26 research outputs found

    Foundational Ontologies meet Ontology Matching: A Survey

    Get PDF
    Ontology matching is a research area aimed at finding ways to make different ontologies interoperable. Solutions to the problem have been proposed from different disciplines, including databases, natural language processing, and machine learning. The role of foundational ontologies for ontology matching is an important one. It is multifaceted and with room for development. This paper presents an overview of the different tasks involved in ontology matching that consider foundational ontologies. We discuss the strengths and weaknesses of existing proposals and highlight the challenges to be addressed in the future

    A Survey of the First 20 Years of Research on Semantic Web and Linked Data

    Get PDF
    International audienceThis paper is a survey of the research topics in the field of Semantic Web, Linked Data and Web of Data. This study looks at the contributions of this research community over its first twenty years of existence. Compiling several bibliographical sources and bibliometric indicators , we identify the main research trends and we reference some of their major publications to provide an overview of that initial period. We conclude with some perspectives for the future research challenges.Cet article est une étude des sujets de recherche dans le domaine du Web sémantique, des données liées et du Web des données. Cette étude se penche sur les contributions de cette communauté de recherche au cours de ses vingt premières années d'existence. En compilant plusieurs sources bibliographiques et indicateurs bibliométriques, nous identifions les principales tendances de la recherche et nous référençons certaines de leurs publications majeures pour donner un aperçu de cette période initiale. Nous concluons avec une discussion sur les tendances et perspectives de recherche

    A structural and quantitative analysis of the webof linked data and its components to perform retrieval data

    Get PDF
    Esta investigación consiste en un análisis cuantitativo y estructural de la Web of Linked Data con el fin de mejorar la búsqueda de datos en distintas fuentes. Para obtener métricas cuantitativas de la Web of Linked Data, se aplicarán técnicas estadísticas. En el caso del análisis estructural haremos un Análisis de Redes Sociales (ARS). Para tener una idea de la Web of Linked Data para poder hacer un análisis, nos ayudaremos del diagrama de la Linking Open Data (LOD) cloud. Este es un catálogo online de datasets cuya información ha sido publicada usando técnicas de Linked Data. Los datasets son publicados en un lenguaje llamado Resource Description Framework (RDF), el cual crea enlaces entre ellos para que la información pudiera ser reutilizada. El objetivo de obtener un análisis cuantitativo y estructural de la Web of Linked Data es mejorar las búsquedas de datos. Para ese propósito nosotros nos aprovecharemos del uso del lenguaje de marcado Schema.org y del proyecto Linked Open Vocabularies (LOV). Schema.org es un conjunto de etiquetas cuyo objetivo es que los Webmasters pudieran marcar sus propias páginas Web con microdata. El microdata es usado para ayudar a los motores de búsqueda y otras herramientas Web a entender mejor la información que estas contienen. LOV es un catálogo para registrar los vocabularios que usan los datasets de la Web of Linked Data. Su objetivo es proporcionar un acceso sencillo a dichos vocabularios. En la investigación, vamos a desarrollar un estudio para la obtención de datos de la Web of Linked Data usando las fuentes mencionadas anteriormente con técnicas de “ontology matching”. En nuestro caso, primeros vamos a mapear Schema.org con LOV, y después LOV con la Web of Linked Data. Un ARS de LOV también ha sido realizado. El objetivo de dicho análisis es obtener una idea cuantitativa y cualitativa de LOV. Sabiendo esto podemos concluir cosas como: cuales son los vocabularios más usados o si están especializados en algún campo o no. Estos pueden ser usados para filtrar datasets o reutilizar información

    Early Detection of Research Trends

    Get PDF
    Being able to rapidly recognise new research trends is strategic for many stakeholders, including universities, institutional funding bodies, academic publishers and companies. The literature presents several approaches to identifying the emergence of new research topics, which rely on the assumption that the topic is already exhibiting a certain degree of popularity and consistently referred to by a community of researchers. However, detecting the emergence of a new research area at an embryonic stage, i.e., before the topic has been consistently labelled by a community of researchers and associated with a number of publications, is still an open challenge. In this dissertation, we begin to address this challenge by performing a study of the dynamics preceding the creation of new topics. This study indicates that the emergence of a new topic is anticipated by a significant increase in the pace of collaboration between relevant research areas, which can be seen as the 'ancestors' of the new topic. Based on this understanding, we developed Augur, a novel approach to effectively detect the emergence of new research topics. Augur analyses the diachronic relationships between research areas and is able to detect clusters of topics that exhibit dynamics correlated with the emergence of new research topics. Here we also present the Advanced Clique Percolation Method (ACPM), a new community detection algorithm developed specifically for supporting this task. Augur was evaluated on a gold standard of 1,408 debutant topics in the 2000-2011 timeframe and outperformed four alternative approaches in terms of both precision and recall

    A Knowledge Graph Based Integration Approach for Industry 4.0

    Get PDF
    The fourth industrial revolution, Industry 4.0 (I40) aims at creating smart factories employing among others Cyber-Physical Systems (CPS), Internet of Things (IoT) and Artificial Intelligence (AI). Realizing smart factories according to the I40 vision requires intelligent human-to-machine and machine-to-machine communication. To achieve this communication, CPS along with their data need to be described and interoperability conflicts arising from various representations need to be resolved. For establishing interoperability, industry communities have created standards and standardization frameworks. Standards describe main properties of entities, systems, and processes, as well as interactions among them. Standardization frameworks classify, align, and integrate industrial standards according to their purposes and features. Despite being published by official international organizations, different standards may contain divergent definitions for similar entities. Further, when utilizing the same standard for the design of a CPS, different views can generate interoperability conflicts. Albeit expressive, standardization frameworks may represent divergent categorizations of the same standard to some extent, interoperability conflicts need to be resolved to support effective and efficient communication in smart factories. To achieve interoperability, data need to be semantically integrated and existing conflicts conciliated. This problem has been extensively studied in the literature. Obtained results can be applied to general integration problems. However, current approaches fail to consider specific interoperability conflicts that occur between entities in I40 scenarios. In this thesis, we tackle the problem of semantic data integration in I40 scenarios. A knowledge graphbased approach allowing for the integration of entities in I40 while considering their semantics is presented. To achieve this integration, there are challenges to be addressed on different conceptual levels. Firstly, defining mappings between standards and standardization frameworks; secondly, representing knowledge of entities in I40 scenarios described by standards; thirdly, integrating perspectives of CPS design while solving semantic heterogeneity issues; and finally, determining real industry applications for the presented approach. We first devise a knowledge-driven approach allowing for the integration of standards and standardization frameworks into an Industry 4.0 knowledge graph (I40KG). The standards ontology is used for representing the main properties of standards and standardization frameworks, as well as relationships among them. The I40KG permits to integrate standards and standardization frameworks while solving specific semantic heterogeneity conflicts in the domain. Further, we semantically describe standards in knowledge graphs. To this end, standards of core importance for I40 scenarios are considered, i.e., the Reference Architectural Model for I40 (RAMI4.0), AutomationML, and the Supply Chain Operation Reference Model (SCOR). In addition, different perspectives of entities describing CPS are integrated into the knowledge graphs. To evaluate the proposed methods, we rely on empirical evaluations as well as on the development of concrete use cases. The attained results provide evidence that a knowledge graph approach enables the effective data integration of entities in I40 scenarios while solving semantic interoperability conflicts, thus empowering the communication in smart factories

    Proceedings of the 15th ISWC workshop on Ontology Matching (OM 2020)

    Get PDF
    15th International Workshop on Ontology Matching co-located with the 19th International Semantic Web Conference (ISWC 2020)International audienc

    Pushing the Scalability of RDF Engines on IoT Edge Devices

    Get PDF
    Semantic interoperability for the Internet of Things (IoT) is enabled by standards and technologies from the Semantic Web. As recent research suggests a move towards decentralised IoT architectures, we have investigated the scalability and robustness of RDF (Resource Description Framework)engines that can be embedded throughout the architecture, in particular at edge nodes. RDF processing at the edge facilitates the deployment of semantic integration gateways closer to low-level devices. Our focus is on how to enable scalable and robust RDF engines that can operate on lightweight devices. In this paper, we have first carried out an empirical study of the scalability and behaviour of solutions for RDF data management on standard computing hardware that have been ported to run on lightweight devices at the network edge. The findings of our study shows that these RDF store solutions have several shortcomings on commodity ARM (Advanced RISC Machine) boards that are representative of IoT edge node hardware. Consequently, this has inspired us to introduce a lightweight RDF engine, which comprises an RDF storage and a SPARQL processor for lightweight edge devices, called RDF4Led. RDF4Led follows the RISC-style (Reduce Instruction Set Computer) design philosophy. The design constitutes a flash-aware storage structure, an indexing scheme, an alternative buffer management technique and a low-memory-footprint join algorithm that demonstrates improved scalability and robustness over competing solutions. With a significantly smaller memory footprint, we show that RDF4Led can handle 2 to 5 times more data than popular RDF engines such as Jena TDB (Tuple Database) and RDF4J, while consuming the same amount of memory. In particular, RDF4Led requires 10%–30% memory of its competitors to operate on datasets of up to 50 million triples. On memory-constrained ARM boards, it can perform faster updates and can scale better than Jena TDB and Virtuoso. Furthermore, we demonstrate considerably faster query operations than Jena TDB and RDF4J.BMBF, 01IS18025A, Verbundprojekt BIFOLD-BBDC: Berlin Institute for the Foundations of Learning and DataBMBF, 01IS18037A, Verbundprojekt BIFOLD-BZML: Berlin Institute for the Foundations of Learning and DataEC/H2020/661180/EU/A Scalable and Elastic Platform for Near-Realtime Analytics for The Graph of Everything/SMARTE

    Heterogeneous data to knowledge graphs matching

    Get PDF
    Many applications rely on the existence of reusable data. The FAIR (Findability, Accessibility, Interoperability, and Reusability) principles identify detailed descriptions of data and metadata as the core ingredients for achieving reusability. However, creating descriptive data requires massive manual effort. One way to ensure that data is reusable is by integrating it into Knowledge Graphs (KGs). The semantic foundation of these graphs provides the necessary description for reuse. In the Open Research KG, they propose to model artifacts of scientific endeavors, including publications and their key messages. Datasets supporting these publications are essential carriers of scientific knowledge and should be included in KGs. We focus on biodiversity research as an example domain to develop and evaluate our approach. Biodiversity is the assortment of life on earth covering evolutionary, ecological, biological, and social forms. Understanding such a domain and its mechanisms is essential to preserving this vital foundation of human well-being. It is imperative to monitor the current state of biodiversity and its change over time and to understand its forces driving and preserving life in all its variety and richness. This need has resulted in numerous works being published in this field. For example, a large amount of tabular data (datasets), textual data (publications), and metadata (e.g., dataset description) have been generated. So, it is a data-rich domain with an exceptionally high need for data reuse. Managing and integrating these heterogeneous data of biodiversity research remains a big challenge. Our core research problem is how to enable the reusability of tabular data, which is one aspect of the FAIR data principles. In this thesis, we provide answer for this research problem
    corecore