17 research outputs found

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Self-Stabilizing Message Routing in Mobile ad hoc Networks

    Get PDF
    We present a self-stabilizing algorithm for routing messages between arbitrary pairs of nodes in a mobile ad hoc network. Our algorithm assumes the availability of a reliable GPS service, which supplies mobile nodes with accurate information about real time and about their own geographical locations. The GPS service provides an external, shared source of consistency for mobile nodes, allowing them to label and timestamp messages, and thereby aiding in recovery from failures. Our algorithm utilizes a Virtual Infrastructure programming abstraction layer, consisting of mobile client nodes, virtual stationary timed machines called Virtual Stationary Automata (VSAs), and a local broadcast service connecting VSAs and mobile clients. VSAs are associated with predetermined regions in the plane, and are emulated in a self-stabilizing manner by the mobile nodes. VSAs are relatively stable in the face of node mobility and failure, and can be used to simplify algorithm development for mobile networks. Our routing algorithm consists of three subalgorithms: [(1)] a VSA-to-VSA geographical routing algorithm, [2] a mobile client location management algorithm, and [3] the main algorithm, which utilizes both location management and geographical routing. All three subalgorithms are self-stabilizing, and consequently, the entire algorithm is also self-stabilizing

    Computer Science 2019 APR Self-Study & Documents

    Get PDF
    UNM Computer Science APR self-study report and review team report for Spring 2019, fulfilling requirements of the Higher Learning Commission

    Um ambiente de suporte à execução de aplicações em redes de sensores sem fios

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Ciência da Computação.Em uma Rede de Sensores sem Fios, diversos nodos sensores obtém dados do local onde se encontram e comunicam-se entre si, para gerar uma visão global de um objeto de estudo. A idéia de uma rede auto-gerenciada de dispositivos autônomos, de baixa potência, que colete dados de um ambiente e propague informações através de um enlace sem fios traz uma série de novos desafios e requisitos de suporte à execução de aplicações. Diversos projetos de pesquisa se propuseram a tratar o problema de suporte de sistema para redes de sensores sem fios. Entretanto, a maioria deles falha em tratar principalmente dois dos requisitos levantados neste trabalho: configuração transparente do canal de comunicação e abstração unificada e eficiente de hardware de sensoriamento. Este trabalho apresenta o projeto e implementação de um ambiente de suporte à execução de aplicações em redes de sensores sem fios, baseado no sistema operacional EPOS, que inclui o projeto e implementação do protocolo de controle de acesso ao meio C-MAC (Configurable MAC) e um sistema de aquisição de dados de sensores. O projeto e implementação modular do protocolo C-MAC permitem que aplicações configurem o canal de comunicação de acordo com suas necessidades. O sistema de aquisição de dados de sensor desenvolvido é capaz de abstrair famílias de dispositivos sensores de maneira uniforme, sem ocasionar sobrecusto excessivo, e apresenta vantagens significativas com relação a outras soluções encontradas em outros sistemas operacionais para redes de sensores

    Hierarchical Routing in Low-Power Wireless Networks

    Get PDF
    Steen, M.R. van [Promotor

    Reliable & Efficient Data Centric Storage for Data Management in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) have become a mature technology aimed at performing environmental monitoring and data collection. Nonetheless, harnessing the power of a WSN presents a number of research challenges. WSN application developers have to deal both with the business logic of the application and with WSN's issues, such as those related to networking (routing), storage, and transport. A middleware can cope with this emerging complexity, and can provide the necessary abstractions for the definition, creation and maintenance of applications. The final goal of most WSN applications is to gather data from the environment, and to transport such data to the user applications, that usually resides outside the WSN. Techniques for data collection can be based on external storage, local storage and in-network storage. External storage sends data to the sink (a centralized data collector that provides data to the users through other networks) as soon as they are collected. This paradigm implies the continuous presence of a sink in the WSN, and data can hardly be pre-processed before sent to the sink. Moreover, these transport mechanisms create an hotspot on the sensors around the sink. Local storage stores data on a set of sensors that depends on the identity of the sensor collecting them, and implies that requests for data must be broadcast to all the sensors, since the sink can hardly know in advance the identity of the sensors that collected the data the sink is interested in. In-network storage and in particular Data Centric Storage (DCS) stores data on a set of sensors that depend on a meta-datum describing the data. DCS is a paradigm that is promising for Data Management in WSNs, since it addresses the problem of scalability (DCS employs unicast communications to manage WSNs), allows in-network data preprocessing and can mitigate hot-spots insurgence. This thesis studies the use of DCS for Data Management in middleware for WSNs. Since WSNs can feature different paradigms for data routing (geographical routing and more traditional tree routing), this thesis introduces two different DCS protocols for these two different kinds of WNSs. Q-NiGHT is based on geographical routing and it can manage the quantity of resources that are assigned to the storage of different meta-data, and implements a load balance for the data storage over the sensors in the WSN. Z-DaSt is built on top of ZigBee networks, and exploits the standard ZigBee mechanisms to harness the power of ZigBee routing protocol and network formation mechanisms. Dependability is another issue that was subject to research work. Most current approaches employ replication as the mean to ensure data availability. A possible enhancement is the use of erasure coding to improve the persistence of data while saving on memory usage on the sensors. Finally, erasure coding was applied also to gossiping algorithms, to realize an efficient data management. The technique is compared to the state-of-the-art to identify the benefits it can provide to data collection algorithms and to data availability techniques

    Protocoles de routage sans connaissance de voisinage pour réseaux radio multi-sauts

    Get PDF
    L'efficacité énergétique constitue l'objectif clef pour la conception des protocoles de communication pour des réseaux de capteurs radio multi-sauts. Beaucoup d'efforts ont été réalisés à différents niveaux de la pile protocolaire à travers des algorithmes d'agrégation spatiale et temporelle des données, des protocoles de routage efficaces en énergie, et des couches d'accès au médium avec des mécanismes d'ordonnancement permettant de mettre la radio en état d'endormissement afin d'économiser l'énergie. Pour autant, ces protocoles utilisent de façon importante des paquets de contrôle et de découverte du voisinage qui sont coûteux en énergie. En outre, cela se fait très souvent sans aucune interaction entre les différentes couches de la pile. Ces travaux de thèse s'intéressent donc particulièrement à la problématique de l'énergie des réseaux de capteurs à travers des protocoles de routage et d'accès au médium. Les contributions de cette thèse se résument de la manière suivante : Nous nous sommes tout d'abord intéressés à la problématique de l'énergie au niveau routage. Dans cette partie, les contributions se subdivisent en deux parties. Dans un premier temps, nous avons proposé une analyse théorique de la consommation d'énergie des protocoles de routage des réseaux radio multi-sauts d'appréhender au mieux les avantages et les inconvénients des uns et des autres en présence des modèles de trafic variables, un diamètre du réseau variable également et un modèle radio qui permet de modéliser les erreurs de réception des paquets. À l'issue de cette première étude, nous sommes parvenus à la conclusion que pour être économe en énergie, un protocole de routage doit avoir des approches similaires à celle des protocoles de routage géographique sans message hello. Puis, dans un second temps, nous introduisons une étude de l'influence des stratégies de relayage dans un voisinage à 1 saut sur les métriques de performance comme le taux de livraison, le nombre de messages dupliqués et la consommation d'énergie. Cette étude est suivie par une première proposition de protocole de routage géographique sans message hello (Pizza-Forwarding (PF)) exploitant des zones de relayage optimisées et sans aucune hypothèse sur les propriétés du canal radio. Dans le but de réduire considérablement la consommation de PF, nous proposons de le combiner avec une adaptation d'un protocole MAC asynchrone efficace en énergie à travers une approche transversale. La combinaison de ces deux approches montre un gain significatif en terme d'économie d'énergie avec des très bon taux de livraison et cela quels que soient les scénarios et la nature de la topologique.Energy-efficient communication protocol is a primary design goal for Wireless Sensor Networks (WSNs). Many efforts have been done to save energy anywhere in the protocol stack through temporal and spatial data aggregation schemes, energy-aware routing protocols, activity scheduling and energy-efficient MAC protocols with duty cycle. However both control packets and beacons remain which induces a huge waste energy. Moreover, their design follows the classical layered approach with the principle of modularity in system development, which can lead to a poor performance in WSNs. This thesis focuses on the issues of energy in WSNs through energy-efficient routing and medium access control protocols. The constributions of this thesis can be summarized as follows: First, we are interested on the energy issues at the routing layer for multihop wireless sensor networks (WSNs). We propose a mathematical framework to model and analyze the energy consumption of routing protocols in multihop WSNs by taking into account the protocol parameters, the traffic pattern and the network characteristics defined by the medium channel properties, the dynamic topology behavior, the network diameter and the node density. In this study, we show that Beacon-less routing protocol should be a best candidate to save energy in WSNs. We investigate the performance of some existing relay selection schemes which are used by Beacon-less routing protocols. Extensive simulations are proposed to evaluate their performance locally in terms of packet delivery ratio, duplicated packet and delay. Then, we extend the work in multihop wiriless networks and develop an optimal solution, Enhanced Nearest Forwarding within Radius, which tries to minimize the per-hop expected number of retranmissions in order to save energy. We present a new beaconless routing protocol called Pizza-Forwarding (PF) without any assumption on the radio environment: neither the radio range nor symmetric radio links nor radio properties (shadowing, etc.) are assumed or restricted. A classical greedy mode is proposed. To overcome the hole problem, packets are forwarded to an optimal node in the two hop neighbor following a reactive and optimized neighborhood discovery. In order to save energy due to idle listening and overhearing, we propose to combine PF's main concepts with an energy-efficient MAC protocol to provide a joint MAC/routing protocol suitable for a real radio environment. Performance results lead to conclude to the powerful behavior of PFMAC.VILLEURBANNE-DOC'INSA-Bib. elec. (692669901) / SudocSudocFranceF

    Position-Based Packet Forwarding for Vehicular Ad-Hoc Networks

    Full text link
    Mobile Ad-Hoc Networks, or MANETs, are data communication networks between (potentially) mobile computer systems equipped with wireless communication devices and — in their purest form — in complete absence of communication infrastructure. Usage scenarios for these systems include communication during disaster recovery or battlefield communications. One of the great research challenges concerning MANETs is the Packet Forwarding Problem, i.e., the question to which neighbor node a data packet should be handed over to reach non-neighboring nodes. While this problem has been previously solved by the adaption of classic routing algorithms from wired networks, the availability of GPS enables to include information about the geographic position of nodes into the routing decision, by selecting forwarders that are geographically closest to the destination. While these algorithms have been shown to improve communication performance in networks with a high degree of node mobility, they require (a) a beaconing service that allows every node to build a table of its neighbors and (b) a so-called Location Service that allows to acquire the current position of non-neighboring nodes in the network. In this thesis, we propose Contention-Based Forwarding (or CBF), a greedy routing heuristic that is no longer in need of a beaconing service. Moreover, a forwarding node running CBF does not at all select the next forwarder explicitly but broadcasts the packet containing its own position and the position of the destination. The selection of the forwarding is now done in a contention period, where every possible forwarder, i.e., every receiver of the packet, considers its own suitability to forward by calculating the geographical progress for the packet if forwarded by itself. Then it waits for a time reciprocal to this suitability before simply retransmitting. If the retransmission of a packet is overheard, the own postponed retransmission process is canceled. In this thesis, we demonstrate that CBF outperforms beacon and position-based routing by delivering packets with constant overhead, almost ignorant of mobility. Also, we introduce two strategies to cope with the problem of packet duplication. A problem left open by greedy routing heuristics is routing in the presence of local optima, or voids. Voids are node placement situations, where — in spite of an existing route — no neighboring node is geographically closer to the destination than the current forwarder. In these situations, greedy forwarding fails and standard graph-based recovery well known from classical Position-Based Forwarding cannot be applied due to the lack of the beacon-based construction of neighbor tables. As a solution, we propagate Contention-Based Distance Vector Routing, a contention-based adaption of AODV that acquires topology information in the area of the void and does contention on the topological distance to the forwarder. Besides the forwarding algorithms, we extend position-based routing by two location services. The first, the Reactive Location Service or RLS is simple, purely on-demand and very robust to mobility, the second Hierarchical Location Service, is more complex but outperforms RLS in scalability. The second big column in this thesis is ad-hoc multi-hop communication in the context of Vehicular Ad-Hoc Networks , or VANET, i.e., networks where the communication system is carried by vehicles. These systems very elegantly fit into the propositions and requirements for our more general routing approaches since they have (a) easy access to position information an (b) "suffer" from high mobility. For VANETs, we separate the routing problem into highway and city scenarios and study various routing algorithms in both. In the end, we advocate the usage of position-based routing in both scenarios; moreover, the contention-based approaches are most promising. While a lot of ad-hoc research has been deemed to be theoretical, we have also built a multi-car communication system. For this system, we provided the network and system architecture and provided the communication software. In this thesis, we will describe these efforts as a proof-of-concept and provide measurement results

    Efficient Topology Management and Geographic Routing in High-Capacity Continental-Scale Airborne Networks

    Get PDF
    Large-scale high-capacity communication networks among mobile airborne platforms are quickly becoming a reality. Today, both Google and Facebook are seeking to form networks among high-flying balloons and drones in an effort to provide Internet connections from the stratosphere to users on the ground. This dissertation proposes an alternative, namely using the cargo and passenger aircraft already in the skies as the principal components of such a network. My work presents the design of a network architecture to overcome the challenges of managing the topology of and routing data within these continental-scale highly-dynamic networks. The architecture relies on directional communication links, such as free-space optical communication links (FSO), to achieve high data rates over long distances. However, these state-of-the-art communication systems present new networking challenges. One such challenge is that of managing the physical topology of the network. Such a topology must be explicitly managed, ensuring that each directional data link is pointed at and connected with an appropriate neighbor (which is also pointing back) to yield an acceptable global topology. To overcome this challenge, a distributed topology management framework and associated topology generation algorithms were designed, implemented, and tested via simulation. The framework is capable of managing the topology of thousands of nodes in a continental-scale airborne network and has no communication overhead except that required to exchange position information among nearby nodes. A second component of the work concerns routing data at high data rates through a constantly changing network topology. To address this issue Topology Aware Geographic Routing (TAG), a position-based routing protocol was developed that strategically uses local topology information to make better local forwarding decisions, decreasing the number of hops required to deliver a packet, when compared with other geographic routing protocols. In addition, unlike other similar protocols, TAG is able to reliably deliver packets even when the topology changes while the packet is in flight. These protocols are tested and validated in a series of simulations where nodes trace the trajectories recorded from thousands of actual flights. These simulations indicate that the topology management framework and TAG are able to perform well in large-scale high-density conditions, over long durations, and are able to support tens of thousands of 1 Mbps flows.Doctor of Philosoph
    corecore