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Zusammenfassung

Viele Anwendungen sind auf die Existenz wiederverwendbarer Daten angewiesen. Die
FAIR-Prinzipien identifizieren detaillierte Beschreibungen von Daten und Metadaten als
Kernbestandteile für das Erreichen von Wiederverwendbarkeit. Die Erstellung beschrei-
bender Daten erfordert jedoch bislang einen massiven manuellen Aufwand. Eine Mög-
lichkeit, die Wiederverwendbarkeit von Daten zu gewährleisten, besteht prinzipiell darin,
sie in Wissensgraphen einzubinden. Die semantische Grundlage dieser Graphen liefert
die notwendige Beschreibung für die Wiederverwendung. Gleichzeitig erhöht die direk-
te Einbindung von Daten in wissenschaftliche Wissensgraphen, wie sie etwa im Rahmen
des Open Research Knowledge Graph Vorhabens entwickelt werden, Datensätze und die
aus ihnen abgeleiteten Erkenntnisse gemeinsam zugänglich zu machen. Dies stellt einen
wesentlichen Schritt zur Weiterentwicklung reproduzierbarer Wissenschaft dar. In dieser
Arbeit konzentrieren wir uns auf die Biodiversitätsforschung als Beispieldomäne, um un-
seren Ansatz zu entwickeln und zu evaluieren. Biodiversität ist die Gesamtheit des Lebens
auf der Erde, die evolutionäre, ökologische, biologische und soziale Formen umfasst. Das
Verständnis der Biodiversität und der ihr zugrundeliegenden Mechanismen ist unerlässlich,
um diese lebenswichtige Grundlage des menschlichen Wohergehens zu erhalten. Es ist un-
erlässlich, den aktuellen Zustand der Biodiversität und ihre Veränderung im Laufe der
Zeit zu überwachen und ihre Kräfte zu verstehen, die das Leben in all seiner Vielfalt und
seinem Reichtum antreiben und erhalten. Dieser Bedarf hat dazu geführt, dass zahlreiche
Arbeiten auf diesem Gebiet verö�entlicht wurden. Beispielsweise wurde eine große Menge
tabellarischer Daten (Datensätze), Textdaten (Verö�entlichungen) und Metadaten (z. B.
Datensatzbeschreibung) generiert. Es handelt sich also um eine datenreiche Domäne mit
einem außergewöhnlich hohen Bedarf an Datenwiederverwendung. Die Verwaltung und
Integration dieser heterogenen Daten der Biodiversitätsforschung bleibt eine große Heraus-
forderung. Unser zentrales Forschungsproblem besteht darin, die Wiederverwendbarkeit
tabellarischer Daten zu ermöglichen, was ein Aspekt der FAIR-Datenprinzipien ist. Die
gewünschten Beschreibungen, die eine erfolgreiche Datenwiederverwendung ermöglichen,
werden als Wissensgraph dargestellt. Heutzutage erfordert die Erstellung solcher Beschrei-
bungen jedoch einen erheblichen manuellen Aufwand. Im Bereich Biodiversität sucht ein
Forschungsteam nach allen Datensätzen, die für seine Forschungsfrage relevant sind. Dies
geschieht über Recherchen in Datenrepositorien, Literaturrecherchen und persönliche Ver-
bindungen. Zum einen werden die gefundenen Publikationen dann gelesen, um wesentliche
Referenzen zu finden. Andererseits werden aus ihnen Metadaten zu Datensätzen extrahiert
und bei Datenrepositories die Informationen heruntergeladen. All diese Informationen wer-
den dann manuell zusammengetragen, sodass dieser Prozess mehrere Monate dauern kann.
Die Bereitstellung gut beschriebener Daten in einem Wissensgraph würde den erforderli-
chen Aufwand also drastisch reduzieren. Darüber hinaus ermöglicht diese Transformation
die Abfrage des ursprünglichen Datensatzes und seiner sekundären Beschreibungen mit-
hilfe einer strukturierten Abfragesprache wie SPARQL. In dieser Arbeit zielen wir darauf
ab, die automatische Integration von Informationen aus verschiedenen Datenquellen inner-
halb der Biodiversitätsdomäne zu ermöglichen, indem wir Technologien des semantischen
Webs und Techniken des maschinellen Lernens kombinieren, um bestehende Wissensgra-
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phen zu erweitern und anzureichern. Wir schließen tabellarische Datensätze ein, indem
wir ihre Komponenten Zelle, Spalte und Spaltenpaar mit ihren Gegenstücken aus einem
Knowledge Graph (KG) abgleichen. Darüber hinaus reichern wir den resultierenden KG
aus tabellarischen Daten an, indem wir Hilfsinformationen wie vorhandene Metadaten und
die zugehörigen Publikationen nutzen. Um dieses Ziel zu erreichen, führen wir verschiede-
ne Ansätze ein, um jede Datenquelle in Wissensgraphen umzuwandeln. Die Beiträge dieser
Arbeit sind: 1) Wir schlagen ein Framework, JenTab, vor, um tabellarische Daten mit Wis-
sensgraphen abzugleichen. Wir haben JenTab im Rahmen der Semantic Web Challenge
on Tabular Data to Knowledge Graph Matching (SemTab)-Challenge entwickelt und lie-
fern weitere Studien und Analysen in dieser Arbeit. 2) Wir erstellen einen Benchmark für
tabellarische Biodiversitätsdaten, Biodivtab, tabellarischen Datenbenchmark ‘BiodivTab’,
um JenTab und die bestehenden State-of-the-Art-Systeme zu evaluieren. BiodivTab ist
ein biodiversitätsspezifischer Benchmark, der aus 50 Tabellen mit manuellen Anmerkungen
und Datenerweiterung besteht. 3) Wir entwerfen ein konzeptionelles Modell ‘BiodivOn-
to’, um die am häufigsten verwendeten Konzepte und die Beziehungen im Biodiversitäts-
bereich zu bestimmen. 4) Wir entwickeln ein Modell ‘BiodivBERT’ um Entitäten und
Relationen aus unstrukturiertem Text zu extrahieren. 5) Wir konstruieren zwei Korpora
‘BiodivNERE’, um BiodivBERT auf zwei Downstream-Aufgaben, nämllich der Erkennung
benannter Entitäten und Beziehungsextraktion zu evaluieren. Schließlich, 6) entwickeln
wir einen Ansatz ‘Meta2KG’ um halbstrukturierte Daten, Metadaten, in Wissensgraphen
umzuwandeln.



Abstract

Many applications rely on the existence of reusable data. The FAIR (Findability, Access-
ibility, Interoperability, and Reusability) principles identify detailed descriptions of data
and metadata as the core ingredients for achieving reusability. However, creating descript-
ive data requires massive manual e�ort. One way to ensure that data is reusable is by
integrating it into Knowledge Graphs (KGs). The semantic foundation of these graphs
provides the necessary description for reuse. In the Open Research KG, they propose
to model artifacts of scientific endeavors, including publications and their key messages.
Datasets supporting these publications are essential carriers of scientific knowledge and
should be included in KGs. We focus on biodiversity research as an example domain to
develop and evaluate our approach. Biodiversity is the assortment of life on earth covering
evolutionary, ecological, biological, and social forms. Understanding such a domain and
its mechanisms is essential to preserving this vital foundation of human well-being. It is
imperative to monitor the current state of biodiversity and its change over time and to
understand its forces driving and preserving life in all its variety and richness. This need
has resulted in numerous works being published in this field. For example, a large amount
of tabular data (datasets), textual data (publications), and metadata (e.g., dataset de-
scription) have been generated. So, it is a data-rich domain with an exceptionally high
need for data reuse. Managing and integrating these heterogeneous data of biodiversity re-
search remains a big challenge. Our core research problem is how to enable the reusability
of tabular data, which is one aspect of the FAIR data principles. The desired descrip-
tions that enable successful data reuse are represented as a KG. However, today, creating
such descriptions requires considerable manual e�ort. In the biodiversity domain, a re-
search team searches for all datasets relevant to their research question. This happens via
searches in data repositories, literature, and personal connections. On the one hand, the
publications found are then read to find essential references. On the other hand, metadata
about datasets are extracted from them, and the information is downloaded in the case
of data repositories. All of this information is then manually collated. This process could
take several months. Thus, providing well-described data in a KG would drastically re-
duce the required e�ort. In addition, this transformation enables querying the original
dataset and its secondary descriptions using structured query language like SPARQL. In
this thesis, we aim to enable the automatic integration of information from various data
sources within the biodiversity domain by combining semantic web technologies and ma-
chine learning techniques to extend and enrich existing KGs. We include tabular datasets
by matching their components: cell, column, and column-pair to their counterparts from
a KG. In addition, we enrich the resultant KG from tabular data by leveraging auxiliary
information like existing metadata and the associated publications. Working towards this
goal, we introduce various approaches to transform each data source into KGs. The con-
tributions of this thesis are: 1) We propose a framework ‘JenTab’ to match tabular data
to KG. We developed JenTab in the scope of the Semantic Web Challenge on Tabular
Data to Knowledge Graph Matching (SemTab) challenge, and we provide further studies
and analysis in this thesis. JenTab is a top system that tackles the tasks of transforming
tabular data into KGs. 2) We construct a tabular data benchmark ‘BiodivTab’ to evalu-
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ate JenTab and the existing state-of-the-art systems. BiodivTab is a biodiversity-specific
benchmark that consists of 50 tables, we constructed it using manual annotations and
data augmentation. 3) We design a conceptual model ‘BiodivOnto’ to determine the most
commonly used concepts and their relations in the biodiversity domain. 4) We develop
a model ‘BiodivBERT’ to extract entities and relations from unstructured text. 5) We
construct two corpora ‘BiodivNERE’ to evaluate BiodivBERT on two downstream tasks:
Named Entity Recognition (NER), and Relation Extraction (RE). Finally, 6) We develop
an approach ‘Meta2KG’ to transform semi-structured data, and metadata into KGs.



Acknowledgments

Working on a Ph.D. is a long journey with load of ups and downs. I was lucky to have
had help from many people along the way, and I want to thank all of them for believing
in me and for their continuous support.

Since family comes first, I would like to thank my parents, husband, and sisters for all
their prayers and support. My mother’s continuous brace and unconditional care kept me
on the right path. My husband joined the ride mid-way, accompanying me with his love
and support. It was especially needed during hard times, and I would not have been able
to finish my Ph.D. without him.

My sincere gratitude to Prof. Dr. Birgitta König-Ries for her continuous guidance,
e�orts, and support. She gave me the freedom to explore many things my own way. She
was always by my side and encouraged me throughout the whole journey.

I would also like to thank all FUSION members, either those who directly worked
with me or those who helped and advised me. First of all, many thanks Sirko Schindler
for his e�orts and countless discussions during the development of JenTab and for his
constant support until the very last moment of working on the Ph.D. Second, I would
like to thank Alsayed Algergawy for his e�orts in developing BiodivOnto and his general
support, starting with helping me find settle at Jena! Moreover, thanks to Felicitas Lö�er,
Leila Feddoul, Sheeba Samuel, Jan Martin Keil, and Frank Lö�er for all their e�orts and
help. I would also like to thank our biodiversity experts Cornelia Fürstenau, Jitendra
Gaikwad, and Andreas Ostrowski, who participated in discussion rounds for the BiodivTab
and BiodivNERE projects.

Many thanks to the Computer Vision group. My gratefulness goes to Prof. Dr.
Joachim Denzler, who tought me skills I will never forget. I would like to thank Björn
Barz for his feedback and support during and after the BiodivBERT project. Also, many
thanks to Oliver Mothes, Sven Sickert, and Maha Shadaydeh for their help at the early
stage of my Ph.D.

My gratitude goes to Christina Lohr and Luise Modersohn, the JULIE lab, for their
time, discussions, and help during the BiodivBERT project.

Special thanks to the SemTab challenge organizers, Jiaoyan Chen, Vasilis Efthymiou,
Ernesto Jiménez-Ruiz, Vincenzo Cutrona, Madelon Hulsebos, and Oktie Hassanzadeh.

I would like to thank Muhammad Abbady, Björn Barz, Sven Thiel, Tarek Al Mustafa,
Andreas Ostrowski, Vamsi Krishna, and Franziska Zander for helping me proofread this
thesis.

Last but not least, many thanks to Prof. Dr. Paul Groth and Dr. Ernesto Jiménez-
Ruiz, who agreed to serve as external reviewers. I appreciate them taking the time to
assess this thesis despite their numerous responsibilities.

ix





Ehrenwörtliche Erklärung

Hiermit erkläre ich,

• dass mir die Promotionsordnung der Fakultät bekannt ist,
• dass ich die Dissertation selbst angefertigt habe, keine Textabschnitte

oder Ergebnisse eines Dritten oder eigenen Prüfungsarbeiten ohne Kenn-
zeichnung übernommen und alle von mir benutzten Hilfsmittel, persönli-
che Mitteilungen und Quellen in meiner Arbeit angegeben habe,

• dass ich die Hilfe eines Promotionsberaters nicht in Anspruch genommen
habe und dass Dritte weder unmittelbar noch mittelbar geldwerte Lei-
stungen von mir für Arbeiten erhalten haben, die im Zusammenhang mit
dem Inhalt der vorgelegten Dissertation stehen,

• dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche
oder andere wissenschaftliche Prüfung eingereicht habe.

Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des
Manuskripts haben mich folgende Personen unterstützt:

• Prof. Dr. Birgitta König-Ries

Ich habe die gleiche, eine in wesentlichen Teilen ähnliche bzw. eine andere
Abhandlung bereits bei einer anderen Hochschule als Dissertation eingereicht:
Ja / Nein.

Jena, 1. August 2023
[ Nora Youssef Fahmy Abdelmageed ]

xi



Contents

Contents xii

I Preliminary 1

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Problem Statement 13
2.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Tabular Data Interpretation . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Textual Data Interpretation . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Metadata Interpretation . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Background 19
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Knowledge Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Tabular Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Textual data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.4 Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Annotation Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Semantic Table Interpretation (STI) . . . . . . . . . . . . . . . . 21
3.2.2 Textual Data Understanding . . . . . . . . . . . . . . . . . . . . . 23

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Related Work 25
4.1 Tabular Data Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Textual Data Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.1 Named Entity Recognition (NER) . . . . . . . . . . . . . . . . . . 33
4.2.2 Relation Extraction (RE) . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 BERT-based Models . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Metadata Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

xii



xiii CONTENTS

5 Solution Overview 39
5.1 Individual Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Orchestration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

II Tabular Data Interpretation 43

6 JenTab Toolkit 45
6.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3 O�ine Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4 Disambiguation Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.5 CFS Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.5.1 Create . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.5.2 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.5.3 Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.6 Default Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.7 Other Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.8.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.8.2 Datatype Predicition Assessment . . . . . . . . . . . . . . . . . . 57
6.8.3 Generic Lookup Coverage . . . . . . . . . . . . . . . . . . . . . . 57
6.8.4 Audit Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.8.5 Accuracy Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.8.6 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 BiodivTab: Table Annotation Benchmark 69
7.1 Construction Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.1.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.1.2 Annotation Process . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.1.3 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.1.4 General Semantic Types . . . . . . . . . . . . . . . . . . . . . . . 73
7.1.5 Assembly and Release . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.1.6 Ground Truth Extension . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2.1 BiodivTab Insights . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2.2 Availability and Licensing . . . . . . . . . . . . . . . . . . . . . . 76

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

III Textual Data Interpretation 79

8 BiodivOnto: Biodiversity Data Model 81
8.1 Existing Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2.2 Term Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2.3 Term Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.2.4 Concepts and Relations Determination . . . . . . . . . . . . . . . 85

8.3 Early Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.4 BiodivOnto Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



xiv

8.4.1 Biodiversity Questions . . . . . . . . . . . . . . . . . . . . . . . . 88
8.4.2 The Final BiodivOnto . . . . . . . . . . . . . . . . . . . . . . . . 90

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9 BiodivBERT 93
9.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.2 Pre-training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9.2.1 Pre-training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.2.2 Pre-training Task . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.3 Fine-Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.3.1 Named Entity Recognition . . . . . . . . . . . . . . . . . . . . . . 98
9.3.2 Relation Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10 BiodivNERE Corpora 103
10.1 Resources Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.2 BiodivNER Construction Pipeline . . . . . . . . . . . . . . . . . . . . . 105

10.2.1 Annotation Guidelines . . . . . . . . . . . . . . . . . . . . . . . . 105
10.2.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.2.3 Trial and Pilot Phase . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.2.4 Annotation Process . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.2.5 Reconciliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10.3 BiodivRE Construction Pipeline . . . . . . . . . . . . . . . . . . . . . . 109
10.3.1 Initial Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.3.2 Random Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.3.3 Round Robin Sampling . . . . . . . . . . . . . . . . . . . . . . . . 109
10.3.4 Annotation Process . . . . . . . . . . . . . . . . . . . . . . . . . . 110

10.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
10.4.1 BiodivNER Insights . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.4.2 BiodivRE Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
10.4.3 Availability and Licensing . . . . . . . . . . . . . . . . . . . . . . 114

10.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

IV Metadata Interpretation 117

11 Meta2KG Framework 119
11.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

11.1.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
11.1.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
11.1.3 Ontology Development . . . . . . . . . . . . . . . . . . . . . . . . 122
11.1.4 Embeddings Generation . . . . . . . . . . . . . . . . . . . . . . . 123
11.1.5 Match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
11.1.6 Validate & Populate . . . . . . . . . . . . . . . . . . . . . . . . . 125
11.1.7 Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

11.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
11.2.1 Matching Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
11.2.2 Resultant Knowledge Graph . . . . . . . . . . . . . . . . . . . . . 127

11.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



xv CONTENTS

V The Final 129

12 Evaluation 131
12.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
12.2 Retrospective; Limitations of the Solutions . . . . . . . . . . . . . . . . 140
12.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

13 Conclusions and Future Work 145
13.1 Available Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
13.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

List of Figures 151

List of Tables 153

Listings 155

Bibliography 157

Appendices 177

A Certificates and Awards 179



Part I

Preliminary

1





Chapter 1

Introduction

Many applications rely on the existence of reusable data. One way to ensure the reusability
of data is by integrating it into a Knowledge Graph (KG). KGs have become popular as
a means to represent domain knowledge. Auer et al. [1] propose them as a way to bring
scholarly communication to the 21st century. In the Open Research KG, they propose
to model artifacts of scientific endeavors, including publications and their key messages.
Datasets supporting these publications are essential carriers of scientific knowledge and
should be included in KGs. A substantial side e�ect of this inclusion is that it supports
FAIRness of data. The FAIR (Findability, Accessibility, Interoperability, and Reusability)
principles [2] identify rich descriptions as the primary prerequisite for reusability. Since
KGs make the semantics of the data explicit, they provide these rich descriptions. It is not
trivial; adding datasets to KGs by a manual mapping is prohibitively expensive. Thus,
the automatic transformation of datasets into KGs is an open demand. In this work, we
will address this problem and focus on one example domain, biodiversity research.

Biodiversity is the assortment of life on earth covering evolutionary, ecological, bio-
logical, and social forms. Understanding such domain and its mechanisms are crucial to
preserving this vital foundation of human well-being. It is imperative to monitor the cur-
rent state of biodiversity and its change over time and to understand its forces driving
and preserving life in all its variety and richness. This need has resulted in numerous
works being published in this field. With this, a large amount of tabular data (datasets),
textual data (publications), and metadata (e.g., dataset description) have been generated.
The management and integration of these heterogeneous data of the biodiversity research
remains a big challenge [3]. Thus, we will develop and test the proposed approach using
datasets from biodiversity research since it is a data-rich domain with an exceptionally
high need for data reuse., e.g., by KGs.

In this thesis, we aim to enable the automatic integration of information from various
data sources within the biodiversity domain by combining semantic web technologies and
machine learning techniques to extend and enrich existing KGs. We include tabular data-
sets by matching their components: cell, column, and column-pair to their counterparts
from a KG. In addition, and to enrich the resultant KG from tabular data, we lever-
age auxiliary information like existing metadata and the associated publications. By this
means, we discover more hidden concepts and relations among these secondary data; we
have a fine-grained and complete final KG that describes the given datasets. We explain
our data sources: tabular, textual, and metadata, in addition to the annotation tasks in
Chapter 3.

This chapter motivates our work in Section 1.1. Section 1.2 gives an overview of our
contributions. We outline the structure of this thesis in Section 1.3. Finally, Section 1.4
lists our publications that have been published as parts of the work presented in this thesis.

3



4

(a) 

(b) 

(c) 

Figure 1.1: Entities of interest per data source. (a) Tabular - Structured data, (b) Text - Unstruc-
tured Data, (c) Metadata - Semi-structured data.
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1.1 Motivation

As a basis for our work, we held several meetings with biodiversity scientists. We found
that biodiversity synthesis work is done today as follows: the research team searches
for all datasets relevant to their research question. This happens via searches in data
repositories, literature searches, and personal connections. The publications found are
then read to find essential references. Metadata about datasets is extracted from them,
and the information is downloaded in the case of data repositories. All of this information
is then manually collated. This serves as a basis to decide on which data is usable for the
study at hand, which conversions and error corrections are necessary, and how the data
can be integrated. This process can take several months [4]. Providing well-described data
in KGs would drastically reduce the required e�ort.

Various solutions aim at domain-specific KG construction exist. In biodiversity do-
main, it is imperative to monitor its current state and change over time and to under-
stand the forces driving it to preserve life in all its variety and richness. Page [5] shows
guidelines for a biodiversity KG creation. However, the resultant KG is coarse-grained.
For example, the author proposes linking a whole dataset to a publication and an author.
A more fine-grained solution, a rule-based framework [6] constructs a Biodiversity KG from
publication text. It covers both named entity recognition and relation extraction tasks.
The authors use di�erent types of taggers to capture a wide range of information inside
the document. We discuss in detail the related work in Chapter 4. At this point, there is
a broad interest in building scientific KGs evidenced by the existing approaches. However,
none of them deal e�ciently with tabular datasets, publication text, and metadata alto-
gether. A motiviational example is given by Figure 1.1 to show how rich each data source
is. We analyzed the provided data by [7], thus, we created a snippet for a) tabular, b)
textual data, and c) metadata. We highlight possible candidates to be linked into a KG
for each data type. Such example shows that each data source contributes di�erent pieces
of information to the target KG. In this thesis, we will develop and test the proposed
approach using datasets from the biodiversity research since it is a data-rich domain with
an exceptionally high need for data reuse., e.g., by KGs.

1.2 Contributions

This thesis aims to match raw data to an existing KG (in the case of tables) and create the
target KG from scratch (the case of textual data and metadata). Raw data is any form of
data without any semantic annotations. In our case, it could be either primary (tables) or
secondary (text or metadata) data. Our contributions are divided into separate modules,
each of which handles the desired data source and tackles its unique challenges. In the
following, we list our contributions and map them into the individual chapters in this
thesis. We explain the orcherstration of these contributions (modules and benchmarks) in
Chapter 5.

1. Tabular data understanding framework

We developed a complete framework matching the individual table components to
their counterparts from the target KG. The input for the such framework is raw
tables. Then, it will map each table’s cell, column, and column-pair to the KG
entity, semantic type (class), and property. Such output could be mapped easily to
triples and RDF files. This framework is the module that we created for tabular
data understanding. This contribution is presented in Chapter 6.

2. A biodiversity-specifc tabular data benchmark
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We studied the available state-of-the-art benchmarks that are commonly used for
evaluating the tabular data understanding framework. To the best of our knowledge,
none of them are derived from the biodiversity research field. Thus, we constructed
a benchmark for semantic table annotations. It is based on manually annotated real
tables and data augmentation. We support annotations from two KGs, Wikidata
and DBpedia. The dataset provides the basis for domain-specific evaluation of the
framework. In addition, the benchmark has been made available for public use in
2021 and 2022. This contribution is detailed in Chapter 7.

3. Assessment of the domain-specific tabular data benchmark
We compare our biodiversity-specific benchmark for tabular data annotation against
the most common state-of-the-art datasets. In addition, we highlight its unique
characteristics and report the best-performing systems that annotate tabular data
to KGs using this benchmark. By this means, we feature the importance of such a
benchmark to the community. This contribution is explained in Chapter 7.

4. Tabular data understanding framework evaluation
We continuously developed and tested the tabular data to KG framework in the scope
of SemTab challenge. The challenge started in 2019 and provided a unified framework
for the systems that tackel the tabular data interpretation tasks. We evaluated our
framework using general domain benchmarks since 2020 for three consecutive years.
Most of these datasets are Automatically Generated (AG). Our framework has
been among the best-performing systems during the years of development (shown in
Chapter 6). In addition, we evaluated such a framework on our own domain-specific
tabular data benchmark for two years using di�erent target KGs. This contribution
is shown in Chapter 12.

5. BiodivOnto data model and ontology
We aim to capture the most common and important concepts and relations that
are used in the biodiversity domain. These classes and relations represent what we
will extracted from unstructured text. Thus, we developed a data-driven approach
that extracts those entities and relations of interest. In addition, we conducted
several interviews with biodiversity experts to verify our outcome. We applied all
the input from our experts. BiodivOnto features our data model for the following
three contributions. This contribution is presented in Chapter 8.

6. Biodiversity-specific benchmarks for downstream tasks
We studied the existing benchmark that we could use to evaluate our textual data
understanding module. To the best of our knowledge, there are many available but
limited to species classification. Thus, we constructed two benchmarks for Named
Entity Recognition (NER) and Relation Extraction (RE) that captures a broader
range of entities and relations of interest as outlined in the BiodivOnto data model.
This contribution is presented in Chapter 10.

7. Assessment of the benchmarks against the existing state of the art
We compare the developed benchmarks for downstream tasks (NER and RE) against
the state-of-the-art datasets. In addition, we feature their unique properties and
outline their insights. This contribution is detailed in Chapter 10.

8. Textual data understanding module
We aim to construct domain-specific embeddings to extract domain entities and
relations. Thus, we pre-trained a BERT-based model using large domain-specific
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corpora. We constructed these corpora based on biodiversity publications (abstracts
and full text). This contribution is detailed in Chapter 9.

9. Textual data understanding module evaluation
We evaluate our textual data understanding framework on the constructed domain-
specific benchmarks. Thus, we fine-tune our framework on two downstream tasks:
NER and RE. The scores show an improvement compared to the state-of-the-art
models. In addition, the need for such a domain-specific framework. This contribu-
tion is outlined in Chapter 9.

10. Biodiversity Metadata Ontology (BMO) data model and ontology
We manually crafted an ontology representing the common vocabulary in metadata
files. This termonology is used to describe the datasets from the biodiversity domain.
Similar to BiodivOnto, we aim to capture the concepts and relations we extract
from the semi-structured data source (metadata). This contribution is explained in
Chapter 11.

11. Semi-structured data understanding module
We developed a framework that captures both entities and relations from the semi-
structured data, e.g., dataset descriptions in metadata. This framework is based
on unsupervised learning techniques and embeddings. This framework’s output is
an RDF file that represents the automatically generated KG from metadata. This
contribution is presented in Chapter 11.

12. Semi-structured understanding module evaluation
We use two embeddings’ sources to demonstrate the performance of the framework.
We present the quality of the automatically generated KG, and the matching scores
of the semi-structured data understanding. In addition, we discuss the obstacles
we faced during such automatic transformation. This contribution is shown in
Chapter 11.

1.3 Thesis Structure

We organized the thesis into five parts: 1) Preliminary, it includes chapters from Chapter 1
- Chapter 5. 2) Tabular Data Interpretation, it contains Chapter 6 and Chapter 7. 3) Tex-
tual Data Interpretation, it includes chapters from Chapter 8 to Chapter 10. 4) Metadata
Interpretation, it has Chapter 11. Finally, 5) The Final, which has Chapter 12 and
Chapter 13. Parts 2-4 represent our core contributions to this thesis. In their chapters,
we include the developed methodology, the evaluation strategy, and the reported scores.
The complete list of this thesis’ chapters is organized as follows:

• Chapter 1, this chapter, presents the motivation for the overall work. We briefly
define the main pillars, e.g., data sources of intrest. In addition, we outline our
contributions and list our publications that represent parts of this dissertation.

• Chapter 2 explains our main problem statement, research questions. In addition,
we formulate the concrete requirements that we fulfill in this thesis. Moreover, we
describe our research methodology.

• Chapter 3 gives an overview of the necessary background for this thesis. For ex-
ample, we define our primary (tabular data) and auxiliary (unstructured and semi-
structured) data sources that we transform into KGs. In addition, we explain the
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common tasks we tackle in various parts of this thesis. For example, Semantic
Table Interpretation (STI) tasks, Named Entity Recognition (NER), and Relation
Extraction (RE).

• Chapter 4 outlines the current state of the art in the context of our three pillars.
At first, for tabular data understanding, we discuss the tabular data to knowledge
graph matching systems. Second, in textual data interpretation, we summarize the
downstream tasks we use to extract entities and their relations. In addition, the best-
performing models tackling both tasks. Finally, we highlight the most relevant state
of the art that transforms metadata to KGs in semi-structured data understanding.

• Chapter 5 orchestrates our developed individual modules and benchmarks. It
sketches our data sources (three pillars), the corresponding developed framework,
and the used benchmark for evaluation. It gives the big picture of the entire thesis.
It also points to the possible integration of the fundamental components into one
framework.

• Chapter 6 demonstrates our contribution to develop a framework that matches tab-
ular data components to KGs This chapter is also relevant for the tabular data
understanding module. We explain our developed approach to tackle the STI tasks.
We include the framework evaluation during its continuous development using gen-
eral and domain-specific benchmarks.

• Chapter 7 explains our methodology to construct a domain-specific tabular data
benchmark for STI tasks. We include the statistics of such benchmark and the
comparison verse the existing benchmarks in the same chapter.

• Chapter 8 represents our data model of the biodiversity domain. We outline our
data-driven approach to reach these classes and relations. In addition, we include
our continuous improvements for this ontology.

• Chapter 9 represents our developed framework for textual data interpretation. We
explain our pre-training and fine-tuning for the machine-learning-based technique we
developed. In addition, we include the evaluation scores of this framework compared
to other state-of-the-art approaches using various benchmarks.

• Chapter 10 shows our manually crafted benchmarks to evaluate the textual data
understanding framework. The used classes and relations for annotation are from
Chapter 8. We also include a state of the art comparison for these benchmarks.

• Chapter 11 explains our developed data model and framework for semi-structured
data interpretation. We include evaluation scores for the matching algorithm that
transform metadata to a KG. In addition, we discuss the common obstacles that
face such an automatic transformation process.

• Chapter 12 shows the summary of the developed benchmarks and frameworks. In
addition, we discuss how the developed modules fulfill the requirements.

• Chapter 13 concludes the entire research work and discusses its current state. In
addition, it depicts possible future directions to continue this research.
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1.4 Publications

Parts of this dissertation have been published in conferences and journals as follows:

• Nora Abdelmageed, Towards Transforming Tabular Datasets into Knowledge
Graphs. The Semantic Web: ESWC 2020 Satellite Events. pp. 217-228, vol. 12124,
https://doi.org/10.1007/978-3-030-62327-2_37, 2020.
This paper gives an abstract overview of the entire thesis. We report on the first
phase of this work, i.e., our meetings with the biodiversity experts and requirement
analysis. In addition, we report on the early-stage work results. (Corresponds to
Chapter 1 and Chapter 2).

• Nora Abdelmageed, Sirko Schindler: JenTab: Matching Tabular Data to Knowledge
Graphs. Proceedings of the Semantic Web Challenge on Tabular Data to Knowledge
Graph Matching (SemTab 2020) co-located with the 19th International Semantic
Web Conference (ISWC 2020). pp. 40-49, vol. 2775, http://ceur-ws.org/Vol-2775/
paper4.pdf, 2020.
This paper presents our first attempt to develop the tabular data understanding
framework. It describes its main building blocks of it in detail. This paper shows
our first participation in SemTab challenge. (Corresponds to Chapter 6).

• Nora Abdelmageed, Sirko Schindler: JenTab: A Toolkit for Semantic Table An-
notations. Proceedings of the 2nd International Workshop on Knowledge Graph
Construction co-located with the 18th Extended Semantic Web Conference (ESWC
2021). vol. 2873, http://ceur-ws.org/Vol-2873/paper5.pdf, 2021.
This paper extends the above publication. We included various settings to solve
the required task. We investigated the accuracy of each of them and analyzed the
processing time. (Corresponds to Chapter 6).

• Nora Abdelmageed, Sirko Schindler: JenTab Meets SemTab 2021’s New Challenges.
Proceedings of the Semantic Web Challenge on Tabular Data to Knowledge Graph
Matching co-located with the 20th International Semantic Web Conference (ISWC
2021). pp. 42-53, vol. 3103, http://ceur-ws.org/Vol-2775/paper4.pdf, 2021.
This paper extends the JenTab framework. It includes various pipelines that we
develop based on the given dataset characteristics. (Corresponds to Chapter 6).

• Nora Abdelmageed, Sirko Schindler: JenTab: Do CTA solutions a�ect the entire
scores? Proceedings of the Semantic Web Challenge on Tabular Data to Knowledge
Graph Matching co-located with the 21st International Semantic Web Conference
(ISWC 2022). pp. 72-79, vol. 3320, https://ceur-ws.org/Vol-3320/paper8.pdf, 2022.
This paper represents our last contribution to the SemTab challenge. It includes
a new pipeline that tries to solve the required tasks based on the given header
information. (Corresponds to Chapter 6).

• Nora Abdelmageed, Sirko Schindler, Birgitta König-Ries: BiodivTab: A Table An-
notation Benchmark based on Biodiversity Research Data. Proceedings of the Se-
mantic Web Challenge on Tabular Data to Knowledge Graph Matching co-located
with the 20th International Semantic Web Conference (ISWC). pp. 13-18, vol. 3103,
http://ceur-ws.org/Vol-3103/paper1.pdf, 2021.
This paper introduces our first version of the domain-specific benchmark for tabular
data annotation (BiodivTab). We manually annotated biodiversity datasets with
entities and classes from Wikidata. BiodivTab is made available for the public and
used during SemTab 2021. (Corresponds to Chapter 7).

https://doi.org/10.1007/978-3-030-62327-2_37
http://ceur-ws.org/Vol-2775/paper4.pdf
http://ceur-ws.org/Vol-2775/paper4.pdf
http://ceur-ws.org/Vol-2873/paper5.pdf
http://ceur-ws.org/Vol-2775/paper4.pdf
https://ceur-ws.org/Vol-3320/paper8.pdf
http://ceur-ws.org/Vol-3103/paper1.pdf
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• Nora Abdelmageed, Sirko Schindler, Birgitta König-Ries: BiodivTab: Semantic
Table Annotation Benchmark Construction, Analysis, and New Additions. Pro-
ceedings of the 17th International Workshop on Ontology Matching co-located with
the 21st International Semantic Web Conference (ISWC 2022). 2022.
This paper gives the details of our pipeline to construct the benchmark. In addition,
it shows BiodivTab’s statistics and insights. It also explains our methodology for
creating a new ground truth from DBpedia. BiodivTab (DBpedia) is made available
for the public and used during SemTab 2022. (Corresponds to Chapter 7).

• Nora Abdelmageed, Alsayed Algergawy, Sheeba Samuel, Birgitta König-Ries: Biod-
ivOnto: Towards a Core Ontology for Biodiversity. The Semantic Web: ESWC 2021
Satellite Events. pp. 3-8, vol. 12739, https://doi.org/10.1007/978-3-030-80418-3_1,
2021.
This paper gives an overview of our pipeline to construct the BiodivOnto data model.
Such ontology, in this paper, contains seven core concepts and their relations. (Cor-
responds to Chapter 8).

• Nora Abdelmageed, Alsayed Algergawy, Sheeba Samuel, Birgitta König-Ries: A
Data-driven Approach for Core Biodiversity Ontology Development. Proceedings of
the Joint Ontology Workshops 2021 Episode VII: The Bolzano Summer of Knowledge
co-located with the 12th International Conference on Formal Ontology in Informa-
tion Systems (FOIS 2021) and the 12th International Conference on Biomedical On-
tologies (ICBO 2021). vol.2969, http://ceur-ws.org/Vol-2969/paper5-s4biodiv.pdf,
2021.
This paper extends the one above. It explains our data-driven approach in detail. It
includes more statistics about the collected data and discusses the open issues about
the suggested methodology. (Corresponds to Chapter 8).

• Nora Abdelmageed, Felicitas Lö�er, Leila Feddoul, Alsayed Algergawy, Sheeba
Samuel, Jitendra Gaikwad, Anahita Kazem, Birgitta König-Ries: BiodivNERE:
Gold standard corpora for named entity recognition and relation extraction in
the biodiversity domain. Biodiversity Data Journal, ISSN. 1314-2836, vol: 10
https://doi.org/10.3897/BDJ.10.e89481, 2022.
This paper presents our manually crafted benchmarks for both NER and RE tasks.
It describes our pipeline to construct both corpora and shows their statistics com-
pared to the existing benchmarks. (Corresponds to Chapter 10).

• Nora Abdelmageed, Felicitas Lö�er, Birgitta König-Ries: BiodivBERT: a Pre-
Trained Language Model for the Biodiversity Domain SWAT4HCLS 2023: The 14th
International Conference on Semantic Web Applications and Tools for Health Care
and Life Sciences, pp. 62–71, vol: 3415, https://ceur-ws.org/Vol-3415/paper-7.pdf,
2023.
This paper introduces our domain-specific BERT-based model as a textual data
understanding framework. It describes our collected pre-training data, task, and
fine-tuning of BiodivBERT. In addition, it points to the ontology population as a
possible application of the model. (Corresponds to Chapter 9).

• Nora Abdelmageed, Birgitta König-Ries: Meta2KG: Transforming Metadata to
Knowledge Graphs. Proceedings of the 17th International Workshop on Ontology
Matching co-located with the 21st International Semantic Web Conference (ISWC
2022). pp. 226-228, vol. 3324, https://ceur-ws.org/Vol-3324/om2022_poster3.pdf,
2022.
This paper briefly describes our developed unsupervised technique to transform the
metadata files into a KG. (Corresponds to Chapter 11).

https://doi.org/10.1007/978-3-030-80418-3_1
http://ceur-ws.org/Vol-2969/paper5-s4biodiv.pdf
https://doi.org/10.3897/BDJ.10.e89481
https://ceur-ws.org/Vol-3415/paper-7.pdf
https://ceur-ws.org/Vol-3324/om2022_poster3.pdf
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• Nora Abdelmageed, Birgitta König-Ries: Meta2KG: An Embeddings-based Ap-
proach for Transforming Metadata to Knowledge Graphs. Proceedings of the Fourth
International Workshop on Knowledge Graph Construction co-located with the 20th
Extended Semantic Web Conference (ESWC 2023). 2023.
This paper describes our developed unsupervised technique to transform the
metadata files into a KG with detailed evaluation and additional baseline approaches.
(Corresponds to Chapter 11).

Other Publications The following list includes other relevant papers that do not map
directly to chapters but either give further context to the thesis or are used in evaluating
specific parts of our contributions:

• Felicitas Lö�er, Nora Abdelmageed, Samira Babalou, Pawandeep Kaur, Birgitta
König-Ries: Tag Me If You Can! Semantic Annotation of Biodiversity Metadata
with the QEMP Corpus and the BiodivTagger. Proceedings of The 12th Language
Resources and Evaluation Conference, LREC, pp. 4557-4564, https://aclanthology.
org/2020.lrec-1.560/, 2020.
Our contribution to this paper is the construction of the QEMP corpus. We used
this corpus in evaluating our developed textual data interpretation framework (Biod-
ivBERT).

• Vincenzo Cutrona, Jiaoyan Chen, Vasilis Efthymiou, Oktie Hassanzadeh, Ern-
esto Jiménez-Ruiz, Juan Sequeda, Kavitha Srinivas, Nora Abdelmageed, Madelon
Hulsebos, Daniela Oliveira, Catia Pesquita: Results of SemTab 2021. Proceedings
of the Semantic Web Challenge on Tabular Data to Knowledge Graph Matching
co-located with the 20th International Semantic Web Conference (ISWC 2021). pp.
1-12, vol. 3103, http://ceur-ws.org/Vol-3103/paper0.pdf, 2021.
Our contribution to this paper is the use of BiodivTab for the first time during
SemTab 2021, where Wikidata is the target KG. This paper gives a more profound
context about the challenge, evaluation mechanism, and lessons learned from this
edition of the challenge.

• Nora Abdelmageed, Vincenzo Cutrona, Jiaoyan Chen, Vasilis Efthymiou, Oktie
Hassanzadeh, Ernesto Jiménez-Ruiz, Juan Sequeda, Kavitha Srinivas, Madelon
Hulsebos, Daniela Oliveira, Catia Pesquita: Results of SemTab 2022. Proceedings
of the Semantic Web Challenge on Tabular Data to Knowledge Graph Matching
co-located with the 21st International Semantic Web Conference (ISWC 2022). pp.
1-13, vol. 3320, http://ceur-ws.org/Vol-3320/paper0.pdf, 2022.
Our contribution to this paper is the use of BiodivTab for the second time during
SemTab 2021, where DBpedia is the target KG. Similar to the paper above, this
paper concludes the 2022 edition of the challenge.

https://aclanthology.org/2020.lrec-1.560/
https://aclanthology.org/2020.lrec-1.560/
http://ceur-ws.org/Vol-3103/paper0.pdf
http://ceur-ws.org/Vol-3320/paper0.pdf




Chapter 2

Problem Statement

Our core research problem is how to enable the reusability of tabular data which is one
aspect of the FAIR data principles [2]. A good, ideal machine-readable description of the
data is essential for successful data reuse. The desired descriptions are represented as a
Knowledge Graph (KG). However, today, creating such descriptions requires considerable
manual e�ort. As our conducted meetings with the biodiversity experts showed, a biod-
iversity research team searches for all datasets relevant to their research question. This
happens via searches in data repositories, literature, and personal connections. On the one
hand, the publications found are then read to find essential references. On the other hand,
metadata about datasets are extracted from them, and the information is downloaded in
the case of data repositories. All of this information is then manually collated. This serves
as a basis to decide on which data is usable for the study at hand, which conversions and
error corrections are necessary, and how the data can be integrated. This process can
take several months [4]. Thus, providing well-described data in a KG would drastically
reduce the required e�ort. In addition, we enable querying the original dataset and its
secondary descriptions using a structured query language like SPARQL. We believe that
the automatic construction of such a fine-grained KG will be possible by leveraging aux-
iliary information besides the dataset itself. The crucial sources of additional information
are, in our case, metadata and publications.

The main goal of this research is to enhance the reusability of datasets by the automatic
transformation of raw data either in structured (tabular data), unstructured (textual
data), or semi-structured (metadata) into a KG. In order to achieve this ultimate goal,
we focus on three research areas: The first research dimension is the Tabular data
interpretation (TabI). In this field, we match the individual table components (cell,
column, column-pair) to their counterparts from existing KGs. The second dimension of
this research is the Textual data interpretation (TexI). In this research phase, we
extract both entities and relations of interest from unstructured text. In our context, such
textual data is given by either a dataset-associated abstract or a full publication. The last
area of research in this work is the Metadata interpretation (MI). This RA is similar
to TexI in terms of the task objectives. We extract both entities and their relations but,
the input data is semi-structured, as represented in metadata files. The tasks we try to
solve per research area provide the basis for constructing the KG. For example, each of
them helps us identify the triple’s subject, predicate, and object. We explain our input
format (data sources), the matching tasks for tabular data, and textual and metadata
understanding format in Chapter 3.

In this chapter, in the context of these three research areas, we identify research ques-
tions and objectives in Section 2.1 and Section 2.2 respectively. We translate these object-
ives into concrete requirements in Section 2.3. Finally, we explain our adopted research
methodology for this thesis in Section 2.4.

13



14

2.1 Research Questions
Our research focuses on how to automate the transformation of tabular datasets along
with their auxiliary data (publication text and metadata) into a KG. We divide this
general research problem into three fine-grained research questions, each of which maps
to the research area as described at the beginning of this chapter:

How can we use tabular datasets for KG construction? (RQ1) (related to TabI)

How can we benefit from the information in the associated publications to enrich the
constructed KG? (RQ2) (related to TexI)

How can we leverage the existing metadata to enrich the constructed KG? (RQ3) (related
to MI)

2.2 Research Objectives
Our overall contribution will enable the automatic integration of tabular datasets with
their secondary data (publications and metadata) into KGs, thereby considerably increas-
ing FAIRness, particularly reusability. Our domain of interest is the biodiversity domain
since it is a data-rich field that needs automatic mechanisms to make the best use of such
untapped wealth. The following objectives will reach our ultimate objective:

Objective 1 Develop methods that take a tabular dataset as input and automatically
create a KG out of it. These methods will determine the meaning of individual
columns, and their data type and relationships across columns. Such tools are useful
to increase tabular data understanding even without the subsequent transformation
into a KG. This objective answers the first research question RQ1.

Objective 2 Construct a domain-specific tabular data benchmark that would be used to
evaluate the methods implemented in Objective 1. This objective also contributes
to RQ1 to enforce the assessment of the tabular data understanding framework on
the biodiversity domain and not only on the general domain.

Objective 3 Design and create a conceptual model using semantic web technologies
that describe the essential concepts and relations of the domain. This objective
contributes to the second RQ2, where it targets textual data transformation into a
KG. Such a task would need predefined categories or entity types. This objective
helps us to determine those classes using a systematic approach.

Objective 4 Develop a textual data transformer to leverage potentially available aux-
iliary information in publications describing the dataset based on the data model
created in Objective 3. This objective also contributes to the second RQ2 with a
technique that can detect the entities and relations of interest from text.

Objective 5 Construct domain-specific benchmarks for textual data downstream tasks
This objective plays a vital role to the second RQ2 as well. To ensure the e�ectiveness
of the developed framework in Objective 4 using the biodiversity domain.

Objective 6 Design and create a conceptual model using semantic web technologies
that represents the most common dataset descriptions in the associated metadata
files. This objective and the next two solve the third research question RQ3. Similar
to the previous three objectives that tackle textual data interpretation, these three
transform the metadata files into a KG with the same order.
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Objective 7 Develop methods that transform the semi-structured data (metadata) into
a KG based on the data model created in Objective 6.

Objective 8 Evaluate the developed methods that are presented in Objective 7 using
domain-specific benchmarks.

2.3 Requirements

To answer our research questions for Section 2.1, and to achieve the goals of our work we
discussed in Section 2.2, we formulate our functional and non-functional requirements of
the three research areas as follows.

2.3.1 Tabular Data Interpretation

Since we have RQ1 that targets the transformation of tabular data into KGs, we require
a framework that can solve such a question. In the following, we discuss the requirements
of the framework and the domain-specific benchmark, emphasizing the e�ectiveness of the
biodiversity domain.

R1.1 The tabular data understanding framework should be able to match the individual
table components to their counterparts of a target KG (Objective 1).

R1.2 The framework should have extensible and configurable components. For example,
it should provide an easy way to change the target KG and enable various settings
for solving (Objective 1).

R1.3 The framework should be scalable. It can process large-scale tables in a reasonable
time (Objective 1).

R1.4 The framework should have a reasonable amount of dependencies and provides an
easy way to configure on a local development environment (Objective 1).

R1.5 The framework should provide an analysis of the current processing input data. For
example, how many tables are in progress, successfully completed, failed to complete,
and the errors that were returned (Objective 1).

R1.6 The framework should store the results and have the feature to extract them in a
specific format (Objective 1).

R1.7 The framework should have trusted accuracy scores and demonstrate its e�ective-
ness in the biodiversity domain (Objective 1 and Objective 2).

R1.8 The domain-specific benchmark should reflect real-world challenges (Objective 2).

R1.9 The benchmark should have annotations that convey human-level knowledge. (Ob-
jective 2).

R1.10 The benchmark should be diverse, and capture various aspects from the biod-
iversity domain (Objective 2)
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2.3.2 Textual Data Interpretation

Our previously discussed RQ2 would be covered by a domain-specific model that can
extract the essential information from text to construct a KG or enrich an existing one.
We need a domain-specific model since estimating the general domain methods on domain-
specific tasks is hard [8]. In the following, we discuss the requirements of these concepts
and relations, model, and evaluation corpora.

R2.1 The fundamental information that this model detects should reflect the important
concepts and relations of the domain (Objective 3).

R2.2 The model should be trained on domain-specific textual data (Objective 4).

R2.3 The model should be able to detect the most important entities and relations of
the biodiversity domain (Objective 4).

R2.4 The model should be easy to use (Objective 4).

R2.5 The model should demonstrate the e�ectiveness of the extracted information (Ob-
jective 4 and Objective 5).

R2.6 The evaluation corpora should be diverse to reflect various aspects from the bioid-
versity research field (Objective 5).

R2.7 The evaluation corpora should be trusted and gold-standard level to ensure high
quality of annotations (Objective 5).

R2.8 The evaluation corpora should be aligned with the schema in R2.1 (Objective 5).

R2.9 The evaluation corpora should support machine learning format (Objective 5).

R2.10 The evaluation corpora should demonstrate a good balance for classes and rela-
tions between the training and testing data folds (Objective 5).

2.3.3 Metadata Interpretation

Our research question RQ3 would be answered by building a technique that transforms a
given semi-structured file (metadata) into a KG. In the following, we discuss the require-
ments of such a technique.

R3.1 The technique requires an underlying model that should reflect the most common
vocabulary used in biodiversity repositories metadata (Objective 6).

R3.2 The technique should be able to capture the most important entities and relations
of the biodiversity metadata (Objective 7).

R3.3 The technique should e�ectively auto-populate the underlying data model (Object-
ive 7).

R3.4 The technique should produce a machine-readable format output, e.g., RDF (Ob-
jective 7).

R3.5 The technique should show the e�ectiveness of the extracted information from the
given describtions on a ground truth data (Objective 8).
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Metadata Interpretation  (MI)

Tabular Data Interpretation  (TabI)
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Figure 2.1: Abstract view of our research methodology

2.4 Research Methodology

The research methodology followed in this thesis is an iterative process for each research
area as depicted in Figure 2.1 to tackle our 8-objectives problem statement. In the first step
of our pipeline, we conducted several meetings with domain experts from the biodiversity
field for requirement gathering as described in Chapter 1. Based on their requirements,
we came up with three main stages for our project: Firstly, we aim to build a KG from the
tabular dataset itself as a standalone data source. Secondly, we do further extensions to the
resultant KG using related publications of the tabular data, either by the use of abstracts or
the full texts. Finally, we will add information gained from metadata or any auxiliary semi-
structured data. For each of these stages, we will perform a complete development cycle
from analyzing the literature and concept development to implementation, evaluation, and
publication. In the following, we explain each stage that maps to an individual research
area, thus, how we achieved our objectives as listed in Section 2.2.

To understand the tabular data, we reviewed the literature in terms of the annotation
tasks, existing approaches, and the common challenges in this research field. In addition,
we reviewed the existing benchmarks that are used for evaluating these approaches. We
give a detailed overview of this research area, TabI, in Section 4.1. In this context, we
designed and implemented JenTab toolkit for the tabular data understanding module
(Objective 1). In JenTab, we solve three tasks of the Semantic Table Interpretation (STI):
1) Cell Entity Annotation (CEA), Column Type Annotation (CTA), Column Property
Annotation (CPA). We give the details of these tasks in Chapter 3. We developed and
tested it using various large scale benchmarks for STI since 2020 to 2022 [9, 10, 11, 12]. We
explain the evolution of JenTab in Chapter 6. After reviewing the existing benchmarks for
STI, our findings showed that no benchmark is derived from a real biodiversity research
field. To bring JenTab closer to our domain of interest, we constructed BiodivTab [13, 14]
for tabular data annotation. BiodivTab is a biodiversity-specific benchmark that is based
on real data and data augmentation. It consists of 50 tables that are annotated tables using
Wikidata and DBpedia (Objective 2). We explain the details of BiodivTab construction,
its insights, and the common domain challenges in Chapter 7.

To interpret the textual data in publication abstracts or full text, we investigated the
widely used vocabulary in the biodiversity domain. This terminology act as a basis for
our domain-specific classes and relations. To come up with this data model, we developed
a data-driven approach that resulted in our conceptual model BiodivOnto [15, 16] (Ob-
jective 3). During the model formulation, we held several meetings, calls, and discussions
with the biodiversity experts to verify our derived data model. We outline our data-driven



18

approach, conceptual model, and its further extensions in Chapter 8. The next step is
to build a framework that automatically extracts our vocabulary from textual data. We
studied the related work concerning both Named Entity Recognition (NER) and Relation
Extraction (RE). The former detects entities of interest while the latter extracts their
relations. During this stage of the work, we developed BiodivBERT as a BERT-based
model. It is pre-trained on domain-specific data (Objective 4). We explain the developed
approach, pre-training, and fine-tuning task in Chapter 9. To evaluate BiodivBERT in the
biodiversity domain and due to the lack of available domain-specific benchmarks, we con-
structed BiodivNERE, two corpora for both NER and RE [17] (Objective 6). Both bench-
marks contain manually annotated statements from biodiversity abstracts and metadata
that use concepts and relations from BiodivOnto. We give a detailed overview of this
research area, TexI, in terms of the approaches and existing benchmarks in Section 4.2.

We investigated related approaches to understand the metadata, MI. We found in-
spiring methods, especially from the scholarly communication field. We give the overview
of these approaches in Section 4.3. In that sense, we manually developed the BMO onto-
logy that describes the shared vocabulary in the metadata files (Objective 6). Then, we
designed and implemented Meta2KG [18, 19], an unsupervised learning approach match-
ing fields from the semi-structured data to the BMO ontology. Then, we evaluated our
approach on a manually curated set of metadata files and constructed a unified KG out
of them (Objective 8). We explain the BMO ontology, our approach, and the evaluation
results in Chapter 11.



Chapter 3

Background

In this chapter, we explain prior and required background for this thesis. On the one hand,
we start with an overview of Knowledge Graphs (KGs) and our input data sources. We
define the primary data (tabular data), textual data obtained from publications abstracts
or full text, and metadata. We use ‘tabular data’, ‘table’, and ‘dataset’ interchangeably.
These terms represent the main unit to be annotated from a KG (table). We explain
two dimensions that describe tables: Inner-relationship and orientation dimension. Our
described data sources are raw data; they lack the semantic layer. A table consists of a
set of cells, each of which has plain text. The same case applies to textual and metadata;
an input piece of text represents a sentence without any semantic annotation. On the
other hand, we define annotation tasks for both tabular and textual data. Such tasks
aim to extract subjects, predicates, and objects helping us generate the target KG. We
demonstrate an example for each task that describes the change in the given raw data till
reaching the semantic annotation.

3.1 Definitions
We define the building blocks for this work in the current section. Our ultimate goal is to
construct a KG from heterogeneous data sources. In the following, we define what a KG,
primary data source, and auxiliary data are.

3.1.1 Knowledge Graph
A knowledge graph is a graph-based model built to accumulate and convey real-world
knowledge; it contains a set of nodes and edges representing entities of interest, and their
relations [20, 21]. Auer et al. [1] propose them to bring scholarly communication to the 21st

century. However, there is no exact definition of a KG. We adopt the inclusive definition
from [20, 21] in Definition 3.1.1. A more formal definition of a KG is given by Definition
3.1.2. An individual triple is shown in Figure 3.1 where the nodes S and O represent
subject and object, respectively. They refer to entities or classes in a KG. Such nodes are
interlinked by relation or property P. Ideally, S, O, and P refer to real-world entities. For
example, S P O could be mapped to ‘Cairo’ ‘is the capital of’ ‘Egypt’.

Definition 3.1.1 A knowledge graph is a graph of data intended to accumulate and convey
knowledge of the real world, whose nodes represent entities of interest and whose edges
represent relations between these entities.

Definition 3.1.2 A knowledge graph is a subset of the cross product NxExN , where N
is a set of nodes (entities or classes), and E is a set of edges (relations). Each member of
this set is referred to as a triple.
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Figure 3.1: A triple representation.
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Figure 3.2: Inner-relationship examples. (a) Relational, (b) Matrix, and (c) Entity

3.1.2 Tabular Data

Tabular data such as CSV files are a common way to publish data and represent a precious
resource [22, 23, 24]. Traditionally, they capture a lot of knowledge using free text entries.
In this thesis, tables are the primary and most important data source we match into a
KG. We define this data unit in Definition 3.1.3.

Definition 3.1.3 A table is a two-dimensional arrangement of data with n rows and m
columns. It enables a compact visualization for reading. A cell is the basic element of a
table where Tij(0 Æ i Æ n, 0 Æ j Æ m) indicates the cell from row i and column j of the
table T .

Tables are highly heterogeneous in terms of structure, content, and purpose. Therefore,
before interpreting a table, it is important to identify its type, so that potential specificity
can be taken into account in the Semantic Table Interpretation (STI) process [4]. A table
could be just layout or encapsulates a certain amount of information [25]. The former is
used for visualization (layout table). However, the latter expresses a topic or thing (genuine
table). We express a genuine table in two dimensions [26, 27]: 1) Inner-relationship
dimension; a table could be Relational (Figure 3.2(a))1, Matrix (Figure 3.2(b)) 2 table, or
Entity (Figure 3.2(c)) 3, 2) Orientation dimension considers the direction of relationships
inside a table, it could be horizontal, vertical, or matrix. Entities are described row-wise
in horizontal tables (Figure 3.2(a)). In the case of vertical tables, entities are described
by a column as shown in Figure 3.2(c). Matrix tables cannot be interpreted row by
row or column by column but rather cell by cell while simultaneously considering both
horizontal and vertical headers as given by Figure 3.2(b). In our work, we interpret
relational horizontal tables and transform them into a KG.

1
https://en.wikipedia.org/wiki/Four_Asian_Tigers#Technology

2
https://en.wikipedia.org/wiki/Whistled_language#Lack_of_comprehension

3
https://en.wikipedia.org/wiki/Charles_Bridge

https://en.wikipedia.org/wiki/Four_Asian_Tigers#Technology
https://en.wikipedia.org/wiki/Whistled_language#Lack_of_comprehension
https://en.wikipedia.org/wiki/Charles_Bridge
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3.1.3 Textual data
Text that describes tabular datasets is the first auxiliary source of information. In our
context, these textual data are either the abstract or full text of associated publications.
We interpret such text to identify the essential named entities and their relations. We
expect that either the abstract or the full text contains a di�erent set of named entities and
relations than those we discovered in the tabular data. Thus, we enrich the constructed KG
from individual tables. We define the textual data in publication (document) in Definition
3.1.4. Afterwards, our task is to extract a set of named entities (E) and their relations
(R) from the given text.

Definition 3.1.4 A document D that represents a formal publication consists of several
sections S. Each section s consists of textual blocks called paragraphs P . A paragraph p
contains a set of sentences Sen. Each sentence se might have a named entity or entities;
we refer to the set of entities as E. Such E are interlinked with a relation(s) R.

3.1.4 Metadata
Metadata is the second source of auxiliary data that we interpret to extract further in-
formation to enrich the resultant KG. It is usually given by an XML or JSON file that
contains semi-structured information. Metadata is the primary data source in a dataset
retrieval system [28]. We adapt the definition of the metadata [28] in Definition 3.1.5
where the Findability is an aspect of the FAIR (Findability, Accessibility, Interoperability,
and Reusability) data principles [2]. There are notable e�orts that emphasize the richness
of the metadata in Life Sciences, i.g., for classification purposes [29, 28].

Definition 3.1.5 Metadata is used to describe data in a way that enables their Findability.
It includes information about the who, when, where, how, and why of data collection. It
supports various applications like search and knowledge deviation.

3.2 Annotation Tasks
In the following, we explain the core tasks we solve for each data source. Our goal is
to extract the building blocks that form a triple: subject, predicate, and object. The
extraction of these items di�ers from tabular data to textual data. The former is solved by
Semantic Table Interpretation (STI). The latter is tackled by textual data understanding,
i.e., a combination of Named Entity Recognition (NER) and Relation Extraction (RE).
We define each category of tasks in the following.

3.2.1 Semantic Table Interpretation (STI)
We analyzed the state of the art to investigate how we could transform tabular data in,
e.g., CSV format to a KG. Figure 3.3 summarizes our findings. It gives an overview of the
five tasks of STI. First, Cell to Instance aims at linking a table cell value to a KG entity.
In the shown case, ‘Egypt’ would be linked to http://www.wikidata.org/entity/Q79 if the
target KG is Wikidata or https://dbpedia.org/page/Egypt if the target KG is DBpedia.
Second, Column to Type maps the entire column to a semantic type. In the example, it
annotates the column to https://www.wikidata.org/entity/Q6256 if Wikidata is the target
KG, or https://dbpedia.org/ontology/Location or https://dbpedia.org/ontology/Place if
DBpedia is the target KG. Third, Property Detection links a column pair (subject-
object) with a semantic property from the target KG. Country and capital columns
would be linked through http://www.wikidata.org/entity/P1376 from Wikidata and https:
//dbpedia.org/ontology/capital from DBpedia. Fourth, Row to Instance maps the

http://www.wikidata.org/entity/Q79
https://dbpedia.org/page/Egypt
https://www.wikidata.org/entity/Q6256
https://dbpedia.org/ontology/Location
https://dbpedia.org/ontology/Place
http://www.wikidata.org/entity/P1376
https://dbpedia.org/ontology/capital
https://dbpedia.org/ontology/capital
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Country Area Capital

Egypt 1,010,408 Cairo

Germany 357,386 Berlin

9,826,675 Washington, D.C.

Topic 
Detection

Property
Detection

Row to 
Instance 

Cell to 
Instance

Column to 
Type

Figure 3.3: A summary of Semantic Table Interpretation (STI) tasks.

entire row to a KG entity. Its output is di�erent from the first task since the subject
column is absent in this example. In this case, row to instance would be able to detect
that the entire row refers to the ‘United States of America’ http://www.wikidata.org/
entity/Q30 or https://dbpedia.org/resource/United_States from Wikidata and DBpedia
respectively. Finally, Topic Detection classifies the entire table to a topic. Wikipedia
article is a perfect source of the expected output from this task. In the given example,
https://en.wikipedia.org/wiki/Country would be the solution.

In this thesis, we use the following notations to abbreviate the complete link of the
annotated data: In Wikidata, we use wd and wdt for entities or types and properties,
respectively. For example, (wd:Q79, Egypt) and (wd:Q6256, Country), and for properties,
(wdt:P1379, Capital of) In DBpedia, we use dbr and dbo. The former represents the
DBpedia resource, e.g., (dbr:Egypt). The latter denotes the type from DBpedia ontology,
e.g., (dbo:country).

The Semantic Web Challenge on Tabular Data to Knowledge Graph Matching
(SemTab)4 challenge defines three core STI tasks. It has co-hosted with the ISWC confer-
ence and the Ontology Matching (OM) workshop from 2019 to 2022. It provides a unified
framework to evaluate the current STI systems. So far, SemTab, uses Wikidata, DBpedia,
and Schema.org as target KGs to perform the matching tasks. Each year, from its start
to 2022, it provides a series of large-scale datasets. It asks participants to solve three
STI tasks for given targets without any prior knowledge about the ground truth data for
each task. After the conclusion of the challenge, the organizers publish the hidden ground
truth.

In this thesis, we solve SemTab’s tasks. We participated in the challenge starting from
2020 until 2022. We solved various tasks given di�erent KGs. We developed and tested
the core contributions (see Chapter 6 and Chapter 7) for tabular data understanding in
this thesis in the scope of the SemTab challenge. The three STI tasks are commonly
used in this thesis. Given a data table and a target KG, Cell Entity Annotation (CEA)
links a cell to an entity within the KG (Figure 3.4a). Column Type Annotation (CTA)
assigns a semantic type (e.g., a class) to a column (Figure 3.4b). Finally, Column Property
Annotation (CPA) annotates a suitable semantic relation (predicate) from a KG to column
pairs (Figure 3.4c). We give a detailed overview of the semantic table interpretation
systems and the most common benchmarks in Chapter 4.

4
https://www.cs.ox.ac.uk/isg/challenges/sem-tab/

http://www.wikidata.org/entity/Q30
http://www.wikidata.org/entity/Q30
https://dbpedia.org/resource/United_States
https://en.wikipedia.org/wiki/Country
https://www.cs.ox.ac.uk/isg/challenges/sem-tab/
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Figure 3.4: SemTab tasks summary.

Figure 3.5: A NER example.

3.2.2 Textual Data Understanding

We identify two essential tasks for interpreting textual data in extracting and identifying
structured information from unstructured text or raw sentences: Named Entity Recogni-
tion (NER) helps detect both subject and object entities from the text. Relation Extrac-
tion (RE) detects the relation between such a subject and an object. After successfully
executing both tasks, we can construct a triple, the atomic unit of the desired KG. In the
following, we define both tasks and give illustrative examples for each of them. However,
we give a detailed overview of them in Chapter 4.

Named Entity Recognition (NER) is an essential task for most of the Natural Lan-
guage Processing (NLP) processes. It allows for acquiring structured knowledge from
unstructured text. We adopt the definition of it from [30, 31] in Definition 3.2.1. Entity
types, classes, or tags are either derived from general domain, e.g., spaCy [32] or domain-
specific types like those from ontologies [29]. Figure 3.5 shows an example of NER. We
created such an example using the online visualization tool spaCy5 with the first sentences
of Bill Gates Wikipedia article6.

Definition 3.2.1 NER is the task to identify mentions of rigid designators from text
belonging to predefined semantic types such as a person, location, organization, etc.

Relation Extraction (RE) is the second core task for the information extraction pro-
cesses. Similar to NER, it allows us to acquire structured knowledge from unstructured
text. We identify the RE task based on these two surveys [33, 34] as in Definition 3.2.2.
From the definition, RE requires the output of NER. Figure 3.6 depicts an example of
RE given two identified named entities from the NER example above.

Definition 3.2.2 RE is the task of detecting or identifying the semantic relation between
entity pairs.

5
https://demos.explosion.ai/displacy-ent, 04/11/2022

6
https://en.wikipedia.org/wiki/Bill_Gates

https://demos.explosion.ai/displacy-ent
https://en.wikipedia.org/wiki/Bill_Gates
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is the co-founder ofWilliam Henry Gates II [PERSON] Microsoft [ORG]

has foundedWilliam Henry Gates II [PERSON] Microsoft [ORG]

co-founder of

Figure 3.6: An RE example.

3.3 Summary
In this chapter, we provided the required prior knowledge for this thesis. We defined the
three data sources: 1) tabular, 2) textual, and 3) metadata. In addition, we introduced the
required annotation tasks that we solve for each data source to create KGs. For tabular
data, we introduced five Semantic Table Interpretation (STI) tasks. In this thesis, we focus
on three of them: 1) Cell Entity Annotation (CEA), 2) Column Type Annotation (CTA),
and Column Property Annotation (CPA). For textual data, we explained Named Entity
Recognition (NER) and Relation Extraction (RE). These tasks aim to extract entities,
concepts, and their relations from a given data source and subsequently, construct a KG
as a final outcome.



Chapter 4

Related Work

Building a Knowledge Graph (KG) from heterogeneous data sources touches several re-
search areas. Since our ultimate goal is to construct a domain-specific KG from tabular
data and their associated publications, abstracts and metadata, we identify three research
areas that are related to our work (see Chapter 2). Thus, we divide this chapter as fol-
lows: 1) Tabular data interpretation (TabI) has Semantic Table Interpretation (STI) tasks
to understand the table semantically and enable KG construction on top of it. We give
an overview of the current STI approaches and the most common benchmarks used to
evaluate these approaches. 2) Textual data interpretation (TexI) understands associated
publications text for a given table. We discuss the essential tasks to interpret such data,
and also the benchmarks that are widely used for STI-tasks. 3) Metadata interpretation
(MI) covers the recent techniques that transform metadata files into a KG.

In this chapter, we discuss the approaches and datasets concerning TabI in Section 4.1.
Regarding TexI, we give an overview of the related tasks and benchmarks in Section 4.2.
Concerning MI, we point out similar work in other domains in Section 4.3. We summarize
this chapter and related work in Section 4.4.

4.1 Tabular Data Interpretation

The recent STI contributions (systems or benchmarks) are developed and tested in the
Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab) chal-
lenge [22, 23, 24, 35] from 2019 to 2022 as illustrated in the survey by Liu et al [27]. Such
a challenge presents a unified framework to evaluate STI systems and provides several
large-scale benchmarks for such evaluation. In this section, we cover both approaches and
benchmarks for Semantic Table Interpretation (STI) tasks.

4.1.1 Approaches

In the following, we give an overview of the existing approaches that solve STI tasks.
We categorize them into three main categories: Heuristic methods, feature-engineering
techniques, and deep-learning models. Table 4.1 summarizes these recent approaches that
tackle the STI tasks in terms of supported STI tasks and target KG.

4.1.1.1 Heuristic Techniques

The category of heuristic techniques contains a wide range of approaches. Usually, a
typical approach relies on candidate annotation generation via one or more lookup API,
an iterative disambiguation process, and a final selection strategy. STI tasks are carried
out using heuristic techniques, mostly are string similarity and majority voting, followed
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Table 4.1: Summary of the current state-of-the-art STI approaches.

Category Approach CEA CTA CPA R2I KG Released

Heuristic MTab Yes Yes Yes Wikidata 2019-2021
DAGOBAH Yes Yes Yes Wikidata, DBpedia 2020-2021
bbw Yes Yes Yes Wikidata 2020
CSV2KG Yes Yes Yes DBpedia 2019
Tabularisi Yes Yes Yes DBpedia 2019
MantisTable Yes Yes Yes DBpedia, Wikidata 2019-2021
ADOG Yes Yes Yes DBpedia 2019
LinkingPark Yes Yes Yes Wikidata 2020
SSL Yes Yes Yes Wikidata 2020
Magic Yes Yes Yes DBpedia, Wikidata 2021
AMALGAM Yes Yes Wikidata 2020

Feature-Engineering Limaye Yes Yes Yes YAGO 2010
Neumaier et.al Yes DBpedia 2016

Deep Learning Efthymiou et. al Yes Yes Wikidata 2017
DAGOBAH-DL Yes Yes DBpedia 2019
ColNet Yes DBpedia 2019
Chen et. al Yes DBpedia 2019
Sherlock Yes DBpedia 2019
Turl Yes Yes Yes DBpedia 2021

by TF-IDF and probabilistic frameworks. In the following, we walkthrough heuristic
approaches used by the state of the art.

MTab [36, 37, 38] solves the three STI tasks jointly. The authors explicitly mention clear
assumptions on what kind of table they solve, for example, the target KG is complete and
correct, and input tables are independent, which means there is no sharing of information
between input tables. MTab depends on a joint probability distribution for the three
tasks. The authors introduce a pipeline of seven steps. The lookup part is built on top
of multiple lookup services. It is started with DBpedia lookup and endpoint in 2019. In
2020, the authors identified weaknesses from the previous year; they changed their lookup
module to support both fuzzy entity and statement search. They supported Wikidata as
a target KG, including the entity dump and all history revisions in a given time interval
to generate as precise candidates as possible. MTab is computationally expensive, and the
author has to disable various parts to be able to release it to the public in 20211. MTab
is SemTab first place winner in 2019 and 2020 in the Accuracy Track, and they had the
first place prize in the Usability Track in 2021.

DAGOBAH [39, 40] constructs an annotation workflow to solve the three STI tasks.
In the first step, the authors perform an entity lookup from Wikidata dump where such
dump is stored in the Hadoop distributed file system, using Wikidata toolkit2 and PyS-
park3 framework for candidate annotation retrieval using Levenstein distance for similarity
measurement. In the second step, they follow a candidate scoring technique. A confidence
score is calculated as a mixture of a context score using Levenshtein distance and SMAPE
for literal values and numbers, respectively, and a weighted similarity score for literals.
Then, they continue with the CPA annotations. The authors retrieve all entity candidates
and select the most co-occurred property, a straightforward majority voting technique.
Afterwards, the authors solve the CEA task by selecting a final candidate with maximum

1
https://mtab.app/mtabes/docs

2
https://github.com/Wikidata/Wikidata-Toolkit

3
https://spark.apache.org/docs/latest/api/python/

https://mtab.app/mtabes/docs
https://github.com/Wikidata/Wikidata-Toolkit
https://spark.apache.org/docs/latest/api/python/
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CPA score support. Finally, they come up with CTA solutions. The same procedure for
selecting the CEA, CTA candidate is selected by a majority vote of CEA in the same
column. In addition, the authors take into account three levels of hierarchical types where
they prefer the direct types in most cases. DAGOBAH required 250 machines to run its
2020 configurations, although the authors managed to reduce it to 30 machines in 2021.
Moreover, it is the third place winner at SemTab 2020 and a first place winner at SemTab
2021.

bbw [41] solves the three STI tasks. bbw consists of a seven-step pipeline; we summarize
its steps into two core ideas. First, for candidate generation, the authors use a locally
deployed SearX4 as a meta-lookup which enables search over more than 80 engines. The
authors do not use any Wikidata dump. This module collects the lookup results and
ranks them automatically. Second, the authors rely on the Wikidata SPARQL endpoint for
contextual matching using two features: entity and property labels. Then, the authors pick
the best matches using edit distance. For the CTA solutions, the authors select the type
through wdt:P31 (instanceOf) without any further exploration of multi-hop hierarchical
types, achieving the best score on CTA with 98% F1-score during the challenge. bbw won
the third rank of SemTab 2020.

CSV2KG [42] addesses the three tasks of STI. The authors follow an iterative process
with the following steps: (i) get entity matchings using lookup services; the authors adopt
several services on the DBpedia; DBpedia lookup service, DBpedia Spotlight, and DBpedia
resource. Each service returns a ranked list of candidates. On this large pool of candidates,
they apply a disambiguation step by selecting the candidate with an rdfs:label has the
lowest edit distance with the cell value. (ii) infer the column types and relations; the
majority vote is the used strategy of the final selection. The authors reported some
inaccuracies on the DBpedia level, e.g., Barack Obama and not Donald Trump is the
president of USA5. (iii) refine cell mappings with the inferred column types and relations.
(iv) refine subject cells using the remaining cells of the row. Finally, (v) re-calculate the
column type with all the corrected annotations. CSV2KG is the second-place winner at
SemTab 2019.

Tabularisi [43] solves the three STI tasks. The authors use lookup services to generate
CEA candidates. For each candidate, an adapted TF-IDF6 score is calculated. An entity
candidate is represented by a binary feature vector in which each feature is an indicator
(1 if present, else 0) of a property used to describe the entity (e.g., instanceOf). Di�erent
features have various expressiveness. They are thus weighted by the TD-IDF technique.
Specifically, the ‘Term Frequency’ of a feature is the number of cells whose first entity
candidate has this feature, and the ‘Document Frequency’ is the total occurrences of
this feature in all entity candidates of all cells. The score of an entity candidate is a
weighted combination of its TD-IDF score, the Levenshtein distance between cell value
and candidate label, and a distance measure between cell value and the URL tokens is used
to determine the final annotation. The CTA solutions are obtained by a top-down, brute-
force search in the KG class hierarchy tree. Finally, the CPA solutions are determined
using a row-by-row majority voting technique.

MantisTable [44] tackels the three set of the STI tasks. The authors introduce a pipeline
that starts with classifying each column into three types: Named entity, Literal, and

4
https://github.com/searx/searx

5
Checked on Late Feb 2020

6
https://en.wikipedia.org/wiki/Tf-idf

https://github.com/searx/searx
https://en.wikipedia.org/wiki/Tf-idf
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Subject. The candidate generation of this approach is based on SPARQL queries which
extract all candidates containing the cell mentions. Then, the system handles the CEA
annotations by row-wise compatibility analysis and CPA by majority voting. For the
CTA task, the authors list all candidate types in addition to their number of occurrences
in the table (row coverage). After threshold filtering, the rest of the type candidates are
transformed into a graph according to the ontology hierarchy. The type scores then are
updated with the distance to the root, the highest score representing the most accurate
and specific annotation at the end, and then picked as a solution.

MantisTable SE [45, 46] the authors optimized the system by updating the scoring
function, accessing the LamAPI7 API (instead of using a SPARQL endpoint) and adding
a final disambiguation step. LamAPI is considered an e�cient way to retrieve all necessary
data for the three tasks independently from the target KG.

MantisTable V [47] is an even more optimized version that still relies on LamAPI and
applies complex string similarity functions for the entity generation task.

ADOG [48] solves the three STI tasks. It considers scores combined with string simil-
arities, frequencies of properties, and the normalized Elasticsearch score from each match
from DBpedia for the CEA task. The system weighs these scores with TF-IDF score for
types. To be able to compute the Levenshtein distance and TF-IDF, the authors use
ArangoDB8 to load DBpedia dump and index its components

LinkingPark [49] tackles the three STI tasks. Their framework consists of three main
modules: i) entity linker to generate CEA. ii) type inference to get CTA. Finally, iii) prop-
erty linker to obtain the possible relations. The entity linker contains two sub-modules for
entity generation and disambiguation. The authors use regular mention through Access-
MediaWiki API search, 1-edit distance typo via a spelling mistake corrector, and other
mentions that are used to build a fine-grained Elasticsearch index as a cascaded pipeline for
entity generation. For entity disambiguation, the authors follow a coarse-to-fine-grained
disambiguation. They rely on an iterative classification algorithm to conduct an approx-
imate inference of an entity. Afterwards, they would able to characterize both types’
consistency (coarse) and select the discriminative value. The type inference retrieves the
types of the generated CEA candidates. Then it uses the majority vote to select a final
CTA candidate. To break the ties, the authors use a minimum average level score that
is defined and based on the underlying ontology structure of the target KG. In the prop-
erty linker, the author support object properties matching by the entity property linker
sub-module and literals matching using the either perfect or fuzzy matching technique.
For the object properties, the author obtains the relations row-by-row and finally, selects
the most co-occured one as a final selection. The same procedure is applied for the lexical
property match but with an error tolerance to allow fuzzy matching. LinkingPark is the
second-place winner at SemTab 2020.

SSL [50] generates a Wikidata subgraph over a table using a four-stage pipeline to solve
the three STI tasks. At first, it leverages advanced SPARQL queries for the three tasks.
Then, it selects the subject with the highest probability value to update the resultant
graph. Afterwards, the authors apply a crawling process through Google search engine
to suggest better words for not found subjects and repeat the first two steps. Thus, the
authors overcome the problem of spelling mistakes. Finally, for literal properties matching,
the authors tolerate ±1.5% of the numerical values.

7
https://bitbucket.org/disco-unimib/lamapi

8
https://www.arangodb.com/

https://bitbucket.org/disco-unimib/lamapi
https://www.arangodb.com/
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Magic [51] addresses the three STI tasks. It adopts the approach of generating com-
parison matrices, namely INK embeddings, to speed up computational e�ciency. INK
embeddings are representations of attributes and values for an entity or table context for
a cell mention. The complete comparison matrix is generated by fusing multiple candid-
ates. The system annotates CEA by measuring the compatibility between INK embeddings
from KG and the input table. For annotations, the authors focus on the key column. They
do the lookup using public endpoints of the target KG for each cell in the key column,
then leverage its neighborhood to find the candidates for surrounding cells in the same
row (they avoid performing the lookup on the whole table due to the limitation of pub-
lic API usage). Misspellings might be challenging for Magic, and detecting synonyms of
attributes as well. Nonetheless, INK embeddings improve computational e�ciency and
provide a way to implement column integration.

AMALGAM [52] covers both CEA and CTA only using a three-step pipeline. The au-
thors rely on Wikidata lookup services with a focus on spelling mistakes handling. They
use the row context where all entities belong to the same thing as the only annotation con-
text. This gives a reason why AMALGAM is e�cient and less computationally expensive.
Results show a maximum score of 92% for both tasks.

4.1.1.2 Feature-Engineering Techniques

This category relies on the hand-crafted feature vectors that represent a table. For ex-
ample, the authors of this category extract statistical and lexical features. Such as the
distribution of numerical values, the occurrence of cell mentions, and textual similarity
among table rows and columns. Then, they use such features with machine learning
models like SVM, Random Forest, and KNN algorithms. Since these are all supervised
learning techniques, a labeled dataset is required for the training. The amount and quality
of training data, and consequently the quality of input features, significantly impact the
model performance. We notice that those techniques suites the CTA task more than the
others, since columns are more subject to statistical features than other STI tasks.

Limaye [53] introduce one of the earliest work on STI that tackels the the three tasks.
The approach collects the TF-IDF cosine similarity between cell mention and entity label
and the compatibility between the cell type and the column type to execute the CEA task.
CTA task depends on TF-IDF cosine similarity between column header and entity label
in the corresponding KG. The CPA annotation depends on the compatibility between the
relation and column pairs. All these features are weighted through a machine learning
framework.

Neumaier et.al [54] focus on CTA labeling for numerical columns. Their work is not
limited to labeling a unique prediction but expands the scope of labeling to the surround-
ing information. For example, instead of labeling ‘height’, this system will label it as
‘the height of an athlete playing basketball in the NBA’. To achieve this, the authors
proposed three steps pipeline: i) build Background Knowledge Graph (BKG) based on
DBpedia where its nodes consist of typical numerical values, annotated with context in-
formation. For example, grouped by properties and their shared domain (subject) pairs.
Such BKG contains the hierarchical structure and is divided into multiple multi-level
groups to provide context. ii) to search for mappings using k-nearest neighbours (kNN)
for making predictions. Finally, iii) to aggregate the results at di�erent levels of the BKG
to find the most likely context in terms of properties and types. The authors also explore
the system’s performance at di�erent hierarchy levels for the BKG built on DBpedia and
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Open Data. They pointed out that DBpedia still has limitations in terms of data coverage
and freshness when compared with other open datasets. For example, the Austrian Open
Data Portal has tables generated by weather stations every 15 minutes. Comparatively,
DBpedia typically has numeric values only for ‘current’ or ‘latest’.

4.1.1.3 Deep Learning Techniques

Deep Learning has achieved many successes in various domains thanks to the availability of
massive amount of data and powerful computing resources. It has attracted the attention
of the STI community over the past few years. KG embedding techniques represent one
direction beyond this work’s scope. However, in the following, we show some examples
that leverage deep learning as a direct NLP model in the scope of STI.

Efthymiou et. al [55] provide di�erent methods for entity linking, normal cell to an
entity annotation (CEA), as well as mapping the entire row to instance (R2I). Such a sys-
tem assumes that a column’s correct CEA candidates should be semantically close. From
this assumption, a weighted correlation subgraph in which node represents a CEA candid-
ate is constructed. The edges are weighted by the cosine similarity between two related
nodes. The best candidates are the ones whose accumulated weights over all incoming
and outcoming edges are the highest. In addition, a hybrid system, as a combination of a
correlation subgraph method and an ontology matching system, is also introduced, which
achieves a significant improvement in the final results.

DAGOBAH-DL [56] Solves the three STI tasks The author assumes that entities in
the same column are close in the embedding space. Candidates are first retrieved using
a lookup based on regular expressions and the Levenshtein distance. Then, the author
converts the retrieved entities into vector space. The selection of the candidate is made
on several steps starting from the clustering formulation (rows coverage-wise), The author
applies a K-means clustering that is performed using TransE’s pre-trained embedding to
cluster the entity candidates. Then they give each cluster a score, pick the one with the
highest score, and rank its candidates. The final ambiguity is resolved via a confidence
score based on the row context of the candidates.

ColNet [57] tackles only the CTA task. The authors use a Convolutional Neural Net-
work (CNN) trained by classes contained within a KG. The predicted annotations are
combined with the results of a traditional KG. The final annotation is selected using
a score that selects the lookup solutions with high confidence and otherwise resorts to
the CNN predictions. Results have shown that CNN prediction outperforms the lookup
service for a larger knowledge gap. In addition, the authors explored the idea of ensem-
bling the predictions from ColNet and those from the lookup service. Such an ensemble
strategy gave the best scores since it benefits from both techniques. Afterwards, the au-
thors extended the entity representation by considering other cells in the same row (row
context). Thus they create a property feature vector, a.k.a, Property to Vector (P2Vec).
Such P2Vec is an additional signal to the neural network, which yields better results [58].

Sherlock [59] Learns the CTA task using 1588 features extracted from a single column
of a given relational table. The features are divided into four categories: i) character-
wise statistics (e.g., frequency of the character ‘c’). ii) column statistics (e.g., mean, std
of numerical values). iii) word embedding, and iv) paragraph embedding. Except for
the column statistics feature, other features are compressed into a fixed embedding size
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Table 4.2: Annotation method, data sources for existing STI benchmarks and their corresponding
targets and release year. Entries for SemTab are aggregated over all rounds each.

Method Dataset Data Source Target Annotation Released

Automatic SemTab 2019 Wikidata, Wikipedia DBpedia 2019
SemTab 2020 Wikidata, Wikipedia Wikidata 2020
SemTab 2021 Wikidata, Wikipedia Wikidata, DBpedia 2021
GitTables GitHub DBpedia, Schema.org 2021

Manual Limaye Wikipedia, HTML Tables YAGO, DBpedia 2010
T2Dv2 WebTables DBpedia 2016
2T WebTables, Other Wikidata 2020

using a subnetwork. A two-fully connected layer network is trained on both the embed-
ding features and column statistics feature to predict a column type annotation among
75 types inherited from T2Dv2 [60] dataset. The evaluation shows a limited result on
various column types, including Dates and Industry. However, it is less sensitive to purely
numerical values or values appearing in multiple classes.

Turl [61] pioneers the application of pre-trained language models such as BERT in the
STI tasks. It provides a universal contextualized representation for each table element
(e.g., caption, header, content cells), which can be fine-tuned and applied in various
downstream tasks such as CEA, CTA, and CPA. The model employs a Transformer-
based encoder [62] to capture the information from table elements. For this goal, the
input table is first serialized into a sequence of caption tokens, title tokens, header tokens,
and row-by-row cells. A cell consists of its content (mention) and a candidate entity rep-
resenting it in a KG. The sequence of tokens is then converted into embedding using a
word embedding for textual tokens and KG embedding for entity tokens. To reduce the
redundancy in the fully connected attention learning and better draw the inter and intra-
column, inter-and intra-row, and column-row interaction, the conventional attention layer
is masked by a so-called visibility matrix which allows only a portion of table elements to
participate in the modeling of a specific element. For example, cells in the same row or
the same column can interact with each other. Apart from the BERT’s Masked Language
Model objective, TURL introduces an additional Masked Entity Recovery objective to
reinforce the learning of factual knowledge embedded in the table and represented by KG
entities. The model is pre-trained on 570K unlabeled Wikipedia tables.

4.1.2 Benchmarks

In the following, we show the current and the most used benchmarks as STI tasks.
Table 4.2 describes the existing benchmarks in terms of their original data source, target
KG, and released year. Table 4.3 demonstrates the statistics of the current benchmarks.
It shows their number of tables, average rows, columns, and cells, and their coverage for
STI tasks.

Limaye [53] is one of the earliest gold standard used for STI tasks. It aims to annotate
web tables using the YAGO KG. The dataset is divided into four subsets according
to the data source, the labeling method, and application scenarios. Three subsets are
manually labeled, while the fourth one is automatically generated. Altogether, constructs
the final benchmark with 428 annotated tables. Annotation errors were reported for the
automatically labeled subset [63], which were corrected by Bhagavatula et al. [64] in 2015.
Later on, in 2017, Efthymiou et al. [55] adapted the disambiguation links to the DBpedia
KG.
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Table 4.3: Summary of existing STI benchmarks. ST19 - ST21 (SemTab editions). ST21-R1_W
and ST21-R1_D use Wikidata (W) and DBpedia (D) as targets. ST21-H2, and H3 are HardTables
for Round 2 and 3 during SemTab. ST21-Bio is BioTables at SemTab Round 2. ST21-Git is the
published version of GitTables during SemTab Round 3.

Dataset Tables Avg. Rows
(± Std Dev.)

Avg. Cols
(± Std Dev.)

Avg. Cells
(± Std Dev.)

CEA CTA CPA

ST19-R1 64 142 ± 139 5 ± 2 696 ± 715 8, 418 120 116
ST19-R2 11,924 25 ± 52 5 ± 3 124 ± 281 463, 796 14,780 6,762
ST19-R3 2,161 71 ± 58 5 ± 1 313 ± 262 406, 827 5,752 7,575
ST19-R4 817 63 ± 52 4 ± 1 268 ± 223 107, 352 1,732 2,747

ST20-R1 34,294 7 ± 4 5 ± 1 36 ± 20 985,110 34,294 135,774
ST20-R2 12,173 7 ± 7 5 ± 1 36 ± 18 283,446 26,726 43,753
ST20-R3 62,614 7 ± 5 4 ± 1 23 ± 18 768,324 97,585 166,633
ST20-R4 22,390 109 ± 11, 120 4 ± 1 342 ± 33, 362 1,662,164 32,461 56,475

ST21-R1_W 180 1, 080 ± 2, 798 5 ± 2 4125 ± 10947 663,655 539 NA
ST21-R1_D 180 1, 080 ± 2, 798 4 ± 2 3, 952 ± 10, 129 636,185 535 NA
ST21-H2 1,750 17 ± 8 3 ± 1 55 ± 32 47,439 2,190 3,835
ST21-Bio 110 2, 448 ± 193 6 ± 1 14, 605 ± 2, 338 1,391,324 656 546
ST21-H3 7,207 8 ± 5 2 ± 1 20 ± 15 58,948 7,206 10,694

ST21-Git 1,101 58 ± 95 16 ± 12 690 ± 1, 159 NA 2,516 NA
ST21-Git 1,101 58 ± 95 16 ± 12 690 ± 1, 159 NA 720 NA

2T 180 1, 080 ± 2, 798 5 ± 2 4125 ± 10947 663,655 539 NA

T2Dv2 779 85 ± 270 5 ± 3 359 ± 882 NA 237 NA

Limaye 428 24 ± 22 2 ± 1 51 ± 50 NA 84 NA

T2Dv2 [60] is the recent edition of T2D [65] gold standard where annotation errors
are fixed. It is widely used by STI systems like [53] and others. Together with Limaye,
and before 2019, to the best of our knowledge, were the only benchmarks that are used
by STI systems. T2Dv2 covers the tasks of row-to-instance (R2I), attribute-to-property
that maps to our definition of CPA, and table-to-class for 779 tables that are derived from
WebTables [66] where the target KG is DBpedia. In addition, T2Dv2 provides extensive
metadata, such as the context of the table and whether the table has a header.

SemTab2019 [67] is the first benchmark that is introduced by SemTab challenge. It
is an automatically generated dataset from Wikidata and Wikipedia with DBpedia as
a target KG. Such a benchmark consists of four folds representing the rounds of the
challenge. In total, it consists of 15k tables annotated for the three STI tasks. The
authors introduced a data generator that consists of three steps: 1) Profiling, where it
outputs a list of classes with their number of instances. Then, the number of instances
that have a value for the property, the datatype for datatype properties, and the range
class for object properties. Such kind of information are used in 2) Raw table generation
by using the SPARQL endpoint of the target KG. Finally, 3) Table refinement, where the
authors add artificial noise like spelling mistakes to cell values.

SemTab2020 [68] is the used name in this section to refer to the automatically gener-
ated dataset by the SemTab challenge during its second edition in 2020. It has four folds,
each of which is released during each round of the challenge. In total, it consists of more
than 31k tables that are annotated from Wikidata. The common data issues in such
benchmarks are misspellings and ambiguity among table rows. SemTab2020 also focuses
on testing the ability of the matching algorithm to scale due to its high number of tables.
The first two editions of SemTab benchmarks cover the three tasks of STI.
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ToughTables (2T) [69] is a set of 180 tables that are annotated from Wikidata. The
first use of it is during SemTab 2020 fourth round. It focuses on the ambiguity among
entity mentions in a way that makes it hard to disambiguate by a human expert. The
authors did not rely on the automatic generation of the dataset only but also provided
manual curation of such annotation to avoid false positives while evaluating a matching
algorithm. It contains real tables that reflect a knowledge gap between the target KG
and an input table. Misspellings are frequent and intense, which is useful for testing the
weight of lexical features an algorithm could use. In addition, a large number of rows is
used to evaluate the system’s performance. Such kind of unique features distinguish 2T
from SemTab2020’s automatically generated benchmarks and make it hard to solve by a
matching technique.

SemTab2021 [70] is the benchmark that was introduced by SemTab’s third edition in
2021. It has three folds that represent the rounds of the challenge. In the first fold, the
authors reused the 2T dataset and created another version that is annotated from DB-
pedia (see Table 4.3 ST21_R1_W, ST21_R1_D respectively). The other folds consist
of so-called, HardTables, which focus on the misspellings and ambiguities like the first
two editions of SemTab benchmarks. In addition, a special fold during the third round
is also presented. This subset is derived from the biomedical domain. Its unique charac-
teristic is that it contain some columns with too long descriptions from Wikidata. Those
characteristics are for testing matching algorithm performance.

GitTables [71] is a subset of [72] that is used during SemTab 2021 third round. It is
a collection of 1,101 tables crawled from GitHub. They are annotated from DBpedia and
schema.org for only CTA task. However, we analyzed the provided CTA targets; we found
that the first column has only a valid CTA type while the rest are either object or data
properties. We mean by valid CTA type as an actual semantic class; thus, it follows the
definition of CTA task. GitTables has a sparse table structure, e.g., it might have a target
asking for a CTA of an empty column.

4.2 Textual Data Interpretation

In this section, we cover two core tasks for text interpretation. At first, Named Entity
Recognition (NER) to extract proper entities from the text; those would act as KG nodes.
Second, Relation Extraction (RE) to detect and classify the relations among these entities
that would be the named edges of the desired KG. In addition, we highlight a few examples
of the domain-specific BERT-based models that typically solve such tasks.

4.2.1 Named Entity Recognition (NER)

To the best of our knowledge, there are two surveys for NER task. On the one hand, the
classical survey by Nandeau et al. [31] in 2007. On the other hand, the deep learning-based
techniques by Li et al. [30] in 2020. Both cover all aspects for NER tasks. Based on their
classification, we can categorize NER approaches into 1) feature-engineering methods and
2) deep learning-based techniques. In the first category, authors manually craft the feature
vector to detect the entities of interest. Such approaches are time-consuming and have
limited capabilities of generalization.

In the second category, for example, BioNER [73] uses deep neural networks to solve
the NER task. In such a family of techniques, authors rely on the network architecture
to learn the feature vector in an end-to-end manner. The cutting-edge BERT [74] models
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outperform the state-of-the-art approaches in such a task. In the below section, we give
an overview of these domain-specific BERT-based models.

There is a wide range of evaluation benchmarks for NER task. Most of them are from
the general domain. For example, CoNLL03-05 [75, 76] is a four tags annotated benchmark
based on Reuters news. In addition, OntoNotes [77] is an annotated corpus collected
from magazines, news, web with 18 classes. However, in our work, we are interested in
biodiversity-specific benchmarks. We give an overview of them in the following.

COPIOUS [78] is a gold standard corpus covering a wide range of biodiversity entities.
It has 668 documents downloaded from the Biodiversity Heritage Library (BHL) with
over 26K sentences and more than 28K entities. Only two annotators manually annotated
the corpus with five categories of entities as follows: taxon names, geographical locations,
habitats, temporal expressions, and person names. The proposed gold standard has been
developed to support the development of NER and RE using two di�erent machine-learning
techniques. However, NER corpus is the only available one.

Species-800 [79] is based on 800 PubMed abstracts, such that each 100 is from one
of eight categories: bacteriology, botany, entomology, medicine, mycology, protistology,
virology, and zoology. Similar to COPIOUS, the Species-800 corpus is annotated with
taxon entities and normalized to the NCBI Taxonomy database9.

LINNAEUS [80] is a set of 100 full-text document from the PubMed Central Open
Access (PMC OA) document set that was randomly selected and annotated for species
mentions. The corpus was only annotated for species (except for the cases where genus
names were incorrectly used when referring to species). As in the case with COPIOUS
and Species-800, all mentions of species terms were manually annotated and normalized
to the NCBI taxonomy IDs of the intended species, except for terms where the author did
not refer to the species.

4.2.2 Relation Extraction (RE)
One of the most used techniques for RE is distant supervision that appeared in two well-
known surveys [33, 34]. Distant supervision aims at reducing the manual e�ort of labeling
training data by exploiting a third-party source to generate such data, e.g., KGs. However,
the provided evaluation benchmarks are typical of the general domain, and adapting it to
a domain-specific task, e.g., biodiversity, is challenging.

EU-ADR [81] has been annotated for drugs, disorders, genes, targets (Target: genes,
proteins, and sequence variants of genes and proteins), and their inter-relationships. For
each of the drug–disorder, drug–target, and target–disorder relations, three experts have
annotated a set of 100 PubMed abstracts, three levels of relationship: positive and neg-
ative associations, speculative associations (more focus on binary relations - exist/ non-
existence, hypothesis).

GAD [82] is a successor development of EU-ADR (same researchers). The authors used
BeFree system, a text mining system, to extract relations between genes and diseases,
drugs and diseases. In the evaluation of RE systems for gene-disease associations, the
original GAD corpus does not contain locations where the entities exist. Afterwards,
‘Location’ was added with an NLP tool. Then curators manually added the relationship,
only binary (true/false) relations. The original EU-ADR and GAD data are unavailable.

9
https://www.ncbi.nlm.nih.gov/taxonomy

https://www.ncbi.nlm.nih.gov/taxonomy
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In this thesis, we used a published pre-processed version10 for evaluating our textual data
interpreter.

BioRelEX [83] contains 2010 sentences from biomedical journals, 33 types of entities
such as proteins, genes, chemicals, and processes. In addition, it contains various sub-
entity types such as protein-complex and protein-domain. For relation, it includes only
binary relation annotation (1- binding exists, 0 - not sure, -1 - binding does not exist), It
considered nested entities as well. There is no information on how many annotators were
involved. The data is avaiable11.

COPIOUS [78] is generated by using PASMED—a pattern-based system that can
identify any binary relations between entities within a single sentence. It supports four re-
lations: Taxon occur Habitat, Taxon occur Temporal Expression, Taxon occur Geographic
Location, Taxon seen by Person. This data is not available.

4.2.3 BERT-based Models

First, we give an overview of the original BERT [74] model. It is a contextualized word
representation that is based on a masked language model. BERT is pre-trained using
bidirectional transformers [62]. Due to the nature of language modeling, where future
words cannot be seen, previous language models were limited to a combination of two
unidirectional language models (i.e., left-to-right and right-to-left). BERT uses a masked
language model that predicts randomly masked words in a sequence and hence can be
used for learning bidirectional representations. A standard procedure after pre-training
is fine-tuning a BERT model with minimal architecture change. BERT obtains state-
of-the-art performance on most NLP tasks. BERT is pre-trained on massive corpora
that are derived from the general domain. However, applying it directly to domain-
specific datasets showed limited performance and opened the demand for domain-specific
BERT-based models. In the following, we give an overview of the domain-specific BERT-
based models. BERT-based techniques usually solve the two tasks jointly. We present
those domain-specific BERT-based models from the biomedical domain as follows. We
compare them in terms of the pre-training data and downstream tasks they support.
BioBERT [8] is a pioneer domain-specific BERT model in the biomedical domain. It is
initialized by the original BERT’s weights. BioBERT is pre-trained on biomedical corpora
from PubMed and PubMed Central (PMC). In addition, BioBERT is fine-tuned on three
downstream tasks for NER, RE, and Qestion Answering (QA). The results showed notable
improvements in the obtained scores on the task-specific datasets. ClinicalBERT [84] is
another example from the biomedical domain. It is pre-trained on around 2 million clinical
notes, and unlike BioBERT, ClinicalBERT is fine-tuned for NER task only.

4.3 Metadata Interpretation

In this section, we give an overview of the recent work that translates various types of
metadata into a KG. During our literature review, we found that scholarly metadata has
witnessed various e�orts transforming them into KG. Thus, we focus on such a domain.

10
https://github.com/dmis-lab/biobert

11
https://github.com/YerevaNN/BioRelEx/releases

https://github.com/dmis-lab/biobert
https://github.com/YerevaNN/BioRelEx/releases
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SCM-KG [85] integrate scholarly communication metadata into a KG that is called
SCM-KG from two di�erent sources DBLP12 and Microsoft Academic Graph (MAG)13.
Their motivating example is the disambiguation of person entities that represent authors.
Such entities included a list of publication IDs as a disambiguation property. The authors
claimed the completeness of SCM-KG since each data source covers di�erent aspects. For
example, DBLP has a complete listing for authors and publications. However, MAG has
more keywords and abstracts. The authors introduced a pipeline that consists of 1) two
manual steps concerning data acquisition and pre-processing. 2) three automatic steps,
including ontology matching using rule-based techniques, similarity measurement, and in-
stance linking. The authors deal with various data sources like CSVs, PDFs, and structured
databases. Such heterogenous input may use di�erent schemas. e.g., DBLP and MAG
model the same concepts (e.g., a�liation) di�erently. Thus, the authors involved a map-
ping step to create their target unified graph through an ontology engineering phase. They
used subsets from Dublin Core and FOAF ontology, and they created missing vocabulary
themselves. They provided an entity linking step to their pipeline for ontology matching
via a Jaccard similarity. They used the common title and the publication year, if provided,
to match the instances to the ontology.

ENVENTS [86] introduced a dataset for top-tier conferences in the computer science
field, e.g., ISWC, ESWC, CVPR. It encapsulates scientific events in terms of historical
data about the publications, submissions, start date, end date, location, and homepage
for 25 top-prestigious event series (718 editions in total) in five computer science com-
munities. The authors manually collected and analyzed the metadata (raw data) since
1990 of these conferences from di�erent sources like DBLP, and ACM Digital Libraries14.
Then, they applied a pre-processing data phase where they aimed to fill in the missing
data, identify and correct incorrect data, and remove irrelevant information. Thus, four
tasks are involved in this phase: data integration, data cleansing, data transformation,
and event name unification. Then, the authors analyzed the collected metadata of the
events in terms of, e.g., the h5 index, average acceptance rate, and the number of editions
of each event. The primary use case of such work is the Qestion Answering (QA). The
dataset is publicly available online in three formats (CSV, XML, and RDF).

ENVENTSKG [87, 88] is the successor of the previous work. The authors released
their dataset as a unified KG instead of individual RDF dumps, including data for more
computer science communities. I.e., EVENTSKG is a knowledge graph that contains
metadata of top-40 prestigious events series. Like EVENTS, the main goal of EVENTSKG
is to facilitate the analysis of events metadata by enabling them to be queried using
semantic query languages like SPARQL. This work relies on the Scientific Event Ontology
(SEO) [89] as a data model. It is a reference ontology for modeling data about scientific
events such as conferences, symposiums, and workshops. SEO reuses several well-designed
ontologies, such as FOAF and Dublin Core. It defines its own vocabulary if missing from
the existing ontologies. Two steps are included to enhance their previous pipeline. On the
one hand, for the linked data generation, where the authors developed an RDFer, a Java
tool to convert input data from CSV to linked data (RDF/XML syntax). The authors
include two types of validations of the generated RDF, syntactic and semantic validation.
The former validation is done through the RDF validation service15. The latter is applied
via Protégé reasoners. On the other hand, the linked data enrichment (LDE) is included

12
https://dblp.org/

13
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/

14
https://dl.acm.org/

15
https://www.w3.org/RDF/Validator/

https://dblp.org/
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
https://dl.acm.org/
https://www.w3.org/RDF/Validator/
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to infer the interlinking relationships between RDF triples using inference engines, i.e.,
reasoners. The input of LDE is the RDF triples produced by the Linked Data generation.
The output is a set of consistent RDF triples, including the newly discovered relationships,
where available.

Schröder et al. [90] File names are considered metadata for files that have a minimal
context. Despite the unusual source to create a KG, the authors managed to create a
Personal Knowledge Graph (PKG) from file names as the only data source used in a
semi-automatic approach. A user that is defined as a knowledge engineer is responsible
for creating the RDF triples. However, an active learning technique aids the knowledge
engineer by suggesting entity types. The authors used rule-based techniques to extract
terminologies of interest. They followed several steps to unify the extracted entities and
populate the ontology. Then, they conducted taxonomic and non-taxonomic relations
using language resources. The authors used Jaccard and Embedding-based similarities,
for instance, matching, and type matching, respectively.

4.4 Summary
In this chapter, we explained three sub-areas related to our work. Figure 4.1 shows a
summarization of these works for each research area. At first, we gave a detailed overview
of the approaches that tackle the Semantic Table Interpretation (STI) tasks and the most
common benchmarks used to evaluate such approaches. Based on the current state of
the art, such STI approaches are resource hungry and require massive data to generate
semantic mappings for a given table from a target KG. From the benchmark perspectives,
the existing ones are AG and derived from the general domain. Second, we showed the
core tasks for textual data understanding with their common approaches and benchmarks
in the domain-specific and general domains. We can argue that the only available domain-
specific resources are for the biomedical domain. Due to their limited performance, we
cannot rely on the original general domain models for domain-specific tasks. Finally, we
discussed the common recent approaches that transform metadata into a KG. Most of the
introduced works are developed in the scope of the scholarly communication field. They
are manual approaches with the aid of semi-automatic techniques for the entity linking
step only.

We see these open areas that require a solution to fulfill our ultimate goal of hav-
ing a domain-specific KG for the biodiversity domain: 1) An approach for STI that rely
on minimal data sources for high usability and to suit real-world scenarios. 2) A se-
mantic model that describes the core concepts and relations of the biodiversity domain
3) Biodiversity-specific models that can interpret textual data and metadata with high
quality. 4) Biodiversity-specific evaluation benchmarks for these tools.
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Chapter 5

Solution Overview

Three research areas are involved in this work; Tabular data interpretation (TabI), Textual
data interpretation (TexI), and Metadata interpretation (MI). We gave their definitions in
Chapter 2. To facilitate the explanation of each contribution pillar in this thesis, Figure 5.1
shows the schema of each of them. This a figure gives an abstract overview of a research
project: i) a Data Model that could be a conceptual model, ontology, or existing KG like
Wikidata or DBpedia. ii) Framework that solves the required tasks for each module;
given that, such framework detects both concepts and relations of the respective data
model. Finally, iii) Benchmark is a collection of general or domain-specific benchmarks
that exist or we develop. We use such benchmarks to assess our developed techniques.
Thus, in the figure, our framework is evaluated_by benchmarks in the evaluation part.
The domain-specific datasets we constructed have the schema_of the data model that is
created at the first item to ensure a fair assessment.

Due to the heterogeneity of the data sources we deal with to construct a KG, the overall
contribution that we present in this thesis is not a one-button solution. Each data source
has its own set of unique characteristics and challenges. Thus, we developed individual
components for each listed research area or data source. Such modules share the simple
schema we discussed above. We give the details of each developed module in the following
section. In addition, in this chapter, we explain how these modules orchestrate to define
the ultimate goal of this work.

Framework

Benchmark

Data Model
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Figure 5.1: Schema of contribution pillar.
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5.1 Individual Components

Since we have three research areas, we developed various contributions to answer our
previous research questions (see Chapter 2). Following the schema we discussed earlier,
our contributions are either: 1) a data model (conceptual model or an ontology), 2) a
framework that solves specific tasks that detects the entities, classes, and relations, or 3)
domain-specific benchmarks that are used to evaluate our developed framework. In the
following, we list our contributions regarding the subject research area.

At first, concerning TabI, where this area should cover the ‘How can we use tabular
datasets for KG construction? (RQ1)’. As shown in the current literature (see Chapter 4),
the existing frameworks are either limited to solve only one task of the Semantic Table
Interpretation (STI) tasks or require massive storage due to the dependencies on KG
dumps. In addition, the respective benchmarks are either general domain or Automatically
Generated (AG) datasets. Thus, on the one hand, we developed a framework, JenTab,
that solves the complete set of the STI tasks. On the other hand, we constructed a
biodiversity-specific benchmark, BiodivTab, that we used to evaluate JenTab. The former
contribution is presented in Chapter 6. The latter is explained in Chapter 7 respectively.

Second, in the scope of TexI, such that this area covers the ‘How can we benefit from
the information in the associated publications to enrich the constructed KG? (RQ2)’.
We found limited contributions to the biodiversity domain in the current existing related
work. Thus, we created a data model for the most common concepts and their relations
in the domain. Such a conceptual model is defined as BiodivOnto. We give the details
of its construction in Chapter 8. In addition, we developed a BERT-based model, Biod-
ivBERT, that detects such concepts and relations from unstructured text. We explain the
development phases of it in Chapter 9. BiodivBERT detects both concepts and relations
that are in the BiodivOnto. Thus, such ontology acts as the schema of the BiodivBERT.
To evaluate the BiodivBERT, and due to the limitations we explained in the related work
regarding the limitations of the existing benchmarks, we constructed two corpora for both
Named Entity Recognition (NER) and Relation Extraction (RE). We introduced both of
them under one package, BiodivNERE. We give the details of the construction of such
corpora in Chapter 10.

Finally, in the context of the last research area, MI, that covers the ‘How can we
leverage the existing metadata to enrich the constructed KG? (RQ3)’. It is inspired by the
work that is presented in the scope of the scholarly communication field (see Chapter 4).
We constructed an ontology that captures the common concepts and their relations in
the biodiversity metadata, BMO. In addition, we developed a framework, Meta2KG, that
detects such concepts and relations using unsupervised learning techniques. Moreover,
we manually labeled ground truth data, MetaGT, to evaluate our approach. We discuss
the details behind the data model’s construction, the framework’s development, and the
annotation process of the evaluation benchmark in Chapter 11.

5.2 Orchestration

Figure 5.2 depicts our contributions map and how the individual components interlink to
formulate the big picture of this thesis. Horizontally, we demonstrate our modules that
describe the desired data sources; tabular data, textual data, and metadata. Vertically,
we use the default schema of a research project. Such schema consists of a data model
(conceptual model, an ontology, or an existing KG) and its corresponding framework that
detects the entities and their relations from the corresponding data source. Finally, the
benchmark we used to evaluate such a technique. Such benchmark is either general domain
or domain-specific that has the schema of the data model. In the figure, the ‘blue’ boxes
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are the existing components that we directly use from the state of the art. However, the
‘green’ boxes illustrate our own contributions. Thus, our developed components vary from
data models to benchmarks.

We define the first module by the contributions under the first TabI tabular data. Un-
der this area, we developed JenTab as a framework that solves the STI tasks and evaluated
by a set of general domain benchmarks; SemTab 2020-2022 [68, 70, 91], GitTables [71], and
Tough Tables (2T) [69] dataset. In addition, we evaluate JenTab by the domain-specific
benchmark, BiodivTab. Both contributions show our attempts to solve the first research
question RQ1.

The second module shows our contributions concerning the second research area TexI,
textual data. It contains our developed data model, BERT-based framework, and eval-
uation benchmarks. They correspond to BiodivOnto, BiodivBERT, and BiodivNERE.
BiodivOnto is the schema of both BiodivBERT and BiodivNERE. In addition, we eval-
uate the BiodivBERT by BiodivNERE besides a collection of the existing benchmarks
like Species-800 [79], COPIOUS [78], GAD [82], EU-ADR [81]. The three contributions
demonstrate our trial to solve the second research question RQ2.

The final module defines our contributions to the third research area, MI, metadata.
Similar to the second module, we contributed to the fundamental parts of the contribution
schema. We developed Biodiversity Metadata Ontology (BMO), Meta2KG, and MetaGT
that correspond to the data model, framework, and evaluation benchmark. Unlike the
previous modules, we do not include general domain evaluation.
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Figure 5.2: Contributions’ map.
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Chapter 6

JenTab Toolkit

Tabular data are a ubiquitous source of structured information. In our work, they are
the primary data source we transform into Knowledge Graphs (KGs). The information
contained within them is hardly accessible to automated processes. Cause issues range
from misspellings and partial omissions to the ambiguity introduced using di�erent nam-
ing schemes, languages, or abbreviations. The Semantic Web promises to overcome the
ambiguities, but it requires annotating table elements like cells and columns with entities
from existing KGs. However, automating this semantic annotation, especially for noisy
tabular data, remains challenging.

The process of annotating a tabular dataset using a KG is called Semantic Table
Interpretation (STI). We focus on three tasks throughout this chapter, a detailed discus-
sion of STI is in Chapter 3. The objective is to map individual table elements to their
counterparts from the KG as illustrated by a biodiversity example in Figure 6.1 (naming
according to [22]): Cell Entity Annotation (CEA) matches cells to individuals, whereas
Column Type Annotation (CTA) does the same for columns and classes. Furthermore,
Column Property Annotation (CPA) captures the relationship between pairs of columns.

JenTab is a modular system to map table contents onto large KGs like Wikidata [92]
and DBpedia [93]. This toolkit can annotate large corpora of tables. In our context, under
the first research area Tabular data interpretation (TabI), JenTab is the framework
that matches tabular data to KGs. It follows a general pattern of Create, Filter and Se-
lect (CFS): First, for each annotation, initial candidates are generated using appropriate
lookup techniques (Create). Subsequently, the available context is used in multiple iter-
ations to narrow down these sets of candidates as much as possible (Filter). Finally, if
multiple candidates remain, a solution is chosen among them (Select). We provide several
modules for each of these steps. Di�erent combinations (pipelines) allow for fine-tuning
the annotation process by considering both the modules’ performance characteristics and
their impact on the generated solutions. Besides the default pipeline that implements the
complete picture of the CFS pattern, since 2021, we have continuously developed various
pipelines based on the benchmark characteristics we tried to tackle.

We developed and tested JenTab during the participation in the Semantic Web
Challenge on Tabular Data to Knowledge Graph Matching (SemTab)1 challenge 2020-
2022. JenTab won the second place prize (Usability Track) by IBM Research2 dur-
ing ISWC 2021 [24]. In addition, JenTab was awarded the Artifacts Avialabilty
Badge by SemTab 2022. All experiments are based on the large corpora provided by
SemTab [67, 68, 70, 69, 91] matching the content to Wikidata, DBpedia, schema.org. In
addition, we evaluated JenTab in the biodiversity domain using the BiodivTab benchmark.

1
http://www.cs.ox.ac.uk/isg/challenges/sem-tab/

2
https://research.ibm.com/
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Figure 6.1: Illustration of Semantic Table Interpretation (STI) tasks4(from [14]).

We report the corresponding scores in this chapter and discuss the construction details of
BiodivTab in Chapter 7.

In this chapter, we present JenTab’s distributed architecture in Section 6.1. We explain
our preprocessing steps and o�ine resources in Section 6.2 and Section 6.3, respectively.
We explain all possible contexts we used to solve STI-tasks in Section 6.4. In addition,
we describe the CFS pattern that we developed to disambiguate entities in Section 6.5.
Moreover, we describe our default pipeline and its variations that we developed based on
the evaluating datasets charactristics in Section 6.6 and Section 6.7, respectively. After-
wards, We demonstrate various experiments to evaluate the performance of JenTab in its
three years of continuous development in Section 6.8. This includes a detailed analysis of
individual components, the impact of di�erent approaches, accuracy scores, and runtime.
Finally, we summarize this chapter and conclude in Section 6.93.

6.1 Architecture

Figure 6.2 illustrates the most recent system design of JenTab that we developed in 2021.
For the previous architecture, please refer to our paper [9]. We opted for a distributed
approach that allows us to split the workload across several nodes. The left-hand side
depicts the two types of nodes: A central ‘Manager’ node orchestrates a family of as-
sociated ‘Runner’ nodes. Runners contact the Manager to request new work items, i.e.,
raw tables. After a work item is finished, its results are sent back to the Manager, and
the next one is requested. The result of processing a single table consists of three parts:
results correspond to annotations of tasks, audit data that allows assessing the impact of
individual modules, and possibly a list of any errors thrown during the processing. The
Manager’s dashboard contains information about the current state of the overall system,
i.e., processed versus not yet tables. In addition, it contains data about connected Run-
ners and errors thrown (if any). Moreover, it gives an estimate of the remaining time
needed. Finally, once the processing has finished, all gathered annotations can also be
accessed from this central point. The Runner coordinates the processing of a single table
at a time through a series of calls to di�erent services. ‘Solver’ is the core service that
performs the preprocessing steps and executes the chosen pipeline on an assigned table.
Preprocessing includes data cleaning and primitive type detection. We discuss such steps
in detail in the Preprocessing section (Section 6.2). Conceptually, Solver depends on the
following two kinds of services. On the one hand, the Proxy service that we have two
instances of the, ‘Wikidata Proxy’, and ‘DBpedia Proxy’. We use such kinds of prox-
ies to communicate with the target KG. Each of these encapsulates both Lookup API,
which is meant for fuzzy search, and the SPARQL query endpoint of the corresponding

3
This chapter is based on Abdelmageed and Schindler [9, 10, 11, 12]. We both share the coceptualization

and methodology of JenTab. We developed and tested JenTab in the scope of the SemTab challenge in

the durarion of 2020 till 2022. The author of this dissertation applied further analysis beyond the scope

of the challenge.
4
We use the prefixes wd: and wdt: for http://www.wikidata.org/entity/ and

http://www.wikidata.org/prop/direct/ respectively.

http://www.wikidata.org/entity/
http://www.wikidata.org/prop/direct/
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Figure 6.2: JenTab: Current system architecture (from [10]).

KG, e.g., Wikidata. On the other hand, Solver depends on Generic Lookup, which is our
primary means of tackling spelling mistakes. Proxy services and Generic Lookup relies on
a centralized ‘Caching Server’ for their results. It reduces the number of queries issued
through the proxy services by caching responses already retrieved before.

The developed architecture has several advantages. First, caches for computationally
expensive tasks or external dependencies increase the overall system performance. Further-
more, it reduces the pressure on downstream systems, especially when public third-party
services are used. Second, when the target KG is to be substituted, all necessary changes,
like adjusting SPARQL queries, are concentrated within just two locations: the corres-
ponding lookup and endpoint services. Third, the distributed design allows for scaling well
regarding the number of annotated tables. Any increase in the number of tables can be
mitigated by adding new Runners to cope with the workload. Finally, the implementation
allows reusable and self-encapsulated pieces of code. For example, Runner can deal with
any other Solver implementation.

6.2 Preprocessing
Before executing the actual pipeline, each table is run through preprocessing steps. We
group them in ‘Data Cleaning’ and ‘Datatype Predicition’. We give their details as follows:

Data Cleaning First, we apply a series of steps to fix data issues in a table.

1. We start with using ftfy5 to fix any encoding issues encountered.

2. We use a regular expression to split up terms that are missing spaces like in ‘1stGlobal
Opinion Leader’sSummit’ into ‘1st Global Opinion Leader’s Summit’.

3. We remove certain special characters like parentheses.

4. We replace the explicitly mentioned unknown values to null. E.g., ‘NA’, ‘Unknown’,
‘Undetermined’ etc.

5. We capture the actual value of the classified date type cells. For example, ‘2010-11-23
November 23, 2010’ is translated to only ‘2010-11-23’.

5
https://github.com/LuminosoInsight/python-ftfy

https://github.com/LuminosoInsight/python-ftfy
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6. We apply an o�-the-shelf spell checker, autocorrect6, to fix typos resulting in an
‘autocorrected value’ per cell.

The result of these steps is stored as a cell’s ‘clean value’. We use this cleaned value
during the actual execution of JenTab’s pipeline. We deprecated the autocorrect step in
2021 due to its unstable behavior. Some values are corrected in unrealistic words, i.e., do
not fit in the given context. For example ‘Rashmon’ that is expected to be ‘Rashomon’ (A
produced Movie in 1950) is Fixed to ‘Fashon’. Instead, we relied on the Generic Lookup
(we explain it in detail in Section 6.3). We apply such a series of steps to facilitate the
CEA candidates generation by providing a cleaner version of the given cell values. In
return, we expect a higher performance of candidates matching.

Datatype Prediction We determine the primitive datatype of each column. While the
system distinguishes more datatypes, we aggregate the ones having a direct equivalent in
Wikidata as the following four types:

1. OBJECT columns represent entities, those we solve CEA task for them since we check
the given targets to solve such task.

2. STRING columns that were classified as OBJECT but not found among the given tar-
gets. They would be mapped to, e.g., entity labels or descriptions.

3. DATE columns represent date literals, which could be mapped later for a property
like inception, start date, etc.

4. NUMBER columns represent numerical values that would be mapped to literal proper-
ties as well.

Besides locating the entities of interest that would be mapped to CEA, such classific-
ation helps us develop a datatype-specific property matching technique. For example, we
solve the CPA task di�erently if the given column is DATE or NUMBER.

6.3 O�ine Resources
In this section, we list the steps we conducted before the live run of JenTab. Usually,
these steps are conducted to solve a specific issue we have encountered in datasets. For
example, Generic Lookup and 2T Cleaning are meant to fix spelling mistakes but for
di�erent conditions. The Biodiversity Dictionaries are developed to tackle the problem of
abbreviations in biodiversity datasets.

Generic Lookup Spelling mistakes and artificial noise are common challenges across
STI benchmarks. A specialized lookup is our primary strategy for tackling this crucial
issue. We created it ahead of time due to the resources required for comparing cell values
against all labels (and aliases) within Wikidata or DBpedia. We extracted the unique
values from all tables of a given dataset and matched those against the labels of the
respective KG using an optimized Jaro-Winkler Similarity implementation based on [94]
and a threshold for minimum similarity of 0.9. Such an approach will fetch and store all
labels that have a similarity between 1 (exact matches) and 0.9. The result is a sqlite7

database where it has the highest priority for the lookup during the CEA-candidates
generation.

6
https://pypi.org/project/autocorrect/

7
https://www.sqlite.org/index.html

https://pypi.org/project/autocorrect/
https://www.sqlite.org/index.html
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(a) Cell (b) Column (c) Row (d) Row-Column

Figure 6.3: Possible contexts for resolving and disambiguating annotations for subject cells only.
Arrows indicate information used (from [11]).

Biodiversity Dictionaries In 2021, we built biodiversity dictionaries for species and
chemical elements or compounds to mitigate the impact of abbreviations. We constructed
such dictionaries based on Wikidata. We queried Wikidata with all instances of the taxon
(?species wdt:P31 wd:Q16521) and programmatically fetched the corresponding labels.
From these labels, we created abbreviated variations by using one or two characters from
the first word followed by the full second name. So, ‘Canna glauca’, e.g., was converted
into both ‘C.glauca’ and ‘Ca.glauca’. These variants were subsequently used as aliases for
the respective Wikidata entities. The corresponding lookup was used with the highest
priority during our initial creation of CEA-candidates in the biodiversity setting.

2T Cleaning In 2022, we developed a cleaning module for 2T [69] dataset. It is known
for the huge amount of artificially added misspellings to its tables. We have developed
this strategy since our previously discussed Generic Lookup failed to catch these noisy
elements. Thus, our core idea is to locate the cells that are correctly spelled and then
replace all the artificial occurrences with the correct word. The first step is to find the
correctly spelled words by querying those cells in Wikidata. Those with exact matches are
considered correct words. The second step is to match the remaining values in the tables
to the correctly identified values. We converted all the given cells into the embedding
space using fasttext [95] to avoid the out-of-vocab (OOV) problem. Then, we applied
cosine similarity among those vectors; we picked the correct target value if the similarity
is Ø 70%. We ran this step o�ine before the actual running of JenTab to solve the STI
tasks. Thus, JenTab can work on relatively cleaner tables than those provided in the
original 2T dataset.

6.4 Disambiguation Contexts

Tabular data o�ers di�erent dimensions of context that can be used to either generate
annotation candidates (Create-Phase) or remove highly improbable ones (Filter-Phase).
Figure 6.3 illustrates those visually. The Cell Context is the most basic one, outlined
in Figure 6.3a. Here, nothing but an individual cell’s content is available. We can then
define a Column Context as shown in Figure 6.3b. It is based on the premise that all cells
within a column represent the same characteristic of the corresponding tuples. For the
annotation process, this can be exploited insofar that all cells of a column share the same
class from the KG. Annotations for cells in OBJECT-columns further have a common class
as required by the CTA task. Similarly, the assumption that each row refers to one tuple
leads to the Row Context of Figure 6.3c. Annotation candidates for the subject cell, i.e.,
a cell holding the identifier for the respective tuple/row, have to be connected to their
counterparts in all other cells within the same row. Finally, all contexts can be subsumed
in the Row-Column Context as given by Figure 6.3d. It combines the last two assumptions
representing the most exhaustive context.
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6.5 CFS Pattern

We base our approach on collecting mostly independent building blocks for each task
following the pattern of the CFS approach. The individual building blocks di�er in what
information they use and how accurate their results are. They further di�er in their
performance characteristics: On the one hand, this refers to the time needed to execute
them. On the other hand, creation and filtration blocks vary in the number of candidates
they output.

We maintain sets of candidates on di�erent levels: For each cell, we maintain both the
candidates for the respective CEA task and those induced by this cell for the corresponding
CTA task. Each pair of cells in the same row has a set of candidates for the respective
property connecting both cells contributing to the CPA task. The same is mirrored on the
column level. Here, we keep the onset of candidates for the CTA task and CPA candidates
for the combinations of columns.

Building blocks usually pertain to only one task as well as one CFS-stage: Create blocks
generate candidates of possible solutions for the respective task. Filter blocks reduce
given sets of candidates. Here, we take a rather conservative approach and only remove
candidates that will not be a solution with a very high probability. Finally, Select blocks
pick a solution for a given set of candidates. Figure 6.4 summarizes the developed building
blocks which will be described in detail below. Unless noted otherwise, the building blocks
only apply to columns of datatype OBJECT as classified in the preprocessing. Further to
query the KG, we rely on the o�cial SPARQL endpoint of Wikidata8 which imposes
specific rate and execution time restrictions on our queries.

6.5.1 Create

In the following, we describe di�erent building blocks that generate candidates for indi-
vidual tasks.

CEA Label Lookup: The Label Lookup is the foundation of the pipeline. It does
not depend on any prior information other than the cell’s content and their datatype.
We apply a series of strategies to retrieve candidates based on the cells’ initial, clean,
and autocorrected value. As each strategy succeeds in di�erent cases, they are applied
in sequence until candidates are retrieved by one. All but the Generic Strategy use the
Wikidata Lookup Service9 to resolve from a given label to Wikidata entities.

• Generic Strategy compares the initial cell values with all Wikidata labels and aliases
using the Jaro-Winkler distance [96]. We iteratively10 lower the selection threshold
from 1 (exact matches) to 0.9 until a set of candidates is returned.

• Full Cell Strategy uses the initial cell values to query the lookup service.

• All Tokens Strategy splits a cleaned cell value into tokens removing all stopwords.
The lookup service is then queried with all possible orderings of these tokens.

• Selective Strategy removes any addition in parenthesis and uses the remainder to
query the lookup service.

• Token Strategy splits the cleaned cell value into tokens and queries for each token in
isolation.

8
https://query.wikidata.org/

9
https://www.wikidata.org/w/api.php

10
To speed up the process, we use a many-to-many implementation for calculation [94].

https://query.wikidata.org/
https://www.wikidata.org/w/api.php
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Figure 6.4: Pool of building blocks and their assignment to CFS-stage and task. Create is indicated
in red with a plus icon, Filter is represented in green and a triangle sign and Select is shown in
yellow with a circle symbol (from [9]).

• Autocorrection Strategy uses the autocorrected value from the preprocessing to query
the lookup service.

CEA by row and column: This approach applies in cases where we could determine
candidates for at least some cells of datatype OBJECT within a row but failed for the
subject cell. Furthermore, for the subject column, existing candidates are required. If all
conditions are met, we retrieve entities from the KG that are instances of a subject column
candidate and have a connection to at least one of the other candidates in the same row.
Subsequently, these entities are filtered such that the remaining ones have a connection
to each object cell in the same row. Finally, we compute the string distances between the
remaining labels and the initial cell value and discard all that exceed a certain threshold.
Here, we use the Levenshtein distance [97] as implemented by edlib11. Finally, we add the
remaining entities as candidates to the subject cell in question.

CEA by row and CEA by column: These two approaches work in a similar fashion
as CEA by row and column, but drop one of its preconditions respectively. In CEA by
row, a candidate does not have to be an instance of the current column’s CTA-candidates.
On the other hand, we apply CEA by column, when there are no other cells of datatype
OBJECT in the same row, or those cells have no candidates either.

CEA by subject: This approach is the inverse to CEA by row. Assuming that the
subject cell of a row has a set of candidates but any other cell of datatype OBJECT does
not, it will fetch all entities from the Knowledge Base (KB) that are directly connected to
a subject cell candidate. We filter the resulting entities again by their string-distance to
the initial cell value before adding them as candidates.

11
https://pypi.org/project/edlib/

https://pypi.org/project/edlib/
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CTA: To find candidates for each column of datatype OBJECT, we first retrieve the
types for each cell individually based on its current list of CEA-candidates. In DBpedia,
we rely on rdf:type property to represent the types. In Wikidata, a type denotes a
combination of instanceOf (P31) and subclassOf (P279) relations. The column’s type
candidates are then given by the set of types appearing for at least one cell in this column.
In addition, we configured three settings of CTA module to Wikidata specifically as follows:

• P31 includes only direct parents using instance of (P31). This strategy does not
include any higher levels of classes.

• 2Hops includes ‘P31’ with one additional parent (higher level) via subclass of (P279).

• Multi Hops creates a more general tree of parents following subclass of (P279) rela-
tions.

CPA: Candidates for column pairs’ relations are generated by first retrieving can-
didates for the connections between cells of each row. We assume that there is a single
subject column; thus, all other cells have to be connected in some way to the cell of that
column.

First, we retrieve all properties for a subject cell’s candidates, including both literal
and object properties. Second, we try to match individual properties to the values of
other cells in the same row. If we have found a match, we add the respective property as
a candidate for the corresponding cell pair. Object properties are rather easy to match.
Here, we rely on previously generated CEA candidates of the respective target and merely
compare those with the object properties retrieved.

On the other hand, literal properties require more care. For them, we only consider
matches to a cell whose datatype has been determined as either DATE, STRING, or NUMBER

in the preprocessing. If we can not establish an exact match for a cell’s value, we resort to
fuzzy matching strategies depending on the corresponding datatype. For DATE-properties
(RDF-type: dateTime), we try parsing the cell value using di�erent date format patterns.
If the parsing succeeds and both dates share the same day, month, and year, we consider
this a match. We omit time and timezones for this comparison. In case of STRING-
properties (RDF-type: string and langString), we extract words from the given value
and the retrieved Wikidata label. Then, we count how many words are shared between
the two string values. We consider a match if the overlap is above a certain threshold.
For NUMBER-properties (RDF-type: decimal) we tolerate a 10% deviation to still be con-
sidered a match according to Equation 6.1 where cell_value is the table cell value and
property_value is the retrieved property label.

(6.1) Match =
I

true, if |1 ≠ cell_value
property_value | < 0.1

false, otherwise

Once candidates for each pair of cells are determined, we aggregate them to retrieve
candidates on the column-level. This initial generation corresponds to the union of all
candidates found on the row-level for cells within the respective columns.

6.5.2 Filter

Once we generated candidates for a particular task’s solution, we apply filter-functions to
sort out highly improbable candidates. For create-functions depending on previously gen-
erated candidates, this can substantially reduce the queries required and overall running
time.
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CTA-support: This filter works separately on each column of datatype OBJECT. First,
it calculates the support of all current CTA candidates concerning the cells of a column. A
cell supports a given CTA candidate if any of its current candidates has the corresponding
type12. This filter neglects all cells that are either empty or have no CEA-candidates
at the moment. Next, we remove all CTA-candidates from the respective column that
do not have a support by at least 50% of the cells in this column. Finally, we remove
all CEA-candidates from the corresponding cells, which have no types in the remaining
CTA-candidates.

CEA by unmatched properties: After generating the properties for all cells on a
row-level, some CEA-candidates will have no connection to any other cell in the same row.
This filter removes these candidates, leaving only those that have a connection to at least
one cell in their respective row. It applies to all cells of datatype OBJECT.

CEA by property support: This filter applies only to subject cells. We compute
the support of a candidate as the number of cells in the same column it can be connected
to13. We determine the maximum support for each of a cell’s candidates and remove all
those with lower support.

CEA by string distance: Some create-functions generate a relatively large number
of CEA-candidates. This filter reduces that number by removing candidates whose label is
too distant from the initial cell value. We rely on a normalized version of the Levenshtein
distance [97], which uses the length of the involved strings as a normalizing factor. To keep
any valid candidate, we resort to a rather conservative threshold, thus retain all candidates
with a value of at least 0.5 for any of its labels.

6.5.3 Select

The target of all tasks; CEA, CTA, CPA is to select the most suitable solution per each
task. Hence, at some point, we have to select a single entry from the remaining candidates.
As some of the methods below cannot distinguish between the candidates in a certain
situation, we apply them in sequence until we find a solution. If only one candidate is left
after the previous filter steps, we pick it for an obvious reason.

CEA by string similarity: For the remaining candidates, we calculate the string
distance to the original cell value using the Levenshtein distance [97]. If there are mul-
tiple candidates with the same distance, we break those ties using the ‘popularity’ of the
respective candidates. We define popularity as the number of triples the respective can-
didate appears in them. The intuition is that if there was no other way to distinguish
among the candidates in previous filter-steps, using the popularity results in the highest
probability of selecting the correct candidate.

CEA by column: Sometimes filter-functions accidentally remove the correct solution
from consideration. As those cases are quite rare, this a�ects only a small number of cells
in a column. Further, the value of non-subject cells is often not unique throughout their
column. In case no candidate is left for a cell, this function looks for occurrences of the
same value in other cells of the same column. If we find a match, we apply their solution
to the current cell.

CTA by Least Common Subsumer (LCS): The candidates for the CTA task
do not stand in isolation but are part of a class hierarchy. Given an example of Court
Cases in R3, cell types are shown in Figure 6.5a. We first expand this hierarchy for all
remaining CTA-candidates, as shown in Figure 6.5b. Next, we compute the support for
all candidates similar to the respective filtering-function. We remove all candidates with

12
Kindly refer to the definition of ‘type’ in this context as given in the generation of CTA-candidates

before.
13

For non-subject cells, this value can only be 0 or 1, depending on whether they could be matched to

the respective subject cell. This case is already covered in a di�erent filter and thus excluded here.
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Col0 P31
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(b) Hierarchy of retrieved types.
Figure 6.5: Example for CTA selection by LCS, the selected type is highlighted in green (from [9]).

support less than the maximum. We choose the one with the longest path from the root
node of the hierarchy as a solution from the remaining candidates.

CTA by Direct Parents: This function selects the CTA-solution by a majority vote.
It will fetch the type for all remaining CEA-candidates of a column and then select the
one appearing most often. In contrast to the previous definition of type, it only considers
the direct connections of an entity, i.e. instanceOf (P31) and subclassOf (P279) but not
their combination (P31/P279).

CTA by Popularity: In case the other methods failed to produce a result due to
ties, this function will break those ties by using the candidates’ popularity. Again, this is
given by the number of corresponding triples the candidate appears in the entirety of the
KB. As there is no semantic justification for this selection method, it is only used as a
matter of last resort.

CPA by Majority Vote: We compute the support for a given CPA-candidate. Here,
this refers to the number of remaining cell-candidate-pairs that use the respective property.
We subsequently select the candidate with the highest support as a solution.

6.6 Default Pipeline

Figure 6.6 shows the details for the default configuration of our pipeline, pipeline_full.
The current block order results from experimentation using the available input tables as
a source. After each run, we scanned the results for tables lacking some mappings and
investigated causes and possible solutions. We aggregate the individual building blocks
into groups for the sake of brevity in the following description.

Group 1 forms the core of our pipeline and is responsible for most of the mappings.
Based on the CEA Label Lookup, it generates candidates for all three tasks and removes
only the most unlikely candidates from further consideration.

Group 2 represents a first attempt to find missing CEA-mappings based on the context
of a row and a column. Be kindly reminded that all create blocks only work on cells that
currently have no candidates attached. So both blocks here apply to cells with no mappings
from Group 1 . CEA by Row and Column is put before CEA by Row, as it relies on a
narrower context and thus will provide more accurate results. However, it might fail, e.g.,
when the current CTA-candidates do not include the proper solution. In such cases, CEA
by Row will loosen the requirements to compensate. If either of these attempts provided
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Figure 6.6: pipeline_full as an arrangement of CFS building blocks (from [9]).

new candidates, we re-execute the creation of CTA and CPA candidates afterwards in
Group 3 .

Group 4 is our first attempt at selecting solutions. After another filtering step on
CEA-candidates using the row context, we continue to select high-confidence solutions.
As hinted before, this might fail to produce proper mappings for a fraction of CEA-targets.
Groups 5 , and 7 try to fill in the gaps for at least some of them. If new candidates are
found, groups 6 and 8 will filter and select from them.

Finally, Group 9 represents our means of last resort. Again, they only apply to targets
for which we could not generate a solution before. Here, we assume that not only parts of
the context are wrong but doubt every part of the context. The used blocks will reconsider
all candidates discarded in the previous steps and attempt to find the best solution among
them.

6.7 Other Pipelines

Since 2021 based on the original JenTab pipeline, pipeline_full, we derived multiple
variations and evaluated them subsequently. This provided a better insight into the impact
of individual components on the execution time and the quality of results. Most of these
variations share the same initial phase to create candidates for CEA, CTA, and CPA if
required.

pipeline_essential This pipeline reduces pipeline_full to its core components. In
particular, each step runs only once, excluding any re-execution in the process. It
became necessary initially as some tables proved too demanding when executed using
pipeline_full.

pipeline_no_cpa Compared to pipeline_full, this pipeline removes any CPA-related
components. In particular, filter operations involving relations among cells as well
as selecting CPA-solutions are omitted in this pipeline. It was applied in tasks that
featured only CEA and CTA targets and omitted any CPA ones.
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pipeline_numeric This pipeline is specifically geared towards tables that feature a
single object (the subject) column and one or more non-object (primarily numeric)
column(s). After creating initial candidates for all tasks it filters them with the least
frequent properties to determine the most likely CEA and thus indirectly CTA-
candidates. The latter is then used while applying CEA by Column that adds new
candidates to unmatched cells based on all instances of the identified types. After
subsequent additional filter steps, the default selection process is used to determine
the final solutions.

pipeline_conditional As pipeline_numeric only applies to a subset of tables, this
pipeline uses a two-step approach: In a first step, pipeline_numeric is applied to
all tables meeting the respective preconditions. If these conditions are not met, or
the returned result covers less than 80% of targets, the table is again processed using
pipeline_full.

pipeline_header Such pipeline is based on pipeline_no_cpa which contains all modules
from the default configuration except the CPA creation, filteration, and selection
parts. However, the new pipeline overrdies the CTA with the headers candidates.
Indeed, such method suits datasets that contain meanigful header.

6.8 Evaluation
We conducted a series of evaluations in the consecutive years: 2020, 2021, and 2022,
and during the SemTab challenge on large-scale general domain datasets and using the
biodiversity-specific dataset. In the following, we describe the evaluation corpora, pre-
processing, and generic lookup strategy e�ectiveness. In addition, we show the load of
the developed CEA creation strategies. Moreover, we demonstrate the accuracy scores of
JenTab compared to the other systems tackling the same tasks. Finally, we discuss the
runtime of JenTab on the evaluation benchmark and give an overview of its performance
over the years of development.

6.8.1 Benchmarks
Before we evaluate JenTab in many various aspects, e.g., accuracy scores, we give an
overview of the benchmarks we used to evaluate it.

• SemTab 2020 is an Automatically Generated (AG) benchmark that contains over
130,000 tables from Wikidata and is divided into four rounds. The tasks are to
annotate these tables from Wikidata [68].

• HardTables is an AG dataset with a first release during the second round of SemTab
2021 with 7,207 tables. The authors filtered it to include only the hardest cases in
SemTab 2022 and released it again with 3,691 and 4,659 tables in the first and second
rounds of that year’s challenge. The target KG concerning its tasks is Wikidata [91].

• Tough Tables (2T) is a dataset consisting of 180 tables annotated from both
Wikidata and DBpedia [69]. It has been used during SemTab 2021 and 2022. This
dataset is known for its very high level of entity ambiguity and its massive amount
of artificially added noise to table cells.

• BioTables is a biomedical domain-related dataset for STI. It is also an AG dataset
comprising 110 tables. It is released and used during SemTab 2021 [24]. This bench-
mark has a unique characteristic that features a high number of average columns,
2500.



57 Chapter 6. JenTab Toolkit

0.99 0.01 0.00 0.00

0.01 0.99 0.00 0.00

0.00 0.00 0.99 0.01

0.01 0.00 0.00 0.99

O
BJ
EC
T

D
AT
E

ST
RI
N
G

Q
U
A
N
TI
TY

OBJECT

DATE

STRING

QUANTITY

A
c
tu
a
l

Predicted

1.0

0.8

0.6

0.4

0.2

0.0

Figure 6.7: Confusion matrix for type prediction. A 4-label classification task (from [11]).

• BiodivTab is a real-world and manually annotated benchmark from biodiversity
research. It consists of 50 tables. This benchmark is released and used for the
first time during SemTab 2021, where the target KG is Wikidata. It is released
and used again during the third round of SemTab 2022, where the target KG is
changed DBpedia. This is our own contribution; we discuss its construction details
and insights in Chapter 7.

6.8.2 Datatype Predicition Assessment

For evaluation, we start with assessing the preprossing during the ‘Type Prediction’ step.
This step is responsible for determining a column’s datatype; see Section 6.2. Figure 6.7
shows the confusion matrix of this step. It shows a 99% prediction accuracy score. We
used the SemTab 2020 benchmark to create ground truth data for evaluating this step.
We used such ground truth for CEA and CPA tasks to query Wikidata for their types;
values represent the actual datatypes, and the predicted values are by our system results.

6.8.3 Generic Lookup Coverage

Spelling mistakes are a crucial problem we tackled using the ‘Generic Strategy’. We
create this lookup before the run of the selected pipeline due to the resources required for
comparing cell values against all labels (and aliases) within Wikidata or DBpedia. For
this, we extract the unique values from all tables of a dataset and match those against the
labels of the respective KG using an optimized Jaro-Winkler Similarity implementation
based on [94] and a threshold for minimum similarity of 0.9. This lookup represents our
primary and the only source to fix spelling mistakes since 2021. The e�ectiveness of lookup
is illustrated in Table 6.1 over the three years. For SemTab 2020 benchmark, almost 99%
of unique labels were covered in the first three rounds. However, this is reduced to ≥ 97%
in the last round.

In 2021, for most datasets, more than 89% of unique values could be matched up to a
99.76% success rate for R2’s HardTables. However, it is significantly lower in the case of
the 2T dataset. This dataset has a massive amount of spelling mistakes that the selected
threshold could not solve.

In 2022, for the synthetic dataset, HardTables, the matching percentage is high. It
reached up to 99% in the first round. 2T dataset remains almost in the same range as the
previous year. It reached around 89% in the second round, where DBpedia is the target
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Table 6.1: Generic Strategy: Unique labels and ratio of resolved labels per round.

Year Rounds Dataset Target Unique Labels Matched Matched

2020 R1 SemTab20 Wikidata 252,329 249,806 99.0%
2020 R2 SemTab20 Wikidata 132,948 131,486 98.9%
2020 R3 SemTab20 Wikidata 361,313 357,700 99.0%
2020 R4 SemTab20 Wikidata 533,015 515,959 96.8%

2021 R1 2T Wikidata 69,980 62,908 89.89%
2021 R1 2T DBpedia 66,340 59,168 89.19%
2021 R2 HardTables Wikidata 249,625 249,025 99.76%
2021 R3 HardTables Wikidata 47,809 46,865 98.03%

2022 R1 HardTables Wikidata 19,107 18,928 99%
2022 R2 HardTables & 2T Wikidata 74,177 67,986 91.6%
2022 R2 2T DBpedia 65,223 58,235 89.3%

KG. Such lower matching percentage guided us to develop a more sophisticated cleaning
step before the actual run, as discussed in Section 6.3. We have not created a generic
lookup for BiodivTab in 2021 and 2022 since our approach here relies on dictionaries for
taxons and chemical elements - the prevalent type of cell values in this dataset.

6.8.4 Audit Results

We have implemented five strategies for creating initial CEA candidates, including Generic
Lookup, Full Cell, Tokens, All tokens, Selective, and Autocorrect. We investigated if all
of them are needed using various benchmarks.

CEA Creation Figure 6.8 shows how much each strategy is used for all general domain
benchmarks. Generic Lookup proves its strength in solving spelling mistakes and, thus,
is the most used strategy for all benchmarks. We recently disabled ‘Autocorrect’ and ‘All
Tokens’ strategies due to their high computational requirements in the recent benchmarks
(BioTables and HardTables). This underlines the need for various strategies to capture a
wide range of useful information inside each cell. The shown distribution also reflects our
chosen order of methods. For example, ‘Generic Strategy’ is our first priority, thus used
most of the time. On the other hand, ‘Autocorrect’ has the lowest priority and is used as
a means of last resort. We handle the BiodivTab benchmark di�erently, i.e., we build a
dictionary for taxons and chemical compounds and use it as a customized lookup service.
Figure 6.9 shows the distribution of the selected methods to create CEA candidates in
both editions of BiodivTab, Wikidata and DBpedia.

CEA Selection Figure 6.10 demonstrates the use of each strategy. Our dominant se-
lect approach is ‘String Similarity’; it is used by 38% more than the ‘Column Similarity’
in all benchmarks except HardTables where the ‘String Similarity’ managed to solve all
cases. For BiodivTab, Figure 6.11 depicts the methods distribution for the CEA selec-
tion strategies. Both versions, i.e., Wikidata and DBpedia, show that ‘String Similarity’
method managed to solve more than double the amount of the ‘Column Similarity’.

CTA Selection Figure 6.12 describes the distribution of CTA selection methods where
the LCS method is the dominant strategy to select the final candidate. It shows continuous
success in solving the task for all benchmarks, especially BioTables and HardTable. Both
benchmarks did not need any backup solutions to select the CTA candidate at all. For
BiodivTab, Figure 6.13 demonstrates the distribution of CTA selection strategies. The
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Figure 6.8: Audit statistics for CEA creation. y-axis is the log scale of the solved cells.
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Figure 6.9: Audit statistics for CEA creation (BiodivTab). y-axis is the log scale of the solved
cells.

dominant method in the Wikidata version is the LCS where we activated the ‘2Hops’
mode. However, the primary method in the DBpedia version is Majority Vote. From the
figure, we found that LCS successfully finds more solutions than the other, which yields
less reliance on backup strategies or tiebreakers. The same exclusive execution concept in
CEA selection is also applied in CTA selection methods. The dominant method, e.g., LCS
or Majority Vote, is invoked more frequently due to its higher priority during execution.
Other backup strategies try to solve the remaining columns if other methods fail to find a
solution for them.

6.8.5 Accuracy Scores

In the following, we compare JenTab to the existing state-of-the-art systems that tackle
the STI tasks to demonstrate its e�ectiveness14.

14
We use the results of the SemTab challenge systems as is for comparison in this thesis.
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Figure 6.10: Audit statistics for CEA selection. y-axis is the log scale of the solved cells.
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Figure 6.11: Audit statistics for CEA selection (BiodivTab). y-axis is the log scale of the solved
cells.

SemTab 2020 Table 6.2 shows the participants scores on such benchmark. This repres-
ents the first participation of JenTab to tackle the STI tasks. During the challenge, we did
not have scores for CPA in the first round since we did not implement such a module at the
time of participation. However, we continued development after the end of the challenge,
and we report a complete list of scores here. In this benchmark, JenTab demonstrated
high scores across all rounds, especially in the CPA task. JenTab is placed in the third
rank given that benchmarks and without further complex dependencies or KG dump.

HardTables Table 6.3 shows the scores of both JenTab and the other participants on
this benchmark in 2021 and 2022. JenTab kept its high performance and rank during
2021’s edition of this benchmark. However, during the second round in 2022, it achieved
lower scores. A reason could be that HardTables during this challenge’s edition is way
more complicated than the previous. This is due to a higher level of ambiguity has been
introduced. All top participants, not only JenTab achieved lower scores than in their
previous performance.



61 Chapter 6. JenTab Toolkit

5.14

4.62

5.1

4.68

2.73
2.96

2.82

3.92

3.08

2.4
2.61

1.9

0.3

0 0 0

2.52

1.86 1.8

1.23

0

0.48

0 0
0

1

2

3

4

5

6

SemTab20-R1 SemTab20-R2 SemTab20-R3 SemTab20-R4 2T-DBP 2T-WD BioTables HardTables

Au
di

t s
ta

tis
tic

s (
lo

g 
va

lu
e)

Benchmarks

LCS Popularity Direct Parents

Figure 6.12: Audit statistics for CTA selection. ‘2Hops’ mode. y-axis is the log scale of the solved
cells.
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Figure 6.13: Audit statistics for CTA selection (BiodvTab). ‘2Hops’ mode. y-axis is the log scale
of the solved cells.

Tough Tables (2T) Table 6.4 demonstrates our scores compared to the existing state-
of-the-art on the 2T dataset. It appeared during the fourth round of SemTab 2020 for
the first time, where Wikidata is the target KG. Its second appearance is in 2021. The
authors updated the ground truth data to a recent Wikidata dump. In addition, they
released a new version with DBpedia as an additional target KG. The scores by either
JenTab or the existing systems are relatively lower than those on AG datasets. The major
reason for these low scores are due to the high level of ambiguity that could confuse even a
human [69] of the table cells. Another reason is the excessive amount of artificial spelling
mistakes that are added to the cell values. In 2020, JenTab was still more sensitive to
the latter issue than other systems. We continuously developed JenTab to tackle the
problem of misspellings. For CEA, over the years, JenTab gained much higher scores on
this dataset from 37% to slightly above 80%, given Wikidata as a target KG.
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Table 6.2: SemTab 2020 top participants’ scores (AG-datasets). F1 - F1 Score, Pr - Precision, R
- Recall, AF1, APr, and AR - Approximate version of F1 Score, Precision, and Recall respectively.

CEA CTA CPA
Round System F1 Pr AF1 APr F1 Pr

R1 MTab [37] 0.987 0.988 0.885 0.884 0.971 0.991
R1 LinkingPark [49] 0.987 0.988 0.926 0.926 0.967 0.978
R1 SSL [50] 0.936 0.936 0.861 0.860 0.943 0.943
R1 bbw [41] NA NA NA NA NA NA
R1 DAGOBAH [39] 0.922 0.944 0.834 0.854 0.914 0.962
R1 JenTab 0.968 0.969 0.962 0.965 0.984 0.988

R2 MTab [37] 0.995 0.995 0.984 0.984 0.997 0.997
R2 LinkingPark [49] 0.993 0.993 0.984 0.985 0.993 0.994
R2 SSL [50] 0.961 0.961 0.966 0.966 0.973 0.973
R3 bbw [41] 0.892 0.960 0.914 0.929 0.991 0.992
R2 DAGOBAH [39] 0.993 0.993 0.983 0.983 0.992 0.994
R2 JenTab 0.975 0.975 0.965 0.965 0.984 0.984

R3 MTab [37] 0.991 0.992 0.976 0.976 0.995 0.995
R3 LinkingPark [49] 0.986 0.986 0.978 0.979 0.985 0.988
R3 SSL [50] 0.906 0.906 0.913 0.913 0.815 0.815
R3 bbw [41] 0.954 0.974 0.960 0.966 0.949 0.957
R3 DAGOBAH [39] 0.985 0.985 0.974 0.974 0.993 0.994
R3 JenTab 0.967 0.967 0.955 0.959 0.981 0.987

R4 MTab [37] 0.993 0.993 0.981 0.982 0.997 0.997
R4 LinkingPark [49] 0.985 0.985 0.953 0.953 0.985 0.985
R4 SSL [50] 0.833 0.833 0.946 0.946 0.924 0.924
R4 bbw [41] 0.978 0.984 0.980 0.980 0.995 0.995
R4 DAGOBAH [39] 0.984 0.985 0.972 0.972 0.995 0.995
R4 JenTab 0.974 0.974 0.945 0.93 0.993 0.994

BioTables Table 6.5 shows the scores of JenTab and the existing state-of-the-art sys-
tems. JenTab showed consistent scores and ranked among the top systems. This
benchmark showed new obstacles for all participants. Initially, we failed to run our
pipeline_full due to several timeout errors. However, we developed our default pipeline
and managed to execute it on this benchmark and reached competitive scores.

BiodivTab Table 6.6 shows scores of the top participants the SemTab challenge in 2021
and 2022. Scores have been published by the organizers of SemTab [24, 35]. JenTab, for
its first attempt, achieved the best score of CEA task. However, the best CTA score is
achieved by KEPLER [98]. We gained low scores of 60% and 10% in 2021 and 55% and
41% in 2022 for both CEA and CTA, respectively. In contrast, for the synthetic dataset,
HardTables 2021, DAGOBAH achieved the maximum F1-score 97.4%, and 99% for CEA,
and CTA respectively. Such low scores are due to the unique benchmark characteristics
that di�er from the traditional automatically generated and general-domain benchmark.

General Overview We give an overview of JenTab scores over the years on both AG
(Figure 6.14), and 2T (Figure 6.15) datasets since 2020 to 2022. For the AG datasets,
the average F1-score for the three tasks; CEA, CTA, and CPA are 0.91, 0.93, and 0.97
respectively. For the 2T dataset, the average F1-score for both CEA and CTA tasks is 0.54.
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Table 6.3: JenTab & SOTA scores (HardTables 2021-2022). F1 - F1 Score, Pr - Precision, R -
Recall, AF1, APr, and AR - Approximate version of F1 Score, Precision, and Recall respectively.

CEA CTA CPA
Year Round System F1 Pr AF1 APr F1 Pr

2021 R2 MTab [38] 0.985 0.985 0.977 0.977 0.997 0.998
2021 R2 DAGOBAH [40] 0.975 0.975 0.976 0.976 0.996 0.996
2021 R2 Magic [51] 0.836 0.947 0.757 0.681 0.865 0.954
2021 R2 Kepler-aSI [98] 0.975 0.975 0.894 0.931 0.915 0.989
2021 R2 JenTab 0.966 0.967 0.914 0.917 0.996 0.997

2021 R3 MTab [38] 0.968 0.968 0.984 0.984 0.993 0.993
2021 R3 DAGOBAH [40] 0.974 0.974 0.990 0.990 0.991 0.995
2021 R3 Magic [51] 0.641 0.721 0.687 0.687 0.788 0.936
2021 R3 Kepler-aSI [98] NA NA 0.244 0.244 NA NA
2021 R3 JenTab 0.940 0.940 0.942 0.942 0.992 0.992

2022 R1 KGCODE-Tab [99] 0.893 0.916 0.942 0.944 0.906 0.918
2022 R1 DAGOBAH [100] 0.954 0.955 0.975 0.975 0.984 0.99
2022 R1 s-elbat [101] 0.945 0.964 0.951 0.957 0.983 0.989
2022 R1 JenTab 0.945 0.946 0.938 0.940 0.975 0.986

2022 R2 KGCODE-Tab [99] 0.856 0.875 0.968 0.971 0.916 0.943
2022 R2 DAGOBAH [100] 0.904 0.905 0.96 0.96 0.931 0.97
2022 R2 s-elbat [101] 0.825 0.875 0.859 0.878 0.931 0.96
2022 R2 JenTab 0.751 0.758 0.836 0.881 0.872 0.921

Table 6.4: JenTab and existing systems scores (2T dataset). F1 - F1 Score, and Pr - Precision.
AF1, and APr - Approximate version of F1 Score, Precision respectively.

Wikidata DBpedia
CEA CTA CEA CTA

Year System F1 Pr AF1 APr F1 Pr AF1 APr

2020 MTab [38] 0.907 0.907 0.885 0.884 NA NA NA NA
2020 LinkingPark [49] 0.810 0.811 0.926 0.926 NA NA NA NA
2020 SSL [50] 0.198 0.198 0.861 0.860 NA NA NA NA
2020 bbw [41] 0.863 0.927 NA NA NA NA NA NA
2020 DAGOBAH [50] 0.412 0.749 0.834 0.854 NA NA NA NA
2020 JenTab 0.374 0.541 0.574 0.626 NA NA NA NA

2021 DAGOBAH [40] 0.923 0.923 0.832 0.832 0.945 0.946 0.422 0.424
2021 AMALGAM [52] 0.658 0.791 0.476 0.422 NA NA NA NA
2021 Kepler-aSI [98] 0.194 0.760 0.464 0.481 0.110 0.644 0.027 0.133
2021 Magic [51] NA NA NA NA 0.184 0.506 0.159 0.628
2021 JenTab 0.457 0.520 0.697 0.697 0.607 0.669 0.460 0.468

2022 KGCODE-Tab [99] 0.905 0.913 0.543 0.546 0.827 0.830 0.480 0.484
2022 DAGOBAH [100] 0.945 0.946 0.409 0.409 NA NA NA NA
2022 s-elbat [101] 0.937 0.938 0.366 0.366 0.789 0.808 0.373 0.375
2022 JenTab 0.802 0.807 0.346 0.356 0.572 0.792 0.234 0.290
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Table 6.5: JenTab & SOTA scores (BioTables 2021). F1 - F1 Score, Pr - Precision. AF1, and
APr - Approximate version of F1 Score, and Precision respectively.

CEA CTA CPA
Year Round System F1 Pr AF1 APr F1 Pr

2021 R2 MTab [38] 0.985 0.985 0.977 0.977 0.997 0.998
2021 R2 DAGOBAH [40] 0.975 0.975 0.976 0.976 0.996 0.996
2021 R2 Magic [51] 0.836 0.947 0.757 0.681 0.865 0.954
2021 R2 Kepler-aSI [98] 0.975 0.975 0.894 0.931 0.915 0.989
2021 R2 JenTab 0.966 0.967 0.914 0.917 0.996 0.997

Table 6.6: JenTab & SOTA scores (BiodivTab 2021-2022) . F1 - F1 Score, Pr - Precision, AF1,
and APr - Approximate version of F1 Score and, Precision respectively.

CEA CTA
Year Target System F1 Pr AF1 AP1

2021 Wikidata MTab [38] 0.522 0.527 0.123 0.282
2021 Wikidata Magic [51] 0.142 0.192 0.10 0.253
2021 Wikidata DAGOBAH [40] 0.496 0.497 0.381 0.382
2021 Wikidata mantisTable [47] 0.264 0.785 0.061 0.076
2021 Wikidata KEPLER [98] NA NA 0.593 0.595
2021 Wikidata JenTab 0.602 0.611 0.107 0.107

2022 DBpedia KGCODE-Tab [99] 0.910 0.910 0.870 0.870
2022 DBpedia DAGOBAH [100] NA NA 0.620 0.620
2022 DBpedia s-elbat [101] NA NA 0.06 0.06
2022 DBpedia JenTab 0.550 0.610 0.420 0.412

This reflects the sensitivity of JenTab against the high level of artificial noise. However,
in 2022, the CEA has significantly improved due to our sophisticated cleaning module for
such a dataset.

6.8.6 Runtime

During JenTab’s years of development, we used normal laptops for execution. For example,
two core i7 machines, one with 16GB RAM and the other is 8GB RAM. Starting from
2021, we hosted the centeral node (Manager) on a virtual machine with 256 cores and
64GB RAM. We set up three di�erent experiments to test the e�ect of CTA selection
strategies for the SemTab 2020 benchmark. Besides the low scores of the Multi-Hops, it
is also computationally expensive. Table 6.7 shows the processing time for all four rounds
with the number of used runners for each mode setting of the CTA task. Close inspection
revealed that the execution time is largely dominated by the responses of Wikidata servers
and thus beyond our control. The execution was time-scoped, i.e., an upper limit for the
time per table was set. This allowed the system to converge faster compared to the
initial implementation of JenTab in 2020, with, e.g., Round 4 showing a more than 50%
reduction in time. Intermediate results are cached across rounds, saving time and lowering
the number of requests to external services. Our modular approach allows us to scale the
number of runners based on available resources and speed up the overall process.

We exclude the Multi-Hops from further usage and limit our setup to ‘P31’ and ‘2Hops’
only. Table 6.8 shows the runtime of JenTab during its participation in 2021 and 2022.
This table shows the configuration that yields the best scores. For 2021, the setup of CTA
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Figure 6.14: JenTab F1-scores Automatically Generated (AG) datasets [2020-2022].
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Figure 6.15: JenTab F1-scores Tough Tables (2T) datasets [2020-2022].

is 2Hops, but for 2022 benchmarks, we selected P31. The 2020 benchmark is the average
of the corresponding setting’s four rounds from the previous table. We summarize such
a table to give an overview of JenTab’s performance in Figure 6.16. From the figure, we
point out the continuous enhancements that we developed to reduce the required time for
the system across its years of development.

6.9 Summary
We introduced JenTab toolkit that tackles three tasks of the Semantic Table Interpretation
(STI). It represents our contribution to the first research area Tabular data interpretation
(TabI). JenTab is a distributed and modular system that follows the Create, Filter and
Select (CFS) pattern. It is configured with various pipelines that we implemented based
on the characteristics of the evaluation benchmarks. We developed and tested JenTab in
the context of Semantic Web Challenge on Tabular Data to Knowledge Graph Matching
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Table 6.7: Execution time for di�erent setups (SemTab2020 benchmark).

R1 R2 R3 R4
Mode Days Runners Days Runners Days Runners Days Runners

P31 0.5 4 2.5 4 1.5 6 2 4
2Hops 1 4 1.2 4 2 4 1.1 8

Multi Hops 1 4 1.5 4 2.5 6 3.5 6

Table 6.8: Execution time for di�erent setups (SemTab 2020-2022 benchmarks).

Mode Year Dataset Target Runner Time

P31 2020 SemTab2020 Wikidata 4.5 1.5 Days
2022 HardTables Wikidata 3 11 Hours
2022 2T DBpedia 1 5 Hours
2022 2T Wikidata 1 3 Hours
2022 BiodivTab DBpedia 1 1 Hour

2 Hops 2020 SemTab2020 Wikidata 5 1.33 Days
2021 HardTables Wikidata 1 10.5 Hours
2021 2T DBpedia 1 1 Day
2021 2T Wikidata 2 11 Hours
2021 BioTables Wikidata 1 7 Hours
2021 BiodivTab Wikidata 1 1.5 Hours
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Figure 6.16: Runners and runtime of JenTab [2020-2022].
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(SemTab) challenge from 2020 to 2022. Our evaluation demonstrated the e�ectiveness of
JenTab on both Automatically Generated (AG) and domain-specific datasets for its three
years of development. We also showed the enhancements that reflect the lower processing
time over the years of development. JenTab is a top participant system that tackles STI
tasks with minimal dependencies. We only use the live lookup and SPARQL endpoints of
the target Knowledge Graph (KG). JenTab won the second prize in the Usability Track
by IBM Research during ISWC 2021. We released the artifacts of this chapter publicly
available under our GitHub15 repository. In addition, we made the code [102, 103, 104],
pre-computed lookup [105, 106], and solution files [107, 108] available at Zenodo.

15
https://github.com/fusion-jena/JenTab

https://github.com/fusion-jena/JenTab




Chapter 7

BiodivTab: Table Annotation
Benchmark

Systems that tackle annotating tabular data semantically have gained increasing atten-
tion from the community in recent years. Semantic Table Interpretation (STI) tasks map
individual table elements to their counterparts from a Knowledge Graph (KG) such as
Wikidata [92], and DBpedia [93]. Here, individual cells and columns are assigned to
KG entities and classes to disambiguate their meaning. The Semantic Web Challenge
on Tabular Data to Knowledge Graph Matching (SemTab)1 opened the call for semantic
interpretation of tabular data inviting automated annotation systems. It established a
common standard for evaluating those systems [22, 23, 24]. Most of its benchmarks are
auto-generated with no particular domain focus [67, 68, 70, 72, 53, 60]. The 2T [69], intro-
duced in the 2021 edition of the challenge, is the only exception involving manual curation
but is still artificially derived from general domain data. Real-world and domain-specific
datasets pose di�erent challenges as witnessed, e.g., by evaluation campaigns in other do-
mains like semantic web services evaluations [109]. STI-systems achieve high scores on
the existing, synthetic benchmarks but often struggle on real-world datasets. Therefore,
the development of STI systems has to be accompanied by suitable benchmarks to make
them applicable in real-world scenarios. Such benchmark should reflect idiosyncrasies and
challenges immanent in di�erent domains.

In our work, we focus on the biodiversity domain. It is imperative to monitor the
current state of biodiversity and its change over time and understand its driving forces
to preserve life in all its varieties. The recent IPBES worldwide evaluation2 predicts a
dramatic decrease in biodiversity, causing an obvious decay in vital ecological functions.
An expanding volume of heterogeneous data, especially tables, is produced and publicly
shared in the biodiversity domain. Tapping into this wealth of information requires two
main steps: On the one hand, individual datasets have to be fit for (re)use, which is a
requirement that resulted in the FAIR principles [2]. On the other hand, complex analyses
often require data of di�erent sources, e.g., to examine the various interdependencies
among processes in an ecosystem. The involved datasets need to be integrated which
requires a certain degree of harmonization and mappings between them [3]. The semantic
annotation of the respective datasets can substantially support both goals.

We constructed BiodivTab as a biodiversity-specific benchmark for STI-tasks. We
made this benchmark available for public use and evaluating STI-systems in the scope of
SemTab 2021-2022. BiodivTab is used to evaluate our developed framework, JenTab (see
Chapter 6) for Semantic Table Interpretation (STI). In our scope, BiodivTab presents the
second contribution under the first research area in this thesis Tabular data interpret-

1
https://www.cs.ox.ac.uk/isg/challenges/sem-tab/

2
https://ipbes.net/global-assessment

69

https://www.cs.ox.ac.uk/isg/challenges/sem-tab/
https://ipbes.net/global-assessment
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Figure 7.1: Steps of BiodivTab construction (from [14]).

ation (TabI). BiodivTab is awarded the first place prize (Applications Track) by IBM
Research3 during ISWC 2021 [24].

In this chapter, we explain the six-stage construction pipeline in Section 7.1. Then,
we show the characteristics of BiodivTab, and its availability and license Section 7.2. We
summarize and conclude this chapter in Section 7.34.

7.1 Construction Pipeline
In this section, we explain the creation of BiodivTab, and the data sources used. Moreover,
we describe the manual annotation phase involving biodiversity experts, the data augment-
ation step, and the final assembly and release of the benchmark. Figure 7.1 summarizes
the construction of BiodivTab, we detail in the following.

7.1.1 Data Collection
We decided on three data repositories that are well established for the ecological data:
BExIS5, BEFChina6, and data.world7. We queried these portals using 20 keywords, e.g.,
abandance, and species, from our previous work [15]. Subsequently, we manually checked
all of them regarding their suitability to the STI-tasks. We discarded datasets that con-
tained a majority of, e.g., internal database ‘ID’ columns or numerical columns without
any explanation or context. We consider those datasets are impossible to annotate auto-
matically and of little benefit to the community. Consequently, we decided to include
only datasets containing essential categorical information. We selected 6 out of 32 dataset
from data.world, 4 out of 15 from BExIS, and 3 out of 25 from BEFChina. data.world
provides the most suitable datasets for STI, thus, it contributes about half of the datasets
in BiodivTab. Our analysis of the collected data shows that, in addition to common chal-
lenges, real-world datasets feature unique characteristics. We enumerate the encountered
challenges in our sample of datasets. We summarize their prevalence in Table 7.1.

• Nested Entities: more than one proper entity in a single cell, e.g., a chemical com-
pound is combined with a unit of measurements.

3
https://research.ibm.com/

4
This chapter is based on Abdelmageed et al [13, 14]. Thanks to Sirko Schindler who participated in

the conceptualization.
5
https://www.bexis.uni-jena.de/

6
https://data.botanik.uni-halle.de/bef-china/

7
https://data.world/

https://research.ibm.com/
https://www.bexis.uni-jena.de/
https://data.botanik.uni-halle.de/bef-china/
https://data.world/
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Table 7.1: Prevalence of challenges among the selected datasets (from [14]).

Dataset Nested
Entities Acronyms Typos Numerical

Data
Missing
Values

Lack
of

Context
Synecdoche Specimen

Data

dataworld_1
dataworld_2
dataworld_4
dataworld_6
dataworld_10
dataworld_27

befchina_1
befchina_6
befchina_20

Bexis_24867
Bexis_25126
Bexis_25786
Bexis_27228

• Acronyms: Abbreviations of di�erent sorts are common, e.g., ‘Canna glauca’, a
particular kind of flower, is often referred to as ‘C.glauca’ or ‘Ca.glauce’.

• Typos: Data is predominantly collected manually by humans, so misspellings will
occur, e.g., ‘Dead Leav’ is used for ‘Dead Leaves’.

• Numerical Data: Most of the collected datasets describe the specimen by various
measurements in numerical form.

• Missing Values: Data collected can be sparse and may include gaps, e.g., a column
‘super kingdoms’ may consist of ‘unknown’ values for the most part.

• Lack of Context: The collected data may barely provide any informative context to
facilitate semantic annotations. e.g., a column with a missing or severely misspelled
header.

• Synecdoche: Scientists may use a general entity as a short form to a more particular
one, e.g., ‘Kentucky’ is used instead of ‘Kentucky River’.

• Specimen Data: The collected datasets contain observations of particular specimens
or groups, but do not pertain to the species as a whole.

7.1.2 Annotation Process

The annotation phase is the most time-consuming part of the benchmark creation. To
ensure the quality of mappings, we manually annotated the selected tables with entities
assembled from the live edition of Wikidata during September 2021, resulting in ground
truth data for both CEA and CTA tasks. Concerning CEA, we have marked possible
candidate columns, typically those with categorical values, to annotate their cells. For each
cell value, we assembled possible matches via Wikidata’s built-in search. We manually
selected the most suitable matches to disambiguate the cells semantically if we found
multiple matches. If we could not have chosen only one annotation, we pick all possible
ones and consider them true matches. Thus, the provided ground truth contains all
proper candidates for a given cell value. Biodiversity experts revised around 1/3 of the
annotations. This revealed an error rate of about 1%. Because of the low error rate, the
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Table 7.2: Questionnaire: Which type would be correct for the given taxons? (from [14])

Taxon Type (A) Type (B)

Bacteria (wd:Q10876) superkingdom (wd:Q19858692 ) taxon (wd:Q16521)
Actinobacteria (wd:Q130914) phylum (wd:Q38348) taxon (wd:Q16521)
Actinobacteria (wd:Q26262282) class (wd:Q37517) taxon (wd:Q16521)
Pseudonocardiales (wd:Q26265279) order (wd:Q36602) taxon (wd:Q16521)
Pseudonocardiaceae (wd:Q7255180) family ( wd:Q35409) taxon (wd:Q16521)
Goodfellowiella (wd:Q26219639) genus (wd:Q34740) taxon (wd:Q16521)
Goodfellowiella coeruleoviolacea (wd:Q25859622) species (wd:Q7432) taxon (wd:Q16521)

e�ort of this step outweighs the benefits. Thus, we have decided to continue annotating
the remainder without further revisions.

We followed the same procedure for CTA. For categorical columns, we looked for a
common type among column cells, taking into consideration the header value, to decide
on the semantic type from Wikidata. Most of these columns are identified by the value of
(wdt:P31, instance of) as the perfect annotation. However, finding such perfect annotation
for taxon-related columns is not that easy. Since all taxon-related fields are instance of
taxon. We believed it might not be distinguishable enough. In the biodiversity domain,
experts are keen on more fine-grained modeling. E.g., species, genus, and class would be
di�erent types in their opinion. We established a simple one-question questionnaire for
our biodiversity experts to select the perfect semantic type for a given taxonomic term
as shown in Table 7.2. The first column shows the cell values with the corresponding
mapping entities. The question is to select either which type is the most accurate, A, or
B. We derive Type A from (wdt:P105, taxon rank) and Type B from (wdt:P31, instance
of) in Wikidata. Based on their answers, the most fine-grained classification is (Type A);
however, they consider (Type B) as a correct type as well. Thus, we have selected the
perfect types for taxons through (wdt:P105, taxon rank). For numerical columns, most
of them are identified by the column headers.

We maintain separate ground truth files to ease manual inspection, revision, and
quality assurance for each table. So, ‘befchina_1’, e.g., is annotated by two such files:
‘befchina_1_CEA’ and ‘befchina_1_CTA’. The structure of the ground truth files follows
the format of SemTab challenge. In particular, the solution files for CEA use a format
of filename, column id, row id, and ground truth, whereas the ones for CTA employ a
structure of filename, column id, and ground truth.

7.1.3 Data Augmentation

We further used data augmentation to increase the number of tables in our benchmark
and reduce the human e�ort needed. In our context, we introduced challenges to the
existing datasets based on our findings during the data collection and analysis phase, thus
we rely on real-world challenges that we added programatically to increase the amount
of the data. Table 7.3 shows our used data augmentation techniques per dataset and the
number of variations derived from it. In the following, we list techniques used and how
they relate to the collected data issues:

• Merge and Separate Columns we either by introduced new nested entities or splited
them up into separate columns.

• Add and Fix Typos we added noise to categorical cell values and, on rare occasions,
fixed them.

• Disambiguate we replaced concepts with more accurate ones, e.g., the state is re-
placed by the river it stands for.
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Table 7.3: Data augmentation technique per dataset (from [14]).

Dataset Merge
Cols

Separate
Cols

Add
Typos

Fix
Typos Disambiguate Abbreviate Increase

Gap
Alter
Cols

No.
Files

dataworld_1 x3 - - - - - x3 x1 7
dataworld_2 x3 - x1 - - - x1 - 5
dataworld_4 x4 - - x1 x1 x2 x1 - 9
dataworld_6 - x1 - - - - - - 1
dataworld_10 - - - - - - x1 - 1
dataworld_27 x1 - x 2 - - - - - 3

befchina_1 x2 - - - - - x1 - 3
befchina_20 x4 - - - - x1 - - 5

Bexis_24867 - - - - - x1 x2 - 3

Total 37

• Abbreviate we introduced more abbreviations especially with taxon-related values.

• Alter Columns we removed one or more data columns. This results in less informative
and sparse datasets.

We managed to create the most variations from data.world since its datasets contain
more categorical data that can be mapped to KG entities. Our used data augmentation
strategy allowed us to increase the number of tables to 50 with less manual e�ort of the
annotation.

7.1.4 General Semantic Types
To enable approximation of CTA F1, Precision and Recall scores [23], we provide an
ancestors ground truth to our perfectly annotated types8. The corresponding file is struc-
tured in a key-value format with keys representing the perfect annotation and values listing
parent classes. We refer to those parents as okay classes.

Initially, we collected all unique column types from manually assigned perfect annota-
tions. These are used to initialize a dictionary. Afterwards, we ran a sequence of three
SPARQL queries sent to the public endpoint to retrieve related classes for each of them.
For the first level, we query for direct types via wdt:P31. We call them ‘E1’. For the
second level, we query for further parent classes via wdt:P279 of the previous E1, result-
ing in ‘E2’. For the third and last level, we repeat the last process using the entities in E2,
yielding ‘E3’. The resultant hierarchy consists of one perfect annotation with three levels
of classes that are considered okay annotations.

We marked the fine-grained taxonomy: kingdom, species, phylum, family, order, class,
and genus as perfect annotations to follow the biodiversity experts’ recommendation. How-
ever, we have included (wd:Q16521, taxon) and (wd:Q21871294, living organism) as okay
classes.

7.1.5 Assembly and Release
For publication, we anonymized the file names of tables to use unique identifiers using
Python’s uuid functionalities. Subsequently, we aggregated the individual solutions of
CEA and CTA-tasks into one file per task resulting in CEA_biodivtab_2021_gt.csv and
CTA_biodivtab_2021_gt.csv respectively. We generated the corresponding ‘target-files’
by removing the ground truth columns from these solution files. We provided anonym-
ized tables alongside the target files to evaluate a particular system. The ground truth

8
https://raw.githubusercontent.com/fusion-jena/BiodivTab/main/benchmark/gt/CTA_biodivtab_

2021_WD_gt_ancestor.json

https://raw.githubusercontent.com/fusion-jena/BiodivTab/main/benchmark/gt/CTA_biodivtab_2021_WD_gt_ancestor.json
https://raw.githubusercontent.com/fusion-jena/BiodivTab/main/benchmark/gt/CTA_biodivtab_2021_WD_gt_ancestor.json
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files alongside the dictionary for related classes, CTA-ancestors, are subsequently used to
evaluate the results. Such way this follows the general approach of SemTab hiding the
ground truth of STI-tasks from participants during the challenge. BiodivTab is awarded
the first prize of IBM Research9 at the third round of 2021’s SemTab challenge [24] for its
new challenges in CEA and CTA tasks.

7.1.6 Ground Truth Extension

In 2022, we included annotations from DBpedia that are based on the Wikidata annota-
tions in two ways: First, we exploited the link between Wikidata entities and corresponding
Wikipedia pages. As there is a one-to-one correspondence between Wikipedia pages and
DBpedia entities, we generated a Wikidata-DBpedia-mapping for them. Second, we ex-
tracted owl:sameAs mappings between Wikidata and DBpedia to complete our mapping
from DBpedia itself. Despite these direct mappings appeared promising to begin with,
they contain serious data quality issues. As of April 2022, L-glutamic acid (wd:Q26995161)
is mapped to 1772 entities within the DBpedia graph using owl:sameAs. Thus, the res-
ulting mappings were again manually verified to ensure the overall quality of the final
DBpedia ground truth data. Generated types for CTA contained only instances/resources
from DBpedia. During the manual verification, we further added classes from the DB-
pedia ontology as well. We attempted to replicate our approach from Wikidata using
rdf:type and rdfs:subClassOf to retrieve the CTA-ancestors. However, some relations
in the DBpedia ontology seemed unreasonable to us. For example, DBpedia at the time
of writing contains a triple dbr:Species rdf:type dbo:MilitaryUnit. For these and
other similar scenarios, we decided to not include an ancestor file for DBpedia.

7.2 Evaluation

In this section, we give a detailed overview of BiodivTab in terms of the size and content
compared to existing benchmarks. In addition, we show the most and least frequent types
of CTA. Finally, we demonstrate the application of our benchmark using the results of
STI-systems during SemTab’s 2021 edition.

7.2.1 BiodivTab Insights

Table 7.4 summarizes the selected datasets in terms of their original and selected size,
and the number of CEA and CTA mappings. For large datasets, e.g., dataworld_4 and
dataworld_27, we selected a subset of rows that retain the table characteristics. Most of
the redundant species were dropped. Nevertheless, we kept the entire extent of BExIS
datasets, including the redundant entries, to achieve a good balance between the large
tables and those with the reasonable length for STI-systems. The column mappings show
the characteristic of specimen data, those columns with only local measurements and with
local database names that could not be matched to the KG. For example, only 4 out of
18 columns in dataworld_1 could be matched to KG-entities. The same holds true for
befchina_1 where only 3 out of 16 columns have a proper annotation.

Figure 7.2 shows the domains distribution of the 83 unique semantic types in the
CTA-solutions. Approximately two-thirds of these types belong to the biodiversity do-
main. The distinction into the biodiversity-related, general domain, and mixed types was
made according to the definitions introduced in [15, 28]. General domain types include,
e.g., visibility, scale, cost, and airport. Mixed domain types contain examples like river,

9
https://www.research.ibm.com/

https://www.research.ibm.com/
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Table 7.4: Original and selected tables sizes, and entity and type mappings (from [14]).

Original Size Selected Size Mappings
Dataset Rows Cols Rows Cols CTA CEA

dataworld_1 332 18 100 18 4 210
dataworld_2 37 25 37 8 8 226
dataworld_4 42337 67 100 40 26 476
dataworld_6 271 6 100 6 4 103
dataworld_10 497 15 100 13 11 902
dataworld_27 95368 12 100 12 5 398

befchina_1 7553 16 145 16 3 294
befchina_6 26 4 26 4 2 53
befchina_20 787 45 99 43 28 304

Bexis_24867 151 13 151 13 9 159
Bexis_25126 4906 35 4906 14 6 9816
Bexis_25786 2001 39 2001 21 5 4017
Bexis_27228 1549 8 1549 8 3 4646

Total 114 21604
Avg. 8.8 1661.8

57

13

13

Biodiversity General Mixed

Figure 7.2: Domain distribution in BiodivTab benchmark (from [14]).

Table 7.5: Most and least frequent semantic types in BiodivTab (from [14]).

Most Frequent Least Frequent
Wikidata Id Label Freq. Wikidata Id Label Freq.

wd:Q7432 Species 39 wd:Q8066 amino acid 1
wd:Q706 calcium 26 wd:Q11173 chemical compound 1
wd:Q577 year10 19 wd:Q60026969 unit of concentration 1
wd:Q677 iron 16 wd:Q2463705 Special Protection

Area
1

wd:Q731 manganese 16 wd:Q1061524 intensity 1

temperature, or sex of humans. Biodiversity-related types include taxon, chemical com-
pounds, and soil type. In addition, Table 7.5 provides a list of most and least frequent
semantic types in BiodivTab. Species (wd:Q7432) is the most frequent type, which reflects
its importance in biodiversity research.

10
Calendar year, wd:Q3186692, is equivalent to year, wd:Q577.
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Table 7.6: Data sources for existing benchmarks and their corresponding targets. Entries for
SemTab are aggregated over all rounds each (from [14]).

Dataset Data Source Target Annotation

SemTab 2019 Wikidata, Wikipedia DBpedia
SemTab 2020 Wikidata, Wikipedia Wikidata
SemTab 2021 Wikidata, Wikipedia Wikidata, DBpedia
T2Dv2 WebTables DBpedia
Limaye Wikipedia DBpedia
GitTables GitHub DBpedia,

Schema.org

BiodivTab BExIS, BEFChina, data.world Wikidata, DBpedia

Table 7.6 shows both data sources and target KGs or resource for BiodivTab and ex-
isting benchmarks. The three editions of SemTab from 2019 to 2021 [22, 23, 24] used both
Wikidata and Wikipedia [110] as table sources. However, the target KGs varies between
using DBpedia, Wikidata, or both. T2Dv2 [60] and Limaye [53] use the WebTables [66]
and Wikipedia as their data sources respectively while having annotations from DBpedia.
GitTables [72] and the adapted version [71] for SemTab 2021 challenge, leverages GitHub
as a table source and provide annotations from DBpedia and schema.org. Unlike all the
previous benchmarks, BiodivTab uses domain-specific data portals, as table sources. It
provides Wikidata and DBpedia annotations like SemTab 2021.

Table 7.7 shows a comparison between BiodivTab and existing benchmarks in terms
of the average number of rows, columns, and cells. It also gives an overview of the targets
for CEA, CTA, and CPA. BiodivTab is the smallest in terms of the number of tables.
However, BiodivTab has the maximum average number of columns, and average number
of rows except for SemTab 2021, Round 1, and BioTables in Round 2. This poses an
additional challenge for STI systems. For CTA targets, BiodivTab is a middle point
among the existing benchmarks.

7.2.2 Availability and Licensing

Resources should be easily accessible to allow replication and reuse. We follow the FAIR
(Findable, Accessible, Interoperable, and Reusable) guidelines to publish our contribu-
tions [2]. We release our dataset [111] in such a way that researchers in the community
can benefit from it. In addition, we release the code [112] that was used to augment the
data, assemble, and reconcile the benchmark. Our dataset and code are released under
the Creative Commons Attribution 4.0 International (CC BY 4.0) License, and Apache
License 2.0 respectively. This should support replicability and subsequent extensions.

7.3 Summary

We introduced BiodivTab, the first biodiversity tabular benchmark for Semantic Table In-
terpretation tasks. It consists of a collection of 50 tables. We have created BiodivTab by
manually annotating 13 tables from real-world biodiversity datasets and adding 37 more
tables by augmenting them with noise based on challenges that are commonly observed
in the domain. Annotations are based on Wikidata and DBpedia as target knowledge
graphs. An evaluation during the SemTab challenge showed that current state-of-the-art
systems still struggle with the posed domain-specific challenges. This highlights Biod-
ivTab’s importance as a basis for further development in the field. BiodivTab itself and
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Table 7.7: Comparison with existing benchmarks (from [14]). ST19 - ST21 (SemTab editions).
*_W and *_D use Wikidata and DBpedia as targets. ST21-H2, and H3 are HardTables for Round
2 and 3 during SemTab. ST21-Bio is BioTables at SemTab Round 2. ST21-Git is the published
version of GitTables during SemTab Round 3.

Dataset Tables Avg. Rows
(± Std Dev.)

Avg. Cols
(± Std Dev.)

Avg. Cells
(± Std Dev.)

CEA CTA CPA

ST19-R1 64 142 ± 139 5 ± 2 696 ± 715 8, 418 120 116
ST19-R2 11,924 25 ± 52 5 ± 3 124 ± 281 463, 796 14,780 6,762
ST19-R3 2,161 71 ± 58 5 ± 1 313 ± 262 406, 827 5,752 7,575
ST19-R4 817 63 ± 52 4 ± 1 268 ± 223 107, 352 1,732 2,747

ST20-R1 34,294 7 ± 4 5 ± 1 36 ± 20 985,110 34,294 135,774
ST20-R2 12,173 7 ± 7 5 ± 1 36 ± 18 283,446 26,726 43,753
ST20-R3 62,614 7 ± 5 4 ± 1 23 ± 18 768,324 97,585 166,633
ST20-R4 22,390 109 ± 11, 120 4 ± 1 342 ± 33, 362 1,662,164 32,461 56,475

ST21-R1_W 180 1, 080 ± 2, 798 5 ± 2 4125 ± 10947 663,655 539 NA
ST21-R1_D 180 1, 080 ± 2, 798 4 ± 2 3, 952 ± 10, 129 636,185 535 NA
ST21-H2 1,750 17 ± 8 3 ± 1 55 ± 32 47,439 2,190 3,835
ST21-Bio 110 2, 448 ± 193 6 ± 1 14, 605 ± 2, 338 1,391,324 656 546
ST21-H3 7,207 8 ± 5 2 ± 1 20 ± 15 58,948 7,206 10,694

ST21-Git 1,101 58 ± 95 16 ± 12 690 ± 1, 159 NA 2,516 NA
ST21-Git 1,101 58 ± 95 16 ± 12 690 ± 1, 159 NA 720 NA

T2Dv2 779 85 ± 270 5 ± 3 359 ± 882 NA 237 NA

Limaye 428 24 ± 22 2 ± 1 51 ± 50 NA 84 NA

BiodivTab (W) 50 259±743 24±13 4,589 ±10,862 33,405 614 NA
BiodivTab (D) 50 259±743 24±13 4,589 ±10,862 33,405 569 NA

the code that is used to create it are available under our GitHub repository11. In addition,
we released the benchmark data at Zenodo [111, 112].

11
https://github.com/fusion-jena/BiodivTab

https://github.com/fusion-jena/BiodivTab
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Chapter 8

BiodivOnto: Biodiversity Data
Model

Understanding biodiversity and the mechanisms underlying it is crucial to preserve this im-
portant foundation of human well-being. This demands the management and integration
of biodiversity data [3]. A large amount of heterogeneous data is collected and generated
in biodiversity research, which means integrating these heterogeneous data remains a big
challenge. Semantic web in general and ontologies in particular play a vital role in coping
with the integration and management of these heterogeneous data by allowing repres-
enting the relevant concepts and relations of a considered domain in a machine-readable
format [113]. As a result, several domain-specific ontologies have been developed. For
example, statistics on BioPortal1 show that more than 1046 ontologies with more than 13
million concepts have been developed. Several domain ontologies like ENVO2 and IOBC3

exist to model specific areas in the biodiversity domain [114]. However, there is a grow-
ing need to bridge the more refined biodiversity concepts and general concepts provided
by the foundational ontologies. Foundational ontologies span many fields, modeling the
basic concepts and relations that make up the world [115]. Core ontologies provide a
precise definition of structural knowledge in a specific field that spans di�erent applica-
tion domains [116]. Hence, core ontologies provide a bridge between the foundational and
subdomain ontologies. Several e�orts have been made in di�erent domains to represent
the basic categories of the domain knowledge using core ontologies. Several approaches
exist in the development of core ontologies, including manual and (semi)automatic ways.

We present the design of a core ontology, ‘BiodivOnto’, for the biodiversity domain.
BiodivOnto represent our data model as a set of concepts and relations of interest. In
our context, under the second research area Textual data interpretation (TexI), such
data model determines both classes and their relationships that a textual data interprter
would extract from unstrcutred text. To construct this model, we use a semi-automatic
approach that includes the usage of fusion/merge strategy [117] for the core ontology
development. We developed a four-phase pipeline with biodiversity experts and computer
scientists involved at di�erent stages. We collected and analyzed a set of heterogeneous
biodiversity data sources, including tabular data, unstructured data, and metadata. To
extract keywords from the collected data repositories, we used existing ontologies from
BioPortal4 and AgroPortal5. We applied biodiversity experts’ recommendations to filter
the keywords of interest. We generated the core concepts using automated approaches of

1
https://bioportal.bioontology.org/, visited on 14.01.2023

2
https://bioportal.bioontology.org/ontologies/ENVO

3
https://bioportal.bioontology.org/ontologies/IOBC

4
https://bioportal.bioontology.org/

5
http://agroportal.lirmm.fr
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https://bioportal.bioontology.org/ontologies/IOBC
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http://agroportal.lirmm.fr
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clustering. The relations between these core concepts are discussed and determined by the
domain experts. We continously evolved the BiodivOnto by leveraging more biodiversity
experts’ opinions as well as by intergarting other resources.

In this chapter, we give a brief overview on the existing ontologies showing their limita-
tions in Section 8.1. We describe our data-driven approach in Section 8.2. We demonstrate
the results and initial conceptual model of our method in Section 8.3. We show the evol-
utionary steps of BiodivOnto using existing resources in Section 8.4. We summarize and
conclude this chapter in Section 8.56.

8.1 Existing Ontologies
Biodiversity aims to study the totality and variability of organisms, their morphology
and genetics, life history and habitats, and geographical ranges. It is strongly related to
ecosystems’ services, such as provision of water and food, and climate regulation. There-
fore, it is critically important to understand and conserve it properly [3]. Core ontologies
provide a precise definition of structural knowledge in a specific field that connects di�erent
application domains [118, 119, 116]. They are located between upper-level (foundation)
and domain-specific ontologies, defining the core concepts of a specific field. They aim at
linking general concepts of a top-level ontology to more domain-specific concepts from a
sub-field.

There is a large number of available foundational ontologies [120], such as BFO [121],
GFO [122], SUMO [123], PROTON [124] and, etc. At the same time, there is extensive
work to formalize knowledge in the biodiversity domain, which results in many domain-
specific ontologies. For example, there are 1046 ontologies in BioPortal among them 25
are titled core ontologies. The core ontology for biology and biomedicine (COB)7 and the
ontology for core ecological entities (ECOCORE)8 are the only two relevant biodiversity
core ontologies. The COB ontology has 73 concepts and 30 relations, while the ECOCORE
ontology has more than 2400 concepts. The start of developing both ontologies was in
2020, which indicates a growing interest in developing such core ontologies. However, for
both of them, detailed information on how these ontologies have been developed is missing.

A few core ontologies have been introduced in the biodiversity domain; however, sev-
eral core ontologies developed in other related domains. The work introduced in [125]
propose the design of a core ontology to deal with the di�erent types of research activities
performed in empirical research, encompassing (physical) sampling, sample preparation,
and measurement. SemSur is a core ontology for the semantic representation of research
findings [118]. The GeoCore ontology has been developed to be used as a core ontology
for general use in the geology domain [119]. It makes use of the BFO ontology as an
upper-level ontology.

According to [116], core ontologies should combine various features, such as axiomatiz-
ation, modularity, extensibility, and reusability. Developing a core ontology following these
features leads to an elegant way to achieve good interoperability in a complex domain, such
as the biodiversity domain. There are di�erent strategies to develop ontologies considering
these features, such as fusion/merge and composition/integration strategies [117]. In this
chapter, we use the fusion/merge strategy that builds an ontology by bringing together
knowledge from source ontologies. Such ontology is our data model that consists of both
concepts/classes and their relations that we use to interpret textual data.

6
The early stage of the ontology is based on Abdelmageed et al [15, 16]. The author of this thesis

contributed in every step to create the BiodivOnto. The evolution of the ontology is based on Abdelmageed

et al [17]. Felicitas Lö�er, Alsayed Algergawy, and Sheeba Samuel analyzed the Biodiversity Questions

Corpus. The author of this thesis applied further analysis after the pervious setp and updated the ontology.
7
http://purl.obolibrary.org/obo/cob.owl

8
http://purl.obolibrary.org/obo/ecocore.owl

http://purl.obolibrary.org/obo/cob.owl
http://purl.obolibrary.org/obo/ecocore.owl
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Data 
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Figure 8.1: Proposed four-phase pipeline (from [16]).

8.2 Methodology

We implemented the proposed data-driven approach using the pipeline shown in Figure 8.1.
It consists of four main phases: 1) Data Acquisition, we identified the data sources we use
to develop the target ontology. 2) Term Extraction, we manually grasped biodiversity-
related keywords from the collected data. 3) Term Filiteration, we programmatically
filtered the extracted keywords to represent our core concepts. Finally, 4) Concepts and
Properties Determination, we decided on the final and selected concepts, and relations
with the aid of our biodiversity domain experts. In the following, we describe these main
steps of the proposed pipeline.

8.2.1 Data Acquisition

A first and crucial step is collecting and preparing a su�cient and relevant set of data
sources from which we can extract core terms in the biodiversity domain. These data
sources should be diverse, including structured data (tabular) and unstructured data (ab-
stracts). To achieve this goal, we developed a crawling method, as shown in Figure 8.2. We
have considered two important factors during this step: (i) data resources, from which data
sources will be extracted from and (ii) a set of keywords that will be used to query these
data resources. For the first point, we considered two well known data portals with very
di�erent characteristics (BEFChina9 and data.world10) to get tabular data. PubMed11

with more than 35 Million abstracts is deemed to be the data resource for unstructured
data. Once identified data sources, the next step is to collect a set of domain-specific
keywords that will be used to query these data resources. To this end, we relaxed a
version of the QEMP corpus’ keywords [29], such as ‘abundance’, ‘benthic’, ‘biomass’,
‘carbon’, ‘climate change’, ‘decomposition’, ‘earthworms’, ‘ecosystem’ are selected. The
selected set of keywords is used later as an input to the Semedico search engine [126] to
get relevant publications from PubMed. Among them, 100 abstracts have been chosen,
as shown in Figure 8.2 reflecting the biodiversity domain by applying an iterative manual
process for revision and cleaning for the crawled data. The result of this phase is a data
repository12 which contains 100 abstracts, more than 50 tables, some datasets are given by
multiple tables and, 50 metadata files. Our selected number of these data sources achieves
a balance between biodiversity domain coverage and reasonable human labor time for
annotation.

8.2.2 Term Extraction

Once relevant data sources have been collected, the next step is to process them to extract
domain-specific terms. To this end, we manually annotated the collected data using GATE
tool13 for document annotation. We have followed the annotation guidelines in [29] making
the use of the same ontologies and adding more important ontologies and knowledge bases,

9
https://china.befdata.biow.uni-leipzig.de/

10
https://data.world/

11
https://pubmed.ncbi.nlm.nih.gov/

12
https://github.com/fusion-jena/BiodivOnto/tree/main/data

13
https://gate.ac.uk/documentation.html

https://china.befdata.biow.uni-leipzig.de/
https://data.world/
https://pubmed.ncbi.nlm.nih.gov/
https://github.com/fusion-jena/BiodivOnto/tree/main/data
https://gate.ac.uk/documentation.html
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Figure 8.2: Crawling phase (from [15]).

like IOBC, SWEET 14, ECOCORE, ECSO15, CBO16, BCO17, and the Biodiversity A-Z
dictionary18 to cover wider ranges of domain-specific terms. We also used the BioPortal
Annotator19 with the selected ontologies to fetch the possible annotations for a given term.
The extraction and annotation process is not a simple task as it has several challenges to
be addressed. On the one hand, some keywords are ambiguous; we could not decide to
include them. We keep those keywords in a separate list as Open Issues. On the other
hand, our main challenge is the handling of compound words. For example, photosynthetic
O2 production is expanded into the following keyword list: [‘photosynthetic’, ‘O2’, ‘O2
production’, ‘photosynthetic O2 production’]. We have enriched the extracted list of terms
using other existing resources: 1) annotated keywords in QEMP corpus, 2) keywords from
AquaDiva20 project, and 3) soil-related keywords [127]. These existing resources have 578,
222, and 410 keywords, respectively. Figure 8.3 shows that our project managed to capture
the largest amount of related terms compared to the existing works.

8.2.3 Term Filtration

To get the final relevant terms, we discussed the Open Issues list with biodiversity experts.
Based on their votes for each term, we decided on whether to include it or not. Some
keywords are already filtered out manually at this stage. We applied an automatic filtration
step for consistency, where we normalized keywords to be case insensitive and in a singular
form. Furthermore, we manually revised the final list of keywords to exclude spelling
mistakes. At the end of this step, we have 1107 unique keywords, which is 1.8x of QEMP
corpus in size and covers a broader range of the biodiversity domain. Figure 8.4 illustrates
the e�ect of this phase on the original keywords per each data source of our work, where
the figure shows that the most significant number of unique keywords is collected using
abstracts from PubMed using the Semedico search engine. However, Figure 8.4 shows
that BEFChina has the least number of collected unique keywords. In addition, we have
calculated the number of simple and complex keywords as shown in Figure 8.5. The used
subset of AquaDiva project has only simple keywords, however, the soil-related keywords

14
https://bioportal.bioontology.org/ontologies/SWEET

15
https://bioportal.bioontology.org/ontologies/ECSO

16
https://bioportal.bioontology.org/ontologies/CBO

17
https://bioportal.bioontology.org/ontologies/BCO

18
https://www.biodiversitya-z.org/

19
https://bioportal.bioontology.org/annotator

20
http://www.aquadiva.uni-jena.de/

https://bioportal.bioontology.org/ontologies/SWEET
https://bioportal.bioontology.org/ontologies/ECSO
https://bioportal.bioontology.org/ontologies/CBO
https://bioportal.bioontology.org/ontologies/BCO
https://www.biodiversitya-z.org/
https://bioportal.bioontology.org/annotator
http://www.aquadiva.uni-jena.de/
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Figure 8.4: Filteration e�ect on the selected data sources (from [16]).

are only complex. QEMP and our work have a mixture of both, but our work achieves a
better balance.

8.2.4 Concepts and Relations Determination

In this section, we cover how we have reached our initial set of core concepts and their
interlinks.

8.2.4.1 Concepts Determination

Given the vast output list from the previous step, we automatically calculated the intersec-
tion among our work, QEMP, and AquaDiva lists. this yielded a narrowed list of keywords
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Figure 8.6: A sample of seeds WordNet similarity, TRUE has a threshold >= 0.7 (from [16])

which we defined as Seeds Candidates21. For example, carbon, climate, composition, forest,
size and etc. We considered those 30 terms, as they are the most critical and common
keywords among various projects dealing with the biodiversity domain. Then, we applied
a distance-based clustering technique to assign each of the remaining words to the closest
seed. Word embeddings [128], [129], [130] are a good representation for words to capture
their semantic meaning. For example, grassland is similar to habitat in the embedding
space, so these pairs of words could be grouped in one cluster. Same case applies for
abundance and size. Word embeddings are commonly used in applications that involve
word-word similarity. Seeds and words are represented by 300D word embedding vectors
using Word2Vec. Our selected metric is the cosine similarity, the default option to meas-
ure a distance between two vectors. Afterwards, we manually revised the created clusters
multiple times. For each revision iteration, we checked how the remaining keywords are
grouped, discusses the results with biodiversity experts, and modified the selected seeds by
tending to more general concepts. In the last iteration, we performed the WordNet [131]
similarity among the remaining seeds, clusters centroids, such that, if the similarity is 0.0,
very unique seed, we picked it as a core concept. Figure 8.6 illustrates a sample of our
seeds with WordNet similarity > 0.7.

21
https://github.com/fusion-jena/BiodivOnto/blob/main/outcome/seeds.md

https://github.com/fusion-jena/BiodivOnto/blob/main/outcome/seeds.md
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Figure 8.7: ‘Quality’ cluster in the final iteration. X and Y axis represents the word vectors after
the dimensionality reduction (from [16]).

If there were similarities with other seeds, we checked BioPortal for those seeds and
picked the common ancestor for them. In the previous step, we used PATO22, and SWEET
ontologies to look for a common ancestor Abstract Seeds23. We discussed the final list of
seeds, Seeds (Final - Expert)24, or core concepts with biodiversity experts. We based the
naming on their recommendation, e.g., characteristic is changed to trait.

Figure 8.7 shows the cluster’s members of the ‘Quality’ core concept. It correctly
captured terms with measurements and attributes like width, depth, size, organic nitrogen
content, space, and speed. However, it included non-characteristic terms like ‘tree com-
munity’ and ‘experimental site’. We still do not yet cover a more detailed and quantitative
evaluation. We included and published more results about the remaining clusters in our
GitHub repository25.

8.3 Early Version
In this section, we describe the initial model of the developed ontology. In 2020, we
developed such initial version of BiodivOnto. Besides our method to determine the con-
cepts, we discussed the possible relations that could co-occur among the core concepts
with biodiversity experts. In 2021, we changed the relation between Quality and Trait,
compared to the previous version, since we have involved more biodiversity experts, they
all agreed on that new relation. Figure 8.8 represents the core categories, and domain
experts have validated their core links (relations). Each category has a set of terms as a
result of the clustering algorithm. To implement the fusion/merge strategy, we used the
ontology modularization and selection tool (JOYCE) [132] to extract relevant modules

22
https://bioportal.bioontology.org/ontologies/PATO

23
second column in seeds.md file

24
the last column in seeds.md file

25
https://github.com/fusion-jena/BiodivOnto/tree/main/outcome/clusters

https://bioportal.bioontology.org/ontologies/PATO
https://github.com/fusion-jena/BiodivOnto/tree/main/outcome/clusters
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Table 8.1: Core concepts in existing ontologies with examples [15].

Category Ontology Modules Terms sample inside category

Environment ENVO, ECOCORE, ECSO, PATO groundwater, garden
Organism ENVO ECOCORE, ECSO, BCO mammal, insect
Phenomena ENVO, PATO, BCO decomposition, colonization
Quality ENVO, PATO, CBO, ECSO volume, age
Landscape ENVO grassland, forest
Trait BCO texture, structure
Ecosystem ENVO, ECOCORE, ECSO, PATO biome, habitat
Matter ENVO, ECSO carbon, H2O

Ecosystem

Organism

MatterLandscape

Quality

Phenomena

Trait

part_of

is_a

contain

contain

contain

have

have

have
is_a

Environment

is_a

occur

have

Figure 8.8: Core concepts and their relations (from [16]).

from each category. Table 8.1 demonstrates the results of this process. Figure 8.8 depicts
the output in its two years of development. The next step is to combine (merge) the set
of modules in each category to get a core ontology representing a certian category/core
concept.

8.4 BiodivOnto Evolution

In this section, we explain the evolution of our developed conceptual model using an
existing resource that we analyzed and integrated into the BiodivOnto in 2022.

8.4.1 Biodiversity Questions

The biodiversity question corpus consists of 169 questions provided by around 70 scholars
of three biodiversity research-related projects [28]. Concerning the topics and granularity,
the questions are very diverse and reflect di�erent information needs. While some ques-
tions ask for facts such as ‘What butterfly species occur on calcareous grassland?’ others
are more complex and aim to get an answer on associations, e.g., ‘How do autotrophic
microorganisms influence carbon cycling in groundwater aquifers?’. The noun entities of
these questions were manually labeled (including nested entities such as adjectives, e.g.,
autotrophic microorganisms). Nine biodiversity scholars grouped the labeled nouns and
phrases into 13 proposed categories. Each annotator classified all 169 questions, which
resulted in 592 total annotations. It turned out that seven categories (entity types) were
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Table 8.2: Summary of the categories (entity types) used in NER annotation (from [17]).

Tag Explanations Examples

ORGANISM all individual life forms such as mi-
croorganisms, plants, animals

mammal, insect, fungi,
bacteria

PHENOMENA occurring natural, biological, physical,
or chemical processes including events

decomposition, coloniz-
ation, climate change,
deforestation

MATTER chemical and biological compounds,
and natural elements

carbon, H2O, sediment,
sand

ENVIRONMENT Natural or man-made environments
ORGANISM live in

groundwater, garden,
aquarium, mountain

QUALITY data parameters measured or observed,
phenotypes and traits

volume, age, structure,
morphology

LOCATION geographic location (no coordinates) China, United States

mentioned very often (at least 89 times per category): ORGANISM (e.g., plants and
fungi), ENVIRONMENT (environments species live in), QUALITY (characteristics to be
measured), MATERIAL (e.g., chemical compounds), PROCESS (re-occurring biological
and physical processes), LOCATION (geographic location) and DATA TYPE (research
results, e.g., lidar data). All annotations for which the inter-rater agreement was larger
than 0.6 were exported to a final XML file. It represents a substantial agreement [133].

The identified relevant entity types from this question corpus were aligned with the
detected categories of BiodivOnto in several discussion rounds. Table 8.2 shows the final
categories we agreed on to use in the final conceptual model. The entity types were used to
inspect the annotated questions again. This inspection consists of manually detecting the
relations between the already annotated entities in each question. We omitted questions
that do not pose any annotation of the final classes or provide only one class. We only
considered questions that contain at least two annotations of the entity types. In total,
91 questions were utilized for the relation detection in the question corpus.

The main idea for the relation detection process was to come up with categorization for
relations similar to the categories for noun entities. The detection process was conducted in
several rounds. In the first pilot phase, three scholars analyzed only a few questions about
the existence of relations. The initial instruction was to manually inspect the questions
and to identify binary relations between the occurring entities. Scholars were also advised
to inspect the given verbs (which mainly describe a relation) and to think about suitable
categories for the relations. In a second round, the proposed relation categories were
discussed. The outcome was used for the final detection round. The final agreed relation
categories are:

• influence (an entity influences another entity, e.g., an ORGANISM influence PHE-
NOMENA),

• occur_in (an entity occurs in another entity, e.g., PROCESS occur_in ENVIRON-
MENT),

• of (inverse relation of have: an entity of an entity or an entity has another entity,
e.g., QUALITY of ORGANISM).

Complex questions with several entities were split into several relations. For ex-
ample, the question ‘How do (autotrophic microorganisms)[ORGANISM] influence (car-
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Figure 8.9: Occurrence frequency of relations in questions related to biodiversity research
(from [17]).

bon cycling) (PHENOMENA) in (groundwater aquifers)[ENVIRONMENT]?’ This resul-
ted in detecting two relations: influence (autotrophic microorganisms ORGANISM, carbon
cycling PHENOMENA) and occur_in (carbon cycling PHENOMENA, groundwater aquifers
ENVIRONMENT). Figure 8.9 presents the outcome of the relation detection of the question
corpus. The most frequent relation patterns are ORGANISM occur_in ENVIRONMENT,
and ORGANISM occur_in LOCATION, with 13 mentions each. This result served as in-
put for the conceptual model, BiodivOnto.

8.4.2 The Final BiodivOnto

We integrated entity types and the detected relations from the biodiversity questions cor-
pus into our developed conceptual data model. The proposed class names were discussed
with two biodiversity experts. We finally agreed on: ORGANISM, PHENOMENA, EN-
VIRONMENT, LOCATION, QUALITY, and MATTER as the final naming. We use
the final classes and relations to develop the textual data understanding framework (see
Chapter 9). In addition, we also use them to construct and annotate two benchmarks to
evaluate such a framework (see Chapter 10). Initially, BiodivOnto contains fine-grained
as well, like ‘Ecosystem’ and ‘Landscape’, which are subclasses of the ENVIRONMENT
class. To facilitate the annotation process, we decided to use the top-level classes only.
In that sense, both ‘Ecosystem’, and ‘Landscape’ are substituted by ENVIRONMENT.
The same applies to ‘Trait’ and QUALITY, where only the latter was used in annota-
tion. LOCATION is added to BiodivOnto as a result of the analysis of the Biodiversity
Questions corpus.

Regarding relations, BiodivOnto initially had the following:

• have: that appeared between ORGANISM-ENVIRONMENT, ORGANISM-
QUALITY, ENVIRONMENT-QUALITY, and MATTER-QUALITY.

• occur_in: that appeared between PHENOMENA-ENVIRONMENT.

Similarly to what we did regarding concepts, we merged the outcome from the analysis
of the Biodiversity Questions corpus; we included new relations as follows:
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Figure 8.10: Final version of BiodivOnto (from [17]).

• occur_in links, in addition to the above, MATTER-ENVIRONMENT, ORGANISM-
LOCATION, ORGANISM-ORGANISM, PHENOMENA-LOCATION, and
ENVIRONMENT-LOCATION.

• influence relates ORGANISM-PHENOMENA, ORGANISM-MATTER,
PHENOMENA-PHENOMENA, PHENOMENA-QUALITY, PHENOMENA-
ENVIRONMENT, and QUALITY-QUALITY.

The early version of BiodivOnto included both part_of and is_a relations. We dropped
them in the new ontology version since the most common relations in the Biodiversity
Questions corpus lack them. We kept these relations that exist in both sources only.

Figure 8.10 illustrates the reconciled version of BiodivOnto after merging the results
from the Biodiversity Questions corpus. It consists of 6 classes and 17 relations; this model
is ready to be used for annotation.

8.5 Summary
We used a novel data-driven and semi-automatic approach involving domain experts and
computer scientists to develop a core ontology; BiodivOnto. Our proposed method used
the fusion/merge strategy by reusing existing ontologies and data from several data repos-
itories in the biodiversity domain to guide it. It consists of four steps: data acquisition,
term extraction, term filtration, and finally, concepts and relation determination. This
approach is di�erent from the traditional ones of manually developing ontologies. We re-
duce the manual e�ort of developing a core ontology using this semi-automatic data-driven
approach. We also extracted the crucial concepts from the existing biodiversity domain
ontologies to develop our core one. However, there are open questions regarding the quality
of the developed core ontology. In the current state, we determined only the core concepts
of BiodivOnto. The domain expert suggested the relations that interlink the core concepts
of BiodivOnto. We need to determine how relations between these core concepts could
be connected using an automatic approach. Those can be determined using the same
approach as the core categories. For example, we could reuse the existing properties from
the current ontologies to determine the relationship between the core concepts.

The involvement of domain experts is required for qualitative ontology development.
In our methodology, a biodiversity domain expert has been involved in each stage of our
pipeline. We included the other domain experts only after the core concepts creation and
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for final evaluation and validation. We made ‘Quality’, and ‘Trait’ synonyms based on
their opinion.

Each cluster has correctly captured the terms related to the core concept. However,
there were non-relevant terms to the core concept were also included. As a result, a detailed
and quantitative evaluation is required in addition to the domain expert evaluation. We
also need to compare between data-driven engineering approach for ontology development
and manual ontology development with the aid of domain experts. In our next phase, we
need to combine the collected modules as a complete ontology. Currently, it is a conceptual
data model with modules from existing ontologies put together.

Besides the method we presented in this chapter, we also demonstrated a continuous
development of the conceptual model using an existing resource, the Biodiversity Questions
corpus. After integrating such analysis results and the initially developed ontology, we
reached the final model that is ready to be used in developing a textual data interpreter
framework and constructing evaluation benchmarks. We describe the details of each of
them in Chapter 9 and Chapter 10, respectively. We made the outcome and code from
this chapter publicly available under our GitHub repository26.

26
https://github.com/fusion-jena/BiodivOnto

https://github.com/fusion-jena/BiodivOnto


Chapter 9

BiodivBERT

Information Extraction in Life Sciences is getting an increasing attention due to the con-
stantly growing amount of data and text. Motivated by the predicted impeding loss of
biodiversity and the consequences of this loss for humanity [134], research in the biod-
iversity domain has recently witnessed an accelerated growth. For instance, the Biod-
iversity Heritage Library (BHL)1 currently holds over 60 million2 digitised pages of legacy
biology text from the 15th ≠ 21st centuries, representing a huge amount of textual con-
tent [78]. Moreover, Google Scholar returns more than 85,000 hits for a search using the
term ‘biodiversity’ from 2021 til November 2022. Thus, text mining tools are an open
demand in this field to leverage this untapped wealth. The recent progress of data min-
ing techniques is applicable by the advancements of the deep learning models used in
Natural Language Processing (NLP), however, directly applying such NLP techniques on
biodiversity texts is not promising.

Modern word representation models such as Word2Vec [128], GloVe [129], ELMo [130]
and BERT [74] are trained and tested on datasets containing general domain texts (e.g.,
Wikipedia). However, domain-specific, e.g., biodiversity, texts contain a considerable num-
ber of instances of domain-specific entity types. E.g., Helianthus (instance of species),
calcareous grassland, or growth rate. Thus, it is di�cult to estimate the performance
of general-purpose models on domain-specific datasets. Techniques to improve the per-
formance of cutting-edge approaches like BERT on domain-specific benchmarks have first
been developed for the (bio-)medical domain with BioBERT [8], and clinicalBERT [84].
BioBERT is initialized with BERT weights and pre-trained on biomedical corpora that
are based on PubMed3 and PubMed Central (PMC)4. It showed a significant improve-
ment on three downstream tasks, namely Named Entity Recognition (NER), Relation
Extraction (RE), and Qestion Answering (QA). To the best of our knowledge, there is no
language model for the biodiversity domain that supports the extraction of named entities
and their relations from textual data. That biodiversity-specific language model represents
the textual data interpreter we aim to develop under our second research area Textual
data interpretation (TexI). After successfully fine-tuning this model on corpora that
are annotated with classes and relations from BiodivOnto, it could extract named entities
(subjects and objects) as an output from the NER task. In addition, it could detect rela-
tions among those named entities (predicate) as an output from the RE task. This means
that BiodivBERT could construct a KG as a set of triples (subject, predicate, object) from
unstructured text.

In this chapter, we introduce BiodivBERT, the first pre-trained language model for

1
https://www.biodiversitylibrary.org/

2
Accessed on 14th January 2023

3
https://pubmed.ncbi.nlm.nih.gov/

4
https://www.ncbi.nlm.nih.gov/pmc/
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Figure 9.1: BiodivBERT pre-training and fine-tuning Overview (from [135]).

the biodiversity domain in Section 9.1. We discuss our two pre-training corpora (abstracts
and abstracts + full text) that are based on a keyword search strategy from two main pub-
lishers in Life Sciences, namely, Springer and Elsevier in Section 9.2. In addition to the
pre-training, we fine-tune BiodivBERT on two downstream tasks i.e., Named Entity Re-
cognition (NER) and Relation Extraction (RE) using various state-of-the-art benchmarks
in Section 9.3. We demonstrate the e�ectivness of BiodivBERT in Section 9.4. We sum-
marize and conclude this chapter in Section 9.55.

9.1 Approach

We introduce BiodivBERT, which is a pre-trained language representation model for the
biodiversity domain. The overall process of pre-training and fine-tuning BiodivBERT is
shown by Figure 9.1. First, we initialize BiodivBERT with weights from BERT [74], which
was pre-trained on general domain corpora (English Wikipedia and BooksCorpus). Then,
BiodivBERT is pre-trained on our collected corpora from the biodiversity domain. The
first corpus is based on abstracts (+Abs), while the other contains both abstracts and
full text (+Abs+Full). To demonstrate the e�ectiveness of BiodivBERT in biodiversity
text mining, we fine-tuned and evaluated it on two downstream tasks NER and RE using
various task-specific datasets.

9.2 Pre-training

In this section, we explain our pre-training data sources, selection strategy, and data
statistics. In addition, we discuss the pre-training task for BiodivBERT.

5
This chapter is based on Abdelmageed et al [135]. Thanks to Felicitas Lö�er who constructed the

abstracts corpus for pre-training BiodivBERT. The author of this thesis applied further analysis beyond

the scope of the published manuscript.
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9.2.1 Pre-training Data
We discuss the construction of two pre-training corpora that are based on Abstracts
(+Abs), and Full text (+Abs+Full). We explain our used keywords search strategy, work-
flow, and the resultant corpora statistics.

Keywords Search We discussed various options to crawl data for pre-training with
three biodiversity experts. Our experts recommended to focus on sources that reflect re-
cent research directions. Therefore, they suggested querying Elsevier6 and Springer7 rather
than the BHL which contains more legacy data. In addition, these companies publish a
diverse set of biodiversity-related journals. Moreover, they provide o�cial APIs to crawl
data. To crawl these massive reservoirs, our experts suggested 10 keywords that covered
the domain as follows: ‘biodivers*’, ‘genetic diversity’, ‘*omic diversity’, ‘phylogenetic
diversity’, ‘soil diversity’, ‘population diversity’, ‘species diversity’, ‘ecosystem diversity’,
‘functional diversity’, and ‘microbial diversity’ and recommended crawling data from the
last three decades [1990-20208]. ‘biodivers*’ and ‘*omic diversity’ are wild card repres-
entation that include mulitple keywords like biodiversity, biodiverse, taxonomic diversity,
and etc.

Corpora Construction Pipeline To show the e�ect of the pre-training data on the
model performance through the downstream tasks, we created two pre-training corpora.
One is based on abstracts (+Abs) only, while the other contains abstracts and full text
of publications (+Abs+Full). Under the access rights provided by the selected publish-
ers, we used abstracts and full texts of open-access papers and abstracts only for other
publications. To construct the +Abs corpus, we used the pre-selected keywords and year
range as input for both Elsevier and Springer’s provided full-text search APIs. For each
of them, we retrieved the corresponding DOIs for each keyword in the given year’s range.
We then applied a deduplication method to results. We made the collected DOIs of the
pre-training text corpora publicly available [136] We applied the same procedure for the
second corpus, which is based on the full texts (+Abs+Full). Elsevier provided a straight-
forward API to obtain the parsed full text for a given article. However, for Springer’s full
text, we downloaded the corresponding PDF file for each DOI, converted it to an XML
format, and then extracted the text. We converted the downloaded PDFs to XML files
using the GROBID service, and client [137]. We cleaned and merged the final text from
both data sources. We applied shallow and deep cleaning steps for the collected data. For
instance, we filtered the sentences to include unique ones. In addition, we used regular
expressions to remove URLs and DOIs.

Corpora Statistics Figure 9.2 shows the available DOIs distribution of the selected
keywords over the pre-defined year’s range, this reflects the contained publications in the
Abstracts (+Abs) corpus. These results include both open and closed access publications;
abstracts are always available for all kinds of manuscripts. Those numbers are deacreased
as shown in Figure 9.3 during the construction of the full text corpus due to the open ac-
cess limiation by both puplishers. From both figures we note that the top three keywords
that yeiled into the most publications from Springer are: ‘population diversity’, ‘species di-
versity’, and, ‘functional diversity’. ‘*omic diversity’ has the lowest number of publications
in Springer. The top three keywords from Elsevier are: ‘biodivers*’, ‘genetic diversity’,
and ‘species diversity’. ‘soil diversity’ and ‘ecosystem diversity’ keywords have less than
2000 publications from Elsevier only.

6
https://dev.elsevier.com/

7
https://dev.springernature.com/

8
The starting year of this project.

https://dev.elsevier.com/
https://dev.springernature.com/
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Table 9.1: Final Pre-training Corpora Statistics (from [135]).

Corpus Data Source #Docs #Sentences #Words Size

+Abs Abstracts 1M Abstract 5M 134M 876 MB
+Abs+Full Full Text 92K Article 25M 548M 3.81 GB

Table 9.1 gives an overview of our final corpora statistics. +Abs and +Abs+Full are
around 1 GB, and 4 GB in size respectively. Our corpora include around 1M abstracts
with 92K full publications. They contain 5M and 25M sentences, respectively. +Abs+Full
is around 5 times of the +Abs in terms of the included sentences. All these numbers are
derived after the cleaning step we applied in the construction pipeline. Thus, final included
sentencesin each corpus are unique.

We faced data loss as shown in Figure 9.4 due to several reasons: 1) not found (404)
errors for some articles, because of either technical issues on the provider side or invalid
DOIs. 2) Elsevier allows crawling only 6000 articles per keyword through its API. 3)
GROBID failed to convert some PDfs from Springer. So, the shown numbers indicate the
best we can use from both publishers under such circumstances. These issues reduced the
available publication in case of Springer by 28%. They limited the final obtained full text
in case of Elsevier by about half of the avaiable; 51%.

9.2.2 Pre-training Task

We pre-trained BiodivBERT on our domain-specific corpora (+Abs), and (+Abs+Full).
We initialized BiodivBERT with the BERT_base_cased weights for computation e�ciency
and to leverage the general domain learned weights from the Wikipedia and books corpora
by the original model. For tokenization, we used the same BERT WordPiece [138] tokenizer
which overcomes the issue of out-of-vocab (OOV). Similar to BioBERT [8], we used the
cased vocabulary in our setting since it has higher performance on the downstream tasks
and we used the original vocabulary of BERT_base_cased for the same reason and to be
compatible with both BERT and BioBERT. We compare BiodivBERT to the state-of-
the-art BERT-based models. In addition, we tested di�erent combinations of pre-training
corpora. We compare these settings in Table 9.2. We pre-trained BiodivBERT+Abs, and
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Figure 9.4: Data loss during full Text corpus construction (from [135]).

BiodivBERT+Abs+Full using the HuggingFace [139] library on a single V100 GPU (16
GB) for 3, and 5 days respectively. For hyperparameters, we used 512 for the maximum
sequence length and 15% of the masked language model probability. In addition, we used
Adam’s optimizer with 1e-3 learning weight and default betas. Moreover, we set batch
size to 16, and we enabled the gradient accumulation with 4 steps for faster training. We
made the pre-trained weights publicly available [140].

9.3 Fine-Tuning

With minimal architectural modification, BiodivBERT can be applied to various down-
stream text mining tasks. We fine-tuned it on both NER and RE using P100 (16 GB) by
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Table 9.2: Pre-training Models setting corpora (from [135]).

Model Corpora

BERTBASE [74] Wiki + Books
BioBERTv1.1 [8] Wiki + Books + PubMed
BiodivBERT+Abs Wiki + Books + Abstracts
BiodivBERT+Abs+Full Wiki + Books + Abstracts + FullTxt

Table 9.3: Overview of the selected NER datasets (from [135]).

Dataset Tags #Docs #Statements #Annotations

QEMP [29] 4 50 2,226 5,154
COPIOUS [78] 5 668 26,277 26,007
Species800 [79] 1 800 14,756 5,330
Linnaeus [80] 1 100 34,310 3,884
BiodivNER [17] 6 150 2,398 9,982

Colab Pro9 using various state-of-the-art datasets. We made our pre-processed datasets
publicly available [141].

9.3.1 Named Entity Recognition
Named Entity Recognition (NER) is the task of identifying the domain-specific proper
nouns inside a given text. We leveraged the original BERT structure for NER such that
it uses a single output layer based on the representations from its last layer to com-
pute only token-level probabilities. We used entity-level precision, recall, and F1-score
as the evaluation metrics of NER. We selected various state-of-the-art datasets to test
the performance of BiodivBERT on NER, Table 9.3 summarizes them. BiodivNER [142]
is constructed from biodiversity-specific metadata files and abstracts from PubMed and
has five tags, e.g., organism and phenomena. We constructed this corpus and gave its
details in Chapter 10. COPIOUS [78] is based on BHL documents and has six entity
types, a.k.a. tags, including, e.g., Habitat and taxon names. QEMP [29] is created from
biodiversity-related datasets metadata files and contains four tags, e.g., quality and mater-
ial. Species800 [79] and Linnaeus [80] are designed for species names that are normalized
to NCBI Taxonomy database10. We pre-processed all of them to follow the BIO11 format
for token classification.

9.3.2 Relation Extraction
Relation Extraction (RE) is the task of classifying relations among named entities in a
corpus. We utilized the sentence classifier of the original version of BERT which uses a
[CLS] token for the classification of relations. To the best of our knowledge, BiodivRE [142]
is the only available RE corpus for the biodiversity domain, so we included it in our fine-
tuning setting. We constrcuted this corpus as well, we give the details of it in Chapter 10.
In addition, we included the BioRelEx [83], EU-ADR [81], and GAD [82] corpora from
the biomedical domain. BiodivRE contains relations among entity types of BiodivNER
like occur_in, and influence in a multi-class and a binary format. BioRelEx classifies the
bindings between genes and diseases into three categories: exists (1), not exists (-1), and
unsure (0). EU-ADR, and GAD include relations between gene and disease.

9
https://colab.research.google.com/?utm_source=scs-index

10
https://www.ncbi.nlm.nih.gov/taxonomy

11
https://natural-language-understanding.fandom.com/wiki/Named_entity_recognition#BIO

https://colab.research.google.com/?utm_source=scs-index
https://www.ncbi.nlm.nih.gov/taxonomy
https://natural-language-understanding.fandom.com/wiki/Named_entity_recognition#BIO
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Table 9.4: Overview of the selected RE datasets (from [135]).

Dataset #True Statements #False Statements Total

BioRelEx [83] 1,379 62 1,606
GAD [82] 25,209 22,761 53,300
EU-ADR [81] 2,358 837 3,550
BiodivRE [17] 1,369 2,631 4,000

Table 9.5: Fill-in mask task results by BERT-based models (from [135]).

Model Rank Result

1 Diversification and variation in brood pollination mutualisms.
BERT 2 Diversification and variations in brood pollination mutualisms.

3 Diversification and changes in brood pollination mutualisms.

1 Diversification and Image in brood pollination mutualisms.
BioBERT 2 Diversification andim in brood pollination mutualisms.

3 Diversification andvasive in brood pollination mutualisms.

1 Diversification and change in brood pollination mutualisms.
BiodivBERT 2 Diversification and diversity in brood pollination mutualisms.

3 Diversification and evolution in brood pollination mutualisms.

In this chapter, we used the binary format that is provided by BiodivRE. For BioRelEx,
we constructed a binary relation corpus by excluding the unsure relations. Moreover, and
similar to BioBERT, we anonymized the target named entities in a sentence using their
tags, e.g., @COMPLEXPROTEIN$, and @GENE$. For EU-ADR and GAD, we used
the provided pre-processed version by BioBERT’s team since the original data are not
available. Table 9.4 shows the selected RE datasets’ statistics.

9.4 Evaluation
To gain a first impression of the performance of our approach, we ran a mask-filling task on
a typical biodiversity topic on BERT, BioBERT, and BiodivBERT using the following test
case: ‘Diversification and [MASK] in brood pollination mutualisms.’. Table 9.5 shows that
BiodivBERT has produced the most realistic results compared to the other two models.
Such that, BiodivBERT generated both ‘diversity’ and ‘evolution’. Thus, it demonstrates
the e�ectiveness of pre-training data.

Table 9.6 and Table 9.7 show the scores of fine-tuning BiodivBERT, BERT, and
BioBERT models on two downstream tasks NER, and RE, respectively. In addition,
we developed a single layer of the Bidirectional Long Short Term Memory (BiLSTM)
with 10% dropout as a baseline approach. We micro-averaged the results per dataset to
generate the scores of all systems. We fine-tuned these models on a single P100 GPU
provided by Colab Pro. At first, we found that BioBERTv1.1 obtained higher scores than
BERTBASE on the downstream tasks, Second, BiodivBERT+Abs+Full and BiodivBERT+Abs
gained the best results among all the others by achieving either first or second place on
the given datasets. For NER, BiodivBERT+Abs+Full exceeded BioBERTv1.1 for all data-
sets except QEMP, where BiodivBERT+Abs outperformed BioBERTv1.1 with 1% F1 score.
In addition, we noticed that all models gained higher scores in species-related datasets,
e.g., LINNAEUS. A reason that could be behind these results is that these datasets are
easier than those with fuzzy categories to identify. E.g., QEMP and BiodivNER have a
class, ‘QUALITY’, that groups data measures that cover vast and various attributes of the
biodiversity domain and would be harder to detect. For RE, we have mixed results; for ex-
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Table 9.6: Fine-tuning scores on NER datasets. The highest score is marked in bold while the
following score is marked underline. Evaluation Metrics (Met.) are Precision (P), Recall (R), and
F1 score (F) (from [135]).

BiodivBERT
Dataset Met. BiLSTM BERTBASE BioBERTv1.1 +Abs (+Abs+Full)

Spieces-800 P 0.49 0.80 0.87 0.81 0.79
R 0.09 0.81 0.80 0.80 0.84
F 0.16 0.80 0.80 0.81 0.81

LINNANUS P 0.82 0.93 0.93 0.92 0.95
R 0.22 0.94 0.94 0.90 0.95
F 0.34 0.94 0.94 0.91 0.95

COPIOUS P 0.77 0.88 0.88 0.88 0.89
R 0.53 0.87 0.89 0.88 0.88
F 0.63 0.88 0.88 0.88 0.88

QEMP P 0.84 0.90 0.91 0.90 0.88
R 0.53 0.73 0.76 0.78 0.72
F 0.65 0.81 0.83 0.84 0.79

BiodivNER P 0.66 0.85 0.86 0.86 0.85
R 0.44 0.83 0.85 0.86 0.88
F 0.53 0.84 0.86 0.86 0.87

Table 9.7: Fine-tuning scores RE datasets. The highest score is marked in bold while the following
score is marked underline. Evaluation Metrics (Met.) are Precision (P), Recall (R), and F1 score
(F) (from [135]).

BiodivBERT
Dataset Met. BiLSTM BERTBASE BioBERTv1.1 +Abs (+Abs+Full)

BiodivRE P 0.68 0.80 0.79 0.78 0.78
R 0.68 0.81 0.81 0.79 0.77
F 0.68 0.80 0.80 0.79 0.77

BioReLx P 0.71 0.83 0.82 0.85 0.80
R 0.78 0.89 0.70 0.75 0.74
F 0.74 0.86 0.75 0.79 0.77

EU-ADR P 0.71 0.91 0.56 0.92 0.92
R 0.69 0.62 0.53 0.69 0.69
F 0.60 0.74 0.54 0.79 0.79

GAD P 0.66 0.77 0.81 0.77 0.78
R 0.66 0.77 0.81 0.76 0.77
F 0.66 0.77 0.81 0.77 0.78

ample, BiodivBERT+Abs+Full outperforms BioBERTv1.1 with 2.5% F1-score for EU-ADR.
However, BioBERTv1.1 overcomes BiodivBERT+Abs+Full with 3% F1-score for BiodivRE.
We plan to apply di�erent fine-tuning settings on those datasets to enhance these scores.

To give a general overview of the performance of all models, we propose a simple arith-
metic weighting score to demonstrate the e�ectiveness of each model. Equation 9.1 shows
the task score where task is either NER or RE and is given by a weighted summation for
the first three ranks. An overall score for a system is given by the summation of the tasks’
weighted rank as shown in Equation 9.2. Figure 9.5 depicts that BiodivBERT+Abs+Full is
the best model in terms of the system score followed by BiodivBERT+Abs with 17.17, and
16 system score, respectively.
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(9.1)
Score(task) = #1st

rank(task) + #2nd
rank
2 (task) + #3rd

rank
3 (task)

where task œ {NER, RE}

(9.2) SystemScore = Score(NER) + Score(RE)

Our constructed corpora BiodivNER and BiodivRE (see Chapter 10) are annotated
using classes and relations from BiodivOnto we constructed in Chapter 8. This schema
consists of six core concepts including, e.g., ‘Organism’, ‘Environment’, ‘Location’, and
three core relations: have, occure_in, and influence. So far, the population of the ontology
with instances is incomplete. We fine-tuned BiodivBERT on these two corpora. Thus,
BiodivBERT could be used to auto-populate the ontology. For instance, ‘Seabass occurs in
the western Atlantic Ocean’ would be classified as: [Seabass ORGANISM, occurs, Atlantic
Ocean LOCATION] an . In a final step, the identified instances should be linked to existing
knowledge graphs. e.g., ‘Seabass’ and ‘Atlantic Ocean’ would be mapped to http://www.
wikidata.org/entity/Q307102 and https://www.wikidata.org/wiki/Q97, respectively from
Wikidata. This could be done, e.g. using our approach described in Chapter 6. With
this, BiodivBERT has a potential to bring us closer to our ultimate goal, the creation of
a comprehensive biodiversity knowledge graph out of textual data.

9.5 Summary
In this chapter, we introduced BiodivBERT as a pre-trained language model for the biod-
iversity domain. We pre-trained it using two domain-specific corpora that contain recent
publications from both Springer and Elsevier publishers. We used ten keywords to crawl
these data sources during [1990-2020]. We demonstrated the statistics of the constructed
corpora. In addition, we fine-tuned BiodivBERT on two downstream tasks for text mining:
Named Entity Recognition (NER) and Relation Extraction (RE). We included the closely

http://www.wikidata.org/entity/Q307102
http://www.wikidata.org/entity/Q307102
https://www.wikidata.org/wiki/Q97
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related state-of-the-art benchmarks for both tasks besides our developed biodiversity-
specific datasets. We compared BiodivBERT to state-of-the-art approaches, including
BERT, BioBERT, and a baseline approach to demonstrate its e�ectiveness. BiodivBERT
outperforms the state-of-the-art approaches on task-specific datasets. Last but not least,
we pointed out an application of BiodivBERT, it could auto-populate our constructed
BiodivOnto ontology with instances. This means BiodivBERT represents the textual
data interpreter to construct a knowledge graph from text. We made the outcome from
this chapter publicly available under our GitHub repository12. In addition, we released the
collected DOIs for per-training corpora construction [136], the pre-trained weights [140],
and the pre-processed datasets for fine-tuning [141] available at Zenodo.

12
https://github.com/fusion-jena/BiodivBERT

https://github.com/fusion-jena/BiodivBERT


Chapter 10

BiodivNERE Corpora

Natural Language Processing (NLP), with its sub-task Information Extraction, is a re-
search field that uses structured data or scientific publications. The aim is to develop
systems that automatically identify important terms and phrases in text. That supports
scholars in getting a quick overview of unknown texts, e.g., in search or allows improved
filtering. In Life Sciences, Information Extraction has a long history [143]. Driven by a
series of workshops and shared tasks such as BioNLP1, BioCreative2, and BioASQ3 in the
scope of CLEF4, multiple corpora and tools for various purposes were developed to extract
main entities from text and relations among them automatically. However, determining
what a relevant entity or relation in a document or data depends on the domain of fo-
cus. While scholars looking for biomedical data are mainly interested in data types such
as diseases, biological processes and organisms [144], and related entities such as genes
and proteins. In biodiversity research, other categories are of relevance, namely: organ-
isms, environmental terms, geographic locations, measured data parameters, materials,
biological, physical and chemical processes, and data types [28].

The increasing amount of scientific datasets in public data repositories calls for more
intelligent systems that automatically analyze, process, integrate, connect or visualize
data. An essential building block in the evolution of such computer-supported analysis
tools is Information Extraction with its sub-tasks, Named Entity Recognition (NER) and
Relation Extraction (RE). The former task aims to automatically identify important
terms (entities) and groups of terms/expressions that fall in a certain category. The latter
task extracts relationships that could occur among those entities (RE). However, the
advancement of such tools is applicable if gold standards, manually labeled test corpora,
are available. This supports the training of machines (for machine learning approaches)
and allows an evaluation of the developed tools. For applied domains such as biodiversity
research, gold standards are very rare.

In our scope, under the second research area Textual data interpretation (TexI),
we developed a textual data interpreter, BiodivBERT (see Chapter 9). We need to demon-
strate the e�ectivness of it using gold standard and domain-specific corpora. Since Biod-
ivBERT is developed to construct a Knowledge Graph (KG) from text, the downstream
tasks that achieve this goal are NER and RE. We present novel gold standards for biod-
iversity research in two downstream tasks (NER and RE). To hit our ulitmate goal,
KG construction from text, we align these corpora with the BiodivOnto that we dis-
cussed in Chapter 8. We provide a NER corpus based on scientific metadata files and
abstracts with manual annotations of important terms from BiodivOnto such as species

1
https://aclanthology.org/venues/bionlp/

2
https://biocreative.bioinformatics.udel.edu/

3
http://bioasq.org/

4
http://clef2021.clef-initiative.eu/
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https://biocreative.bioinformatics.udel.edu/
http://bioasq.org/
http://clef2021.clef-initiative.eu/
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(ORGANISM), environmental terms (ENVIRONMENT), data parameters and measured
variables (QUALITY), geographic locations (LOCATION), biological, chemical and phys-
ical processes (PHENOMENA) and materials (MATTER), e.g., chemical compounds. In
addition, we provide an RE corpus based on a portion of the same data that consists of
important binary and multi-class relations among entities such as occur_in (Organism,
Environment), influence (Organism, Process), and have/of (Quality, Environment). We
provide the results in formats that allow easy further processing for various NLP tasks
based on machine learning and deep learning techniques.

In this chapter, we describe our used data, entity types and relations in Section 10.1.
We explain our pipeline to create both corpora: BiodivNER, and BiodivRE in Section 10.2,
and Section 10.3, respectively. We evaluate both corproa and explain their statistics in
Section 10.4. We summarize and conclude this chapter in Section 10.55.

10.1 Resources Reuse

To construct our corpora, we re-used the metadata and abstracts that we initially collected
to develop BiodivOnto (see Chapter 8). Metadata files are gathered from two data sources
with very di�erent characteristics (BEFChina6 and data.world7). The Semedico search
engine [126] retrieves relevant abstracts from PubMed8, a source with more than 32M
abstracts. To ensure the relevance of the crawled data from Semedico, we have followed
an iterative way of revision. We started with the initial keywords set that we used to
crawl. Initially, these collected data were meant to extract biodiversity-related keywords.
However, in this chapter, we use them for the purpose of developing NER and RE corpora.

Entity types and relations are settled in the last version of BiodivOnto. We use entity
types, tags, or classes interchangeably in this chapter. We developed its final version after
we integrated the outcome from the analysis of the Biodiversity Questions corpus. We
summarize the classes we use to annotate the NER corpus as follows:

• ORGANISM: includes all individual life forms, e.g., mammal, insect, fungi, and
bacteria.

• PHENOMENA: contains occurring natural, biological, physical, or chemical pro-
cesses, including events, e.g., decomposition, colonization, and deforestation.

• MATTER: includes chemical and biological compounds and natural elements, e.g.,
carbon, H2O, sediment, and sand.

• ENVIRONMENT: includes natural, or man-made environments ORGANISM live
in, e.g., groundwater, garden, and aquarium.

• QUALITY: contains data parameters that are measured or observed, phenotypes
and traits, e.g., volume, age, and structure.

• LOCATION: consists of geographic location (no coordinates), e.g., China, United
States.

5
This chapter is based on Abdelmageed et al [17]. Thanks to Leila Feddoul who participated in the

manual annotation of both corpora (BiodivNER and BiodivRE). Thanks to Felicitas Lö�er and Sheeba

Samuel who participated in the manual annotation of BiodivNER. Thanks to Jitendra Gaikwad and

Anahita Kazem, our biodiversity experts for validations and discussions.
6
https://data.botanik.uni-halle.de/bef-china/

7
https://data.world/

8
https://pubmed.ncbi.nlm.nih.gov/

https://data.botanik.uni-halle.de/bef-china/
https://data.world/
https://pubmed.ncbi.nlm.nih.gov/
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Figure 10.1: Our proposed NER corpus construction pipeline (from [17]).

We summarize the relations we use to annotate the RE corpus as follows:

• occur_in links both MATTER-ENVIRONMENT, ORGANISM-LOCATION,
ORGANISM-ORGANISM, PHENOMENA-LOCATION, PHENOMENA-
ENVIRONMENT, and ENVIRONMENT-LOCATION.

• influence relates ORGANISM-PHENOMENA, ORGANISM-MATTER,
PHENOMENA-PHENOMENA, PHENOMENA-QUALITY, PHENOMENA-
ENVIRONMENT, and QUALITY-QUALITY.

• have: appears between ORGANISM-ENVIRONMENT, ORGANISM-QUALITY,
ENVIRONMENT-QUALITY, and MATTER-QUALITY.

10.2 BiodivNER Construction Pipeline
In this section, we explain the construction pipeline of the NER corpus as shown in
Figure 10.1. Our process consists of seven steps. It starts with the annotation guidelines
to describe what we annotate and is followed by the data preparation step in which the
originally collected data is transformed into the required data format used for annotation.
In the pilot phase, we carry out an initial annotation task to check whether we have to
modify the annotation guidelines or whether we have to invest more time in the annotators’
training. Afterwards, the actual annotation task takes place. The outcome is evaluated
with the computation of the inter-rater agreement, precision, recall, and F1-score. Finally,
we discuss the mismatches with biodiversity experts in the reconciliation phase.

10.2.1 Annotation Guidelines
We followed a modified version of our previous project guidelines to construct the QEMP
corpus [29]. We set the current sentence as the only available context to annotate. We
did not consider the entire document as in the gold standard construction process in NLP.
Since the main purpose of this work is to develop a corpus for NER, we considered only
noun entities and discarded adjective entities. In addition, we gave higher attention to the
complex words that minimized the chance of having two valid annotations for one term.
Thus, we followed the longest span annotation and avoided nested entities annotation.
For example, ‘benthic oxygen uptake rate’ is annotated as [QUALITY] while we ignored
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Figure 10.2: NER annotation process (from [17]).

any simple word annotation inside this span. Conjunctions are handled as two separate
entities. For example, ‘(phylogenetic diversity)[QUALITY] of (bacteria)[ORGANISM]’.
We included more existing external resources than the ones used in QEMP to find proper
annotations. For example, we considered the following ontologies that were used for con-
structing the original version of BiodivOnto: ECSO9 and ECOCORE10 for environmental-
related terms, BCO11 and CBO12 for phenomena-related keywords. In addition, we utilize
NCBITaxon13, FLOPO14 for species and phenotype annotation, respectively. Moreover,
we used the SWEET15 ontology to capture any missing terms from the previous ontologies.
Our last option to find annotations from existing sources is a reference to the ontological
issues detected and summarized by [29]. Such kind of selected resources mixture facilitated
the detection of a wide range of terms that vary in their granularity (too specific vs. too
general terms).

10.2.2 Data Preparation

We parsed the original data collection into sentences. For each sentence, we tokenized it
into a set of words using ntlk16 library. Since our used annotation format is BIO-scheme17,
where a word is annotated either with B-tag as a beginning of an entity or, I-tag as an
inside of entity or, O as outside of the entity, each word is initialized with an O tag. Each
sentence as a set of words with O tags is stored vertically in a CSV file, as shown in
Figure 10.2a. Afterwards, we split the entire corpus into two halves to enable the double
annotation process.

9
https://bioportal.bioontology.org/ontologies/ECSO

10
https://bioportal.bioontology.org/ontologies/ECOCORE

11
https://bioportal.bioontology.org/ontologies/BCO

12
https://bioportal.bioontology.org/ontologies/CBO

13
https://bioportal.bioontology.org/ontologies/NCBITAXON

14
https://bioportal.bioontology.org/ontologies/FLOPO

15
https://bioportal.bioontology.org/ontologies/SWEET

16
https://www.nltk.org/

17
https://natural-language-understanding.fandom.com/wiki/Named_entity_recognition#BIO

https://bioportal.bioontology.org/ontologies/ECSO
https://bioportal.bioontology.org/ontologies/ECOCORE
https://bioportal.bioontology.org/ontologies/BCO
https://bioportal.bioontology.org/ontologies/CBO
https://bioportal.bioontology.org/ontologies/NCBITAXON
https://bioportal.bioontology.org/ontologies/FLOPO
https://bioportal.bioontology.org/ontologies/SWEET
https://www.nltk.org/
https://natural-language-understanding.fandom.com/wiki/Named_entity_recognition#BIO
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10.2.3 Trial and Pilot Phase

The author of this dissertation along with two PhD sudents and a Post Doc. were re-
sponsible for annotating the corpus. The four annotators received periodical guidance
from two biodiversity experts. Initially, we established a trial or a pilot phase before the
actual annotation process took place. The purpose of this phase is to ensure the training
of the annotators (participant guidance) as well as, to revise the annotation guidelines.
Around 2% (450 sentences) of the entire corpus is assigned to each annotator pair. Each
annotator labeled a local copy of the pilot phase data in an Excel file. During this process,
each annotator is asked to annotate a relevant term with one and only one tag from the
provided tags. The results of this process are represented in Figure 10.2. After the end
of the Pilot Phase, we held a ‘Share Thoughts’ meeting to discuss the outcome. At this
stage, we realized that we need a modified version of the guidelines. For example, at the
beginning, not all annotators followed the ‘longest span’ rule and annotated every single
word separately. Thus, we have settled on the longest span sequence to avoid or minimize
such inconsistencies. In addition, we have decided to add the SWEET ontology to include
missing terms from the other used ontologies.

10.2.4 Annotation Process

After the pilot phase, we familiarized ourselves with the annotation process and the
guidelines. Each half of the corpus was assigned to an annotator pair. We followed the
same procedure as in the pilot phase. Each annotator from the annotators pair worked
blindly on a local copy of the sheet. We refer to blindly as without access to the annota-
tion of the other mate. This procedure ensures the higher quality of annotated data and
allows the calculation of the inter-rater agreement. Each annotator was asked to complete
the annotation of half of the corpus. This annotation process was time-consuming and
lasted for several months. Annotating a term is considered to be done if the annotator
found the target tag in the selected existing data sources. However, if the annotator was
unsure about the correct annotation, the term with a suggested tag was kept in a separate
sheet named ‘Open Issues’. We held various meetings with the biodiversity experts during
this stage to solve the open issues. Since we had two annotator pairs, let’s say, team A
and B for two di�erent sheets, where each sheet represented half of the corpus, we were
able to calculate the inter-rater agreement for each team. We used Kappa’s score for the
agreement computation since it is one of the most common statistics to test inter-rater
reliability [145]. The scores are 0.76 and 0.70 for teams A and B, respectively, with an av-
erage score of 0.73. In addition, we calculate both precision, recall, and F1-score for both
teams, as shown in Figure 10.3, and Figure 10.4, respectively. Team A reached an average
precision, recall, and F1-score of 0.73, 0.65, and 0.67 respecively. However, Team B gained
average scores: 0.66, 0.74, and 0.67 for both precision, recall, and F1-score respecively.

10.2.5 Reconciliation

We have extracted the mismatches in a separate sheet per annotator pair. A sheet con-
tained the actual sentence with each of the annotator’s answers. The task of each an-
notator pair was to reconcile their mismatches and to reach a final annotation that the
two agreed on. We noticed that a significant cause for the mismatches was the rule of
longest text span consideration in the annotation guidelines. For example, one annotator
labeled the entire phrase ‘Secondary Metabolites’ as MATERIAL while the other tagged
only ‘Metabolites’ as MATERIAL. Such cases were the easiest to solve. However, other
cases, where an annotator pair could not agree on one correct annotation were discussed
with the biodiversity experts. For example, ‘Soil lipid biomass’ seemed to be confusing as
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Figure 10.3: Team A: Agreement scores (from [17]).
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density of soil invertebrates varies in response to earthworm invasion
B-Quality O B-Organism I-Organism O O O O B-Phenomena I-Phenomena

Figure 10.5: Creating sentence variations from a sentence containing more than two tags
(from [17]).

it could be either classified as MATTER or QUALITY. In such a case, we followed the
biodiversity expert’s opinion and settled on MATTER.

10.3 BiodivRE Construction Pipeline
In this section, we describe our pipeline of constructing the binary and multi-class RE
corpus on top of the BiodivNER. Initially, we transformed the annotated data for NER to
suit the RE annotations process. Then, we tried to sample a subset of sentences to obtain
a reasonable size of the RE corpus to be annotated. For each sampling method, we detail
its advantages and disadvantages. Afterwards, we explain the annotation process for the
RE corpus.

10.3.1 Initial Construction
We considered the final NER corpus as an input for the RE corpus construction. We
prepared the data in such a way to be more readable. Each sentence is represented by one
row followed by its corresponding NER annotations in the following line. The NER corpus
contains sentences with multiple tags. However, an RE corpus should be designed in a
way that each sentence contains exactly two tags. We generated all possible combinations
for sentences with more than two tags, including exactly two tags. Figure 10.5 illustrates
an example where one sentence with three tags generates three sentences with two labels.
This operation generated a large-scale corpus with more than 52K sentences. We expect
a high rate of FALSE (no relation) statements in the generated corpus. However, our task
aims at creating an RE corpus with a good balance between TRUE (existing relation)
and FALSE sentences. To achieve this, we have to choose a suitable sampling strategy to
achieve the best balance among the selected sentences. Therefore, we have explored two
di�erent sampling methods. We discuss them in the following sections.

10.3.2 Random Sampling
In the pilot phase of BiodivRE construction, we used a random sampling mechanism
among the created corpus. We did not consider any selection criteria. We directly stacked
the entire corpus in a list, shu�ed it, and randomly picked ‘n’ sentences. We started
annotating the resultant smaller corpus, and by doing so, we encountered two issues. At
first, we found long sentences with too far tags which makes the existence of a relation
between the two tags impossible. Second, some of the relation pairs in the ontology have
not appeared in the corpus at all. There are two reasons for the second issue. Either such
kinds of relations do not appear in the original corpus or they are missed by the sampler
since it purely depends on the random selection. The conclusion from the pilot phase is
the need of changing the sampling strategy.

10.3.3 Round Robin Sampling
We developed a balance-biased sampler using a round robin method to have more control
over what to include in the final RE corpus. We grouped the sentences from the initial
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construction by tag-pair, where a valid pair is the one appearing in the BiodivOnto, and
the unsupported co-occurrences were grouped into a new category, ‘Other’. At this stage,
we handled the relations bidirectionally between entities of interest to cover cases like
ENVIRONMENT have QUALITY and QUALITY of ENVIRONMENT. Afterwards, we
iterated over the groups, including the entire set of tag-pairs as well as the ‘Other’ group.
We picked one sentence from each group until a threshold was reached. In our case, we
selected 4000 sentences as a threshold. An additional criterion is that we limit the number
of words between the two entities of interest to a certain value, e.g., 30 words. In this way,
we solved the two problems that appeared using the random sampling method. At first,
we guarantee that we cover all the relations of the BiodivOnto, if it exists in the text,
in the final corpus. Second, we avoid cases with FALSE sentences due to too far entities
since it is clear that no relation could exist between them.

10.3.4 Annotation Process

We directly referred to BiodivOnto and limited the accepted relations to those supported
by the ontology. On the one hand, for each sentence, we checked whether there is a relation
between its two named entities. On the other hand, whether this relation has a semantic
correspondence in the BiodivOnto. For example, a verb relation ‘has an impact on’ is
considered a synonym for the ontological relation ‘influence’. FALSE examples would be
either the relation is not supported by the BiodivOnto or it has a di�erent meaning than the
ontological relation. For example, ‘Climate change (B-Phenomena I-Phenomena) impacts
the carbon dioxide (B-Matter I-Matter)’ is a FALSE sentence since there is no ontological
relation between PHENOMENA-MATTER. Such a sentence would appear since we also
choose from the ‘Other’ group in the selected sampling method. Another FALSE example
might occur between two entities with a relation in the BiodivOnto. ‘Trees (B-Organism)
with extrafloral nectaries (B-Matter I-Matter)’ is a FALSE statement since the word with
does not imply the relation influence between ORGANISM and MATTER.

Similar to our procedure to construct the NER corpus, we also applied a pilot phase
for RE annotation. The author of this thesis and a PhD student annotated the same 50
sentences that were randomly picked. Afterwards, we calculated the inter-rater agreement
(Kappa’s score), which resulted in 0.94. Due to this high score, we decided to split the
corpus and individually continue the annotation.

During the real annotation phase, we encountered issues regarding the entity tags, espe-
cially for the longest span annotation. This rule does not seem to be correctly followed dur-
ing the annotation of the NER corpus. For example, ‘earthworm invasion’ was annotated
as [B-ORGANISM] [B-PHENOMENA], instead of [B-PHENOMENA] [I-PHENOMENA].
For those cases, we fixed them to follow the rule of the annotation declared originally in the
NER guidelines. Figure 10.6 shows samples from an annotation sheet. The first column
holds the actual relation label from BiodivOnto that will be used for the multi-class RE
corpus. Then, it is followed by a binary relation tag (0- no relation, 1- existing relation).
Yellow cells highlight the relation between the two entities of interest in the text. Red cell
indicates that there is a relation based on the sentence but not supported by BiodivOnto.
In this sentence, the verb ‘degrade’ has an ‘influence’ meaning implicitly. However, we
expect to have a relationship that semantically means ‘have’; thus, the sentence is tagged
with a 0. Other sentences like the last one indicate no relation at all.

10.4 Evaluation

In this section, we give an overview of our final NER and RE corpora. We illustrate the
characteristics of each corpus, e.g., the class distribution in the NER corpus. In addition,
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A B C D E F G H I J K L M N
1 influence 1 ... soil density varies in response to earthworm invasion with ... .
2 - O B-Quality I-Quality O O O O B-Phenomena I-Phenomena O O O
3 have 1 functional richness ... on ecosystem states and processes and ... .
4 - B-Quality I-Quality O O B-Environment O O O O O O
5 occur_in 1 ... and diversity of chemolithoautotrophic bacteria in saline barren soils .
6 - O O O O B-Organism I-Organism O B-Environment I-Environment I-Environment O
7 have 1 ant abundance and diversity associated with natural habitats into urban habitats .
8 - B-Quality I-Quality O O O O B-Environment I-Environment O O O O
9 0 for understanding how microbial communities degrade plant biomass in natural systems .

10 - O O O B-Organism I-Organism O B-Quality I-Quality O O O O
11 0 density of soil invertebrates in response to earthworm invasion is ... .
12 - B-Quality O O O O O O B-Phenomena I-Phenomena O O O

Figure 10.6: A snippet of an RE sheet during annotation (from [17]).
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Figure 10.7: Category distribution of BiodivNER corpus (from [17]).

we compare them to existing state-of-the-art corpora.

10.4.1 BiodivNER Insights

The final version of the NER corpus consists of three folds: train, dev, and test because
our corpus mainly addresses various tasks in NLP that could be solved based on machine-
learning techniques. We followed the split of 80%, 10% and, 10% for the train, dev and,
test sets, respectively. All files are given in a CSV format, each of which consists of three
entries Sentence#, Word, and Tag, as shown in Figure 10.2.

Figure 10.7 provides an overview of the category distribution inside the BiodivNER
corpus in the three data folds. QUALITY represents the most occurring mention in the
corpus, followed by ORGANISM and ENVIRONMENT, respectively. However, LOCA-
TION is the least frequent one. The overall distribution reflects a diverse corpus of the
most important classes in the biodiversity domain.

Moreover, we compare our BiodivNER to the existing common corpora. Table 10.1
shows the comparison overview in terms of the data sources and document types.
Table 10.2 demonstrate the number of annotated documents, number of statements, words,
categories, and mentions. Mentions represent how many words are annotated. We also
provide the number of unique mentions. COPIOUS corpus is the largest in terms of all
aspects except the number of categories. However, BiodivNER covers the greatest number
of categories. In addition, BiodivNER is the largest corpus that is based on metadata files
of biodiversity datasets as a data source. COPIOUS has two categories closely related to
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Table 10.1: State-of-the-art data sources comparison of NER corpora (from [17]).

Corpus Data Source Type

COPIOUS BHL Publications
QEMP idiv, BEXIS, Pangeya, Dryad,

BFChina
Dataset
Metadata

Species-800 PubMed Abstracts
Linneaus PubMed Central (PMC) Publications

BiodivNER iDiv, BExIS, Pangeya, Dryad,
BEFChina, PubMed

Dataset
Metadata,
Abstracts

Table 10.2: State-of-the-art statistics comparison of NER corpora. Number of documents, state-
ments, and categories are given by #Doc., #Stat. and, #Cate., respectively (from [17]).

Corpus #Doc. #Stat. #Words
(#Tokens)

#Cate #Mentions
(#Annotations)

#Unique
Mentions

COPIOUS 668 26,277 502,507 5 26,007 6,753
QEMP 50 2,226 90,344 4 5,154 480
Species-800 800 14,756 381,259 1 5,330 1,441
Linneaus 100 34,310 828,278 1 3,884 324

BiodivNER 150 2,398 102,113 6 9,982 1,033

biodiversity (Habitat and Taxon) and two general Categories (Temporal Expression and
Geographical Location). QEMP has four categories derived from the biodiversity domain
(Environment, Material, Process, and Quality). As there are already a variety of corpora
for species, we only concentrated on missing categories in QEMP. BiodivNER also covers
such an essential category in addition to the same closely related classes as QEMP and a
general domain LOCATION category.

10.4.2 BiodivRE Insights

Similar to BiodivNER, we created three folds in a CSV format for both binary and multi-
class RE corpus. The files consist of two columns: (1) the relation either in a binary or
label form, and (2) the sentence where the actual named entities are encoded with their
tags. An example line in the file of binary relations: ‘1 Our study shows a significant
decline of the @QUALITY$ of @ENVIRONMENT$.’. However, it would be in the multi-
relations files as: ‘have, Our study shows a significant decline of the @QUALITY$ of
@ENVIRONMENT$.’. This format will facilitate the training procedure for any machine
learning technique. We followed the same split setting for 80%, 10%, 10% of the train,
dev, and test sets respectively.

Figure 10.8 shows the category pairs distribution of the BiodivRE corpus. We cal-
culated the frequencies in a bidirectional order. For example, ORG-ENV represents the
total of such a pair and ENV-ORG as well. Since QUALITY is the most frequent class
in the NER corpus, this is also reflected in the category pairs ORG-QUA and ENV-QUA.
The self-relations that appear in ENV-ENV and PHE-PHE are the least frequent in our
corpus. Other category pairs that the BiodivOnto support do not appear in the text used
for creating the RE corpus. For example, ORG-ORG and ORG-LOC. The ‘Other’ group
represents any co-occurrences that appear in the text and do not exist in the BiodivOnto.
In addition, Figure 10.9, Figure 10.10 depict the binary and multi-class annotation distri-
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Figure 10.9: The binary distribution of the BiodivRE corpus (from [17]).

bution of the BiodivRE in the three folds of the benchmark. Such that have followed by
occur_in are the most common relations in the corpus.

Table 10.3 compares our RE corpus and the biomedical corpora GAD, EU-ADR, and
BioRelEx. We selected these corpora for comparison since the data is publicly available
and the scope of the annotation is limited to only one sentence, as was the case of our
BiodivRE corpus. For example, the COPIOUS corpus discusses the RE part, but the data
are unavailable. In addition, BioCreative V [146] uses the entire abstract as a context of
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Figure 10.10: Multi-class relations distribution of BiodivRE corpus (from [17]).

Table 10.3: RE corpora comparison (from [17]).

Corpus Relations #TRUE
Statements

#FALSE
Statements Total

GAD Binary 25,209 22,761 53,300
EU-ADR Binary 2,358 837 3,550
BioRelEx Multi-class 1,379 62 1,606

BiodivRE Binary, Multi-class 1,369 2,631 4,000

annotation, and thus, we skip it here. For BioRelEx, in the original dataset paper, they
have -1, 1, and 0 classes. We use them here as the former two classes map to TRUE
while the latter maps to FALSE classes. BiodivRE has a second-place among the existing
corpora concerning the number of sentences (4K) with a higher rate of FALSE sentences.
There are two reasons behind this high number of FALSE statements. On the one hand,
we found that most metadata sentences have a listing format of entities, and we could
not guess the relation among them (the most frequent sentences). On the other hand,
BiodivOnto is still incomplete; some relations are missing from it. For example, ‘Trees
(B-ORGANISM) with extrafloral nectaries (B-MATTER, I-MATTER)’ holds a meaning
of contains, but we look for influence.

10.4.3 Availability and Licensing

Resources should be easily accessible to allow replication and reuse. We follow the FAIR
(Findable, Accessible, Interoperable, and Reusable) guidelines to publish our contribu-
tions [2]. We release our dataset [142] in such a way that researchers in the community
can benefit from it. Our benchmarks are released under the Creative Commons Attribu-
tion 4.0 International (CC BY 4.0) License.

10.5 Summary
We introduced BiodivNERE as a package for two corpora for Named Entity Recog-
nition (NER) and Relation Extraction (RE) tasks. Both are based on abstracts and
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metadata from the biodiversity domain. We manually annotated and revised them with
the aid of biodiversity experts. BiodivNER, the NER corpus, consists of six important
classes in the biodiversity domain. Such that these entity types include ORGANISM, EN-
VIRONMENT, QUALITY, LOCATION, PHENOMENA, MATTER. BiodivRE, the RE
corpus, is a binary and multi-class classification benchmark. It contains three relations
from the domain including occur_in, influence, and have/of. Both classes and relations
are represented in the final version of the BiodivOnto schema. We use both corpora to
fine-tune and evaluate our developed textual data interpreter BiodivBERT in Chapter 9.
Given our developed framework BiodivBERT and our constructed corpora in this chapter,
we see the potential use of BiodivBERT to auto-populate the BiodivOnto ontology and
create a knowledge graph from textual data. We released our code publicly avialable under
our GitHub repository18. In addition, we made both corpora available at Zenodo [142].

18
https://github.com/fusion-jena/BiodivNERE

https://github.com/fusion-jena/BiodivNERE
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Chapter 11

Meta2KG Framework

Scientific data generated in biodiversity research are very heterogenous and can occur
in multiple formats. This is an obstacle for machine processing, which needs additional
information for data integration, data search, or data visualization. Therefore, primary
research data are described by metadata, and descriptive information about W-questions
(what, who, when, where and why). Such metadata are mostly provided in structured
formats such as JSON or XML. A metadata file contains essential information for vari-
ous applications, like dataset search [28]. One way to exploit this untapped wealth is
by transforming this raw metadata into Knowledge Graphs (KGs). With this, we can
increase the FAIRness [2] of the data by enhancing its re-usability. Ideally, it should be
in a machine-understandable format like RDF. This enables data queries using structured
query languages like SPARQL and empowers further data usage.

Embeddings are a well-established technique that captures the semantics of a given
word or sentence. Previous works have shown their significant impact on many Nat-
ural Language Processing (NLP) applications like Word2Vec [128], Glove [129], and fast-
Text [95]. Thus, embeddings are our base method for ontology matching. In this chapter,
under the third research area of this thesis, Metadata interpretation (MI), we invest-
igate metadata as a source for generating KGs. We introduce a fully-automated approach
that transforms raw metadata files into a KG using an embedding-based matching tech-
nique. We develop the Biodiversity Metadata Ontology (BMO) as an underlying schema
for our technique. We demonstrate the e�ectiveness of this matching method and discuss
common challenges in the automatic transformation process. We tested our technique on
a biodiversity use case; however, we expect our method to be domain-independent since
we do not rely on any domain-specific mapping rules. We populate the resultant KG with
instances from several metadata files as a unified KG. Our results show that metadata
files are a promising source for KG construction.

In this chapter, we outline the entire approach for transforming metadata into KGs
including the details of our selected data repositories, pre-processing steps, the underly-
ing schema development, embeddings-based ontology matching techniques, and artifacts
release in Section 11.1.

We demonstrate the e�ectiveness and matching results of our developed unsupervised
techniques in Section 11.2. We conclude and summarize this chapter in Section 11.31.

1
We published a summarized and detailed versions of the methodology explained in this chapter at

Abdelmageed and König-Ries, Ontology Matching Workshop, ISWC, 2022 [18], and Knowledge Graph

Construction Workshop, ESWC 2023 [19].
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Figure 11.1: Overview of our raw metadata to KG transformation workflow.

11.1 Approach

Figure 11.1 shows the seven phases of our pipeline that we detail in the following sections.
It consists of 1) A description of the data sources we used to develop the data model
and evaluate our matching technique (Data Acquisition). 2) The preprocessing that we
applied on the collected metadata files to facilitate its interpretation (Preprocessing). 3)
The process of our data modeling (Ontology Development). 4) The embedding sources we
used to generate the word embeddings in addition to vectors construction methods (Em-
beddings Generation). 5) Our similarity measurement and ontology matching techniques
(Match). 6) Our auto-population technique with supported datatype validations (Validate
& Populate), and finally, 7) how we published and indexed our contributions, including the
Biodiversity Metadata Knowledge Graph (BMKG) (Release). We used the first fold of the
collected metadata, ‘Seen Data’ to develop the underlying ontology Biodiversity Metadata
Ontology (BMO) and to generate the ontological embeddings BMOE. We used the second
fold of the collected metadata, ‘Unseen Data’ for ontology matching and auto-population.
Both ‘Data Acquisition’, ‘Ontology Development’, and ‘Release’ stages involve manual
labor. The rest of the modules are fully-automated.

11.1.1 Data Acquisition

The first step in this work is to decide the sources of metadata files. We decided to col-
lect them from seven biodiversity data portals that have various charactristics. These
portals are German Centre for Integrative Biodiversity Research (iDiv)2, BEF-China3,
Biodiversity Exploratories (BExIS)4, Global Biodiversity Information Facility (GBIF)5

and data.world6. In addition, we included biodiversity-related metadata from PANGAEA7

and, Dryad8, both are well established data publishers for ecological data. We queried
these portals using keywords identified as typical for the biodiversity domain, the same

2
https://data.botanik.uni-halle.de/bef-china/

3
https://bef-china.com/

4
https://www.biodiversity-exploratories.de/en/

5
https://www.gbif.org/

6
https://data.world/

7
https://www.pangaea.de/

8
https://datadryad.org/stash

https://data.botanik.uni-halle.de/bef-china/
https://bef-china.com/
https://www.biodiversity-exploratories.de/en/
https://www.gbif.org/
https://data.world/
https://www.pangaea.de/
https://datadryad.org/stash
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Figure 11.2: Seen & Unseen metadata distribution.
keywords to develop BiodivOnto (see Chapter 8). Such keywords include, e.g., ‘abund-
ance’, ‘benthic’, ‘biomass’, ‘carbon’, ‘climate change’, ‘decomposition’, ‘earthworms’, ‘eco-
system’. We picked the first 50 datasets from each repository from the search results
and selected the most complete ones. Those that have mostly completed their metadata
values are defined as complete. Figure 11.2 shows the overall distribution of the selected
metadata files over the repositories. We divided the collected data into Seen and Unseen
data. For the Unseen data, we picked five files from each repository with the most samples:
BEF-China and BExIS, and we selected two files from each of the rest. We considered the
remaining metadata samples as Seen data. We use Seen data for modeling the underlying
ontology and creating its embeddings. However, the Unseen data is used to create the
ground truth, validation and the final KG population.

11.1.2 Preprocessing

We applied a preprocessing step to the ‘Seen data’. It included the conversion of the
XML files into a key-value data structure. That way, a key encodes the entire hierarchy
of a metadata field. For example, the key dataset.temporalCoverage...calendarDate

corresponds to the XML in Listing 11.1. Moreover, we cleaned the keys from gen-
eric words, e.g., dataset, calandarDate, id, #text. We decided on these generic
terms by manual analysis of the entire repositories. So, a clean key for this example
is temporalCoverage.beginDate We keep the key-value structure, ‘flat dictionary’,
in a separate file, and we use it to pre-train word embeddings later in this work.

Listing 11.1: Metadata field XML snippet
<dataset id="171">

<temporalCoverage >

<rangeOfDates >

<beginDate >

<calendarDate >

2009/07/31

</ calendarDate >

</ beginDate >

</ rangeOfDates >

</ temporalCoverage >

</ dataset >
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Table 11.1: Auto-generated keys, frequencies, and the selected key name.

Auto-generated Frequency Selected

versionID 19 version
version 49 version

Short_Abstract 2 abstract
Abstract.Abstract 18 abstract
abstract 362 abstract

DOI 15 doi
doi 2 doi

contact.phone 8 contactPerson_phone
contacts.contactPerson.phone 12 contactPerson_phone
coverage
.geographicCoverage
.boundingCoordinates
.eastBoundingCoordinate

57
geographicCoverage
_boundingCoordinates
_eastBoundingCoordinate

SpaceBoundingBoxes
.BoundingBox
.eastBoundingCoordinate

250
geographicCoverage
_boundingCoordinates
_eastBoundingCoordinate

11.1.3 Ontology Development

The target of this phase is to find a common vocabulary for the seven data repositories we
decided to work with. After the preprocessing step, we calculated the frequency of each
key in the Seen data to analyize the used keys for each data repository and get insights
on the most common keys in the biodiversity metadata in general. Table 11.1 shows a
sample of the auto-generated keys after we apply the cleaning steps and their frequencies.
The last column depicts our chosen key that would appear in the ontology. The selected
format would be the shared vocab among all data portals. The selected repositories use
various syntactic representations for the same semantic meaning. For example, ‘abstract’
conveys the information from both fields: ‘Short_Abstract’, and ‘Abstract.Abstract’. We
manually analyzed the resultant cleaned and grouped keys to develop a shared schema
that aligns our data repositories. We kept the ‘Selected’ key with all its synonyms. Such
selected keys represent our schema. We use its sysnonyms to generate the embedding of
the key later in this work. We held several meetings with a biodiversity expert to validate
and review such schema. During those meetings, we integrated the biodiversity expert’s
opinion, e.g., we included other vocabularies for one data repository, i.e., BExIS. Thus,
this phase, ontology development is an iterative process where we integrated the feedback
from the domain expert.

We used the python module, rdflib9 to create the RDF file for the schema, the Biod-
iversity Metadata Ontology (BMO). We reused existing vocabulary from schema.org. In
addition, we defined a new concept under BMO namespace if it did not exist. For ex-
ample, we reused ‘Organization’, ‘Person’, and ‘Address’ from schema.org. However, we
defined both ‘Taxonomic Coverage’, and ‘Geographic Coverage’ using BMO namespace.
In addition, we used datatype properties from Wikidata and Dublin Core10.

Figure 11.3 depicts the concepts and relations of the Biodiversity Metadata Onto-
logy (BMO). The dashed lines represent the subClassOf relation where the dashed node

9
https://rdflib.readthedocs.io/en/stable/

10
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/

https://rdflib.readthedocs.io/en/stable/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
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Figure 11.3: Biodiversity Metadata Ontology (BMO) concepts and relations.

notes the parent class. Other nodes and lines represent concrete classes and relations, re-
spectively. We demonstrate the properties of our main concept Dataset in Table 11.2. The
‘Match’ column denotes the skos:exactMatch from the corresponding source except for
both license and accessRights, they represent skos:closeMatch due to a range mismatch
between our properties and those defined in Dublin Core.

11.1.4 Embeddings Generation
In this section, we explain the embeddings sources and the methods we developed to
transform the keywords into embedding space.

Embedding Sources We supported two variations of embeddings. On the one hand,
for domain-specific embeddings, we trained a fasttext [95] model on the Seen data by
converting the key-value pairs, ‘flat dictionary’ (see Subsection 11.1.2), into synthetic
sentences. Iteratively, we used both the key and its value in such a dictionary to create
the corresponding sentence. On the other hand, for the pre-trained embeddings11, we used
the publicly available Wikipedia-based embeddings. We used these resources to generate
both ontological embeddings (BMOE) and metadata embeddings (MetaE) for the unseen
data. We compare both embedding sources during our experiments.

Generation Method Since our selected repositories use di�erent keywords repres-
enting precisely the same thing. For example, BEF-China, GBIF, and BExIS use
geographicCoverage, and DRYAD uses only Coverage to describe the geographical specs
of a study. The same applies for taxonomicCoverage that BEF-China, GBIF use, and
BExIS, whereas Taxonomic_Scope and TaxonCoverage are used by iDiv and PANGAEA,
respectively. Thus, we used the list of synonyms for each selected key that was created
during the BMO development. We aim to obtain embedding vectors of BMO relations
that encode information from synonyms. For example, a vector for ‘version’, represents
the version of the dataset, would be a function of all its synonyms: ‘verion’, ‘versionID’.

11
https://fasttext.cc/docs/en/english-vectors.html

https://fasttext.cc/docs/en/english-vectors.html
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Table 11.2: Properties of our main concept: Dataset. Short forms; SCH, DCT, and WD map to
schema.org, Dublin Core Terms, and Wikidata respectively.

Type Property Match Source Meaning

datatype title name SCH The title of the dataset
abstract abstract SCH The short text that sum-

marizes a dataset
description description SCH The summary of the data-

set
language inLanguage SCH The language of the data

provided
intellectualRights accessRights DCT Specify if the data is pub-

lic or private
license license DCT The license of the dataset
citation citation SCH How to cite the dataset
dataFormat BMO The dataset format, e.g.,

delimiter
version version SCH The version of the dataset
keywordsSet keywords SCH Dataset tags
doi P356 WD Dataset DOI
alternateIdentifier identifier SCH Dataset download or

home URL
publicationDate datePublished SCH When the dataset is pub-

lished
numberOfRecords P4876 WD How many records in the

dataset

object contactPerson BMO The contact person of the
dataset

metadataProvider BMO Who provided the
metadata

dataCreator BMO Who created the data
project BMO The associated project of

the dataset
geographicCoverage BMO The geo specs of the study
temporalCoverage BMO The time duration of the

study
taxonomicCoverage BMO The included taxons of

the study

We developed two methods for approaching such an idea: 1) Mean: An embedding
vector of a given key ekey is determined as the mean vector of all its synonyms set as
defined as SE in Equation 11.1. 2) Weighted Mean: Similar to the Mean method and
inspired from TF-IDF12, we gave higher weight to the more specific words that form an
entire key. For example, temporalCoverage.startDate, startDate would have double
the weight of temporalCoverage. temporalCoverage is a less discriminative word since it
would appear with another term like endDate. This method is described in Equation 11.2
where esij is the individual word vector of a given key of synonyms set SE, and we use the
word position j as the weight. We use the embeddings generation methods to transform
BMO ontology and the Unseen data keys into the embeddings space. Both would be

12
https://en.wikipedia.org/wiki/Tf-idf

https://en.wikipedia.org/wiki/Tf-idf
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mapped into ‘BMOE’, and ‘MetaE’, respectively. We use both embeddings to perform the
matching operation in the following section.

(11.1) ekey =
q|SE|

i

q|W ords|
j esij

|SE|

(11.2) ekey =
q|SE|

i

q|W ords|
j esij ◊ j

|SE|

11.1.5 Match
In this phase, we worked with the Unseen data. We performed the same procedure of pre-
processing to obtain clean keys. One significant di�erence between this step and BMO
embeddings is that this step has no synonyms; however, the mean-based operations are
only done on the key level. For matching, we used cosine similarity in the embedding space
between the ontological embeddings, BMOE, and metadata embeddings, MetaE. For each
MetaE, we retrieve the closest BMO vector that has Ø 70% similarity. We avoid the
closest assignment for better recall. We chose such a threshold to balance the precision
and recall. We tried higher thresholds; however, it misses a lot of true matches. This
makes sense since the target ontological embeddings are created using a mean or weighted
mean operation; thus, a 100% similarity will never be achieved. This step matches the
unseen data to the ontology concepts and properties; however, it lacks the instances.

11.1.6 Validate & Populate
To populate the BMO with instances, we rely on the ‘flat dictionary’. In that sense, the
key has mapped to, e.g., ontology property, and its value represents the instance we add
to the ontology. Auto-populating such ontology given only matches from the step above
is not accurate for two reasons: 1) invalid entries in the metadata fields, and 2) miss-
classification that yields datatype violations. We limit the population of a triple if and
only if its value has the expected datatype. For example, we populate dataCreator_Phone

if the corresponding value is a phone. We cover basic datatype validations using regular
expressions for the following datatypes: Phone, Email, Coordinate, URL, Decimal, and
Date. In addition, we validate the resultant KG using the W3C RDF Validation Service13.

11.1.7 Release
Resources should be easily accessible to allow replication and reuse. We follow the FAIR
(Findable, Accessible, Interoperable, and Reusable) guidelines [2] to release our contri-
butions. We release our ground truth [147], ontological embeddings [148], BMO [149],
and BMKG [150] in Turtle, N-triples, and RDF-XML format in Zenodo, so researchers in
the community can benefit from them. We published our resources and code under the
Creative Commons Attribution 4.0 International (CC BY 4.0) and Apache License 2.0,
respectively.

11.2 Evaluation
We conducted several experiments to demonstrate the e�ectiveness of the generated em-
beddings. Besides the two mean-based methods (mean and weighted mean) for embeddings

13
https://www.w3.org/RDF/Validator/

https://www.w3.org/RDF/Validator/
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Figure 11.4: Matching F1-score on Unseen data using our embeddings.
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Figure 11.5: Matching F1-score on Unseen data using Wiki-based embeddings.

generation, we developed a two baseline approaches. On one hand, to test the e�ectiveness
of embeddings we developed a base line approach based on string similarity using Leven-
stein distance (levenstein). On other hand, to test the e�ectiveness of mean operations,
we handled each key in the Unseen data as a single word without any kind of spliting,
then, transform that word to a vector (key to vec). For evaluation, we manually annotated
the cleaned Unseen Data with the correct match from the ontology. We use such ground
truth to evaluate our matching technique. We considered the value of the auto-generated
key to classify it. In the following, we show our matching results and give insights about
the resultant auto-generated KG.
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11.2.1 Matching Results

Since we have two embedding sources (our custom embeddings and pre-trained Wikipedia-
based embeddings) and three techniques (baseline (no mean), mean, and weighted mean)
to obtain an embedding vector with an additional lexical baseline (levenstein), we con-
ducted seven experiments to cover all combinations. Figure 11.4 and Figure 11.5 show
the F1-score for all experimental settings using our own and wikipedia-based embeddings.
We calculated the scores per data repository and the accumulated them as well (all). We
found that the Weighted Mean approach combined with the pre-trained Wikipedia-based
embeddings yielded the best scores. This proves that our developed mean-based method
successfully captured a wide range of syntactic representations from metadata keywords.
Since we used synthetic sentences that are derived from a combination of metadata key
and value, ‘flat dictionary’ items combined, we lacked proper natural text during the train-
ing. Thus, it justifies the lower scores with our custom embeddings. From the repositories
perspective, our approach gained the lowest scores on PANGAEA due to the lack of proper
metadata fields, thus, confusing our matching procedure. However, our method reaches,
at some times, 100% precision on Dryad due to its relatively more straightforward fields
to match, e.g., ‘title’.

11.2.2 Resultant Knowledge Graph

Our resultant BMKG represents BMO with instances. It contains those instances from the
Unseen data. Figure 11.6 represents the frequency of tripes in the BMKG. Darker colors
depict higher triple frequency. Dataset datatype properties, e.g., keywords, citation, and
title, are the most occurred triples in the graph from the unseen metadata files. They are
auto-populated correctly with valid instances. The data properties are followed by the
DataCreator and ContactPerson. The NumberOfPlots seems to be more frequently used
than the BoundingCoordinates under the GeographicCoverage. The MetadataProvider

is frequently incomplete compared to both DataCreator and ContactPerson since it is
usually described by givenName and phone only.

We gave a closer look to the BMKG where we manually investigated the populated
Dataset instances using Protégé14. Our regular expressions-based validations for datatype
managed to filter invalid triples. For example, all phone, email, startDate, and endDate

triples are correct. However, we still need a more sophisticated method to validate more
triples. For example, we found a citation triple that contains only the year of publication.
In addition, since we rely on a fully-automated procedure for matching, it would yield false
statements. For example, a license is classified as intellectualRights or vice versa.

11.3 Summary

We investigated the construction of a Knowledge Graph (KG) using metadata as the only
source of data. Our pipeline is tested on, but not limited to, a biodiversity domain use
case. We demonstrated our used data repositories: seven biodiversity data portals. We
manually collected the metadata files from them. We divide them into Seen and Un-
seen data. We used the Seen data to construct the underlying data model that aligns
the selected data portals. In addition, we used them to transform the constructed onto-
logy into the embedding space. We used the Unseen data to evaluate our unsupervised
matching techniques and auto-populate the BMO with instances. Such embeddings-based
techniques are based on the mean operation where the similarity measure is the cosine
similarity. We demonstrated the e�ectiveness of the developed matching and population

14
https://protege.stanford.edu/

https://protege.stanford.edu/
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Figure 11.6: Biodiversity Metadata Knowledge Graph (BMKG) triples frequencies. capital and
lower nodes represent objects, and literals respectively.

techniques. In addition, we showed the current limitations of the methodology, and we
pointed out possible solutions for them. Besides the transformation pipeline, we presen-
ted the Biodiversity Metadata Ontology (BMO) and Biodiversity Metadata Knowledge
Graph (BMKG) as byproducts of this work. We release our resources and code publicly
under our GitHub repository15. In addition, we release our ground truth [147], ontolo-
gical embeddings [148], BMO [149], and BMKG [150] in Turtle, n-triples, and RDF-XML
format in Zenodo.

15
https://github.com/fusion-jena/Meta2KG

https://github.com/fusion-jena/Meta2KG
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Chapter 12

Evaluation

We defined three research areas covered by this dissertation in Chapter 2. We repeat them
here to have a clear picture of what we evaluate. In the field of tabular data interpretation
(TabI), we match the individual table components (cell, column, column-pair) to their
counterparts from existing KGs. Regarding textual data interpretation (TexI), we ex-
tract both entities and relations of interest from unstructured text. Concerning metadata
understanding (MI), we also grasp the entities and relations from semi-structured data
(metadata).

In the last three parts, we demonstrated our key contributions to the three research
areas behind this work. Part II contains two contributions: i) JenTab is a framework
that matches tabular data to KGs. It solves three Semantic Table Interpretation (STI)
tasks to achieve its ultimate goal. ii) BiodivTab is the biodiversity-specific benchmark
for STI tasks. Part III shows our core contributions to interpreting textual data. We
extract structured information from unstructured text. Thus, we have i) BiodivOnto,
which represents concepts and their relations of interest. We demonstrated our data-driven
approach to reach those concepts and relations with the continuous enhancements we did
using other data sources. ii) BiodivBERT is a BERT-based model that we pre-trained
on domain-specific corpora. We fine-tuned it in two downstream tasks, Named Entity
Recognition (NER) and Relation Extraction (RE). Both tasks are essential to extract
structured information from the text (entities/classes and properties). iii) BiodivNERE
is a package that contains biodiversity-specific NER and RE corpora. We explained our
methodology to construct both of them. Part IV includes our contribution to transform the
semi-structured metadata files into a KG. Such framework is Meta2KG that introduces
matching and auto-population embedding-based techniques for an ontology given a semi-
structured XML or JSON file.

In Parts II to IV, we already evaluated the individual contributions. In addition, this
chapter takes a more holistic view and discusses in how far the overall objectives and
requirements of the thesis identifed in Chapter 2 could be met. So, we evaluate our contri-
butions concerning the pre-defined objectives (Objective1-Objective8) and requirements.
We have ten requirements for the first two research areas TabI and TexI, (R1.1-R1.10), and
(R2.1-R2.10), respectively. We defined five requiements (R3.1-R3.5) for the last researc
area TabI. Table 12.1 summarizes these requirements.

In this chapter, we evaluate our contributions concerning the three research areas in
Section 12.1. We discuss the shortcomings and limitations of the current solutions in
Section 12.2 We summarize this chapter in Section 12.3.
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Table 12.1: The summary of this thesis requirements.

Requirements Objective Summary

Tabular data interpretation (TabI)

R1.1 Objective 1 Tabular data to KG matching framework.
R1.2 Objective 1 The framework should support easy extensions and config-

urable components.
R1.3 Objective 1 The framework should be scalable.
R1.4 Objective 1 The framework should have a reasonable amount of depend-

encies and easy to configure locally.
R1.5 Objective 1 The framework should provide an analysis of the current

processing input.
R1.6 Objective 1 The framework should store the results and able to extract

them in a specific format.
R1.7 Objective 1 The framework should have trusted accuracy scores and ef-

fective in the biodiversity domain.
R1.8 Objective 2 The domain-specific benchmark should reflect real-world

challenges.
R1.9 Objective 2 The benchmark should have annotations that convey

human-level knowledge.
R1.10 Objective 2 The benchmark should be diverse.

Textual data interpretation (TexI)

R2.1 Objective 3 The underlying schema of the technique should reflect the
important concepts and relations of the domain.

R2.2 Objective 4 The model should be trained on domain-specific textual
data.

R2.3 Objective 4 The model should detect the most important entities and
relations in the domain.

R2.4 Objective 4 The model should be easy to use.
R2.5 Objective 4 The model should have trusted scores.
R2.6 Objective 5 The evaluation corpora should be diverse.
R2.7 Objective 5 The evaluation corpora should be gold-standard
R2.8 Objective 5 The evaluation corpora should be aligned with the schema

in R2.1.
R2.9 Objective 5 The evaluation corpora should support machine learning

format.
R2.10 Objective 5 The evaluation corpora should be demonstrate a good bal-

ance for classes and relations.

Metadata interpretation (MI)

R3.1 Objective 6 The underlying schema of the technique that should reflect
the most common vocabulary in the domain.

R3.2 Objective 7 The technique should be able to capture the most important
entities and relations in the domain.

R3.3 Objective 7 The technique should e�ectively auto-populate the underly-
ing ontology.

R3.4 Objective 7 The technique should produce a machine-readable format
output.

R3.5 Objective 8 The technique should show the e�ectiveness of the extracted
information.
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12.1 Achievements
In this section, we evaluate our two key contributions for the three areas of research. First,
we evaluate the two contributions regarding the Tabular data interpretation (TabI). We
explain how they meet the predefined requirements under this research area. On the one
hand, JenTab represents our framework that matches tabular data to KGs. On the other
hand, BiodivTab demonstrates our manually annotated biodiversity-specific benchmark
for Semantic Table Interpretation (STI) tasks.

JenTab We developed a modular approach called JenTab to solve STI tasks. This
framework aims to match the individual components of tabular data to a KG (R1.1).
JenTab is easily extensible and its components are highly configurable. For example, it
provides an easy way to change the target KG and enable various settings for solving the
STI tasks. Currently, it contains six pipelines that we developed based on various dataset
characteristics. In addition, it supports annotations from both Wikidata and DBpedia.
By this means, JenTab fulfills R1.2. JenTab adopts a distributed approach that leverages
the capabilities of the individual client machines. This allows for a scalable framework
that can process large-scale tabular data benchmarks. We tested JenTab on more than
156, 000 tables in the scope of the SemTab challenge. This demonstrates the requirement
fulfillment of R1.3. JenTab fulfills Requirement R1.4 by having a reasonable amount of
open-source dependencies and is well-documented. In addition, it supports an easy-to-use
execution via Docker containers, as seen in Listing 12.1.

Listing 12.1: JenTab docker commands
1. docker - compose -f docker - compose . manager .yml up

2. docker - compose -f docker - compose .yml up

3. docker run --network ="host" runner

JenTab won the second prize in the ‘Usability track’ by IBM research in 2021. In
addition, JenTab is the only system participant that obtained the ‘Artificate Availability
Badge’ by SemTab 2022. This badge is awarded for systems that are open-source data
and code, well-documented, and have open-source and reasonable dependencies. The
open-source data includes the pre-computed lookup and the system solutions. We release
both of them to be publicly available to enable further analysis by future work. For
example, Avgardro et al. [151] used the output of our system in a deeper quality check
framework. JenTab demonstrated e�ectiveness in this work compared to other state of
the art. In addition, Chaves-Fraga and Dimou [152] used our artifacts to compare the
fully automatic systems versus the declarative mapping rules.

JenTab provides an analysis of the current processing input tables. Figure 12.2 depicts
a screenshot of the centralized node of JenTab. It shows how many tables are in progress,
successfully completed, failed to complete, or the errors that were returned. In addition,
it stores the results and has the feature to extract them in the required format. We
demonstrate the output format in Figure 12.1 where Wikidata is the target KG. First,
CEA results, it includes the file/table name without extension, row id, column id, the
combination of them yield into a specific cell and the mapped entity from KG. Second,
CTA results, it consists of file/table name, target column id, and the mapped semantic
type or class from the KG. Finally, CPA output, it shows the file/table name, subject and
object columns id, and their semantic property or relation from the KG. The Manager
enables a debug feature by retrieving tables with no or incomplete annotations to help
us investigate these hard cases closely. Such features helped us identify each dataset’s
characteristics and facilitate error analysis. Moreover, the Manager demonstrates audit
statistics, i.e., the loads on individual system components (e.g., CEA Creation Module).
Thus, it makes the system more transparent and achieves the requirement R1.6.
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filename row_id col_id entity

(a)

filename col_id type

(b)

filename subj_id obj_id prop

(c)

Figure 12.1: JenTab: Output snippet. (a) CEA, (b) CTA, and (c) CPA.

Figure 12.2: JenTab: Manager screenshot.

JenTab is a top performer system that solves the STI tasks. During its years of
development, it has high accuracy scores in the general domain benchmarks. On average,
and given all the Automatically Generated (AG) datasets, it achieved 0.91, 0.93, and 0.97
F1-scores for CEA, CTA, and CPA tasks, respectively. In the biodiversity domain, JenTab
was found to be less e�ective than in the general domain. It achieves 60% and 41% for
CEA and CTA tasks for the BiodivTab dataset. Such scores are quite low compared to
those gained for the AG datasets due to the unique characteristics a biodiversity dataset
could have. We discuss such di�erences in the following section. The obtained scores on
both domains achieve the last requirement, R1.7.

BiodivTab We constructed a biodiversity-specific benchmark for STI-tasks called Biod-
ivTab. It is manually annotated tabular with Wikidata and DBpedia KGs. BiodivTab
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is based on real biodiversity research tables and data augmentation. However, the latter
is applied with real-world challenges that we obtained during the analysis phase of data
collection. So, we argue that no artificial challenges were added to the benchmark, and
thus, it reflects the common real-world challenges in the domain. So, BiodivTab fulfills
the requirement R1.8. Since the benchmark is manually annotated and a domain expert
partially verified the annotations, we argue it is a gold-standard level benchmark and
reflects the expert level of annotations; thus, it achieves requirement R1.9. In addition,
we collected various biodiversity data tables from three data portals with multitudinous
characteristics. Thus, BiodivTab represents a diverse collection of biodiversity tables and
completes R1.10.

BiodivTab brought real-world challenges to the STI community over the last two years.
It won the first place prize from IBM research during the ISWC 2021. The average scores
achieved on BiodivTab by existing methods, including JenTab, are much lower than the
synthetic datasets. Its Wikidata version that we published in 2021 has, on average, 0.40
and 0.28 F1-scores for CEA and CTA, respectively. For its DBpedia version, which we
released in 2022, it has, on average, 0.73 and 0.65 F1-score for CEA and CTA tasks,
respectively. The participating systems solving the DBpedia version are KGCODE-Tab
and JenTab only.

We identify the characteristics of synthetic dataset and BiodivTab as an example
domain-specific benchmark. On the one hand, we summarize the challenges we en-
countered in the AG datasets in Figure 12.3 as follows:

(a) missing or not descriptive table metadata, like column headers.

(b) spelling mistakes.

(c) ambiguity in cell values. For example, UK has (Ukrainian (Q8798), United Kingdom
(Q145), University of Kentucky (Q1360303) and more) as corresponding entities in
Wikidata.

(d) missing spaces, causing tokenizers to perform poorly.

(e) inconsistent format of date and time values.

(f) nested pieces of information in Quantity fields, interfere in the corresponding CPA
tasks.

(g) redundant columns.

(h) encoding issues.

(i) seemingly random noise in the data. Berlin would be expected in the context of the
given an example.

Egypt 1922February, 28 1,010,407.87 km2 (… ft2) Egypt Cairo

Germa?ny 3 October 1990 (03.10.1990) 357,400 km2 (… ft2) Germany TÃ¼bingen

UK ?? NA United Kingdom London

… … … … …

Country Inception (LITERAL) Area (LITERAL) Label (LITERAL) Capital (IRI)

Subject Column  Object Columns / Properties 

a

b
d

e f
g h iRaw 

Table

k

jc

Figure 12.3: AG challenges.
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Sample.Collector Species hucname Exp_Plot Exp_Plot_Position N K
David Eichenberg (University of Halle-Wittenberg) C. eyrei 5040004100B34 212 1.243undetrmined 
Wenzel Kroeber (University of Hamburg) Ch. axillaris Cumberland B34 505 1.367undetrmined 
David Eichenberg (University of Halllle-Wittenberg)Acer davidii Kentucky B34 704 1.62undetrmined
David Eichenberg (University of Halle-Wittenberg) Li. formosana Kentucky B34 1009 1.456 31.826

2
1

3

4

5

6 7 8

Figure 12.4: BiodivTab challenges.

(j) missing values including nulls, empty strings or special characters like (?, -, –) to
the same e�ect.

(k) tables of excessive length.

On the other hand, we give an overview of the encountered challenges in the biodiversity
data tables in Figure 12.4 as follows:

1. Nested Entities: more than one proper entity in a single cell, e.g., a chemical com-
pound is combined with a unit of measurement.

2. Typos: Data is predominantly collected manually by humans, so misspellings will
occur, e.g., ‘Dead Leav’ is used for ‘Dead Leaves’.

3. Acronyms: Abbreviations of di�erent sorts are common, e.g., ‘Canna glauca’, a
particular kind of flower, is often referred to as ‘C.glauca’ or ‘Ca.glauce’.

4. Synecdoche: Scientists may use a general entity as a short form to a more particular
one, e.g., ‘Kentucky’ is used instead of ‘Kentucky River’.

5. Lack of Context: The collected data may barely provide any informative context for
semantic annotations. e.g., a column with a missing or severely misspelled header.

6. Specimen Data: The collected datasets contain observations of particular specimens
or groups but do not pertain to the species as a whole.

7. Numerical Data: Most of the collected datasets describe the specimen by various
measurements in numerical form.

8. Missing Values: Data collected can be sparse and may include gaps, e.g., a column
‘super kingdoms’ may consist of ‘unknown’ values for the most part.

Second, we evaluate our three key contributions regarding the Textual data interpret-
ation (TexI). We explain how they meet the predefined requirements under this research
area. First, BiodivOnto is our conceptual data model determining the most common ter-
minology in the biodiversity domain. Second, BiodivBERT is the framework that extracts
both concepts and relations based on the BiodivOnto from unstructured text. Finally,
BiodivNERE (NER and RE) are the evaluation corpora we constructed and used to eval-
uate BiodivBERT.

BiodivOnto The conceptual model captures the most common and high-level concepts
and relations. We constructed this schema using a data-driven approach with the aid of
biodiversity experts. We decided to collect the relevant data from various biodiversity data
sources that are well-established for ecological data. These data sources are Semedico to
crawl abstracts and BEF-China, and data.world to collect tabular and metadata. We used
a collection of typical biodiversity keywords to crawl these data. We manually extracted
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the relevant terms of the biodiversity from the collected data. After applying cleaning and
filtration steps, we developed a clustering-based technique to assign these keywords into
groups that share the same semantic meaning. Thus, we converted the resultant keywords
into embeddings-space. We applied further steps to construct the hierarchy from the seeds
that resulted from the clustering technique. We relied on WordNet to identify the unique
seeds which, in return, represent our core concepts. We involved biodiversity experts in
revising the derived classes and asked them to label the relations among them manually.
Thus, BiodivOnto reflects the commonly used vocabulary in the biodiversity domain. This
contribution achieves the requirement R2.1.

BiodivBERT We developed a BERT-based model to extract entities and their relations
from unstructured data. BiodivBERT is a biodiversity-specific language model that could
be easily adapted for various applications. We pre-trained it on domain-specific data. That
outcome fulfills the requirement R2.2. We fine-tuned BiodivBERT on two downstream
tasks for NER and RE using gold-standard corpora that are annotated with classes and
relations from the BiodivOnto. Since such an ontology captures the essential entities and
relations of the biodiversity domain, the fine-tuned model on these corpora can detect
those entities with their relations. Thus, BiodivBERT can be used to auto-populate the
ontology. This contribution fulfills requirement R2.3. We released BiodivBERT in a way
that is compatible with the HuggingFace library. This library is the most common one
for dealing with transformers-based models. We show the usage of BiodivBERT in three
di�erent applications. First, ‘Masked language model’ as shown in Listing 12.2. It could be
used for a fill-in mask task or domain-specific word embedding extraction. Second, ‘Token
classification’ as shown in Listing 12.3. This variant loads BiodivBERT for word tagging
or Named Entity Recognition (NER) task. Finally, ‘Sequence classification’ as shown in
Listing 12.4. This way is meant for relation detection or RE as a binary classification task.
In addition, we released the Jyputer Notebooks that we used for fine-tuning under our
GitHub repository. The way we released the model is easy to use and achieves requirement
R2.4. BiodivBERT achieved better results than the general domain models (baselines and
BERT-based ones). BiodivBERT (+Abs+Full), which we pre-trained using both abstracts
and full publications, achieved an average 0.86 F1-score on the Named Entity Recognition
(NER) task. The same model gained an average 0.77 F1-score on the Relation Extraction
(RE) task. Our model achieved first or second place compared to the state-of-the-art
models on both tasks. Given the overall evaluation using the simple arithmetic weighting
score, BiodivBERT is the best model for the two tasks. It outperforms BERT_base_cased,
and BioBERT with 2.34%, and 1.34% F1-score, respectively. Such scores demonstrate the
e�ectiveness of BiodivBERT in the biodiversity domain and complete requirement R2.5.

BiodivNERE We constructed two evaluation corpora for Named Entity Recognition
(NER) and Relation Extraction (RE) to assess the e�ectiveness of BiodivBERT. We col-
lected data from several abstracts and biodiversity data portals that have various char-
acteristics. Thus, they are diverse and reflect various aspects of the biodiversity research
field. This property completes requirement R2.6. We manually annotated both corpora
and verified our annotations using various metrics. Thus, they are gold-standard bench-
marks, and we ensure the high quality of the annotations. By these means, both fulfill
requirement R2.7. We manually annotated both corpora using concepts and relations of
the BiodivOnto schema model. This ensures the alignment with the developed model
and the ontology and fulfills requirement R2.8. We released both corpora as a package.
On the one hand, the BiodivNER corpus adopts the format BIO-tag that annotates each
token in a given sentence. On the other hand, the BiodivRE corpus lists the sentence
with a boolean value that determines whether there is a relation between the two entities
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of that sentence. In addition, we split both corpora into train/dev/test splits that facil-
itate the training and testing of machine learning models. Thus, both corpora complete
the requirement R2.9. We investigated the class/relation balance of the three data folds;
train/dev/test. The evaluation corpora demonstrated a good balance for classes and the
relation between data folds. For example, all classes that are used for training appear in
other data folds, dev, and test. This achieved the last requirement in this area, R2.10.

Listing 12.2: BiodivBERT Masked Language Model (MLM)
> from transformers import AutoTokenizer ,

AutoModelForMaskedLM

> tokenizer = AutoTokenizer

. from_pretrained (" NoYo25 / BiodivBERT ")

> model = AutoModelForMaskedLM .

from_pretrained (" NoYo25 / BiodivBERT ")

Listing 12.3: BiodivBERT token classification
> from transformers import AutoTokenizer ,

AutoModelForTokenClassification

> tokenizer = AutoTokenizer .

from_pretrained (" NoYo25 / BiodivBERT ")

> model = AutoModelForTokenClassification .

from_pretrained (" NoYo25 / BiodivBERT ")

Listing 12.4: BiodivBERT relation extraction
> from transformers import AutoTokenizer ,

AutoModelForSequenceClassification

> tokenizer = AutoTokenizer .

from_pretrained (" NoYo25 / BiodivBERT ")

> model = AutoModelForSequenceClassification .

from_pretrained (" NoYo25 / BiodivBERT ")

Finally, we evaluate our key contribution regarding the Metadata interpretation (MI).
We explain how it meets the predefined requirements under this research area.

Meta2KG In the first step of this work, we collected data from seven biodiversity data
portals, e.g., iDiv, BEF-China, and BExIS. These heterogeneous data sources include a
wide range of biodiversity metadata vocabulary. We manually aligned these diverse ter-
minologies under a shared schema; Biodiversity Metadata Ontology (BMO) ontology. This
underlying model reflects the most common vocabulary used in biodiversity repositories
metadata. The BMO ontology completes the requirement R3.1. We developed an unsu-
pervised learning method that transforms semi-structured data, e.g., XML or JSON, into
KG. It is an embedding-based approach that relies on mean operations. This technique
aims to capture the identified entities and relations of the BMO from the metadata files
regardless of the original data source of this file. This feature fulfills the requirement R3.2.
We provided a validation layer that ensures the correctness of matched data triple. For
example, we validated both Phone, Email, Coordinate, URL, Decimal, and Date using
regular expressions. If the validation has passed successfully, we auto-populate the triple.
This step will avoid the population of empty triples or wrongly filled ones from the ori-
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Figure 12.5: BMKG snippet analysis.

ginal metadata. Thus, it demonstrates a minimum quality level of the auto-population
results and partially fulfills the requirement (R3.3). The output of the developed tech-
nique (match + populate) is a unified RDF file. This output represents Biodiversity
Metadata Knowledge Graph (BMKG); i.e., the BMO with the auto-generated instances
from metadata files. We released the BMKG in three formats: turtle (.ttl), n-triples, and
RDF; thus, machine-readable format. That way, the output fulfills requirement R3.4.

The average F1-score that our embedding-based technique achieved given unseen
ground truth data (metadata files) is 73%. Figure 12.5 shows a snippet of the automatically
generated KG. We picked a random instance of the core concept ‘Dataset’ and invest-
igated the auto-populated triples manually using Protégé with its original corresponding
metadata file. In the figure, ‘numberOfRecords’, ‘temporalCoverage’, ‘title’, ‘geographic-
Coverage’, ‘dataCreator’ are correctly matched and populated (green rectangles 1, 4, 5,
6, 7). However, our technique mismatches the ‘Project’ and the ‘startDate’ under the
‘TemporalCoverage’ triple (red rectangles 2 and 3). From the original file, the former is
just a ‘description’, and the latter should be ‘endDate’. In addition, we identified missing
triples under the ‘dataCreator’, e.g., phone value. This means that our validation layer
failed to validate a phone value. The previously mentioned score and the manual ana-
lysis demonstrate a promising technique to match and auto-populate an ontology using a
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completely unsupervised technique which fulfills the requirement R3.5.

12.2 Retrospective; Limitations of the Solutions

In this section, we discuss the current limitations and shortcomings of each contribution.

JenTab We developed a modular approach to tackle the Semantic Table Interpretation
(STI) tasks. It matches the individual components of tabular data into KGs. JenTab relies
on the live lookup API and SPARQL query endpoint of the target KG, e.g., Wikidata.
Thus, the performance of JenTab is bounded by these external dependencies, i.e., the
maximum requests per minute. The provided datasets with their ground truth are created
ahead at some point in time. However, JenTab always looks for annotations from the
current and live version of the target KG. This could cause a loss of accuracy scores.
Using the live APIs would be recommended in case of the deployment and live usage of
JenTab, but for targeted datasets, an o�ine dump might be better.

CTA solutions are crucial. We investigated the e�ect of CTA selection on the scores
of the other tasks. We developed three strategies that all rely on the direct types and
their parents. Our findings showed that these direct parents, e.g., ‘P31’, would suit the
datasets that are easier to solve and auto-generated. However, we found that integrating
one more level to these parents ‘2Hops’ would suit these more challenging datasets. We
do not recommend using higher levels of the parents like the case of ‘MultiHops’ since it
produces very general inaccurate solutions. An additional limitation is that we assume
that the semantic types are always derived via the direct parents or their higher level.
However, in real-world scenarios, as shown in the BiodivTab, the most fine-grained type
is given by another property, e.g., wdt:P105 in the case of taxon-related columns. JenTab
detected these columns as ‘taxon’, e.g., ‘wd:Q16521’, which is also a correct class but not
the most fine-grained type.

BiodivTab We constructed a tabular data annotation benchmark based on real biod-
iversity research and data augmentation. We collected various biodiversity data tables
from three data portals with multitudinous characteristics. Thus, BiodivTab represents a
diverse collection of biodiversity tables. We manually annotated the collected data from
Wikidata concerning two STI tasks; CEA and CTA. BiodivTab is relatively small com-
pared to the existing state-of-the-art benchmarks. It consists of only 50 tables. The small
size might be a limitation for BiodivTab to be used with large machine-learning models,
but it has no issue with feature-based methods. In that sense, we need to increase its size
by including more tables.

BiodivTab lacks the annotations for CPA task due to its ‘Specimen Data’ characteristic.
Given the selected data portals, we could not provide CPA annotations. The reason is that
most of the collected tables represent local data that belong to biodiversity experiments
or laboratories. However, it might be possible to include more tables from diverse data
sources that focus on ‘Species Data’ instead.

BiodivTab is annotated by a single annotator (the author of the thesis) and involves
a biodiversity expert to review these annotations. The expert managed to check a round
of 1/3 of the mappings. We used this revision round to estimate the error rate, which
is 1%. However, this does not guarantee that BiodivTab is an error-free dataset. We
believe that neither the existing benchmarks nor BiodivTab is free from errors. There is an
upcoming trend to investigate the quality of the ground truth of STI benchmarks [100, 35].
Nevertheless, so far, BiodivTab did not receive any issues regarding its ground truth data
during its participation in the SemTab challenge.
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BiodivOnto We constructed a conceptual model for the biodiversity domain using a
data-driven approach with the aid of biodiversity experts. We decided to collect the
relevant data from various biodiversity data sources that are well-established for ecological
data.We derived the concepts of BiodivOnto using a clustering-based approach followed
by several manual steps. We evaluated the final outcome with biodiversity experts, which
verified the concepts. However, we should support qualitative evaluation of the clustering
contents and learned embeddings to develop a generic methodology. We did a rough
investigation on the created clusters using visualizations and manual inspection; however,
we needed to support quantitative results.

BiodivOnto is in its conceptual model view. It lacks the actual ontology file, e.g., the
OWL file. To complete this work and to deliver a final and reusable core ontology, we
should merge the resultant ontologies’ modules into a single ontology. This step requires
a manual check of the quality of the resultant ontology.

BiodivBERT We developed a BERT-based model that extracts entities and their re-
lations from unstructured data. We pre-trained BiodivBERT on domain-specific data,
a biodiversity-specific language model that could be easily adapted for various applica-
tions. We fine-tuned BiodivBERT on two downstream tasks for Named Entity Recogni-
tion (NER) and Relation Extraction (RE) using gold-standard corpora, BiodivNERE, as
one package. Both are annotated with classes and relations from the BiodivOnto. Given
the overall evaluation using the simple arithmetic weighting score, BiodivBERT is the best
model for the two tasks. It outperforms BERT_base_cased, and BioBERT with 2.34%, and
1.34% F1-score, respectively. Such scores demonstrate the e�ectiveness of BiodivBERT in
the biodiversity domain. BiodivBERT has mixed scores on the RE task. It did not achieve
the best performance on all datasets regarding RE. Also, its average score in this task is
lower than that on NER (0.77 vs. 0.86). The reason could be one or more of the following:
1) the selected benchmarks have low-quality annotations. 2) the selected benchmarks are
fuzzy and way harder to solve. 3) fine-tuning settings need to be adapted. Thus, we need
to profoundly investigate the reason behind the low scores in this task.

BiodivBERT is purely a language model that could be adapted to any application. We
developed it to extract entities and relations from unstructured text. The ultimate goal of
developing BiodivBERT is to create a KG from textual data. We fine-tuned BiodivBERT
on BiodivNERE (NER and RE corpora), but the output is still not in triples format, e.g.,
RDF. BiodivBERT can be used for token and sequence classification; however, this output
lacks semantics. For example, the detected entity should be mapped to one of the existing
KGs, e.g., Wikidata. This step needs entity disambiguation methods. Those could be
inspired by our developed techniques in JenTab, e.g., CEA generation module.

BiodivNERE We constructed two gold-standard evaluation corpora to assess the ef-
fectiveness of BiodivBERT. We collected data from various abstracts and metadata from
diverse biodiversity data portals with various characteristics. Both corpora reflect di�er-
ent aspects of the biodiversity research field. We manually annotated both corpora using
concepts and relations of the BiodivOnto schema model. That way both benchmarks are
aligned with this ontology. From a sample inspection, we found that metadata could con-
tain too long sentences with unuseful information like field names comma-separated. For
example, a sentence could be as follows: ‘dataset_id, tree_id, lab_id, pH, NO3’. These
cases work for NER task; however, they are impossible to hold a meaning for the RE.
Two possibilities to solve this issue, especially for RE are on the one hand, we manually
investigate the constructed corpus for relations, BiodivRE, then remove these cases. On
the other hand, in the Data Collection phase, we select long text fields from metadata only,
e.g., ‘description’, ‘abstract’, and ‘title’. The latter is a solution that could be done on
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the level of the methodology itself and would require a new manual annotation. We con-
clude from this issue that abstracts or natural texts are more trusted sources for relations
annotations.

Meta2KG We developed an unsupervised learning method that transforms semi-
structured data, e.g., XML or JSON, into KG. We collected data from seven biodiversity
data portals, e.g., iDiv, BEF-China, and BExIS. These heterogeneous data sources include
a wide range of biodiversity metadata vocabulary. We manually aligned these diverse
terminologies under a shared schema, Biodiversity Metadata Ontology (BMO) ontology,
representing the domain’s most common vocabulary. We developed an ontology matching
technique that is an embedding-based approach and relies on mean operations. The av-
erage F1-score that our embedding-based technique achieved given unseen ground truth
data (metadata files) is 73%. The results of our experiments and the resultant BMKG
analysis showed that metadata is a promising data source to create a KG in using a fully
automatic approach. However, some repositories provide weak and incomplete metadata
fields like PANGAEA. Such repositories introduce noise that we omit as much as possible
to generate a clean KG. We report the obstacles we faced during the automatic ontology
matching and population. On the one hand, we give an overview of the common obstacles
with our provided solutions as follows: 1) A resultant triple might violate datatype con-
straints due to a mismatch by our approach or originally filed with a wrong datatype. We
proposed validations that are based on regular expressions for several datatypes. E.g., a
triple like (dataCreator, phone, X) is considered valid if and only if X is a valid phone
value. 2) Inconsistent value format of metadata attributes. Keywords are used either in
a word-by-word form or a list separated by a delimiter like commas and semicolons. We
set the granularity to a word level for consistency; thus, we split any given list by its
delimiter. Finally, 3) Embeddings failed to di�erentiate between values like surName and
givenName since both are names. Thus, we consider the actual string value to obtain the
correct match for such cases. We believe that a hybrid approach that uses both embed-
dings and string similarity would yield better results in general and not only limited to
names.

On the other hand, we list the following limitations that are not solved yet. In our
future work, we will consider the sketched solutions: 1) We discovered more inconsistencies
regarding some metadata fields. Currently, license and intellectualRights properties accept
a literal as a range. However, Dublin Core defines both of them where the expected range
is an actual ‘license’, and ‘right statement’ objects, respectively. We plan to change that to
follow the Dublin Core definitions where we support entity linking. 2) Currently, citation is
a data property accepts a string as a range. We chose based on the options commonly used
in the selected repositories. However, a typical citation contains more fine-grained data
like authors, volume, and issue, which PANGAEA partially adopts. Thus, we consider a
further analysis of the citation field by recognizing its individual parts. By this means,
it would yield more fine-grained KG and better description. 3) Metadata fields might
contain several (semi)redundant information across various fields, e.g., BEF-China might
have these duplicates under description, abstract, introduction, measurement. A semi-
automatic approach could overcome this issue. Finally, 4) We found complex fields that
have multiple semantic concepts. For example, the description that is used in ‘data.world’
often contain information about citation or license. So, detecting those nested entities
would yield more self-encapsulated information.

12.3 Summary
In this chapter, we evaluated our contributions. On the one hand, we discussed the degree
to which we fulfilled the requirements and predefined objectives. We introduced both of
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them in Chapter 2. We gave an overview of the overall performance, e.g., the accuracy of
the developed frameworks and tools under each research area. We showed sample outputs
for each of them. We explained the required execution steps for the developed frameworks.
In addition, we discussed our crafted domain-specific benchmarks for each research area.
We gave an overview of their characteristics. For example, we listed the unique chal-
lenges in BiodivTab compared to the commonly used general domain and Automatically
Generated (AG) datasets. On the other hand, we discussed the shortcomings and demon-
strated a retrospective of our contributions. Table 12.2 demonstrates the summary of
our key contributions under each research area with their corresponding objectives and
requirements.

Table 12.2: The summary of the evaluation of our research contributions.

Contribution Objective Requirements Summary

Tabular data interpretation (TabI)

JenTab Objective 1 R1.1-1.7 The framework demonstrated e�ect-
invenss on general and biodiversity
domain.

BiodivTab Objective 2 R1.8-10 The first real-world benchmark for
STI from the biodiversity domain.

Textual data interpretation (TexI)

BiodivOnto Objective 3 R2.1 A conceptual data model that cap-
ture the dominant concepts and re-
lations in the biodiversity domain.

BiodivBERT Objective 4 R2.2-R2.5 A BERT-based model that extract
entities and relation from text given
BiodivOnto as a data model.

BiodivNERE Objective 5 R2.6-R2.10 Two corpora for NER and RE tasks
based on biodiversity related ab-
stracts and metadata.

Metadata interpretation (MI)

BMO Objective 6 R3.1 Ontology that aligns seven biod-
iversity portals metadata.

Meta2KG Objective 7-8 R3.2,R3.3,R3.5 Unsupervised technique that trans-
forms metadata file in a KG.

BMKG Objective 7 R3.4 Unified biodiversity KG; RDF auto-
matically generated from metadata.
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Conclusions and Future Work

The research problem we addressed in this dissertation is how we enhance the data re-
usability as one of the FAIR principles. The motivation behind our work comes from
the biodiversity experts and scientists who want to search for the data. Typically, they
search for all datasets relevant to their research questions. This happens via searches in
data repositories, literature, and personal connections. The publications found are then
read to find essential references. Metadata about datasets are extracted from them. All
this information is extracted manually, and this process can take several months. We
divided this problem into three research questions: 1) How can we use tabular datasets for
KG construction? (RQ1). 2) How can we benefit from the information in the associated
publications to enrich the constructed KG? (RQ2). 3) How can we leverage the existing
metadata to enrich the constructed KG? (RQ3). Each of these research questions is
mapped to a research area.

We introduced seven key contributions to answer these questions. At first, in the scope
of ‘Tabular data interpretation (TabI)’, we developed a framework, JenTab, that tackles
the Semantic Table Interpretation (STI) tasks. In addition, we constructed a biodiversity-
specific benchmark, BiodivTab, for evaluating Semantic Table Interpretation (STI) sys-
tems. We evaluated JenTab using BiodivTab and various existing benchmarks for gen-
eral domain. Both JenTab and BiodivTab are developed and evaluated in the scope of
‘Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab)’
challenge during 2020-2022. BiodivTab and JenTab won the first and second prizes, re-
spectively, by IBM research during ISWC 2021. In addition, JenTab won the Artifacts
Availability Badge, by SemTab community in ISWC 2022. JenTab is a top performer
system that solves the STI tasks.

Second, in the sense of ‘Textual data interpretation (TexI)’, we constructed a concep-
tual model, BiodivOnto, representing the most important categories in the biodiversity
domain. We developed a data-driven approach to reach these core concepts and integrated
the biodiversity experts’ opinions to develop their relations. BiodivOnto consists of six
classes and three relations. In addition, we developed a BERT-based model, BiodivBERT,
that detects the named entities and their relations from unstructured text. We pre-trained
it using domain-specific corpora from two well-known publishers using modern research
data. We fine-tuned BiodivBERT on various state-of-the-art datasets for two downstream
tasks Named Entity Recognition (NER) and Relation Extraction (RE). Moreover, we
constructed two evaluation corpora for NER and RE. We released them under one pack-
age, BiodivNERE. We manually labeled the collected biodiversity-specific metadata and
abstracts with classes and relations of the BiodivOnto.

Third, in the context of ‘Metadata interpretation (MI)’, we developed an unsupervised
learning and embedding-based technique, Meta2KG, that transforms semi-structured data
into a Knowledge Graph (KG). We manually crafted the Biodiversity Metadata Onto-
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logy (BMO) ontology that aligns seven biodiversity data repositories using a shared vocab-
ulary. In addition, we developed mean-based methods for BMO matching. Moreover, we
investigated the auto-population of this ontology with triple validation techniques.

Table 13.1: The summary of the online materials of this dissertation.
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13.1 Available Materials

Table 13.1 lists the publicly available artifacts, datasets, code, and pre-recorded talks for
each contribution. We used GitHub to manage the code, whereas Zenodo hosted data-
related contributions like datasets, embeddings, and ontologies. In addition, we added
links for the recorded talks.

13.2 Future Directions

In the following, we list possible future directions for this thesis.

JenTab Extensions

• Pre-computed lookup as a service The pre-computed lookup is our primary
source to tackle the misspellings. Due to its high resource requirements, we build this
lookup before the actual start of JenTab’s pipeline. It would be essential to convert
this step into a live service that we integrate within the pipeline execution. This
would facilitate deploying and running JenTab faster and decreases its dependencies.

• JenTab as a service Currently, we support two executions mode to run JenTab,
either by local setup or via docker containers. However, deploying JenTab as a
public service would increase its audience and users. It would have a broader scope
of community to benefit from it.

• RDF as an output JenTab supports the required format for each STI by the
SemTab challenge. For example, for CEA task, JenTab produces a CSV file that
contains: ‘filename’, ‘row_id’, ‘col_id’, and the annotation itself (see Chapter 12 for
all tasks’ output). However, for generating a KG over tabular data, RDF would be
a better format to use than the current CSV file.

• JenTab interactive UI Currently, we support the visibility of the current pro-
cessing dataset in the ‘Manager’ or the central node of JenTab. For example, we
display the successfully annotated tables, statistics of the results, and so on. How-
ever, we pre-configured JenTab on the input tables and targets. An interactive UI
should support, e.g., uploading a table and its target or a batch of them. In addi-
tion, it should give the option to select the target KG to annotate a table. Since we
provide multiple pipelines to solve the STI tasks, the UI should provide a list of all
supported pipelines to enable users to select one of them.

• Annotate as much as possible JenTab relies on the given targets to annotate the
table counterparts from KGs. It would make sense to guess the targets in a real-life
scenario rather than ask the user for them.

• Scoring system The most powerful pipeline we developed in ‘JenTab’ is the
pipeline_full that implements all modules from the Create, Filter and Select
(CFS) pattern. However, the filter functions might be too harsh on the candidates.
I.e., drops correct mappings due to high support threshold. Switching to a scoring
system that preserves all candidates and keeps them until a final selection would
even enhance the scores of JenTab.
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BiodivTab Extensions

• large-scale benchmark BiodivTab contains 50 tables. It is a relatively small
benchmark compared to the existing datasets. We should include more biodiversity
tables from other projects to cover a broader domain spectrum and increase the
benchmark size.

• CEA task Due to the specimen data issue we encountered during the ‘Data Col-
lection’ phase, we were not able to provide annotations for entities, i.e., CEA an-
notations for table cells. We should include more tables from other data sources to
check if this issue still exists.

• Domain-specific ground truth Currently, we support Wikidata and DBpedia
as target KGs. To diversify the target and be closer to the domain, we should
provide ground truth data from other KGs, particularly domain-specific ones, e.g.,
biodiversity-specific ontologies.

• Multi-rater agreement Currently, we depend on the partial revision of the
provided annotations by a domain expert. We should enable a double annotation
process and calculate the inter-rater agreements for additional quality insurance.

BiodivOnto Extensions

• More domain experts During the development of the initial version of BiodivOnto,
we relied on one domain expert. However, in the later stage of development and
after the involvement of two more experts, they had di�erent influences on the
developed model. Thus, for more reliable model development, we should include
more biodiversity experts and follow the majority vote of them. It requires a setup
of fixed survey questions to enable such voting mechanism. Our Questionnaire in
BiodivTab (see Chapter 7) inspires this step.

• Quantitative evaluation To determine the core concepts of the BiodivOnto we
relied on an unsupervised clustering-based technique in the embedding space. We
verified the final outcome by domain experts, ensuring the method’s correctness.
However, to convert the mechanism into a fully automated technique we should
support a qualitative evaluation of the constructed embeddings. Standard techniques
that are developed to ensure the quality of the embeddings are in [128, 129].

BiodivBERT Extensions

• Lightweight model Currently, we rely on the BERT_base_cased. We plan to pre-
train and fine-tune on a lightweight model, e.g., distilBERT [153].

• Robust varient Similar to the above point, we consider pre-training and fine-tuning
a more robust model e.g., RoBERTa [154].

• Enhance RE low scores We also plan to investigate the reasons behind the low
scores on the RE task, especially with the BiodivRE and BioRelEx datasets. For
example, we could try di�erent settings for fine-tuning.

• Biodiversity-specific RE datasets Due to the lack of the available biodiversity-
specific datasets for the RE task, we used benchmarks from the biomedical domain.
For specificity, we plan to fine-tune BiodivBERT on more biodiversity-specific data-
sets whenever they are available.
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• RDF as an output We currently support the native output by any transformers-
based model for the two downstream tasks (NER and RE). To enable KG creation
from unstructured text, we should transform the triple components: named entities
and their relations we detect from text into an RDF.

• BiodivBERT as a service Currently, we wrap the usage of BiodivBERT through
the HuggingFace library. Ideally, it costs three lines of code to load the model in
the local space. For more expansive usage of BiodivBERT by non-tech users, e.g.,
biodiversity experts, we plan to deploy BiodivBERT for actual token and sequence
prediction for the biodiversity literature.

• BiodivOnto Auto-population Since BiodivBERT is fine-tuned on corpora that
contain annotations from BiodivOnto. We plan to deploy the model to construct the
KG on top of it. In this scope, we need to develop an entity disambiguation mech-
anism to fill the ontology with instances. We can rely on the CEA disambiguation
process we developed in JenTab to achieve this task.

BiodivNERE Extensions

• Diverse classes and relations Currently, we support six classes and three relations
from the current version of the BiodivOnto. To cover a broader range of the domain,
we should include annotations by more classes and relations. For example, restore
the dropped relations from BiodivOnto, e.g., ‘part_of’ and ‘is_a’.

• Fine-grained annotations We facilitated the annotation process by including only
the top-level classes in the BiodivOnto. For example, we merged both ‘Ecosystem’
and ‘Landscape’ and used their parents ‘Environment’ for annotating. To enable
fine-grained classification models, we should support fine-grained annotations in
correspondence. These fine-grained annotations will support fine-grained KG as
a result.

• Large-scale benchmarks Additionally, we should include more data sources to
cover a broader range of the domain.

Meta2KG Extensions

• Enhance the scores We plan to enhance our matching technique by using an
ensemble-based method that relies on both embeddings and string similarity.

• Fine-grained representation We parse complex fields into more fine-grained
pieces for better representation. For example, the ‘Citation’ field contains multiple
entities, e.g., author, institution, volume, and so on. Thus, detecting those entities
would yield a more-fine grained KG and enable more sophisticated applications like
Qestion Answering (QA).

• Sophsticated triple verification Currently, we support a validation step based
on the associated value of the given class. We support primitive data validation that
validates phone, email, coordinates, and URL using regular expressions. However,
we found miss-classified triples and false negative examples in the resultant KG. We
need to investigate more sophisticated techniques for validation purposes.
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The Integrated Tool

• Unified framework To enable KG construction on top of the three heterogeneous
data sources (tabular, textual data, and metadata). We should integrate all the
developed techniques (JenTab, BiodivBERT, and Meta2KG) into a framework, such
that it receives one or more inputs from the supported sources and outputs a unified
KG.

• Triplestore We should also consider the persistent storage and the exposure of
the resultant KG via the SPARQL endpoint. A strong candidate to consider is
Blazegraph1, which handles large-scale KGs e�ciently, e.g., Wikidata Query service.
By this means, we enhance the data re-usability.

1
https://blazegraph.com/

https://blazegraph.com/
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Appendix A

Certificates and Awards

Figure A.1 shows the awarded certificate for JenTab as a second place winner of the
Usability Track. Figure A.2 depicts the awarded certificate for BiodivTab as a first place
winner of the Applications Track. Both are awarded by IBM Research at SemTab, ISWC
2021.
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Figure A.1: JenTab Usability Track Certificate ISWC 2021.
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Figure A.2: BiodivTab Applications Track Certificate ISWC 2021.
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