporting classification task for power users
using an interactive objective function approach.

Figure 40: The working logic of QUESTO coupled with an Auto-ML optimizer - Hyperopt. While
some user interactions directly specify constraints to the objective functions, others are automatically
inferred by QUESTO.

5.4 QUESTO - an interactive construction of objective functions

We hypothesize that using an interactive objective function users are empowered to specify
desired goals without the need to directly interact with the complex mathematical terms.
Here we describe a prototype VA system QUESTO that translates user interactions with
data into objective functions for a classification task. Specifically, QUESTO allows users
to specify function terms (also called sub-objectives[202]) in the context of multi-objective
optimization problems. QUESTO facilitates the construction of a classifier by allowing
users to formulate their preferences as an objective function while they explore and interact
with a tabular dataset (see Figure 40). Furthermore, the system visualizes the underlying
objective function to help users review specified goals and constraints.

5.4.1 UI - Main Views

The UI of QUESTO has four main views - (1) Data Table, (2) Scatterplot Matrix, (3)
Confusion Matrices, and (4) Feature Panel.
Data Table View: This view supports 4 types of constraints: Critical, Ignore, Similarity,
and Candidate. It displays the training and test sets in two data tables. To specify Critical
or Ignore constraint, users can click on the row (See Figure 44-B). Further, users can assign
weights to the specified Critical data instances, up arrow means a high weight, down arrow
means a low weight). To specify a Similarity constraint, users can select the constraint from
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Figure 41: QUESTO: A. Incorrect predictions. B. Confusion matrices. C. Model score. D. Sliders
to weight objectives. E. Draggable constraints to specify priority. F. Selected model. G. Test data
constraints. H. Model run and Export button. I. Rule panel. J. Important features.

a drop-down menu and then specify either ”Similar” or ”Different” on pairs of data instances
(by clicking on the row). Similarly, to specify the Candidate constraint (see Figure 45-A),
users can select rows within a class to specify example data instances. For both Similarity
and Candidate constraints, the view highlights the selected rows with a green color (see
Figure 44-B).
Scatterplot Matrix View: The scatterplot matrix shows relationship between various
data attributes such as correlation, variance, etc. (see Figure 45-B). Further, it helps users
to find noise, missing data, outliers, etc. Users can select data instances by brushing to
specify examples for constraints such as Critical, Ignore, Candidate, etc.

Figure 42: A. Critical constraint. B. Other constraints. C. Class selector. D. Filter tags. E.
Selected data. F. Select features, correlation, and variance. G. Parallel coordinate plot.

Confusion Matrix: The confusion matrix for both the training and test set is shown on
the right of the data table view (see Figure 41-G). Hovering or clicking on any of the cells
in the confusion matrix filters the data table to show data instances responsible for the
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predictions in the cell. Next to the confusion matrix is a description of the model’s (current
and previous) objective function score (e.g., ”Objective Function Score is 76%”). Users can
hover over the previous score to compare it’s confusion matrix with the current model.
Feature Panel: The attributes of the data are visualized as a parallel coordinate plot (see
Figure 41-F). Brushing on the features (represented as vertical lines) allow users to filter the
data instances shown in the data table or the scatterplot matrix view. Users can specify
a Feature Selection constraint by clicking on the top headers over the vertical lines (see
Figure 41-F). In addition, right-clicking on the gray box, users can specify a Correlation
and Variance constraint.

5.4.2 UI - On Demand Views

The following views are activated by users on demand. They are seen by clicking on the
top bar in QUESTO’s interface.
Objective Function Stack: This view visualizes the interactive objective function by
showing the set of constraints users can specify. Each box (see Figure 41-A) represents con-
straints under the categorization described in our taxonomy. Users can specify a constraint
by clicking on its name. A specified constraint is shown with a green checkmark (see Fig-
ure 41-A). Based on how users explore the data in the main views, QUESTO automatically
sets constraints in this view. Users can drag sliders to adjust the weight of each constraint
category individually. They can also drag-drop constraints within each category to specify
relative ordering.
Model Interpreter: QUESTO visualizes k ML models and their metrics in this view.
Users can choose to inspect each model by seeing it in a parallel coordinate view or in a
star plot view (see Figure 41-E). Users can select a model, which updates the prediction
column in the data table view and the adjoining confusion matrix view.
Rule Panel: When users specify any constraint to the objective function based on a set of
filtered data instances, QUESTO saves these data instances as part of a rule (See Figure 41-
H). Users can assign custom names to them. The rule highlights the feature values based
on which the filtered data instances were added to the specified constraints. Hovering over
them, users can see the set of data instances under the rule in the constraints list view.
Constraints List View: This view shows user-specified constraints as a list, where each
row represents a data instance. Further, it shows constraints that are satisfied by the
selected model with a checkmark.

5.4.3 Technique

In this section we describe the underlying techniques in QUESTO that drive the construction
of an interactive objective function and use it to create classification model (see Figure 43).

QUESTO uses an Auto-ML module called Hyperopt [127] to find the optimal hyperpa-
rameter combination to construct classifiers aligned with user goals. We used a Random
Forest classifier with the hyperparameters MaxDepth, Criteria (“gini” or “entropy”), and
MinSamples. Users formulate their preferences in the objective function O by specifying a
set of constraints Φ. Using the interactions in QUESTO, users define a weight vector W .
In each iteration, Hyperopt consumes O to construct and rank new models M (based on
their score S). This iterative cycle allows users to search for models by defining their goals
and constraints in O while inspecting the model performance.
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5.4.3.1 Classifier Creation and Selection

Model Construction: QUESTO splits the loaded data set C, into training D and test set
T . QUESTO triggers Hyperopt to start the model optimization process (explained below)
on the supplied data D and T to build M classifiers of size N (M = m1,m2,m3, ...mN ).
It constructs each model mi using a supplied learning algorithm ω and sampled B hyper-
parameter combination such as λ = λ1, λ2, λB. The models are evaluated based on the
accuracy of their predictions on the training data, and the current objective function.

Model Optimization: Hyperopt traverses the space of pre-defined hyperparameters to
construct a set of models. As an input, Hyperopt expects a list of hyperparameters to tune,
H = h1, h2...hB and a domain space νi for each hyperparameter hi. We pre-selected B
hyperparameters and their domain space. Using Hyperopt’s hyperparameter tuning, our
technique constructs N ML models (M) and evaluates each of them using a supplied objec-
tive function O. The objective function O is constructed by a weighted linear combination
of user-defined constraints or sub-objectives Φ. Hyperopt ranks the N classifiers (we set
N = 300) based on the objective function scores in S.

Figure 43: QUESTO system architecture.

5.4.3.2 Interactive Objective Function Creation

Our technique translates user interactions into a set of sub-objectives (or constraints) Φ
and assigns scores to them (S) to compose the multi-objective objective function O. In
QUESTO, users can define the following sub-objectives interactively:

Critical: Hyperopt trains a model mi on the supplied training set D with original labels
Ld,o. Next it predicts labels on the training set as Ld,p. Users specify a list of IDs of x
critical data instances C = c1, c2..cx. QUESTO retrieves the prediction on the critical data
instances based on supplied IDs C as Lc,p (Note Lc,p ⊂ Ld,p). Similarly, QUESTO retrieves
the original class labels of the critical data instances as Lc,o. QUESTO initializes the score

80



for the Critical constraint as s1 = 0. We compare Lc,o with Lc,p, to find the number of
correct matches and save in s1. We normalize s1 to get a score between 0 to 1.

Similarity: A user specifies a list of data items V that is similar. The algorithm iterates
over V to find the original class label Ln,o. If V belongs to more than one class label, the
most frequent class label is assigned to Ln,o. Next, the algorithm matches the prediction
Ln,p with the original class label Ln,o, where i is the index, iterating from 0 to b (the number
of similar data instances specified by the user). For every correct match, the score for this
sub-objective s2,a gets a +1 point. Next, it normalizes s2,a as (s2,a)/b, to get a score between
0 to 1.

A user specifies a list of tuples σ, where each item in the list are expected to be predicted
in different classes. It is represented as σi = (σx, σy). The algorithm iterates over σ and
matches the predicted class label Lσ,p,i of item σi to class label Lσ,p,j of item σj . For every
incorrect match, the score for this sub-objective s2,b gets a +1 point. Next, it normalizes
s2,b as (s2,b)/b, to get a score between 0 to 1. Finally the score for this sub-objective is
computed as s2 = (s2,a + s2,b). We normalize s2 to get a score between 0 to 1.

Candidate: Users specify a list of b data items G for a class label A. The algorithm
increases the training data weights (W = w1, ws2, ws3...Wb) for these data items. It inputs
W to Hyperopt which trains the classifiers M based on the updated weights. The algorithm
iterates through G and matches each items predicted class label Lf,p with A. The score for
this metric s3 is initialized as 0. For each correct match in the iteration, s3 is assigned a
+1 point. Finally the algorithm normalizes s3 as s3 = s3/b.

Ignore: Users specify a list of data items I. The algorithms remove these data items from
the training set D to form a new training set DII . Further when computing classification
model metrics such as Precision, Recall, etc. the algorithm removes the data items present
in I from D and T .

Accuracies: This captures the classification model metrics defined as part of the category
Quantitative and Generalization (see section 5.3). These are Precision, Recall, F1-Score,
etc.

Feature Selection: Users can guide feature selection in one of two ways. First, users
can select a set of features Fd using the filter panel. QUESTO interprets that the user
chose a set of features which has a high correlation with the class label, and thus will only
use these features Fd. Second, users can specify a set of correlated features Fc. QUESTO
automatically discards these features as they show a high correlation (negative or positive)
with each other.

Objective Function Formulation: The resulting objective function in QUESTO is a
weighted linear combination of sub-objectives Φ. The algorithm computes the scores for
each constraint. Finally, it linearly combines these individual sub-objectives scores as shown
in the equation below:

O = s1 ∗ ω1 + s2 ∗ ω2 + s3 ∗ ω3 + s4 ∗ ω4 + s5 ∗ ω5 (1)

where s1, s2, s3 are Critical, Similarity and Candidate sub-objective scores respectively,
and s4ands5, represents Precision and F1-Score sub-objective scores respectively.
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Weighting Preferences: Initially the weights W = ω1, ω2, ω3....ωU (sums to 1) are
evenly set for each sub-objectives in Φ However, users can override and specify weightings
for each sub-objective by aforementioned interaction techniques.

Figure 44: QUESTO loaded with the diabetes dataset - A. Rule panel showing saved rule. B.
Selected data row (shown in green) given as an example for Candidate constraint. C. Incorrect
prediction of a data item. D. User can brush over Feature panel to create a rule and also can filter
data items. E. Model interpreter showing a list of available models and the star plot view. F. A
drop-down selector to pick additional constraints.

5.4.4 Usage Scenario

Lets’ understand how QUESTO can help non-experts interactively construct an objective
function to build a classifier. Shane is a medical practitioner and has a dataset of 1000
diabetic patient records from 1999-2008 [111]. The data contains 20 attributes such as race,
gender, insulin level, number of times inpatient, time in hospital, medical speciality, etc.
The target label in the data predicts if a patient will be readmitted as a diabetic patient.
The labels are “greater than 30%”, “less than 30%”, and “NO”.

Shane imports the data in QUESTO and presses the “build model” button (see Figure 44
top left), which results in QUESTO calling Hyperopt to build 200 classifiers and visualize the
top 4 in the model interpreter view. Shane selects model 4 to check the confusion matrices
on the right of the data table (See Figure 45-E); he sees the current model performs poorly
(avg. 53 % accuracy) on both the training and test sets. Shane filters the male patients who
are caucasian, and have high values in the features -insulin level and time in hospital by
brushing on the feature panel (see Figure 44-D). He sees that they are incorrectly predicted
(originally labeled as greater than 30% ). He selects the Candidate metric from the drop-
down menu shown in Figure 44-F and specifies example patients to the label greater than
30%. QUESTO saves Shane’s specifications as a rule in the rule panel (see Figure 44-A),
based on the feature values in race, insulin level, and time in hospital. He renames the rule
as caucasian-high-risk.
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Figure 45: QUESTO loaded with the diabetes data - A. The Similarity metric from the drop-down
selector. B. The scatterplot matrix view showing relationship between various attributes. C. User
right clicks on the Feature panel to specify correlation between the feature. D. User can click on the
boxes to specify features with high/low variance and correlation. E. Shows the model performance
improved on the training data.

Shane constructs new classifiers (see Figure 44-E) and notices in the model interpreter
view that the best model from the set improved the objective function score to 61%. He
hovers on the rule caucasian-high-risk to see that approximately 75% of the patients in
the rule are correctly predicted. Shane clicks on the drop-down menu from the data table
view (See Figure 45-A) to select the Similarity constraint. Next, he clicks on the rows of
the training set in the data table to specify a subset of these patients (that are incorrectly
predicted) as examples for the Similarity constraint to specifying similarity among these
patients. Based on observations from scatterplot matrix (See Figure 45-B), Shane specifies
correlation among the features - time in hospital and number of medication in the feature
panel (See Figure 45-C).

Shane builds new models and hovers over the star plot view (see Figure 44-E) to find
model 1 performs best on the specified constraints. He hovers on the rule caucasian-high-
risk to see that all the patients in the rule are correctly predicted on the training set by
this model. However, on the test set Shane sees a low accuracy of 70%. In the objective
function stack, Shane removes the F1-Score constraint and adds Testing Accuracy and
Cross-val-score constraint to build new models.

Shane inspects the new classifiers and finds that the patients in the caucasian-high-
risk rule are correctly predicted and the performance on the test set improved as well (to
83%). Feeling confident Shane exports the selected model to predict new patients in the
future. This usage scenario showed how a domain expert user could fulfill very personalized
expectations from a model by interactively specifying goals and constraints to an objective
function.
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5.5 QUESTO - Evaluation

We ran a pilot study of QUESTO with 6 users to get early feedback on the system and its
usability. Through the pilot study we qualitatively observed user responses to interactive
objective functions. On a high level, participants found the workflow presented in QUESTO
easy to use, intuitive, and engaging. They found interactive objective functions, an appro-
priate approach to adjust models without getting into the mathematics and theoretical
aspects of machine learning. However in some cases, they felt uncertain and confused about
objectives that they need to specify, e.g, few participants asked: What should I do next
to improve the classifier’s accuracy? or What did I do wrong that the classifier’s accuracy
degraded?

Building on the feedback from the pilot study, we conducted a within-subject user study
of QUESTO comparing it with approaches to interactively build classifiers. For example,
other than using interactive visual interfaces like QUESTO, two popular alternatives to
constructing classifiers are: (1) manually creating them via code or command-line (CMD)
interfaces, and (2) automatically generating them using Auto-ML. We wanted to compare
QUESTO with manually coding to verify if QUESTO is easier and faster to specify con-
straints. Furthermore, we wanted to compare QUESTO with Auto-ML to verify if QUESTO
satisfies subjective user goals better, and to compare the resulting accuracy. We conducted
a within-subject controlled lab user study of QUESTO comparing it with CMD, and Auto-
ML to construct a classifier. Our study addresses the following research questions:

RQ1 Is QUESTO easier and faster to use than CMD workflows?

RQ2 Does QUESTO build more accurate models than automatically-generated models
from Auto-ML?

RQ3 Does QUESTO build models that addresses user-specified constraints better than
models from Auto-ML?

We hypothesize the interactive visual interface of QUESTO will be easier and faster
to use compared to command-line interfaces. Here “faster” refers to the time it takes to
specify constraints and construct classifiers; it does not include the time needed to train
classifiers. Further, we hypothesize that Auto-ML will generate more globally accurate
models, given the objective function optimizing towards a specified accuracy metric such
as high cross-validation score. However, RQ3 tests our hypothesis that QUESTO will be
better at building models that fit specific user constraints given the customized objective
function, thus illuminating this tradeoff between accuracy and user goals.

In the literature there is no well-defined metric to measure how well user-defined con-
straints are satisfied in classifier construction. Thus, we defined constraint satisfaction
score as a metric that captures how well a model attains user-specifed constraints such as
Critical, Candidate, etc. These scores are normalized between 0− 1 (higher is better). It is
expressed as (

∑U
0 ωi ∗ γi)/U, where ω is the weight of U constraints, γ is the score of each

constraint, U is the total number of specified constraints in the objective function.
We recruited 16 participants (7 Male, 9 Female), aged between 21-29 (M=25, SD=2.91),

by inviting participants through our university mailing lists. We required them to at
least have a basic expertise in writing python code with elementary understanding of
ML. All of the participants (undergraduate and graduate students) were familiar with ba-
sic/intermediate data analysis using tools such as MS Excel, Tableau, etc. The experiment
lasted 60 minutes and we compensated each participants with a $10 Amazon gift card. The
study was conducted using a 17-inch display and a mouse.
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5.5.1 Study Design

We began the study with a practice session teaching users how to interact with both
QUESTO and CMD (with VS Code as the scripting editor). During the practice ses-
sion, participants were encouraged to ask questions to clarify uncertainty in relation to the
workflow or the interaction design. We proceeded to the experimental sessions only when
the participants felt confident in using each system. For quantitative evaluation each partic-
ipant interacted with both QUESTO and CMD using one dataset. Furthermore, the order
of the interfaces (QUESTO and CMD), the datasets, and the tasks were randomized to re-
move any ordering/learning effect. We considered these dependent variables for quantitative
analysis: (1) Task completition times: in specifying an objective function through QUESTO
or CMD, (2) Model accuracy: the accuracy of the model constructed using QUESTO, CMD,
and Auto-ML stand alone, (3) Constraint satisfaction score: measure to capture constraints
satisfied by the model, and (4) User preference rating: average preference rating of Ease of
Use for QUESTO and CMD.

5.5.2 Datasets

For the practice session, we provided a dataset of 10000 credit card transaction records
[250]. The data has attributes such as bill paid month 1, bill paid month 2, bill paid month
3, account balance, etc. It was a binary classification task to predict if a bank customer
will default on a bank loan or not. For the experimental sessions, we provided San Fran-
cisco’s employment dataset [165] containing 5000 data items for the quantitative evaluation.
Each row in the data contains information about an employee’s remuneration containing
attributes such as dental benefits, annual salary, monthly salary, extra benefits, etc. The
task was to predict the employee’s department (5 classes). For the qualitative evaluation we
used a movies dataset [3] (5000 samples) containing attributes such as budget, gross revenue,
facebook likes of lead actors, director, cast, etc. The data has three labels for movie rating:
high, medium, and low. Following best ML practices, we use multiple test datasets, so that
the constructed model never sees unseen data instances,

5.5.3 Tasks and Procedure

In the practice session, we asked users to perform 2 tasks per interface. The first task
was to design an objective function in QUESTO by specifying a Critical constraint. They
were asked to iterate multiple times and improve the classifiers performance by refining the
constraint. The next task was to add two more constraints (Similarity, and Candidate)
to the objective function in QUESTO and iteratively improve the classifiers performance.
They repeat the same tasks by writing code and using CMD to run their code to construct
a classifier. For the quantitative evaluation participants are randomly assigned an interface
(QUESTO or CMD). Participants were encouraged to think aloud while they interact with
each system. The interviewer was a silent observer and was away from the participant to
mitigate Hawthorne and Rosenthal effect during the session. Participants performed 3 tasks
per interface (6 tasks total). Each of the tasks were in increasing level of difficulty.

Task 1 Specify the constraint Similarity. (Max time: 3 minutes)

Task 2 Specify Critical, and Candidate. (Max time: 5 minutes)

Task 3 Specify Critical, Similarity, Candidate, F1-Score, Precision, Accuracy, and Cross-
Validation. (Max time: 7 minutes)
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Figure 46: The study results highlights differences in constraints satisfactore score and model
accuracy, comparing QUESTO with coding interfaces and Auto-ML techniques for classification
tasks.

For the qualitative evaluation, we asked participants to freely use QUESTO (may specify
any constraint) to build a classifier (on the movies data), and improve its objective function
score in 5 minutes.

5.5.4 Data Collection

For quantitative assessment, we saved log data which stores (per iteration) models selected
by users, their learning algorithms, and hyperparameters, predicted class labels, interacted
data items, user-specified constraints etc. When participants completed the three tasks on
both interfaces, we asked them to fill a NASA-TLX form [93], and a post-study questionnaire
with a set of likert scale questions. We asked questions to seek user preference rating to each
interface’s various dimensions such as: (1) Ease of use, (2) Flexibility, (3) Fun to use, (4)
Learnability, and (5) Intuitiveness. After the qualitative evaluation we conducted a semi-
structured interview asking open-ended questions about the workflow, system usability,
and interaction design for each interface. In this interview we asked questions such as:
(1) Describe your thought process while you interacted with QUESTO?, (2) Explain your
experience in constructing an objective function interactively vs, through writing code?, (3)
How do you think we can improve the current workflow, and design of QUESTO? We also
captured video and audio of participants screen while they interacted with QUESTO.

5.5.5 Quantitative Analysis

For the following we used the Friedman Test for Repeated-Measures as it is a good indi-
cator of statistical significance for multi-class classifiers with multiple datasets, which may
not follow a normal distribution as suggested by [59]. Furthermore, we utilised Post-hoc
Wilcoxon signed-rank tests with Bonferroni correction (new p value = 0.03) to test for
statistical significance.

Ease of use: To answer RQ1 we used likert scale rating scores (5-point scale) from par-
ticipants (average ease of use rating 4.64, higher is better, see Figure ??-D). The ease of
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Figure 47: The study results showing average task completition time and average user preference
ratings, comparing QUESTO with coding interfaces and Auto-ML techniques for classification tasks.

use of QUESTO was significant across all tasks: (χ2(1) = 48.03, p < 0.03). thus answering
RQ1 that QUESTO is easier to use than CMD.

Task completion times: Participants were significantly faster to specify constraints in
QUESTO than CMD (Figure 47). Every participant completed all tasks except for three
who failed to complete task 3 in the allotted time using CMD. In these cases, we recorded
the maximum alotted time for that task. Quantitatively we found statistically significant
difference in task completion time for all tasks: Task1 (χ2(1) = 16.0, p < 0.03), Task2
(χ2(1) = 16.0, p < 0.03), and Task3 (χ2(1) = 4.0, p < 0.03). This answered RQ1 that
QUESTO is faster to specify constraints than CMD.

Model Accuracies: To answer RQ2, we compared the models generated using QUESTO,
CMD, and Auto-ML with respect to their accuracies. We found QUESTO generated similar
quality models in relation to accuracies as produced by CMD (refer Figure ??-A). However,
accuracies generated by models from Auto-ML stand alone were higher in comparison to
QUESTO. We observed statistically significant difference in the model accuracy for task 1
(χ2(1) = 12.25, p < 0.03), and task 3 (χ2(1) = 4.0, p < 0.03).

Constraint satisfaction: We found that QUESTO outperformed Auto-ML in meeting
user-specified constraints for all tasks: Task1 (χ2(1) = 6.25, p < 0.03), Task2 (χ2(1) =
2.25, p < 0.03), and Task3 (χ2(1) = 9.0, p < 0.03). This answered RQ3. We analysed this
based on data collected from the employment dataset [165] (users were given the example
data items to specify as constraints), and on the movie dataset [3] (users freely specified
constraints, see Figure 46).

5.5.6 Qualitative Analysis

User Preferences: We measured user preferences using 5-point likert scale rating. QUESTO’s
user preference ratings (out of 5) were higher than CMD workflow in various aspects such
as, Easy of use (Q: 4.53, CMD: 3.22), Fun to use (Q: 4.69, CMD: 2.88) , Learnable (Q:
4.34, CMD: 2.97), and Intuitive (Q: 4.38, CMD: 2.87) (see Figure 47). In addition, through
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the NASA-TLX survey we found that average participants’ cognitive workload was signif-
icantly lower in QUESTO than CMD interfaces (Q: 4.30, CMD: 8.87, out of 10; lower is
better). Based on these results it is likely that participants preferred QUESTO compared
to using the CMD interface for objective function creation. However, many participants
found CMD comparably flexible to QUESTO to specify preferences (Q: 3.78, CMD: 3.52)
and debug models.
Easy workflow: Every participant found QUESTO’s interface and the workflow easy to
learn and use. Users liked the table view, with the ability to filter and search for specific
data items as examples for constraint specification. P03 said, “I like how I can mouseover
on the cells of the confusion matrix to see incorrectly predicted data items.” P08 added, “I
frequently brush over the feature panel to filter data items by a set of attributes I care about.”
However, users recommended that more advanced sorting feature in the table would have
helped them find appropriate examples quickly.
Level of Detail: Some participants had elementary knowledge of python and ML, while
a few others had in-depth ML expertise. P09 reflected “Best part of this workflow is how
easy the tool makes to change my constraints in terms of weighting or ordering them, which
lets me look into a new set of classifiers”. While advanced ML users appreciated the idea
of an interactive interface to define an objective function, reflected that they would prefer
to look at the numerical weights on each constraint so that they can better trust how the
modeling engine is selecting classifiers. P13 said ”Though the objective function view is very
useful, I am not sure if I understand what’s happening on the background without knowing
the numerical weights on these constraints.
Meaningful constraints: Participants found the constraints in QUESTO appropriate and
useful for classifier construction. P10 added “I think the constraints make a lot of sense
to me. When I test models I frequently look at specific data items to verify if the classifier
modeled the data correctly”. However, a few participants commented that it would help if
QUESTO could recommend items to consider next. For example, P03 suggested “I think you
can use prediction probabilities to reflect on how confident the model is on each prediction.
That may help me specify better examples.”
Intuitive model selection: Users found the model interpreter view useful to compare
models based on their performance on the specified constraints. P17 noted “From the star
plot view, I can inspect the size of the polygons to select models that performed better on
relevant constraints. I would prefer to mouseover (instead of click) to browse the model
output results on the table and the confusion matrices.” However, participants wanted to
see a bookmark feature to save models they like. Furthermore, one participant desired
to see how each constraint contributed to a change in model output to understand what
interaction improved performance.
Task complexity: The three tasks in the user study had different levels of complexity.
While task 1 and task 2 involved satisfying only subjective user preferences, task 3 included
finding models that are accurate yet address constraints such as Similarity, Candidate, etc.
Participants found task 3 more challenging, as finding the right model that is accurate and
addresses their personal goals was difficult. P15 noted “It was hard to improve the classifiers
performance when I had more than 4 constraints to specify. However, with QUESTO I could
rapidly test different weightings/rankings to these constraints to find an optimal classifier”.
Conflicting constraints: We observed that participants sometimes specified conflicting
constraints. For example, they specified a set of data item as a Candidate constraint, but
in a later iteration they specified a subset of these data items as a Ignore constraint. As
QUESTO currently does not support alerting users about conflicts, in future we plan to
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mitigate them in objective specification.
Modeling process: From the study we found that QUESTO’s workflow does not help users
understand the underlying modeling process. Often participants wondered what interaction
in the previous iteration led to the improvement or degradation in the accuracy or the
objective function score. Future work could make the modeling process more transparent
and allow users to reason about the impact of their objective specification on classifier
selection.

5.6 Discussion

User-System Feedback loop: Interactive objective functions may guide an Auto-ML
model solver to select models that weigh data instances preferentially to better support
user goals. For example, an objective function with the Critical constraint will guide the
Auto-ML solver to prefer classifiers that correctly predict specific items. In response, users
may inspect a model in relation to how well it supports the specified constraints. Thus inter-
active objective functions employ a two-way feedback loop between the user and the system
for: (1) communicating preferences to find suitable models, and (2) providing a medium
for understanding classifier performance. Participants confirmed that (per iteration) they
validated models in relation to how well they support the constraints.
Tradeoff Analysis: Practically, in a multi-objective optimization problem, satisfying every
objective might not be feasible [202] due to a plethora of reasons including conflicting
constraints, mathematical infeasibility, noise/outliers in the data, high dimensionality, etc.
[116]. Formalizing user goals as a set of constraints in an objective function facilitates
searching for a set of pareto-optimal solutions which may only satisfy a subset of the specified
user goals. Furthermore, visualizing these pareto-optimal models help users inspect them
and understand tradeoffs.

ML users often seek models that support other customized subjective goals/objectives
that are personal and problem-specific [116]. This study validated that while QUESTO
produced slightly less accurate models than Auto-ML model solvers, they met subjective
user-specified constraints. We envision that users will need to find a balance between these
two extremes.
Scope and assumptions of the user study: In the study we timed each task to ensure
the study can be completed within a reasonable time. However, in more realistic settings,
optimizing for (or limiting) time may not be meaningful. Further, we used pre-defined
hyperameters within which Hyperopt sampled values to construct classifiers. The study
results may vary if the set of hyperparameters used are different. Also, our study only
included participants with basic expertise of python and ML.
Model overfitting: Good ML practices entail that trained models have no knowledge of
test data. In QUESTO we follow the same process. The test data view in the data table
allows users to inspect classifiers by reviewing the predictions made at the data instance
level. Furthermore, by specifying the objectives , and (and weighting them), users can
control for model overfitting. Nevertheless, we are aware that if users do not specify , they
may produce overfitted models. However, this may be the case for command-line classifier
construction as well if addition of regularizers or cross-validation approaces are not used.
Scalability: The current UI design is based on datasets of modest size. Thus, there are
aspects of the UI that would become less usable if datasets grew larger. For example, while
the table view supports sorting and filtering the fundamental design of showing items in
a table may make finding individual relevant data items challenging. However, for larger
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datsets we can augment QUESTO with visualisations that can aggregate data and show
example data items on demand (e.g., grouped heatmap view, etc.).

5.7 Summary

This chapter explained how users can communicate their objectives, constraints, and domain
knowledge through the interactive construction of an objective function. Further, it showed
the deployment of the technique in QUESTO, a VA tool which formalizes the mathematical
embodiment of user preferences in the form of an objective function (a weighted linear
combination of sub-objectives). Future iterations of this research might find solutions using
a more complex representation of an objective function, i.e., facilitating a non-linear or
quadratic objective function to evaluate model performance. Extending this interactive
objective function technique further, the next chapter describes my proposed research work.
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CHAPTER VI

CONFLICT DETECTION, RESOLUTION AND TRADEOFF
ANALYSIS IN OBJECTIVE SPECIFICATIONS

Q4: How can interactive visual interfaces help users to detect and resolve conflicts in
objective functions?

In multi-objective optimization, conflicting objectives and constraints is a major area of
concern. In such problems, several competing objectives are seen for which no single optimal
solution is found that satisfies all desired objectives simultaneously [103]. To that end,
pareto optimal solutions are searched for, where each solution is better than the others in
at least one objective [91]. Furthermore, visualization of these solutions may reveal not only
the decision space but also may enlighten these conflicting objectives that obstructs selecting
correct solution(s) for the desired task or goal. In order to make an informed decision,
reconciling multiple conflicting objectives is one of the main challenges for these systems.
For example, a user may emphasize to predict a set of relevant/critical data instances
correctly, while mistakenly expressing that a subset of these data instances are outliers or
noise in the data. To combat that, users often run multiple model simulations to explore the
space of decision choices they have [25]. In our prior work QUESTO, the system supported
showing multiple model options as potential solutions to users. However, QUESTO did not
explicitly show model tradeoffs, conflicting objectives and failed to support users resolve
these conflicts through it’s visual interface.

Motivated to investigate tradeoffs in model selection and conflict resolution in inter-
active objective functions, I investigated the types of conflicts in objective functions. In
addition, I looked at approaches to help users interactively resolve conflicts to create many
variants of objective functions to understand tradeoffs in model performance (with respect
to objectives). We prototyped a tool CACTUS, that simplifies user experience to specify
meaningful objectives in interactive objective function based VA systems. This chapter
explains: (1) CACTUS, a VA system facilitating exploration of model tradeoffs and helping
users detect and resolve conflicting objectives, and (2) Evaluation of the proposed system
through a quantitative and qualitative user study. These two goals seek to address the core
challenges in objective functions: R1 and R4 as discussed in Chapter 5.

6.1 Problem Statement

Interactive specification of objectives and constraints may result in objective functions with
conflicting objectives [109, 210]. Conflicting objectives or constraints may cause construc-
tion of inefficient objective functions that may confuse the underlying algorithm due to
unclear user goals. For example, in a regression task, a user may specify to use a L2
regularizer to penalize attributes with large coefficients, but that may result into incor-
rectly predicting many relevant data instances, though improving the generalizability of the
model. Here the objective to train a model with high accuracy on a set of important data
items may conflict with the validation accuracy (or variance) of the model. Similarly, in a
classification task, a user may expect to see similar data items in the same class labels, at
the same time expecting that the global accuracy of the model is high for every class. The
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Figure 48: Workflow adopted in the system CACTUS.

model being trained to support the users request to place similar data items in the same
label category, may not perform equally well for all class labels, thus dropping the global
accuracy of the model. In the past conflicts in objective specification in multi-objective
objective functions was addressed using tradeoff analysis [21, 109, 187, 253]. While useful,
to our knowledge there is no other work in VA that have looked at resolving conflicts in
user-specified objectives to build classification models using an interactive visual interface.

In this work, we extend research on interactive objective functions by helping users
detect conflicts in objective functions, and further interactively resolving these conflicts to
specify a more meaningful objective function to a model solver. To further understand what
these conflicts are, and how adversely they may affect objective specifications, we conducted
an extensive literature review. Grounded on the literature search, we enumerated a list of
potential conflicts between various objectives in interactive objective functions explained
later in the chapter. Furthermore, we present a visual analytic tool that facilitates: (1) Vi-
sualization of a multi-objective objective function that is defined using a python code (e.g,
defined in a Jupyter notebook), or a visual interface such as QUESTO, (2) Highlighting
conflicts between interactively specified objectives, (3) Helping users resolve these conflicts
to adjust and improve their objective functions, and (4) Train multiple classifiers over time
to perform tradeoff analysis of objectives in the objective function. As objective functions
drive all ML algorithms, we consider visualizing objective functions may help users (e.g.,
novice ML users, ML experts who may use GUI to debug models, etc.) to understand their
specifications to the underlying models, and further empower them to explicitly adjust the
function terms to explore and test various hypotheses that they may have. More impor-
tantly, we consider supporting users in defining meaningful and correct objective functions
is very important to ensure models that are sampled perform as per user expectations.
With this approach, we seek to extend the current processes of interactive model tuning
and model selection in which mathematical objective functions can be visualized and in-
spected. For example, in a Jupyter notebook one can define an objective function and then
use our technique to visualize, test, and interactively adjust objectives to explore various
model alternatives.

We prototyped CACTUS, a conflict resolution and tradeoff analysis system for user
specification of objectives. CACTUS ingests an objective function (defined in Python or
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Figure 49: The CACTUS system - A. Data subsets per objective as seen in the header of the Con-
flict View. B. Model spark bars showing model performance per objective per iteration. C. Control
bar to select objective functions and export objective functions. D. Gray bars show recommended
objective weights. Blue sliders allow users to control weights per objective. E. Variance bars of top 3
highly variant attributes. F. Conflict View. G. Conflict box containing the violin plots with whisker
boxes. H. Tooltip from a whisker box showing distribution of data on an objective. I. Top 4 highly
variant attributes shown for each conflicts per row. J. Objective function gallery showing models’
validation accuracy. K. Jupyer notebook, where objective functions can be defined.

Jupyter notebook) and then visualises it to show its objectives and respective weights. It
visually explains the objectives that are closely satisfied by the selected classification model
and the ones that failed to be satisfied (see Figure 48). Furthermore, it visualises conflicts
between objectives, allowing users to incrementally improve the function by making adjust-
ments interactively. When objective functions are adjusted interactively, users can re-train
models, see a change in the models’ performance and continue exploring the space of mul-
tiple variants of objective functions. Furthermore, visualising objective functions and the
trained models performance metric (per objective) can empower users to explain/interpret
and probe [84, 192] complex models in relation to how well they satisfy their goals. For
example, users can probe if similar data items are predicted in the same class, or strong
representative (candidate) data subsets are predicted with higher probabilities by resolving
conflicts and creating multiple variants of objective functions.

In addition, we present the findings from a within-subjects user study. In this study we
quantitatively evaluated CACTUS to test if it helped users to find and resolve conflicts, and
then if it supported incremental training of models facilitating comparison of a varied set
of objective functions. We also collected qualitative feedback to record user preferences in
relation to easy of use, intuitiveness, and other relevant usability aspects of the system. Our
study showed that: (1) Participants found CACTUS intuitive and expressive in visualising
complex mathematical terms in a specified objective function for a classification task and
also to find conflicts between objectives. (2) CACTUS helped participants ideate on multiple
versions of objective functions and in the process resolve conflicts in objective specifications.
We also present qualitative feedback from the participants that enlightens the strengths and
weaknesses in the current UI design of the system, potential usability issues, and limitations
that needs further research in the future. Our contributions are:

• An enumeration of potential conflicts in objective specification in multi-objective ob-
jective functions to construct classifiers.
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• A prototype VA system CACTUS that visualises conflicts in objective functions and
supports interactive resolution of these conflicts.

• A within-subject quantitative and qualitative user study validating that our technique
helps users construct meaningful objective functions by resolving conflicts between
objectives.

6.2 Types of conflicts in objective functions

In this section we describe types of conflicts in interactive objective functions. In or-
der to understand what these conflicts are, we adopt the same objective categories as
defined in QUESTO, e.g, Instance-based, (2) Feature-based, (3) Train-objectives, and (4)
Test-objectives. Knowingly or unknowingly users may elicit various types of conflicts while
specifying any of these objectives. We categorized these conflicts in the following groups:

1. Conflicts based on choices: Conflicts can be categorized based on users’ subjec-
tive choices, presuming these choices follow best ML practices (e.g., guarding against
overfitting, constructing classifiers that represent every class labels precisely etc.).

Logic based conflicts: These are conflicts that are logically incorrect but does
not violate best ML practices, which we term as logic-based-conflicts. For example,
a user may specify a set of data items to be part of the objective Similarity (where
these data items are expected to be in the same class label), while specifying subset of
these data items as Candidate an objective representing a different class label (than
the class label as annotated in the data). These conflicts are logically incorrect but
do not violate best ML practices. Refer Figure 50 to see every conflict combinations.

ML practices-based conflicts There can be conflicts which are not logically incor-
rect but may be violating best ML practices. For example, building a classifier using
only Train-objectives, and not Test-objectives as a constraint, may produce overfitted
models that are not generalizable to unseen data. Similarly for an imbalanced data
if only an Accuracy objective is specified as opposed to F1-Score or Precision. This
may trigger the model solver to select classifiers that performs poorly on minority class
labels. In this work we are not addressing conflicts that may occur due to violating
best ML practices.

2. Conflicts based on time of occurrence: Logic-based-conflicts can be further
categorized based on when they occur in the modeling pipeline.

Before model conflicts: Some conflicts can be computed before even training a
model, while a few other conflicts can be only ascertained after a model is constructed.
The first kind, which we term as before-model-conflicts, can be automatically com-
puted before a ML model is constructed based on the objectives in the interactive
objective function. For example, a user has specified a set of data items I that should
be placed in the same class label, say Dog, while also specified a subset of I, say J
data items as Candidate objective for the class label Cat. Here Candidate objective
means data items that are strong representative of a specified class label. So the
conflict is that the same data items are specified as examples of two different label
categories Dog and Cat. Similarly another example of a Logic-based-conflict is be-
tween the constraints Critical and Ignore. While Critical represents the data items
that are very important for the user, and thus the user expects the model to predict

94



Figure 50: Conflict matrix, showing conflict possibilities between the objectives.

them correctly, while Ignore represents data items that are unimportant, or noise or
garbage in the training set. A user may specify a set of data items as Critical, while in
a future iteration of the model construction may specify a subset of Critical data items
as Ignore. Such kinds of conflicts can be computed before a model is constructed.

After model conflicts: In addition to the above, there may be other types of
conflicts that are only noticed when a model is constructed or many iterations of
model construction have occurred which we term as after-model-conflicts. From the
literature we know that in a multi-objective objective function, all objectives cannot
be attained [109]. In such scenarios, a set of pareto-optimal solutions are presented to
the user in which only a subset of objectives are attained in each of the pareto-optimal
solutions [97]. Analysing model log data over multiple modeling iterations, the system
can infer which objectives are repeatedly unattained, or which set of objectives cannot
be solved together (at the same time). In such cases, these objectives are in conflict
with one another, meaning that the specification of one, blocks attainment of the
other or vice versa in the objective function [253]. For example, the system may infer
that a highly weighted Train-Accuracy objective is prohibiting the model solver to
find a model that also attains the Similarity constraint successfully. These conflicts
can only be inferred when the model is constructed or when multiple iterations of
model construction has occurred.

In this work, we scope our conflict detection and resolution method to handle conflicts
that are logically incorrect and of the type before-model-conflict, but do not violate best
ML practices.

6.3 Design Guidelines and Tasks

We have formulated the following design guidelines for CACTUS:
DG1: Visualize the objectives and the objective function. We seek to build a
system that is able to visualize an objective function, showing its component objectives and
assigned weights. Users should be able to visually perceive the function and understand
what it means to the underlying model solver where it is ingested to sample classifiers.
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DG2: Visualize model performance on each objective. Through our system we
seek to show performance of the selected model on each of the specified objectives for every
iteration of model construction. Users should be able to visually perceive how the model
satisfied the specified objectives.
DG3: Show conflicts in various objectives. The system should visually show conflicts
between objectives. Users should be able to visually understand the conflicts and seek details
on each conflict (e.g., distribution of the conflicted data, see variance of attributes etc.).
DG4: Resolve conflicts: The system should help users interactively resolve conflicts. It
should help them understand the conflicts in relation to the data items. Furthermore, the
system should provide affordances to either perform conflict resolution through CACTUS
or allow users to export conflicts to a Jupyter notebook (where users redefine objectives to
improve the function).

Based on the above guidelines we set forth the following tasks that CACTUS should
support:
T1: Import and visualize objective functions from a Jupyter notebook (NB). In addition,
allow users to switch back and forth between multiple objective functions that they import
through out their analysis process.
T2: Inspect conflicts between objectives to address potential problems with the objective
function. Be able to compare severity of conflicts both between any objectives in a function,
and between multiple objective functions.
T3: Resolve conflicts by re-assigning conflicted data items to a chosen objective. They
should also be able to control implication of any conflict by adjusting weights assigned to
these objectives. Users should be able to export conflicted data items’ ID or the entire
objective function to NB to further redefine the objective.
T4: Incrementally construct many ML models and inspect model tradeoffs between multiple
model alternatives, through the interactive creation of objective functions. These functions
can be variants of the function that they import created in the process of conflict resolution,
re-assigning weights or re-writing the function in NB and importing again.

6.4 CACTUS: System Design

Here we describe the user interface and interactions supported by CACTUS. The main
views of the system are: (1) Conflict view, (2) Model spark bars, (3) Venn diagram view,
(4) Feature plots, and (4) Objective function gallery.

6.4.1 User Interface

Conflict view: This view shows conflicts using a matrix representation, where every col-
umn shows an objective from the loaded objective function (see Figure 49-F, DG1). The
second row (with the numbered circles) represent subset data instances that were specified
as examples as part of the respective objective. Next, every row in the table encodes a
conflict (DG3) between a pair of objectives (e.g, Similarity, and Ignore). Conflict pairs
are emphasized by a highlighted rectangular box (also called Conflict box, see Figure 51-H),
where 4 most highly variant attributes are vertically ordered. Aligned with each of these
attributes, a violin plot, with a whisker box plot is rendered (Figure 49-G and Figure 53).
Here the violin plots show the distribution of the data in relation to that attribute, and the
whisker plot shows the shape of the data instances that are part of the objective.
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Further, users can hover their mouse on the whisker box to see detailed information
about the shape of the data (Figure 49-H and 52-H). Thus, using this visual technique,
users can compare the conflicted data instance’s shape across two objectives that are in
conflict with one another. The Conflict box, also shows a horizontal bar chart of Variance
bars, where it shows the variance of the data in the two objectives (shown in orange) and
the variance of the conflicted data items (shown in blue) in relation to top 3 highly variant
attributes (see Figure 51-G). Using this view, users can understand how similar or different
are the conflicted data in comparison to the data items that are part of the two objectives.
Model spark bars: On top of this view, CACTUS also renders horizontal sliders that
allow users to interactively specify weights to the objectives (DG2). In addition, users
can refer to system recommended weights, if they are unsure about the weights for each
objective (Figure 49-D). CACTUS allows users to incrementally train models while they
adjust the objective function (e.g., by resolving conflicts or updating objective weights).
Per iteration when a new model is trained, its validation accuracy is plotted as a series of
vertical bars, called Model spark bars, scaled between 0−100 as seen in Figure 49-B). These
accuracies are only on the objective of the column they are rendered in, thus allowing users
to compare performance of the model with respect to specific objectives.

Figure 51: A. Objective function gallery shows previews of objective function per iteration with
model validation accuracy. B. Model spark bars, green bars reflect current iterations performance
improved over previous iteration. C. Gray bars show recommended weights. Blue bars are sliders
to allow users to specify weights to objectives. D. Variance bars to compare conflicted data items’
distribution with other objectives. E. Feature plots, blue dots are full training set, red dots are
objective or conflicted data items. F. Context menu to resolve conflicts. G. Venn diagram view
showing conflicted data overlap between objectives. H. Conflict box opens the bottom drawer to
show venn diagrams and feature plots.

Venn diagram view: As users are exploring the conflicts, they can click on a Conflict
box to trigger the system to open the bottom tray. It reveals a venn diagram showing the
overlap between the pair of objectives. The size of the circles reflect how many examples
comprise each objective, while the overlap of the circle encodes the conflicted data items
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(see Figure 51-G). Furthermore, users can hover over the intersected region to see the
distribution of the data on the Feature plots (Figure 51-E) and also on the Variance bars
(Figure 53). Based on their exploration, they may decide to resolve the conflicts (DG4) by
either: (1) Moving the points to the left objective or to the right objective, (2) Exporting
the conflicted data to the Jupyter notebook, and (3) Completely removing the conflicts from
the objective function using the context menu seen in Figure 51-F. Resolving any conflict,
removes the visual representation of it, i.e., a single row from the Conflict view.
Feature plots: This view plots a set of k attributes with highest variance as small
multiples of scatterplots (Figure 51-E). Each of these charts are plotted with the target
variable (or dependent variable). The design of this view is intended to show users the
shape of the data in an objective or in a conflict in relation to the input data (DG4). This
view is linked with the Venn diagram view.
Objective function gallery: As users resolve conflicts or change weights of objectives, a
new version of the objective function is stored in the memory. Users can access the history
of objective function creation through this view, where each state of the objective function
is shown using a thumbnail preview (see Figure 49-J). The preview also shows the trained
models’ validation accuracy score (between 0 − 100) in this view (DG2). This view also
supports users to go back to a previous state of the function, if the model performance
drops.

6.4.2 Conflict Detection and Resolution Method

Next we explain how CACTUS detects conflicts and visualizes objective functions in relation
to the found conflicts.

Conflict Parser: A user may write an objective function, O in Python/Jupyter note-
book comprising of a set of k objectives ω1, ω2, ω3, ....ωk,. Furthermore, each of them can be
specified with a set of k scores (1,2 ,3 , ....k). Thus, O can be represented as a weighted linear
combination of these objectives as seen here, O = s1 ∗ω1 +s2 ∗ω2 +s3 ∗ω3 +s4 ∗ω4 +s5 ∗ω5.
A objective ωi is represented as a set of training data instance T ID’s as t1, t2, t3....tl. How-
ever, in the case of Candidate objective, they may also be stored as ID’s for a specific class
label L1...b (b class labels). The conflict parser module of CACTUS checks for any overlap
between all the paired combination of objectives from O.For example, it utilises Ti and Tj
between the objectives ωi, ωj , using the function FN(ωi, ωj) to find conflicted data ID’s Tc.
Finally, this module generates a hashmap object F , where keys are hashed to represent the
objective pairs (ωi − to− ωj), and the values are conflicted data ID’s Tc.

Data Distribution and Variance: Conflicts are visualized using the F object (generated
by the conflict parser module). Sequentially, the system tracks the pair of objectives Pi
that are in conflict using the hash-keys (fk) of the object F . Next it retrieves the set of
data ID’s Ti that are specified as examples as part of the objective pairs Pi. It also recovers
Tj from F that represents the conflicted data items. Using Ti, the system first retrieves
the top 3 (can be changed) attributes with highest variance in this set. Next it draws the
violin V and the whisker W plots. While V shows the distribution of the full training set,
the whisker plot W , shows the distribution of the examples that are part of the respective
objectives in Pi. Similarly, the variance bars, are rendered to visualise the variance for the
data ID’s in Pi, and the conflicted data items Tj . The venn diagrams are also drawn using
the object F .
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Model Solver: Users can also utilise any Auto-ML model solver M to sample n classifiers
C (e.g., can be adjusted n = 200) in Python or in a Jupyter notebook. For the current
prototype we tested with Hyperopt [127], but can be replaced by Auto-SKLearn [77], or
Auto-Pytorch [], if required. In this pipeline, M expects an objective function O, to score
each of the classifiers ci in C. The highest scoring (H) classifier ck is selected and the
performance (accuracy score) overall, and per objective is visualized in CACTUS. More
importantly, model construction is handled by the Python code or the Jupyter notebook,
CACTUS only ingests the objective function O, and visualizes conflicts.

Weight Recommendation: The set of weights S = s1, s2, s1....sk in O can be specified
from the Jupyter notebook. These can also be interactively adjusted from the interface of
CACTUS using the sliders (Figure 51-C). To further guide users, our approach also recom-
mends weights S′ (between 0 − 1, for each objective ωi). In the initial iterations, the rec-
ommendations are randomly initialized, however, as users incrementally construct multiple
versions of objective functions (O = O1, O2, O3, ...Of ) and models (M = M1,M2,M3, ...Mf ),
these weights are recommended based on the probabilistic likelihood of the weight settings
that found success in: (1) Maximising the overall model accuracy, and (2) Maximising the
objective score for which the weight is recommended. We followed the bayesian approach
[77] in modeling the probabilistic likelihood of the weight settings.

Figure 52: A. Buttons to train models, load and generate objective functions. B. Objective
function gallery. C. Model spark bars encoding validation set accuracy. D. Drop down objective
function selector. E. Specify path to an objective function to load in CACTUS. F. Objective weights.
G. Conflict box and Variance bars. H. Tooltip seen on mouse hover over whisker boxes.

6.5 Case Study

Here we describe a case study, where a user works in Jupyter notebook (NB) along with
CACTUS to construct a classifier. In this process, they design multiple variants of an
objective function and then visually inspect their effectiveness. Using CACTUS’s conflict
resolution technique, they discover and resolve conflicts in the specified objectives in the
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Figure 53: Violin plots and whisker boxes show how conflicted data items are similar or different
to the objectives.

objective function. Consider James is a data analyst in the public policy department of
USA and seeks to construct a classifier to predict Cancer mortality rate. They have access
to a Cancer mortality dataset (per US County) [? ] containing 3048 records (rows in
the table); each row represents a US county. It contains 34 independent variables such
as incident-rate, median-age, avg-household-size, birth-rate, perc-resid-health-coverage, and
others. James wants to predict the Death-Rate-Per-County, containing labels: negligible,
low, medium, high, and very-high.

Define and visualize objective functions: James uses NB to explore and analyse
the data (Figure 49-K). To construct a classifier they first partition the input data U into
three sets: (1) Training set R (2300 samples), (2) Validation set S (600 samples), and (3)
Test set T (100 samples). They further partition the validation set into multiple subsets
(S = S1, S2, S3...Si). Next, James writes a Python class object to construct a gradient
boosted model to classify the data. When trained using this model, James observes a
relatively poor accuracy of only 72%, and 65% on the training and validation set respectively.
Motivated to select a preferred optimal model for this problem, James decides to use Optuna
- a hyperparameter tuning/Auto-ML solver, and writes a custom objective function for this
package to solve for [9]. James defines an objective function (also called loss function) in NB
containing a set of objectives such as Candidate, Ignore, and Critical. At this point James
re-trains a new classifier by feeding this objective function in Optuna, and notices that
the training accuracy improved to 86%, while the validation set improved only marginally
(73% accuracy). In their objective function specification James filters the data with less
than value 50000 of the attribute med-income and higher than 18% of the attribute poverty-
percent to be classified in the same class label of medium, as they are similar to one another.
Furthermore, they select a set of data samples F whose birth − rate and median − age
attribute values range between 6 − 15% and 35 − 50 respectively, as critical counties that
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should be correctly classified. Thus in the objective function, James specifies a condition to
penalize any sampled model if it makes a mistake in predicting any of the data items in F .

Discover and remove conflicts in objectives: Motivated to explore different variations
of this objective function and to validate any conflicts between the specified objectives,
James imports it in CACTUS (on a separate tab in the browser, Figure 49). James sees
the conflicts in the Conflict view, and looks at the left end of the row to find the most
severe conflict (Figure49-A). They see that there are 39 data samples that are in conflict
between Similarity and Candidate. They also inspect the conflicted data items’ position
with respect to the attribute values shown through the violin plots and whisker boxes as
seen in Figure 53. James notices that the examples shown as part of the objectives have
similar shape and thus likely to be confusing the model solver. They click on its Conflict
box to reveal the Venn diagram view (see Figure 51-G) showing the conflicted data samples.
Next to this view, they explore the Feature plots to see the data points in each of these
objectives, along with the ones that are conflicted (Figure51-E). Hovering over each of
the venn diagram’s arc sectors, James inspects the data samples on the Feature plots to
answer if these samples are similar or different from the two objectives (as seen in the red
dots in Figure 51-E). James realizes that a condition to specify a set of data samples with
attribute values of med-income lesser than 50000, might have caused this conflict. They
export this conflict to Jupyter notebook (NB) to further re-define the objectives Similarity,
and Candidate. In NB James adds two more objective subset examples for: (1) Similarity,
and (2) Critical. Using the Candidate objective, James specifies a set of exemplary counties
that are good examples of the class label high for death-rate prediction. James trains a new
model and exports the new objective function to CACTUS for further analysis.

Iterative modeling by conflict resolution: CACTUS updates the Conflict view with
the new objective function. James looks at another conflict between Candidate and Ignore
(see Figure 49). They click on its Conflict box to inspect the venn diagram. They understand
that 74 examples specified in the class medium for Candidate are actually from different
class labels. In addition, they see a subset of the Candidate examples are also specified as
part of the Ignore objective. To test the models’ performance without a conflict between
Candidate and Ignore, they reduce the weight on the objective Candidate to 0. James
trains a new model using this weight setting (Figure 51-C). CACTUS visualizes the newly
trained classifiers’ metrics on the Model spark bars on top (Figure 51-B). and overall models’
validation set accuracy in the objective function gallery to show James notices the model
has a Validation-accuracy score of 80.1% (Figure 49-J). and further understands removing
the objective (by setting its weight to 0) marginally helped the models’ performance.

Next, James expects to improve the classifiers performance further. They first export
the objective function and the conflicts to NB and then inspect the model there in relation
to a set of counties from the training set (using the buttons seen in Figure 52-A). They
find many important counties that are incorrectly classified by this model. James re-defines
the Similarity and the Candidate objective to take note of it. From CACTUS James
observes that one of the most severe conflict was between Critical and Ignore. To remove
the conflict between them James filters the conflicted data samples using the data ID’s
retrieved from CACTUS. They find similar data samples (using cosine distance) to the
conflicted data samples from the training set for the Critical objective. Next, James trains
a new classifier, loads it in CACTUS to see that the Validation-set accuracy improved
to 94.58% (Figure 52-B). Happy with the analysis results and the models’ trained James
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exports the model and the final objective function to share with their collaborators. In
this usage scenario, James uses Jupyter notebook and CACTUS hand-in-hand, to design
objectives and remove conflicts respectively. The workflow helped them select a classifier
that optimally performs on specified objectives.

6.6 Evaluation

We conducted a qualitative and quantitative user study of CACTUS to validate the effec-
tiveness of our conflict resolution technique. As we did not find any other visual analytic
system system that helps users to find and resolve conflicts in interactive objective func-
tions, we could not design our study to compare results and prove statistical significance of
any measure. Thus, given the constraints, we designed our study to address the following
research questions:

RQ1 Does CACTUS make it easy to precisely find conflicts between objectives in objective
functions for classifiers?

RQ2 Does CACTUS support users in correctly resolving conflicts between objectives?

RQ3 Does CACTUS help users to compare objective functions and understand tradeoffs
between them?

We recruited 14 participants (9 Male, 5 Female), aged between 22− 36 (M = 26.06
[22.41, 29.71]), by inviting participants through our university mailing lists. Our require-
ment was that they should know how to read/write basic python code, with elementary un-
derstanding of classifier construction and exploratory data analysis. Our participants were
a mix from masters and PhD students from computer science, analytics, geography, and
urban planning. They had basic familiarity with data analysis (M = 5.26 [3.73, 6.79], on a
Likert scale rating of 1−7, higher is better), and basic ML expertise (M = 4.85 [3.63, 6.07]).
The study was conducted completely remotely using Bluejeans 1. It lasted 60-70 minutes
and at the end of a successful session we compensated participants with a $10 Amazon
gift card. The system was deployed on our computer, which we shared using a publicly
accessible URL retrieved using NGROK 2, to conduct the study.

6.6.1 Study Design

We began the study by using a live demo, showing participants how CACTUS works and
how its various visualizations can be interacted with We also demonstrated how the system
integrated with a Jupyter notebook environment to seek objective functions (pre-defined
by writing Python scripts), and data instances. During this session, we encouraged par-
ticipants to ask as many questions they wanted to clarify any confusion with respect to
the workflow or the system interface. Next, when we felt confident that participants were
ready for the tasks, we prcoceeded to the experimental sessions. To answer the previously
mentioned RQ’s we considered these dependent variables: (1) Task completion times to
detect/find and resolve conflicts, (2) Conflict resolution success rate, i.e, the number of con-
flicts the participants correctly resolved out of the total conflicts for all the given objective
functions (between 0− 1) etc., (3) Model Accuracies, accuracy score of models per iteration

1https://www.bluejeans.com/
2https://ngrok.com/
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of objective function specification (between 0− 1), (4) Number of iterations as users incre-
mentally created objective functions by resolving conflicts, and (4) User preference ratings
that includes Ease of use, Intuitiveness of the GUI, Steep learning curve, and other relevant
system interactions (all of the scores were normalized between 0− 1).

6.6.2 Datasets

For the practice session, we provided a dataset of 5000 IMDB movie records [3]. The data
had attributes such as gross-revenue, budget, cast-facebook-likes, number-user-votes, etc. It
was a ulti-class classification task to predict the rating of a movie between low, moder-
ate, high, and very-high. For the first experimental session, we provided San Francisco
city’s employment dataset [165] containing 25000 records of job types for the quantitative
evaluation. Each row in the data contains information about a job’s remuneration informa-
tion containing attributes such as dental-benefits, annual-salary, health-benefits, retirement-
compensation, etc. The task was to predict the job’s department which had 5 classes e.g.,
Cultural/Recreation, Public Service, Healthcare, Administration, and Other. For the next
experimental session, we provided the Cancer mortality dataset (per US County) [? ] to
predict Death-Rate-Per-County. The class label were Very high, High, Moderate, Low, and
Negligible. The dataset contains 3048 rows, each row representing the death rate of a US
county and falls under one of the five categories of class labels. Furthermore, it has 34
attributes (1 categorical variable) including incident-rate, median-age, avg-household-size,
birth-rate, perc-resid-health-coverage, and others.

6.6.3 Tasks and Procedure

In the practice session we provided users with a list of 3 pre-defined objective functions
(written in a Jupyter notebook) on the IMDB movies dataset [3]. We asked them to load
each of the objective function in CACTUS and visually explore the conflicts in various
objectives. Next after 15 minutes of practice we asked them questions such as: (1) Which
objective pair has the highest conflict? , (2) Name the top 2 highly variant attributes for
the conflict between Ignore and Similarity, (3) Resolve conflicts between Similarity and
Candidate. (4) Export conflicts between Candidate and Ignore to the Jupyter notebook,
and (5) Adjust the weights of the objectives and train a new model on each of the given
objective functions, and then export the best objective function based on model accuracy
score. When we ensured they understood the concept and the interactions supported by
the system, we moved on to the experimental sessions. For session A we asked participants
to load three objective functions (pre-defined by us in a Jupyter notebook) on the San
Francisco’s salary dataset [165]. We asked them to perform the following tasks:

Task 1 Report number of data items that are in conflict between Ignore and Candidate
from the second objective function.’,

Task 2 Name the top 2 attributes with high variance between the objectives Similarity
and Candidate.

Task 3 Resolve the first and the last conflict from the third objective function. Train a
new model after you resolve each conflict and then compare the model performance.
Export the objective function with better model accuracy.
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Task 4 Out of the three objective functions, find the objective function that has the highest
conflict between any of the objectives.

Task 5 Train three models by changing weights of any of the objectives for each of the three
objective functions. Which objective function found the better performing model?

Task 6 Export any conflict from the the top 2 best performing objective function from
your list of saved objective functions, to Jupyter notebook.

In the next session (B) we asked participants to freely use CACTUS using a given pre-
defined objective function and a given baseline classifer on the Cancer mortality dataset [?
]. There task was to:

Task 7 Incrementally improve the baseline models’ accuracy using any of the interactions
supported in CACTUS in 8 minutes.

In total participants performed 7 tasks using 2 datasets to build a set of classifiers. To
remove any learning effect, we randomised the tasks across participants.

6.6.4 Data Collection

We captured video and audio of participants screen while they interacted with CACTUS.
We saved log data which stores (per iteration) models’ selected by users, their learning
algorithms, and hyperparameters, predicted class labels, interacted objectives and conflicts,
etc. When participants completed all the tasks for both sessions, we asked them to fill a
NASA-TLX form [93], and a post-study questionnaire with a set of Likert scale questions
(7 point scale). In the end we conducted a semi-structured interview asking open-ended
questions about the workflow, system usability, and interaction design for each interface.
For example we asked: (1) Explain your strategy to resolve conflicts? (2) Elaborate your
thoughts on CACTUS’s workflow, design and interactions., (3) How can we improve the
current design of CACTUS? Through out the tasks we encouraged participants to think
aloud while they interacted with CACTUS. Next we present results from the study both
quantitatively and qualitatively. In any of the analysis presented below, we did not compare
the results with any other system/tool, as to our knowledge, we don’t know any visual
analytic system that supports conflict detection and resolution in objective functions for
any ML task.

6.6.5 Quantitative Analysis

We broadly wanted to measure if using CACTUS: (1) users can detect conflict easily and
successfully, (2) users can resolve conflicts with precision, and (3) users can compare objec-
tive functions over time and learn tradeoffs between them. Thus, we measured CACTUS’s
success based on the following quantitative metrics:

Task completion times: We measured task completion time when users were asked to:
(1) Report a conflict between a pair of objectives (M = 2.43mins. [1.41, 3.45]), (2) Report
highest conflict between the three objective functions (M = 5.12mins. [2.81, 7.43]). Next,
we measured task completion time when participants: (1) Resolved conflicts between a pair
of given objectives in an objective function (M = 3.03mins. [2.59, 3.47]), and (2) Resolved
conflicts across the three objective functions (M = 5.02mins. [4.00, 6.04]). The relatively
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lower task completion time (in comparison to writing code to do the same task) answered
RQ1 that CACTUS makes it easy for users to succesfully find and resolve conflicts.

Correctness in conflict resolution: In addition, 13 out of 14 participants successfully
found the right conflicts between objectives. Thus answering RQ1 we observed 92.86%
success rate among participants to find conflicts in an objective function. We also observed
that every participant was able to successfully resolve conflicts (100% success rate). How-
ever, we found that in the case of two participants, while they succesfully performed the
interactions to resolve conflicts, the system failed to correctly record the specified changes
and thus failed to update the objective function. This can be attributed to either of these
reasons: (1) a bug in the system, (2) a latency in the network, as the study was conducted
completely online due to the on-going COVID pandemic, or (3) the interface did not visu-
alize the correct objective function data after the conflict was resolved. In future, we will
look in to this issue further to understand the most likely cause. However, given the high
success rate of the task (12/14 = 85.71%), and the quick task completion time relative to
writing programs or codes in Python or R, we consider these measures answer confirms
RQ2.

Incremental comparison of objective functions: To answer RQ3, we further mea-
sured log data to assess if participants were able compare objective functions and learn
tradeoffs between objectives as they trained multiple classifiers. In doing so, we observed
that on an average, participants iterated 10.23 times (M = 10.23 [6.69, 13.77]) to improve
the given classifiers’ baseline accuracy score of 78.24% on the Cancer mortality dataset [? ].
11 out of the 14 participants selected an objective function (to export, as their final selec-
tion) from a previous iteration in time. Furthermore, we observed two approaches to train
new models: (1) Train a new classifier by changing weights only (2/14 participants), (2)
Train a new classifier by resolving conflicts only (4/14 participants), and a hybrid approach
of the two which was the most popular (8/14 participants). We also measured to find that
88.34% of the participants found success in improving the baseline classifiers’ performance.

User preference ratings: We analysed Likert scale user preference ratings (on a scale of
1− 7, higher is better) provided by users after they interacted with CACTUS. Participants
expressed that CACTUS was Easy to use (M = 6.04 [5.85, 6.23]), and it’s interface was
Intuitive (M = 5.51 [5.05, 5.96]). The majority also confirmed that the interface did not
have a steep learning curve for new users (M = 2.45 [1.25, 3.65]), lower is better in this
case). Most of the participants felt that they were successful in resolving conflicts (M =
5.11 [4.95, 5.27]), and they were able to incrementally improve models’ accuracy score (M =
5.23 [5.01, 5.45]). Furthermore, participants confirmed that the Conflict view was expressive
to not only help them find conflicts but also know which conflicts were more severe from the
set (M = 6.03 [5.54, 6.52]). Likewise the Venn diagram view was found to be very useful to
resolve conflicts (M = 5.32 [5.11, 5.53]). However, majority of the participants found the
Feature plots were not as effective to resolve conflicts (M = 3.11 [1.55, 4.67]). Next, from
the NASA-TLX survey, we observed that on average every participants’ mental workload,
and frustration towards the tasks were on the lower side (M = 2.11 [1.01, 3.21] out of
a 10 point scale; lower is better). Based on these findings, we are encouraged to continue
research along the lines of interactive objective functions. However, the qualitative feedback
enlightened other aspects of the system that may need further improvement or redesign in
the future.
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Figure 54: Study results of Likert scale ratings and NASA TL-X scores for CACTUS.

6.6.6 Qualitative Analysis

Expressive visualisations and intuitive interactions: Most of the participants liked
the visual representations used in CACTUS to represent conflict. In addition, their feedback
confirmed that they liked the current interaction affordances the tool suppports to help them
interactively resolve conflicts. P10 noted, “Easy to use, ui was straight forward. Resolving
conflicts was easy. I liked that I could do things without much interruption and whenever
I wanted the most.”. However, P07 pointed “I could easily find most severe conflicts,
which was also my approach to resolve conflicts as I trained model. But, the sorting of the
conflicts could be based on some rationale (eg. number of conflicts, or other criterias, etc.)
to prioritise urgent conflicts first.”. This feature is relevant and we plan to incorporate in
the UI in future.

Incremental objective function exploration: We observed that participants enjoyed
the workflow of incrementally changing objective functions to train better performing mod-
els. They either changed weights or they resolved most severe conflicts to create a variety
of objective functions and trained models. P04 expressed “I liked the plot on the top that
shows you the history of the model performance, it was very helpful for me to keep track of
the model improvement.”. Few participants gamified the model training process, with the
goal to train models that perform better than the models performed using weights recom-
mended by the system. P03 said “I liked the highlighted bar chart view with the attributes
with the highest variance. That helped me tweak my weights as well as resolve conflicts, and
in doing so I was trying to beat the machine to find a better model”.

Glean insights about the process: A few participants expressed the desire to learn a bit
more about the process, in addition to be able to interactively train models. For example,
P02 shared “At times it was hard to know how to change the weights and whether to move
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left or right when trying to resolve conflicts. I expect to see more visual cues on how to
improve models’ accuracy.”. Similarly, P01 noted “Doing things were easy, but doing them
well took more background knowledge than I had. It would help to know how the function
was driving the modeling process”. In this iteration, we developed CACTUS as a proof of
concept prototype that confirmed that conflicts can be detected and resolved interactively,
however, in future, we plan to making the incremental modeling process more transparent
using GUI elements. In the current setting, users can learn more about the modeling process
by exporting the objective function or the conflicts to the jupyter notebook environment.

Conflict resolution strategy: Broadly, we understood two main strategies participants
used to resolve conflicts once they found which conflict to resolve. The first approach was
to compare the shape of the data in conflict, to the data in the two objectives by observing
the Feature plots. Based on the shape resemblance they moved the conflicted data instances
to one of the objectives. The other approach was to look at the Variance bar view to find
resemblance of the conflicted data to one of the objectives. When participants were not sure,
how to resolve the conflict, they preferred to export to Jupyter notebook to provide better
examples by writing Python code. P08 said, “My first step would be to find which variables
would be useful to analyze in the conflict view. I would then, look at the bar charts to see
if the conflicts were closer to one of the objectives. If not, I would look at the scatterplot
and make judgements by approximating the average location of each of the three groups.”.
In the future, we plan to provide more visualization supports to help users decide on how
to resolve conflicts.

6.6.7 Study Limitations

The tasks are designed so that they can be completed within 60 − 70 minutes. However,
we understand that in real usage, these tasks can be more exploratory and may take longer
times. To construct classifiers we specified a hand chosen list of hyperparameters to Hy-
peropt Auto-ML, with values that can be samples from a specified domain range. The
study results may get affected if a different Auto-ML tool is selected or a different set of
hyperparameters are tuned. The scale of the data that we used are medium-sized ranging
in thousands (< 10000 samples). The results may vary if we use large datasets (e.g., 100k
or more). Due to the COVID-19 pandemic, we had to conduct the study completely re-
mote, which has its own set of limitations in comparison to in-person controlled lab study
settings such as lack of direct observations, network latency issues, in-adequate feedback
from think-aloud protocols etc.

6.7 Discussion and Limitations

Exploratory model space analysis: Enabling users to interactively construct multiple
variants of objective functions empowers them to explore the model space (set of models
defined by their unique hyperparameter settings) in an ad hoc iterative workflow. Users
can adjust weights of objective, resolve conflicts, redefine objectives in Python and then
import in CACTUS to visualise new objective functions. These functions trigger Auto-ML
to search for models that are better aligned with their goals. The studt further confirms
this hypothesis that CACTUS encourages exploratory model space analysis using objective
functions as a means to communicate user preferences to find optimal solutions to their ML
task. Furthermore, we observed that visualising conflicts and model performance scores
with respect to specific objectives, helps users interpret implication of the selected model
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on the expectation of the user. In some way, we can assert that objective functions support
interpretation of models’ performance, however, we understand more research needs to be
done to confirm if interactive objective functions can further explain models.

Collaborative objective functions and conflicts: From our experience with objective
functions, we realised that in real world ML teams, objective functions are often designed by
multiple members of the team to solve the same problem. In situations like this CACTUS
can be a tool that helps compare multiple versions of objective functions visually, from
different team mates, and then explore the space of possible objective functions and conflicts
that may arise from each. That may open a new research area as an extension to our current
work, in which users may like to resolve conflicts by collaboration across different geo-
locations, or from different devices (e.g, from browsers accessing CACTUS synchronously
and resolving conflicts). We plan to look into this area of work in the near future.

Gamification of modeling using objective functions: In the study we observed few
participants, amified the process of model construction, by testin various weight settings of
objectives, resolving conflicts, or specifying new objectives. Their goal was to beat the pre-
vious models performance score and also to perform better than the model constructed using
system recommended weights. Many participants elicited there is a lot of value in this, as not
only it helps them ideate and explore faster, but also makes the process of finding a suitable
model more fun. We realise incremental construction of objective functions, and being able
to revert back to any time step in this process augments them to freely explore and experi-
ment with their hypothesis. In future, we see lot of potential in supporting the interface with
features that further encourage and guide users in this process of gamified model creation.

Current limitations in conflict resolution: Though CACTUS allows users to in-
crementally create and compare objective functions in the process of resolving conflicts,
through the study we found many aspect of it needs further researcha and work. For ex-
ample, we found the current view showing the time step view of objective functions (Model
spark bars and objective function gallery) is at times difficult to track because it only sup-
ports sequential record. Every change in one parameter leads to a model retrain, and saves
a new copy of the objective function. This may take some interaction time and may be
difficult to track when users have iterated many times. We aspire to research further to find
potentially better design choices interms of visual design and interaction to present time
line representation of models and objective functions.

Another issue, we realise is that data exploration is critical to resolve conflicts and design
good objective functins. A few participants in the study, who were less versed with the data,
felt very difficult to know how to change the weights and whether to move left or right when
trying to resolve conflicts. Sometimes this process felt like trial and error. In CACTUS we
focussed on conflict resolution and objective function comparison, while separated the task
of data exploration in Jupyter notebook. While that may work for advanced users with
Python and Jupyter notebook experience, it seemed for intermediate users, an aspect of the
interface should support data exploration in the future.

Scalable conflict detection: The current prototype’s implementation is designed to be
model agnostic, meaning it can work with classification, or regression models (supervised
ML). It can also work with sequence data such as text, time-series and image data. Cur-
rently, the interactions are tested on medium sized data sets (i.e., with data samples in the
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range of 100k). The design of the visualisation uses Phaser JS (a 2D game engine library
for the web) with WebGL on canvas implementation. In the next iteration the conflicts can
be ordered, grouped and can be extended to represent more than two objectives per row in
the table. Though we tested with multiple conflicts per row, we discarded the approach,
as it may lead to ineffective selection of conflict intersections in the venn diagram view.
In future, we wish to research potential solution for multi-objective venn diagram based
solutions to represent conflicts.

6.8 Summary

Through this work, we present our research on making interactive visualizations of objec-
tive functions in the process of constructing machine learning models. Furthermore, with
our visual analytic system CACTUS, we demonstrated a novel technique that interactively
resolves conflicts among objectives in a multi-objective objective function. In CACTUS,
we also discussed an enumeration of various types of conflicts that may occur when users
specify objective functions to ML model solvers to classify tabular data. With a quanti-
tative and qualitative user study we show that our technique helps users to interactively
visualize objective functions, resolve conflicts between objectives, and incrementally train
ML classifiers in tandem with a Jupyter notebook environment. In future, we are motivated
to continue our research on interactive objective functions to guide users explore and ideate
multiple variants of these functions as they collaboratively solve analytical problems.
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CHAPTER VII

DISCUSSION

Machine learning (ML) has changed various problem domains by offering insightful solutions
such as biologists clustering genome samples, medical practitioners predicting the diagnosis
for a new patient, ML practitioners tuning model hyperparameter settings etc. To support
users to freely incorporate machine learning in their domain there has been a recent surge
in making machine learning interactive through applications that support a variety of data
analytic tasks (e.g., H2O, OrangeML, etc.). These tools and algorithms support interac-
tive construction of models for people with various expertise in ML; from non-experts, to
intermediates, to advanced users. However, designing these systems/algorithms includes
addressing numerous challenges, such as diversity in user expertise, metric selection, user
modeling to automatically infer preferences, measuring success, etc. Through this research,
I designed visual analytics systems to incorporate user interaction data in machine learning
modeling pipelines. Specifically, I analyzed interaction techniques and ML algorithms by
measuring user satisfaction ratings, success rates in finding user-preferred models, model
accuracies, and task completion times. I found that these approaches empowered people
to communicate their preferences to interactively construct machine learning models to
support numerous data analytic goals (compared to Auto-ML tools). In this thesis I have
demonstrated two main techniques in interactive modeling: (1) multi-model steering, and
(2) interactive objective functions. This work facilitates specification of user goals and ob-
jectives to underlying ML model(s) using interactive visual interfaces on the web. Broadly,
these techniques support the following aspects of this research:

1. Novel interaction methods with multiple models: Incremental construction of
multiple ML models, and selecting a set of preferred model(s) is a very complex task
that requires technical expertise in both software skills and elementary data science.
For instance, current multi-model systems [37, 179] require users to be able to adapt
to the steep learning curve of interacting with a complex user interface with a complex
workflow in addition to be able to comprehend model metrics, hyperparameters etc.
While a part of this research have investigated novel approaches of user interaction
with multiple ML models [50, 225] to help users learn about them and the underlying
data (in the process of interactive model selection), another part have addressed sim-
plifying the complex user experience of interacting with multiple models prevalent in
current systems.

2. Interactive navigation of model space: To simplify understanding the implica-
tion of a model on the input data, this research facilitated exploration and interactive
navigation of the model space [225] in relation to prediction on relevant data in-
stances [50, 54] or explaining a models’ reasoning process through the visualization of
top weighted features (by the model) [51] and their correlation with the target label in
the data [52]. For example, if a user notices that a relatively average performing model
weights features that are more relevant to their domain, they may feel more confident
about it than a similar highly performance black-boxed model. This may motivate
them to further computationally search for similar models from the model space.
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3. An innovative technique to interactively construct objective functions:
This research presents ideation, prototyping, and invention of a novel visual tech-
nique to interactively construct objective functions supporting classification tasks in
ML. Furthermore, this thesis also explored explicitly showing trade-offs and conflicts
in objective functions to users to support them design more effective and correct objec-
tive functions. This technique interactively allows creation of a diverse set of objective
functions, to sample models that addresses a diverse set of user goals, through the
lens of which users can learn trade-offs in objective specification as they decide on
which model to choose.

7.1 Challenges in user preference specifications in interactive machine
learning

Below I describe challenges that I faced throughout the research, some of which are still an
open area for further investigation.

• Computational scalability: Multi-model based VA systems tackle computation-
ally expensive operations; for example, users interactively train multiple ML models.
When they are trained, the system presents the results (e.g., prediction per data item)
to users. However, as models’ complexity grows, so does the training time, which ren-
ders interactive real time feedback to the system a big challenge. Furthermore, in my
research, this posed to be a bigger problem as the datasets size grew (from thousands
of rows to few hundred-thousand rows). For instance, if conflicting objectives are to be
identified before even starting the model training process, then the system must look
into every data sample and their data values across all the dimensions to find objec-
tives that may conflict with one another. For larger datasets with high dimensionality,
this tended to be computationally expensive, and obstructed real-time interactions of
the VA system. I scoped my research to address ML problems supporting medium
sized datasets (i.e, 80 to 100 thousands sample dataset or less). In addition, in some
of the presented systems, I followed a progressive visual analytics style approach [222]
(showing intermediate results, while training models) with interactive web caching
[40]. This helped to provide a real-time interaction experience to the user, with in-
termediate results as the computational task (model training or conflict resolution)
continued in the background. However, in the future, these scalability related issues
need further research to discover new approaches to ensure interactive modeling can
further scale to larger sized datasets.

• User guidance: The user study of QUESTO revealed that users often might not
know which objectives to specify to improve model performance. Observing partici-
pants interact with the system, we realised that they needed system-guided assistance
to understand the implication and use-cases of objectives that they can specify. To
that end, a VA system may recommend potential objectives that users can specify
per iteration, e.g., using notifications or pop-up suggestions. Systems can also use
tooltips that explain how a set of objectives can be used to guide the construction of
models. Further research can address questions such as: How can new VA systems
be designed that supports user guidance in interactive objective specification?, What
are the circumstances when a user may not know what objectives to specify or may
seem confused about the use case of objectives/constraints?, When should a user be
notified about objectives that they can consider to specify? In CACTUS, we supported
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users by explicitly showing them conflicts in their objective specification. This guided
users to locate the root cause of the problem in the objective function, and to see
what they needed to do next to fix the problem. However, guiding users in objective
specification still remains an open research challenge that needs further investigation.

• Managing infeasible results: Through CACTUS, we learned that in many cases
solving conflicting objectives may be mathematically infeasible. Specifically, in the
process of modeling, users can specify objectives for which no mathematical solution
may exist. In such scenarios, the system may not be able to respond with any solution
or may show solutions that perform poorly or are approximate solutions to the desired
results. While such solutions are mathematically infeasible or show poor performance,
they may be more preferable to users even though their performance is inferior [103].
This was explored in the work of Kamalian et al. where they deployed user interac-
tions in a multi objective optimization problem [114]. Nevertheless, for a better user
experience, users may expect to know why do they see models with low performance
or inconsistent output? (observed through the study of QUESTO, and CACTUS), or
what previous interactions led to the selection of poor models? In future, VA systems
supporting model construction tasks, should educate users about the feasibility of a
solution space given a set of specified objectives. This poses a challenge to understand,
how to educate users (without overwhelming them) about mathematically infeasible re-
sults given specified preferences? This space needs further investigation to enlighten
approaches to reconcile infeasible user expectations using novel techniques from HCI,
information visualization, and visual analytics.

7.2 Reflections

In the following, I summarize my reflection on the two main interactive techniques that I
have analyzed through this research.

• Multi-model steering: Through this research, I investigated model steering tech-
niques in visual analytics namely, single-model based model steering and multiple
model based model steering. In the former, there is a predefined single ML model,
while the later uses multiple ML models to help users analyse their data. To that
end, I prototyped the VA system Gaggle [225] (with two variants: single and multi-
model based) to understand: (1) how a multi-model steering is superior to a single
model steering system or vice versa?, and (2) in what circumstances multiple mod-
els switch hyperparameters to account for user preferences? I presented the findings
from a quantitative and qualitative study highlighting the differences between these
approaches. The study showed that a single model system may be adequate for rela-
tively simpler tasks such as binary classification. However, for complex task such as
multi-class classification and ranking, where an analysts’ definition of class categories
may change while they explore data, multi-model based systems are more efficient to
help end-users find a preferred ML model.

Furthermore, in VA systems, model selection is enabled by various techniques which
differ by the degree of automation. On one extreme, there is the manual model
selection approach, which includes manually choosing a model’s learning algorithm
and hyperparameter settings from a control panel based visual interface. On the other
end is the automated model selection approach (e.g., in systems like Auto-Weka [82],
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H2O, Orange-ML, etc.), a technique that automatically selects a model that performs
best on an input dataset, specified task, and a chosen performance metric such as
precision, recall, etc. In between these two extremes, I explored a semi-automatic
model selection approach, where end-users interactively guide the underlying model
solver through demonstrated interactions to select a preferred model for their problem.
I prototyped two systems namely, BEAMES [50], and Gaggle [225] to validate this
approach further. I learned through the controlled-lab user studies that users can
create meaningful models by interactively specifying preferences to models instead
of resorting to code or using control panel style Auto-ML platforms. Furthermore,
the studies confirmed that multiple models better supports users to model their data
closer to their expectations. Often in the process of interaction, they could change
their task definitions. In such cases multiple models helped to characterize the data
more accurately. Finally, I also learned that there is a trade-off between a simpler user
experience and granularity of control in adjusting/steering models. While BEAMES
allowed users to inspect and steer models with more controls, Gaggle showed a simpler
user interface to use with less interaction complexities.

In this thesis, I also presented a year long design study with biology researchers
at Georgia Institute of Technology, who cluster genome samples to answer critical
analytical questions in their domain. Motivated to test the aforementioned approaches
of interactive multi-model steering and model selection, I closely worked with them
to build a visual interface that facilitates cluster model recommendations based on
user interactions with multiple clustering models (variants of K-means model). To
summarize, with this work I validated interactive model selection in a real domain with
real data. Through this experience I learned that people prefer to explore data and
create models, in the process they tend to test various hypothesis, save different model
types to support their hypotheses for further analysis. For this specific work I observed
two broad approaches of user interaction, one was top down where users clustered the
whole data and then specified their desired cluster memberships interactively. The
other approach was bottom up, where users drag dropped data instances from the
table to create clusters one by one, and using these interactions, the system learned
to find the right hyperparameterization of an optimal clustering model.

• Interactive objective functions: While multi-model steering was effective it seemed
from the interactions in the other systems, that users can specify a range of implicit
feedbacks that often are not communicated back to the user. In some cases users
may not understand how each of these preferences affect each other, and more impor-
tantly often these preferences when applied together may conflict with one another.
In response to these limitations, I presented a novel technique that enables interactive
construction of objective functions in classification tasks. Using this approach, a VA
system selects models based on user specifications of their preferences in the form
of an interactive objective function that is fed to an Auto-ML model solver. Inter-
active objective function crafted by users is the mathematical embodiment of their
requirements (in the form of multiple objectives). This function is utilised to score
and rank models that are sampled by the model solver. Based on this ranking, an
optimal (preferred) model or a set of top ’k’ optimal models are selected for users to
inspect. Reflecting back on this work I observed that interactive objective functions
employs a feedback loop between the user and the system to communicate intents and
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to inspect models through objective specification. Furthermore, I observed that in a
multi-objective optimization problem, satisfying every objective might not be feasible,
thus formalizing user goals as an objective function facilitates understanding various
trade-offs between different models.

As mentioned, multi-objective objective functions may contain objectives that conflict
with one another. In this research I developed an interactive algorithmic technique
that helps people to: (1) inspect and explore conflicts between objectives, (2) inter-
actively resolve conflicts to construct different variants of the objective function, and
(3) incrementally improve the objective function, by comparing its effectiveness in
relation to the underlying models’ performance (e.g, with respect to metrics such as
accuracy score on the validation set). In this work I presented enumeration of poten-
tial conflicts between various objectives in interactive objective functions. Grounded
on this list of conflicts, I prototyped CACTUS, a VA tool that helps users to spec-
ify meaningful objective functions to a classifier by resolving conflicting objectives in
their specification. Furthermore, with a quantitative and qualitative user study the I
analyzed to find that not only this system provided an expressive visual interface to
detect and resolve conflicts but it also motivated users to gamify the process of model
creation through designing many variants of objective functions. In future, researchers
can investigate novel ways to guide, and encourage participants in this gamification
process of model creation. In addition, another area of work that can be extended
from this research is how people can collaboratively design objective functions, and
then check to see if there are any conflicts between there objective specifications. In
practical applications, many ML practitioners form teams to create data science solu-
tions to analytical tasks. In such scenarios, they can collaboratively design objective
functions and test its effectiveness using a system like CACTUS.

7.3 Future Work

In the following I list a few potential future research directions that I foresee can result
from the contribution of this thesis.

7.3.1 Interaction based user feedback to AutoML with heterogeneous large
data sources

In my research I have mostly worked with tabular datasets, to help people build machine
learning models using interactive visual interfaces. Recently I have started building applica-
tions using text, and time-series data with sequence models (e.g., BERT, CNN) [11] to help
domain experts such as urban planners make sense of large-scale social media data [2] (e.g.,
Twitter and Instagram data). In the future, I seek to explore and investigate interactive
human-in-the-loop applications that facilitate constructing models’ using diverse hetero-
geneous large-scale data sources. While this workflow may help to diversify and extend
training data sources in interactive model construction processes, it also posits multifar-
ious challenges both in terms of visualizations, interactions, scalability and incorporating
user interaction data into ML models. Heterogenous large-scale data sources also pose the
problem of data integration, data quality (e.g., noise, missing data), and scalability in re-
lation to interaction and responsiveness in applications. I plan to address these challenges
through: (1) the design of new algorithms that help scale multi-model based ML solutions,
and (2) the application of longitudinal qualitative and quantitative user research. I aspire
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to work on interdisciplinary ML and data problems where heterogeneous data sources can
be coupled with user interaction data for large scale applications.

7.3.2 Domain application of human-centered AI modeling

Model selection in machine learning is a known hard problem, even for expert ML practi-
tioners and data scientists. The problem is more pervasive and serious for novices or early
adopters in ML. Throughout my research, I sought domain experts’ cooperation and col-
laboration to find access to real-world problems on domain-specific datasets and problem
cases. These users may or may not have ML expertise. For example, I have worked with
DARPA’s explainable AI initiative to build applications to democratize ML solutions for
subject matter experts [35, 36] who were novices in ML. Similarly, I have collaborated with
urban planning researchers to build an interactive natural language preprocessing (NLP)
tool to help build personalized sequence models using AutoML model solvers [53]. In the
future, I plan to continue this research and further partner with public agencies or other
departments who may need access to ML applications. One such avenue that comes to
mind involves healthcare analytics using AI and big data in partnership with medical prac-
titioners. My previous experience of sequence modeling and natural language processing
work with urban planners can be extended with state of the art NLP models. In this col-
laboration, I also plan to research, investigate, and re-define new domain-specific metrics
that may be are more meaningful to end-users than conventional ML metrics, such as ROC
Curves, Precision, Recall, etc.

7.3.3 Animations in interactive model selection and biases/explainability in
ML:

In interactive ML applications, the complexity of ML modeling pipelines often is intim-
idating. With the advent of recent multiple machine learning based systems, users bear
the burden to choose the right model from a large number of choices which can further
perplex them. In such cases, users should be eased into the modeling workflow, such that
they can better understand the ML processes and make informed decisions as they select
models for their analytical tasks. A good example of such a workflow is Google’s Teachable
Machine Interface [89]. In my research, I have demonstrated numerous interactive algorith-
mic techniques to simplify the user experience and the user interface to help users interact
with multi-model systems [4]. These systems leveraged interactions in visual interfaces,
however, lacked to incorporate animations in visual elements (data marks). Research has
shown that animation serves as a great asset in narrative visualizations, temporal display of
data, and in allowing users to see various phases of a process (e.g., in simulations of genetic
programming, fluid modeling, ML optimization of loss functions etc.). Animation can also
help to explain complex models such as deep neural networks (e.g., RNN, GPT, BERT
etc.) which are hard to reason about in terms of the predictions they make. Animation can
help tell users the story of a models’ learning process, its latent space representations, and
the process of sampling its hyperparameters etc. [55]. As part of future work, I aspire to
investigate if animations can be deployed to help users interpret complex ML models and
explain human and algorithmic biases in model creation. In this regard, I can foresee that
animations in visualization systems can help reduce human and algorithmic biases as people
explore data and interactively create models. With the same spirit, I am looking forward to
further collaborate with people who have experience with modeling various kinds of biases
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in visual analytics. For example, state of the art work in detecting and mitigating biases
[241, 242] in visual data analysis can be complemented with animation-based storytelling of
model creation processes that emphasize and highlights areas of human and/or algorithmic
biases and guide users in ways to mitigate/resolve them.
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CHAPTER VIII

CONCLUSION

Table 8: Contributions of this research.

Question Prototype(s) Status

RQ1

What are the various techniques of
interactive model construction and
selection in human-centered
machine learning?

BEAMES,
Gaggle

Published: IEEE CG&A,
VDS 2018 [BEST PAPER]
Published:
Graphics Interface 2020

RQ2

How effective are multi-model steering
and interactive model selection in
supporting domain experts to construct
clustering models?

Geono-
Cluster

Published:
IEEE TVCG Journal 2020

RQ3
What are the interactive techniques
that empower people translate their
preferences into objective functions?

QUESTO
Published:
Computer Graphics Forum,
Eurovis 2020

RQ4
How can interactive visual interfaces
help users to detect and resolve
conflicts in objective functions?

CACTUS
Under Review:
IEEE TVCG Journal 2021

8.1 Summary

To summarize, my thesis investigated methods to empower users to communicate their
preferences to machine learning models using interactive VA systems. I expect my work
to help democratize ML to people who may need access to ML-based processes to serve
a diverse array of data analysis goals. Through my research, I have answered a set of
research questions, as discussed in Chapter 1 (see Table 8). My research contributions can
be summarized as below:

1. A set of prototype VA systems that explored various model selection techniques in
visual analytics. Furthermore, with a quantitative and qualitative user study showed
trade-offs between multi-model steering and single model steering technique in visual
analytics.

2. A domain study of interactive model construction and selection technique in visual
analytics to support biology researchers cluster genome data.

3. A novel interactive objective function approach that enables users to communicate
their preferences and domain knowledge to machine learning models using demon-
stration based interaction techniques.
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4. A quantitative and qualitative study with empirical evidence showing the effectiveness
and correctness of interactive objective functions to characterize and translate user
preferences to ML models.

5. A visual analytic system that finds and resolves conflicts in objective specification and
facilitates exploration of model trade-offs empowering users to select better performing
models.
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Databases (Balcázar, J. L., Bonchi, F., Gionis, A., and Sebag, M., eds.),
(Berlin, Heidelberg), pp. 409–424, Springer Berlin Heidelberg, 2010.

123



[67] Elmqvist, N., Dragicevic, P., and Fekete, J., “Rolling the dice: Multidimen-
sional visual exploration using scatterplot matrix navigation,” IEEE Transactions on
Visualization and Computer Graphics, vol. 14, pp. 1539–1148, Nov 2008.

[68] Endert, A., Bradel, L., and North, C., “Beyond control panels: Direct ma-
nipulation for visual analytics,” IEEE Computer Graphics and Applications, vol. 33,
pp. 6–13, July 2013.

[69] Endert, A., Han, C., Maiti, D., House, L., Leman, S. C., and North, C.,
“Observation-level Interaction with Statistical Models for Visual Analytics,” in IEEE
VAST, pp. 121–130, 2011.

[70] Endert, A., Bradel, L., and North, C., “Beyond Control Panels: Direct Ma-
nipulation for Visual Analytics,” IEEE Computer Graphics and Applications, vol. 33,
no. 4, pp. 6–13, 2013.

[71] Endert, A., Fiaux, P., and North, C., “Semantic interaction for visual text an-
alytics,” in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’12, (New York, NY, USA), pp. 473–482, ACM, 2012.

[72] Endert, A., Fiaux, P., and North, C., “Semantic interaction for visual text an-
alytics,” in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’12, (New York, NY, USA), p. 473–482, Association for Computing
Machinery, 2012.

[73] Erhan, D., Bengio, Y., Courville, A. C., and Vincent, P., “Visualizing higher-
layer features of a deep network,” 2009.

[74] Escudero, J., Ifeachor, E., Zajicek, J. P., Green, C., Shearer, J., and Pear-
son, for the Alzheimer’s Disease Neuroimaging Initiative, S., “Machine
learning-based method for personalized and cost-effective detection of alzheimer’s
disease,” IEEE Transactions on Biomedical Engineering, vol. 60, pp. 164–168, Jan
2013.

[75] Fails, J. A. and Olsen, Jr., D. R., “Interactive machine learning,” in Proceedings
of the 8th International Conference on Intelligent User Interfaces, IUI ’03, (New York,
NY, USA), pp. 39–45, ACM, 2003.

[76] Fails, J. A. and Olsen, Jr., D. R., “Interactive machine learning,” in Proceedings
of the 8th International Conference on Intelligent User Interfaces, IUI ’03, (New York,
NY, USA), pp. 39–45, ACM, 2003.

[77] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., and
Hutter, F., “Efficient and robust automated machine learning,” in Advances in
Neural Information Processing Systems 28 (Cortes, C., Lawrence, N. D., Lee,
D. D., Sugiyama, M., and Garnett, R., eds.), pp. 2962–2970, Curran Associates,
Inc., 2015.

[78] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., and
Hutter, F., “Efficient and robust automated machine learning,” in Advances in
Neural Information Processing Systems, pp. 2962–2970, 2015.

124



[79] Fiebrink, R., Cook, P. R., and Trueman, D., “Human model evaluation in in-
teractive supervised learning,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’11, (New York, NY, USA), pp. 147–156, ACM,
2011.

[80] Fogarty, J., Ko, A. J., Aung, H. H., Golden, E., Tang, K. P., and Hud-
son, S. E., “Examining task engagement in sensor-based statistical models of hu-
man interruptibility,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’05, (New York, NY, USA), pp. 331–340, ACM, 2005.

[81] Freund, Y. and Schapire, R. E., “Experiments with a new boosting algorithm,” in
Proceedings of the Thirteenth International Conference on International Conference
on Machine Learning, ICML’96, (San Francisco, CA, USA), pp. 148–156, Morgan
Kaufmann Publishers Inc., 1996.

[82] Garner, S. R., “Weka: The waikato environment for knowledge analysis,” in In
Proc. of the New Zealand Computer Science Research Students Conference, pp. 57–
64, 1995.

[83] Gay, G., Rayadurgam, S., and Heimdahl, M. P. E., “Improving the accuracy of
oracle verdicts through automated model steering,” in ACM/IEEE International Con-
ference on Automated Software Engineering, ASE ’14, Vasteras, Sweden - September
15 - 19, 2014, pp. 527–538, 2014.

[84] Ghorbani, A., Abid, A., and Zou, J. Y., “Interpretation of neural networks is
fragile,” in AAAI, 2017.

[85] Ghorbani, A., Wexler, J., and Kim, B., “Automating interpretability:
Discovering and testing visual concepts learned by neural networks,” ArXiv,
vol. abs/1902.03129, 2019.

[86] Gleicher, M., “A framework for considering comprehensibility in modeling,” Big
Data, vol. 4, Jun 2016. ahead of print.

[87] Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen, C. D., and
Roberts, J. C., “Visual comparison for information visualization,” Information Vi-
sualization, vol. 10, no. 4, pp. 289–309, 2011.

[88] Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., and Sculley,
D., “Google vizier: A service for black-box optimization,” in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’17, (New York, NY, USA), p. 1487–1495, Association for Computing Machinery,
2017.

[89] Google, “Google’s teachable machines.” https://teachablemachine.withgoogle.

com/. Accessed: 2020-12-11.

[90] Gratzl, S., Lex, A., Gehlenborg, N., Pfister, H., and Streit, M., “Lineup:
Visual analysis of multi-attribute rankings,” IEEE Transactions on Visualization and
Computer Graphics (InfoVis ’13), vol. 19, no. 12, pp. 2277–2286, 2013.

[91] Guangtao Fu, Zoran Kapelan, Z. K. J. K. J. K. P. R., “Optimal design of
water distribution systems using many-objective visual analytics,” October 2013.

125



[92] Guo, D., “Coordinating computational and visual approaches for interactive feature
selection and multivariate clustering,” Information Visualization, vol. 2, pp. 232–246,
Dec. 2003.

[93] H., S. G. and S., L. E., “Development of nasa-tlx (task load index): Results of
empirical and theoretical research,” in Human Mental Workload (H., P. A. and M.,
N., eds.), vol. 52 of Advances in Psychology, pp. 139 – 183, North-Holland, 1988.

[94] Hall, M. A., “Correlation-based feature selection for machine learning,” tech. rep.,
1999.

[95] Hasan, S. and Ukkusuri, S. V., “Urban activity pattern classification using topic
models from online geo-location data,” Transportation Research Part C: Emerging
Technologies, vol. 44, pp. 363 – 381, 2014.

[96] Hase, P., Chen, C., Li, O., and Rudin, C., “Interpretable image recognition with
hierarchical prototypes,” CoRR, vol. abs/1906.10651, 2019.

[97] He, Z. and Yen, G. G., “Visualization and performance metric in many-objective
optimization,” IEEE Transactions on Evolutionary Computation, vol. 20, pp. 386–
402, June 2016.

[98] He, Z. and Yen, G. G., “Comparison of visualization approaches in many-objective
optimization,” in 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 357–
363, June 2017.

[99] Holzinger, A., “Interactive machine learning for health informatics: when do we
need the human-in-the-loop?,” Brain Informatics, vol. 3, pp. 119–131, Jun 2016.

[100] Hu, Y., Milios, E. E., and Blustein, J., “Interactive feature selection for document
clustering,” in Proceedings of the 2011 ACM Symposium on Applied Computing, SAC
’11, (New York, NY, USA), pp. 1143–1150, ACM, 2011.

[101] Hughes, E. J., “Evolutionary many-objective optimisation: many once or one
many?,” in 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 222–227
Vol.1, 2005.

[102] inc., K., “Kaggle Housing prices Data.” https://www.kaggle.com/c/

house-prices-advanced-regression-techniques/data/, 2018. [Online; ac-
cessed 15-July-2018].

[103] Jan Hettenhausen, Andrew Lewis, S. M., “Interactive multi-objective particle
swarm optimization with heatmap-visualization-based user interface.”

[104] Jawaheer, G., Weller, P., and Kostkova, P., “Modeling user preferences in
recommender systems: A classification framework for explicit and implicit user feed-
back,” ACM Trans. Interact. Intell. Syst., vol. 4, pp. 8:1–8:26, June 2014.

[105] Jeong, D. H., Ziemkiewicz, C., Fisher, B., Ribarsky, W., and Chang, R.,
“ipca: An interactive system for pca-based visual analytics,” in Computer Graphics
Forum, vol. 28, pp. 767–774, Wiley Online Library, 2009.

126



[106] Jiang, B. and Canny, J., “Interactive machine learning via a gpu-accelerated
toolkit,” in Proceedings of the 22Nd International Conference on Intelligent User
Interfaces, IUI ’17, (New York, NY, USA), pp. 535–546, ACM, 2017.

[107] Jianping Zhou, Shawn Konecni, G. G., “Visually comparing multiple partitions
of data with applications to clustering,” 2009.

[108] Jin, Y. and Sendhoff, B., “Pareto-based multiobjective machine learning: An
overview and case studies,” IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), vol. 38, no. 3, pp. 397–415, 2008.

[109] Jin, Y., Multi-Objective Machine Learning. Springer, 2006.

[110] Joachims, T., “Optimizing search engines using clickthrough data,” in Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’02, (New York, NY, USA), pp. 133–142, ACM, 2002.

[111] John Clore, Krzysztof J. Cios, J. D. and Strack, B., “Diabetes 130-us hos-
pitals for years 1999-2008 data set.” https://archive.ics.uci.edu/ml/datasets/

diabetes+130-us+hospitals+for+years+1999-2008. Accessed : March 15, 2019.

[112] Jr., M. P. P., “Combining classifiers: From the creation of ensembles to the deci-
sion fusion,” in 2011 24th SIBGRAPI Conference on Graphics, Patterns, and Images
Tutorials, pp. 1–10, Aug 2011.

[113] Jurek, A., Bi, Y., Wu, S., and Nugent, C., “A survey of commonly used
ensemble-based classification techniques,” Knowledge Engineering Review, vol. 29,
no. 5, p. 551–581, 2013.

[114] Kamalian, R., Takagi, H., and Agogino, A. M., “Optimized design of mems by
evolutionary multi-objective optimization with interactive evolutionary computation,”
in Genetic and Evolutionary Computation – GECCO 2004 (Deb, K., ed.), (Berlin,
Heidelberg), pp. 1030–1041, Springer Berlin Heidelberg, 2004.

[115] Kandel, S., Paepcke, A., Hellerstein, J., and Heer, J., “Wrangler: Interac-
tive visual specification of data transformation scripts,” in ACM Human Factors in
Computing Systems (CHI), 2011.

[116] Kapoor, A., Lee, B., Tan, D., and Horvitz, E., “Interactive optimization for
steering machine classification,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’10, (New York, NY, USA), pp. 1343–1352, ACM,
2010.

[117] Keim, D. A., Mansmann, F., Schneidewind, J., and Ziegler, H., “Challenges in
visual data analysis,” in Proceedings of the Conference on Information Visualization,
IV ’06, (Washington, DC, USA), pp. 9–16, IEEE Computer Society, 2006.

[118] Keim, D. A., Mansmann, F., and Thomas, J., “Visual analytics: How much
visualization and how much analytics?,” SIGKDD Explor. Newsl., vol. 11, pp. 5–8,
May 2010.

127



[119] kern, Lex, A., Gehlenborg, N., and Johnson, C. R., “Interactive visual explo-
ration and refinement of cluster assignments,” BMC Bioinformatics, vol. 18, p. 406,
apr 2017.

[120] Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., and
Sayres, R., “Interpretability beyond feature attribution: Quantitative testing with
concept activation vectors (tcav),” 2017.

[121] Kim, H., Choo, J., Park, H., and Endert, A., “Interaxis: Steering scatterplot axes
via observation-level interaction,” IEEE transactions on visualization and computer
graphics, vol. 22, no. 1, pp. 131–140, 2016.

[122] Kindermans, P.-J., Hooker, S., Adebayo, J., Alber, M., Schütt, K. T.,
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