112 research outputs found

    A neural network architecture for detecting grammatical errors in statistical machine translation

    Get PDF
    In this paper we present a Neural Network (NN) architecture for detecting grammatical er- rors in Statistical Machine Translation (SMT) using monolingual morpho-syntactic word rep- resentations in combination with surface and syntactic context windows. We test our approach on two language pairs and two tasks, namely detecting grammatical errors and predicting over- all post-editing e ort. Our results show that this approach is not only able to accurately detect grammatical errors but it also performs well as a quality estimation system for predicting over- all post-editing e ort, which is characterised by all types of MT errors. Furthermore, we show that this approach is portable to other languages

    Machine translation evaluation resources and methods: a survey

    Get PDF
    We introduce the Machine Translation (MT) evaluation survey that contains both manual and automatic evaluation methods. The traditional human evaluation criteria mainly include the intelligibility, fidelity, fluency, adequacy, comprehension, and informativeness. The advanced human assessments include task-oriented measures, post-editing, segment ranking, and extended criteriea, etc. We classify the automatic evaluation methods into two categories, including lexical similarity scenario and linguistic features application. The lexical similarity methods contain edit distance, precision, recall, F-measure, and word order. The linguistic features can be divided into syntactic features and semantic features respectively. The syntactic features include part of speech tag, phrase types and sentence structures, and the semantic features include named entity, synonyms, textual entailment, paraphrase, semantic roles, and language models. The deep learning models for evaluation are very newly proposed. Subsequently, we also introduce the evaluation methods for MT evaluation including different correlation scores, and the recent quality estimation (QE) tasks for MT. This paper differs from the existing works\cite {GALEprogram2009, EuroMatrixProject2007} from several aspects, by introducing some recent development of MT evaluation measures, the different classifications from manual to automatic evaluation measures, the introduction of recent QE tasks of MT, and the concise construction of the content

    Coherence in Machine Translation

    Get PDF
    Coherence ensures individual sentences work together to form a meaningful document. When properly translated, a coherent document in one language should result in a coherent document in another language. In Machine Translation, however, due to reasons of modeling and computational complexity, sentences are pieced together from words or phrases based on short context windows and with no access to extra-sentential context. In this thesis I propose ways to automatically assess the coherence of machine translation output. The work is structured around three dimensions: entity-based coherence, coherence as evidenced via syntactic patterns, and coherence as evidenced via discourse relations. For the first time, I evaluate existing monolingual coherence models on this new task, identifying issues and challenges that are specific to the machine translation setting. In order to address these issues, I adapted a state-of-the-art syntax model, which also resulted in improved performance for the monolingual task. The results clearly indicate how much more difficult the new task is than the task of detecting shuffled texts. I proposed a new coherence model, exploring the crosslingual transfer of discourse relations in machine translation. This model is novel in that it measures the correctness of the discourse relation by comparison to the source text rather than to a reference translation. I identified patterns of incoherence common across different language pairs, and created a corpus of machine translated output annotated with coherence errors for evaluation purposes. I then examined lexical coherence in a multilingual context, as a preliminary study for crosslingual transfer. Finally, I determine how the new and adapted models correlate with human judgements of translation quality and suggest that improvements in general evaluation within machine translation would benefit from having a coherence component that evaluated the translation output with respect to the source text

    A Call for Standardization and Validation of Text Style Transfer Evaluation

    Full text link
    Text Style Transfer (TST) evaluation is, in practice, inconsistent. Therefore, we conduct a meta-analysis on human and automated TST evaluation and experimentation that thoroughly examines existing literature in the field. The meta-analysis reveals a substantial standardization gap in human and automated evaluation. In addition, we also find a validation gap: only few automated metrics have been validated using human experiments. To this end, we thoroughly scrutinize both the standardization and validation gap and reveal the resulting pitfalls. This work also paves the way to close the standardization and validation gap in TST evaluation by calling out requirements to be met by future research.Comment: Accepted to Findings of ACL 202

    Results of the WMT16 Metrics Shared Task

    Get PDF
    This paper presents the results of the WMT16 Metrics Shared Task. We asked participants of this task to score the outputs of the MT systems involved in the WMT16 Shared Translation Task. We collected scores of 16 metrics from 9 research groups. In addition to that, we computed scores of 9 standard metrics (BLEU, SentBLEU, NIST, WER, PER, TER and CDER) as baselines. The collected scores were evaluated in terms of system-level correlation (how well each metric’s scores correlate with WMT16 official manual ranking of systems) and in terms of segment level correlation (how often a metric agrees with humans in comparing two translations of a particular sentence). This year there are several additions to the setup: large number of language pairs (18 in total), datasets from different domains (news, IT and medical), and different kinds of judgments: relative ranking (RR), direct assessment (DA) and HUME manual semantic judgments. Finally, generation of large number of hybrid systems was trialed for provision of more conclusive system-level metric rankings

    Results of the WMT15 Metrics Shared Task

    Get PDF
    This paper presents the results of the WMT15 Metrics Shared Task. We asked participants of this task to score the outputs of the MT systems involved in the WMT15 Shared Translation Task. We collected scores of 46 metrics from 11 research groups. In addition to that, we computed scores of 7 standard metrics (BLEU, SentBLEU, NIST, WER, PER, TER and CDER) as baselines. The collected scores were evaluated in terms of system level correlation (how well each metric's scores correlate with WMT15 official manual ranking of systems) and in terms of segment level correlation (how often a metric agrees with humans in comparing two translations of a particular sentence)

    eSCAPE: a Large-scale Synthetic Corpus for Automatic Post-Editing

    Get PDF
    Training models for the automatic correction of machine-translated text usually relies on data consisting of (source, MT, human post- edit) triplets providing, for each source sentence, examples of translation errors with the corresponding corrections made by a human post-editor. Ideally, a large amount of data of this kind should allow the model to learn reliable correction patterns and effectively apply them at test stage on unseen (source, MT) pairs. In practice, however, their limited availability calls for solutions that also integrate in the training process other sources of knowledge. Along this direction, state-of-the-art results have been recently achieved by systems that, in addition to a limited amount of available training data, exploit artificial corpora that approximate elements of the "gold" training instances with automatic translations. Following this idea, we present eSCAPE, the largest freely-available Synthetic Corpus for Automatic Post-Editing released so far. eSCAPE consists of millions of entries in which the MT element of the training triplets has been obtained by translating the source side of publicly-available parallel corpora, and using the target side as an artificial human post-edit. Translations are obtained both with phrase-based and neural models. For each MT paradigm, eSCAPE contains 7.2 million triplets for English-German and 3.3 millions for English-Italian, resulting in a total of 14,4 and 6,6 million instances respectively. The usefulness of eSCAPE is proved through experiments in a general-domain scenario, the most challenging one for automatic post-editing. For both language directions, the models trained on our artificial data always improve MT quality with statistically significant gains. The current version of eSCAPE can be freely downloaded from: http://hltshare.fbk.eu/QT21/eSCAPE.html.Comment: Accepted at LREC 201

    From feature to paradigm: deep learning in machine translation

    No full text
    In the last years, deep learning algorithms have highly revolutionized several areas including speech, image and natural language processing. The specific field of Machine Translation (MT) has not remained invariant. Integration of deep learning in MT varies from re-modeling existing features into standard statistical systems to the development of a new architecture. Among the different neural networks, research works use feed- forward neural networks, recurrent neural networks and the encoder-decoder schema. These architectures are able to tackle challenges as having low-resources or morphology variations. This manuscript focuses on describing how these neural networks have been integrated to enhance different aspects and models from statistical MT, including language modeling, word alignment, translation, reordering, and rescoring. Then, we report the new neural MT approach together with a description of the foundational related works and recent approaches on using subword, characters and training with multilingual languages, among others. Finally, we include an analysis of the corresponding challenges and future work in using deep learning in MTPostprint (author's final draft
    corecore