500 research outputs found

    Classifiers for modeling of mineral potential

    Get PDF
    [Extract] Classification and allocation of land-use is a major policy objective in most countries. Such an undertaking, however, in the face of competing demands from different stakeholders, requires reliable information on resources potential. This type of information enables policy decision-makers to estimate socio-economic benefits from different possible land-use types and then to allocate most suitable land-use. The potential for several types of resources occurring on the earth's surface (e.g., forest, soil, etc.) is generally easier to determine than those occurring in the subsurface (e.g., mineral deposits, etc.). In many situations, therefore, information on potential for subsurface occurring resources is not among the inputs to land-use decision-making [85]. Consequently, many potentially mineralized lands are alienated usually to, say, further exploration and exploitation of mineral deposits. Areas with mineral potential are characterized by geological features associated genetically and spatially with the type of mineral deposits sought. The term 'mineral deposits' means .accumulations or concentrations of one or more useful naturally occurring substances, which are otherwise usually distributed sparsely in the earth's crust. The term 'mineralization' refers to collective geological processes that result in formation of mineral deposits. The term 'mineral potential' describes the probability or favorability for occurrence of mineral deposits or mineralization. The geological features characteristic of mineralized land, which are called recognition criteria, are spatial objects indicative of or produced by individual geological processes that acted together to form mineral deposits. Recognition criteria are sometimes directly observable; more often, their presence is inferred from one or more geographically referenced (or spatial) datasets, which are processed and analyzed appropriately to enhance, extract, and represent the recognition criteria as spatial evidence or predictor maps. Mineral potential mapping then involves integration of predictor maps in order to classify areas of unique combinations of spatial predictor patterns, called unique conditions [51] as either barren or mineralized with respect to the mineral deposit-type sought

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    International Union of Theoretical and Applied Mechanics : report 2003

    Get PDF

    Suffix-Prefix Queries on a Dictionary

    Get PDF

    Anomaly Detection Based on Sensor Data in Petroleum Industry Applications

    Get PDF
    Anomaly detection is the problem of finding patterns in data that do not conform to an a priori expected behavior. This is related to the problem in which some samples are distant, in terms of a given metric, from the rest of the dataset, where these anomalous samples are indicated as outliers. Anomaly detection has recently attracted the attention of the research community, because of its relevance in real-world applications, like intrusion detection, fraud detection, fault detection and system health monitoring, among many others. Anomalies themselves can have a positive or negative nature, depending on their context and interpretation. However, in either case, it is important for decision makers to be able to detect them in order to take appropriate actions. The petroleum industry is one of the application contexts where these problems are present. The correct detection of such types of unusual information empowers the decision maker with the capacity to act on the system in order to correctly avoid, correct or react to the situations associated with them. In that application context, heavy extraction machines for pumping and generation operations, like turbomachines, are intensively monitored by hundreds of sensors each that send measurements with a high frequency for damage prevention. In this paper, we propose a combination of yet another segmentation algorithm (YASA), a novel fast and high quality segmentation algorithm, with a one-class support vector machine approach for efficient anomaly detection in turbomachines. The proposal is meant for dealing with the aforementioned task and to cope with the lack of labeled training data. As a result, we perform a series of empirical studies comparing our approach to other methods applied to benchmark problems and a real-life application related to oil platform turbomachinery anomaly detection.This work was partially funded by the Brazilian National Council for Scientific and Technological Development projects CNPq BJT 407851/2012-7 and CNPq PVE 314017/2013-5 and projects MINECO TEC 2012-37832-C02-01, CICYT TEC 2011-28626-C02-02.Publicad

    STATE OF THE ART AND RESEARCH PRIORITIES IN HYDROGEN SAFETY

    Get PDF
    Wide spread deployment and use of hydrogen and fuel cell technologies can occur only if hydrogen safety issues have been addressed in order to ensure that hydrogen fuel presents the same or lower level of hazards and associated risk compared to conventional fuel technologies. To achieve this goal, hydrogen safety research should be directed to address the remaining knowledge gaps using risk-informed approaches to develop engineering solutions and Regulation Codes and Standards (RCS) requirements that meet individual and societal risk acceptance criteria, yet are cost-effective and market-competitive. IA HySafe and JRC IET partnered to organize a Research Priorities Workshop in Berlin on October 16-17, 2012 hosted by BAM (on behalf of IA HySafe) to address knowledge gaps in CFD modelling of hydrogen safety issues. The findings of the workshop are described in the report. The document aims to become a reference document for researchers/scientists and technical (including industry) experts working in the area worldwide. It is also a welcomed contribution for the Fuel Cell and Hydrogen Joint Undertaking (FCH JU) and for other funding bodies/organizations that must make decisions on research programmes and during the selection/choice of projects to be financially supported pursuing the safe use of hydrogen within Horizon 2020 framework.JRC.F.2-Energy Conversion and Storage Technologie

    Surface Reconstruction from Unorganized Point Cloud Data via Progressive Local Mesh Matching

    Get PDF
    This thesis presents an integrated triangle mesh processing framework for surface reconstruction based on Delaunay triangulation. It features an innovative multi-level inheritance priority queuing mechanism for seeking and updating the optimum local manifold mesh at each data point. The proposed algorithms aim at generating a watertight triangle mesh interpolating all the input points data when all the fully matched local manifold meshes (umbrellas) are found. Compared to existing reconstruction algorithms, the proposed algorithms can automatically reconstruct watertight interpolation triangle mesh without additional hole-filling or manifold post-processing. The resulting surface can effectively recover the sharp features in the scanned physical object and capture their correct topology and geometric shapes reliably. The main Umbrella Facet Matching (UFM) algorithm and its two extended algorithms are documented in detail in the thesis. The UFM algorithm accomplishes and implements the core surface reconstruction framework based on a multi-level inheritance priority queuing mechanism according to the progressive matching results of local meshes. The first extended algorithm presents a new normal vector combinatorial estimation method for point cloud data depending on local mesh matching results, which is benefit to sharp features reconstruction. The second extended algorithm addresses the sharp-feature preservation issue in surface reconstruction by the proposed normal vector cone (NVC) filtering. The effectiveness of these algorithms has been demonstrated using both simulated and real-world point cloud data sets. For each algorithm, multiple case studies are performed and analyzed to validate its performance

    Air Force Institute of Technology Research Report 2019

    Get PDF
    This Research Report presents the FY19 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs). Interested individuals may discuss ideas for new research collaborations, potential CRADAs, or research proposals with individual faculty using the contact information in this document
    • …
    corecore