
EMPTY CELL MANAGEMENT FOR GRID

BASED RESOURCE DISCOVERY

PROTOCOLS IN AD HOC NETWORKS

SEBASTIEN HEUGUET

NATIONAL UNIVERSITY OF SINGAPORE

2006

EMPTY CELL MANAGEMENT FOR GRID

BASED RESOURCE DISCOVERY

PROTOCOLS IN AD HOC NETWORKS

SEBASTIEN HEUGUET

(B. E., Supelec, France)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2006

Acknowledgments

I consider myself extremely fortunate to have been given the opportunity and

privilege of doing this research work by the National University of Singapore. I

would like to thank all the people who have helped me during my Master’s degree

program at the National University of Singapore.

I would like to express my deepest gratitude for Professor Kee Chaing Chua

and Professor Mehul Motani who accepted to be my supervisors and provided warm

and constant guidance throughout progress of this work. Their rich experience in

the field of communication networks has been extremely valuable for me and I have

learned a lot from them during our frequent discussions. This experience has been

a most valuable one.

My warmest thanks to the Computer Networks and Distributed Systems Lab-

oratory officer Mr. Eric Poon and to the Open Source Software Laboratory officer

Mr. David Koh, I appreciate their helpful nature and dedication in making both

laboratories such nice places to work.

I am also thankful for the graduate research scholarship offered to me by the

National University of Singapore without which this Master’s degree programme

would not have been possible.

i

Finally, I would like to express my deep affection for my parents and my sister

who have supported and encouraged me throughout this work and for Fan Yi for

giving me stability, support and happiness.

ii

Contents

Acknowledgement i

Table of Content viii

Summary ix

List of Figures xvi

List of Tables xvi

1 Introduction 1

1.1 The need for efficient resource discovery protocols in wireless ad hoc

networks . 1

1.2 The empty cell problem for grid based resource discovery protocols 6

1.3 Contributions . 8

1.4 Thesis organization . 9

iii

2 Literature Review 12

2.1 Introduction . 12

2.2 Design Requirements . 14

2.3 Connectivity based protocols . 15

2.3.1 Selective Forwarding . 16

2.3.1.1 Allia . 17

2.3.1.2 Group-based Service Discovery 17

2.3.2 Creating a node hierarchy 18

2.3.2.1 Creating a dominating set 19

2.3.2.2 Backbone and selective forwarding 21

2.3.2.3 Semantic Hierarchy 22

2.3.3 Quorums . 22

2.3.3.1 Creating fixed quorums 23

2.3.3.2 Probabilistic Quorums 24

2.3.4 The small-world effect . 25

2.3.5 The global table approach 27

iv

2.3.6 Conclusion . 28

2.4 Location aided protocols . 30

2.4.1 Geocasting and epidemic dissemination 31

2.4.2 The small-world effect . 33

2.4.3 Geographic quorums . 35

2.4.3.1 Straight lines quorums 35

2.4.3.2 A spiral approach 37

2.4.4 The Personal Home Region 37

2.4.5 The Grid Location Service (GLS) 39

2.4.6 Grid based protocols . 42

2.4.6.1 Flat Grid . 43

2.4.6.2 Hierarchical Grid with uniform repartition of the

servers . 44

2.4.6.3 Hierarchical Grid with logarithmic repartition of

the servers . 46

2.4.6.4 Location dissemination in hierarchical grid 49

2.4.7 Conclusion . 51

v

2.5 Conclusion . 52

2.5.1 Strengths and weaknesses of grid based protocols 52

2.5.2 The effect of empty cells on grid based protocols 53

3 Description of the Protocol 55

3.1 The design requirements of Hidagrid 55

3.1.1 Basic strategies for empty cells management 55

3.1.2 Requirements for empty cells management 57

3.2 Description of Hidagrid . 58

3.2.1 Assumptions . 58

3.2.2 Overview of Hidagrid . 61

3.2.3 Advertising cell state changes 61

3.2.3.1 The hierarchical grid structure 62

3.2.3.2 The State Policy 63

3.2.3.3 The spread of GRID UPDATE messages 63

3.2.4 Updating the node’s internal table 65

3.2.5 Routing messages hierarchically 66

vi

3.2.5.1 Changing the destination cell of a message 67

3.2.5.2 The Relocation Policy 69

3.2.6 Relocating data items . 70

3.2.7 Detecting state changes . 71

3.2.7.1 Deactivation detection 71

3.2.7.2 Activation detection 71

3.3 Improvements on the basic scheme 72

3.3.1 Hysteresis mechanisms . 72

3.3.1.1 Hysteresis at the cell level 72

3.3.1.2 Hysteresis at the region level 74

3.3.2 Generalizing the State Policy for any grid 74

3.3.3 Generalizing the Relocation Policy for any grid 75

3.3.3.1 Justification of the Relocation Policy 76

3.3.3.2 Generalization . 78

3.4 Conclusion . 81

4 Simulation Results 83

vii

4.1 Implementation of a Simple Discovery Protocol (SDP) 83

4.2 Simulation scenario . 85

4.3 Impact of Mobility and deactivation threshold 86

4.4 Static empty cells . 94

4.4.1 Resource discovery performance of Hidagrid 96

4.4.2 Comparison of SDP alone and with Hidagrid 98

4.4.3 Overhead comparison . 99

4.5 Sensitivity to mobility . 101

4.6 Varying the query rate . 106

5 Conclusion and Discussion 110

Bibliography 124

Publications 125

viii

Summary

From geographic routing to data storage in sensor networks, the discovery of the

resources shared is a vital feature of wireless ad hoc networks. The performances

of the grid based resource discovery protocols rank them among the most efficient

discovery protocols for ad hoc networks. In these location aware protocols, the

network topology is divided into geographical regions, called cells, and pieces of

information are stored and retrieved from a cell by using a given hashing function

and the unique identifier of the piece of information. However, because of obstacles

and nodes mobility, real mobility scenarios will create a heterogeneous density of

nodes on the field and thus there will be empty cells in the grid. This phenomenon

results in failures for most of the grid based protocols that have been proposed.

In this thesis, after an extensive review on the resource discovery protocols

in ad hoc networks, the issue of empty cells in the grid of a resource discovery

protocol is addressed. To solve this problem, we design Hidagrid, a fully distributed

protocol that manages the empty cells of a grid. Hidagrid relocates the data items

sent to empty cells and routes consistently the queries for such items. As a result,

Hidagrid acts as a sub layer located between the routing layer and a grid based

resource discovery protocol. It makes the actual grid appear homogeneous for the

grid-based resource discovery protocol. Extensive simulations, using a variety of

ix

mobility models and protocol parameters, show the severity of the empty cells on

the resource discovery performance. Using Hidagrid with the resource discovery

protocol then significantly increases the hit ratio and limits the communication

overhead of the resource discovery by avoiding sending messages to empty areas,

which creates useless traffic in the network.

x

List of Figures

1.1 The resource discovery problem: advertisements and queries are

spread over two sets of nodes such that both sets intersects. 4

1.2 Insertions and queries in a grid based discovery protocol 7

1.3 The adaptation role of Hidagrid: with Hidagrid, the actual heteroge-

neous grid appears homogeneous to the grid based discovery protocol. 10

2.1 Classification of the link based resource discovery protocols 16

2.2 The grey nodes form a dominating set in the graph 20

2.3 Resource discovery with quorums: Node A registers a resource in a

write quorum, Node B queries that resource in a read quorum. . . . 23

2.4 Resource discovery using two contacts: the source node sends the

query to its contacts which forward it to their own contacts 26

2.5 Classification of the link based resource discovery protocols 31

2.6 Location Query in DREAM and LAR: the query is geocasted in the

requested area. 32

xi

2.7 Contact selection in ABSLM . 34

2.8 Crossing lines in geographic quorums 36

2.9 The spiral of node N is built on a hierarchy of rectangles. The nodes

close to the intersections of the spiral with the hierarchical rectangles

store the advertisements. A similar spiral is created for the queries. 38

2.10 Repartition of the servers for node A (ID = 21) in GLS: the node

with the least ID greater than 21 is elected server in each sibling

square of node A. 41

2.11 DLM with 3 levels, m = 1 and hierarchical discovery. Node S selects

one server in each region of level m, but only the server in S’s region

knows its exact location. The other servers point to the level m

region of S. 45

2.12 Structure of HGRID for 3 levels. Node S sends a message to D in

three steps: 1) S issues a Location Query to find one of S’s leader;

2) The leader Li replies with a pointer to the leader Li−1 of D; 3) S

sends the message that is hierarchically routed from Li−1 to D . . . 48

3.1 Example of network supported by Hidagrid: the movement of the

nodes (numbers) is restricted by the obstacles (dark shapes), creat-

ing empty areas. 59

xii

3.2 A 4 levels hierarchical grid with 6 level-3 regions, and the internal

table of the nodes located inside region 302. The hierarchy is de-

picted in the lower left corner and each hierarchical region is created

with four regions of lower level. The internal table lists the state of

the regions depicted on the figure. 62

3.3 Pseudo code of the State Policy. 64

3.4 The internal table update mechanism: the dark node crossing the

cell border must update its internal table and sends an UPDATE RQT

message in the new cell. 66

3.5 Hierarchical routing of insertions and queries in the grid: Hidagrid

reevaluates the destination of the packet when it enters the region

of level level containing the destination cell of the packet. 67

3.6 Pseudo code of the hierarchical routing at each level. 68

3.7 Share of workload with the Relocation Policy when region 3 and then

region 0 close: the items stored in those regions are shared between

the active regions. 70

3.8 Unnecessary cell changes could be avoided with wide borders. . . . 73

3.9 Example of unstable grid if A(i) = 2 and D(i) = 2 for all levels. . . 75

3.10 Share of data items with two hashing functions: data items are

exchanged between two active regions, resulting in inefficiencies. . . 77

xiii

3.11 Sharing the indexes: Region R0 is deactivated and its index slice

[c, c + 5k − 1] is split into 5 sub slices that are attributed to each

active sibling region. 79

3.12 Generalized Relocation Policy: indexes are equally shared between

the active regions, spreading evenly the data items among the regions 80

4.1 Number of state changes vs deactivation threshold in a 4x4 grid. . . 88

4.2 Hit ratio vs deactivation threshold in a 4x4 grid. 89

4.3 Negative replies vs deactivation threshold in a 4x4 grid. 90

4.4 Queries which were not replied vs deactivation threshold in a 4x4 grid. 90

4.5 Number of messages sent by each node with Hidagrid for each mo-

bility model (GM, RD, RW) and varying deactivation threshold. . . 92

4.6 Number of messages sent by each node with SDP alone for each

mobility model (GM, RD, RW) and varying deactivation threshold. 92

4.7 The maps used for the empty cells scenarios: each dark cell remains

empty during the whole simulation. 95

4.8 Performances of the resource discovery with and without Hidagrid

in an environment with static empty cells. 97

4.9 Percentage of queries which were not replied with static empty cells. 98

4.10 Percentage of negative replies with static empty cells. 100

xiv

4.11 Number of messages sent by each node with Hidagrid for RD and

RW in a static empty cells environment. 100

4.12 Number of messages sent by each node with SDP alone for RD and

RW in a static empty cells environment. 101

4.13 Maps used for the simulations with increasing query frequency. The

dark cells are empty during the simulations. 102

4.14 Hit ratio of Hidagrid with different settings of Random Direction. . 103

4.15 Percentage of queries which were not replied with Hidagrid for dif-

ferent settings of Random Direction. 103

4.16 Number of messages sent by each node with Hidagrid for different

settings of the Random Direction mobility model on Map 1. The

scale for the varying speed is different from the two other graphs. . 104

4.17 Number of messages sent by each node with Hidagrid for different

settings of the Random Direction mobility model on Map 2. The

scale for the varying speed is different from the two other graphs. . 105

4.18 Number of queries sent when the query frequency increases. 107

4.19 Hit ratio of SDP with and without Hidagrid vs inter query time. . . 108

4.20 Overhead of SDP with and without Hidagrid vs inter query time. . 108

4.21 Delay between the departure of a query and the arrival of the cor-

responding reply vs inter query time. 109

xv

List of Tables

2.1 Comparison table of the link based protocols 29

3.1 Messages used by the discovery protocol and Hidagrid 60

4.1 Simulation Parameters . 87

4.2 Protocols Parameters . 87

xvi

Chapter 1

Introduction

1.1 The need for efficient resource discovery pro-

tocols in wireless ad hoc networks

Recent years have seen the explosion of wireless devices due to an increased need

for connectivity: cell phones and laptop equipped with wireless connections are

now all day life tools that were almost unknown 10 years ago. With this increased

connectivity came also a need for bandwidth in order to provide more and faster

services. For example, from the initial 2Mbps rate, the 802.11 protocol is now

developed in the 802.11g version that provides a rate of 54Mbps. These new tech-

nologies opened a whole new market and created in return connectivity needs from

the consumers who envision a fully connected world in the near future. Today’s

wireless technologies are mainly centralized architectures and they can be seen as

extensions of the existing wired networks, i.e., the wireless devices communicate

with a fixed station connected to the wired network. These stations act as gateways

between the mobile device and the network, and they are responsible for managing

1

Chapter 1. Introduction 2

communications in their vicinity. Such architecture requires large investments in

order to deploy these expensive infrastructures. Upgrading of such networks has

also proven slow and extremely expensive. Even if the initial investments have

been deployed, the need for alternate networks will be greater in order to provide

wide and flexible connectivity coverage in any place and at any time. Centralized

architectures cannot meet this objective because of the related costs. Mobile ad hoc

networks (MANETs) represent the complementary solution to cell oriented archi-

tectures as they can be easily deployed without any infrastructure. This seamless

approach could also be seen as the extension of the actual centralized architecture

in order to provide wider coverage in remote areas or during emergency or disaster

recovery scenarios.

In MANETs, all mobile nodes collaborate in order to transfer data between

two points of the network without the help of any dedicated device. The nodes

organize the network themselves and act as routers and servers for the whole net-

work. Because of mobility and link weakness, the topology of the network con-

tinuously changes, raising many new challenges for researchers in an environment

where bandwidth and energy are scarce resources. Because of these constraints, ad

hoc networks perform poorly compared to centralized architectures. However their

ability to cope with any environment and the lack of investment could allow the

development of various new applications in the future for this kind of architecture.

As it is already the case today with Internet, a network is mainly used to

find information, transmit files and communicate with other users. Therefore the

first step for real deployment of MANETs is also to create an environment where

the nodes can cooperate, work and share resources and information without any

Chapter 1. Introduction 3

infrastructure. All the applications that will be developed for MANETs will rely

on the ability of locating a service, a file or a data item and exchange it. This

collaborative environment requires an efficient platform responsible for this task,

as it is already the case today for wired networks. Indeed, the internet would not be

as popular as it is now without good search engines. However, the approaches used

for fixed networks can not be derived for MANETs because of the new constraints

imposed in these networks. The topology continually changes, nodes are unreliable

and power limited, and they only have small storage and computation capacities.

The initial centralized solutions that were developed in the past can therefore not

be applied in MANETs. Decentralized (or peer-to-peer) protocols have also been

proposed later for wired networks [1, 2, 3], but they require an abundant bandwidth

that is not available in MANETs. Therefore new decentralized approaches must

be further studied to comply with the constraints brought with these networks.

Two obvious solutions to resource discovery in MANET could be proposed. First,

a node looking for a service or data item could simply flood the whole network

with a query (data pull), or on the opposite, a node sharing a service could flood

the network with an advertisement (data push). These two simple approaches

are not feasible in large ad hoc networks where flooding could be harmful for the

performances of the network [4]. Therefore a trade off has to be found where nodes

send some advertisements in specific places in the network that can be easily found

by a query for the corresponding item, resource discovery protocols manage this

mechanism.

Discovery protocols are not only useful at the application layer. Recently

many routing protocols for MANETs propose to use geographic information [5].

Contrary to the graph model protocols where nodes forward packets based solely on

Chapter 1. Introduction 4

Figure 1.1: The resource discovery problem: advertisements and queries are spread

over two sets of nodes such that both sets intersects.

their connectivity, geographic routing uses location information to forward packets

toward the destination. Therefore, they scale very well with the network size to

achieve good performance, but they require the implementation of a location service

to efficiently distribute information on nodes positions in the network. This prob-

lem is very similar to the resource discovery mentioned earlier, as shown in Fig 1.1,

i.e., given an identifier (here the destination node’s identity), where can a node find

the information related to that identifier (the destination node’s location)?

Sensor networks represent another class of self organizing wireless networks

where the constraints on throughput are relaxed. The applications implemented

on top these networks use little communication compared to MANETs. The main

goal of these networks is to improve the knowledge of an environment by gathering

Chapter 1. Introduction 5

information from many small sensors that are able to communicate with each other

and to perform simple computation tasks. The data collected is then computed

and transmitted for monitoring purpose. With sensor networks, many applica-

tions can be envisioned ranging from environment monitoring to health screening.

Many useful applications could benefit from sensor networks, i.e., industrial con-

trol, home automation, security and military sensing, asset tracking and supply

chain management are only a small sample of the commercial potential of these

networks. Throughput is however not the only difference between MANETs and

sensor networks. Indeed, energy consumption is the main constraint in these net-

works because it is proportional to the lifetime of the sensor network. Each node

stores a very limited amount of energy that cannot be recharged. The protocols

developed for these networks must therefore primarily focus on energy efficiency.

Due to the high number of sensors that could be spread on a field, scalability is also

a requirement for the sensor network protocols. These constraints associated with

node and link unreliability make sensor network a challenging environment for net-

work researchers. Even if research efforts have been put in this area, many issues

have to be overcome in both hardware and software before effective deployment.

In sensor networks, the data processing mechanisms are very different depend-

ing on the application considered. In the case of monitoring, data items will be

locally analyzed and transmitted under certain conditions to a sink that will process

all the packets it receives, before taking a decision. Sensor networks could also be

used in unattended mode where the data collected is stored inside the network

before being extracted. This mode requires efficient mechanisms to retrieve the

relevant information in the network when a query is sent from a user. It has been

shown in [6] that data-centric storage is an efficient data dissemination scheme. In

Chapter 1. Introduction 6

this model, data item dissemination is solely based on the characteristics of sensed

data items. Therefore, similar data items are stored together, requiring an efficient

resource discovery protocol to retrieve information from the network.

The design of resource discovery protocols has been widely studied and many

solutions have been proposed in the literature, each with their niche of applicability.

However, the simulation results published so far show that the protocols using

geographic location to perform their task have very good performance in terms of

efficiency and scalability. This is true for routing protocols, as well as resource

discovery protocols. And we believe that this approach should be promising in the

future. Therefore, in this thesis, we focus on resource discovery protocols using

geographic location information.

1.2 The empty cell problem for grid based re-

source discovery protocols

Under the assumption that nodes are able to locate themselves, grid based resource

discovery protocols are used for a wide range of applications [7, 8, 9, 10, 11]. Service

or file discovery protocols, as well as location service could rely on this flexible

mechanism. In this kind of protocol, the network field is divided into geographical

regions that we call cells. These cells are responsible for storing and managing a

subset of the data items available in the network. The share of load among the cells

is determined with a hashing function, i.e., when inserting data item, a node hashes

the unique identifier of the data item to one of the cell in the network, called the

server cell for that data item. The server cell will then be responsible for storing

Chapter 1. Introduction 7

Figure 1.2: Insertions and queries in a grid based discovery protocol

the data item. A querying node carries out the same operation. Knowing the

identifier of the queried item, the identifier is hashed to a position in the network,

and a query is then sent to the cell. The mechanism is described in Fig. 1.2.

Das et al. [12] compare the performances of several categories of location

services and state that the category the grid based protocols belong to have the

overall best performances. However, the actual protocols assume that the node

density is roughly uniform on the network and that the grid is homogeneously

populated. In this case, all the cells in the grid are populated and no empty cell

appears in the grid. This assumption in large real scale networks in unrealistic for

two reasons. First, if the grid is not adapted to the geographic topology, obstacles

like buildings or natural obstruction (lake, hill, park) naturally create empty cells.

But even if the grid is customized, mobile nodes may also create empty cells when

moving. Consider, for example, a university campus where each student carries a

node. The node density varies according to the time schedule of the students, and

Chapter 1. Introduction 8

thus the canteen will usually be empty except at lunch time when the classrooms

will not be occupied. As a result, real human activity creates great variations in

the network densities. In this situation, the protocols mentioned above fail, with

the only notable exception of the Grids Location Service (GLS) [7] that adapts

by design to empty cells. However this protocol performs poorly compared to the

other protocols [12]. The empty cells then results in denial of service because the

queries sent to an empty server cell are not processed. Furthermore, if the nodes

populating a cell leave it, all the data items that were stored are suddenly lost

when the last node leaves the cell. But if a location service for geographic routing

is considered, the location of some nodes cannot be known if their location server

is empty. This means that these nodes cannot be contacted, which is unaccept-

able in a collaborative environment. Despite the good performance of grid based

protocols, this significant weakness makes them unsuitable for real deployment at

this stage. Some authors are aware of that problem and even mention some simple

mechanisms to mitigate it. But none of them manages empty cells efficiently, and

no performance results with empty cells have been reported so far.

1.3 Contributions

We believe that the resource discovery protocol must adapt to the shape and the

state of the grid in order to solve the empty cell problem, i.e., the discovery protocol

must avoid sending messages to empty cells, while data items are consistently

located to populated cells. Another solution would be to create multiple hashing

functions or grids, but this would be a waste of communication and it would require

many security mechanisms to avoid failure of the protocol. In this thesis, we

Chapter 1. Introduction 9

therefore propose the Hierarchical Dynamic Adaptation of a Grid, or Hidagrid,a

fully distributed protocol which achieves dynamic adaptation of the state of a

grid. This adaptation is solely based on the node density in each cell. Hidagrid is

implemented as a sub layer that transforms the heterogeneous actual grid into a

homogeneous grid that can be efficiently used by any grid based resource discovery

protocol, as shown in Fig. 1.3. As a result our protocol requires only minimum

information before deployment and could be used quickly in a disaster recovery

scenario without setting up a grid adapted to the geographic topology. As Hidagrid

is used as a sub layer, several service location protocols could be used on top of it

without generating any extra overhead. Extensive simulations show that Hidagrid

significantly improves the performance of the service discovery protocol. The hit

ratio of the discovery protocol highly increases as soon as some empty cells appear in

the grid. But our study also shows that Hidagrid reduces the total communication

overhead of the resource discovery protocol because it avoids sending messages to

empty areas, limiting the number of packets dropped due to routing failures or

TTL counter reaching 0.

1.4 Thesis organization

This thesis is organized in 5 chapters.

• This chapter introduces the reader to an overview of the resource discovery

protocols for ad hoc networks. The principles of the grid based discovery

protocols are explained and the need for an efficient empty cell management

protocol is highlighted. The focus of the thesis and the main contributions

Chapter 1. Introduction 10

Figure 1.3: The adaptation role of Hidagrid: with Hidagrid, the actual heteroge-

neous grid appears homogeneous to the grid based discovery protocol.

Chapter 1. Introduction 11

are then summarized.

• Chapter 2 presents an extensive literature review on the resource discovery

protocols in ad hoc networks. This literature review covers link based discov-

ery protocols, as well as location aided protocols and introduces the reader

to the problems encountered with empty cells.

• In Chapter 3, the Hierarchical Dynamic Adaptation of a Grid, or Hidagrid

is described. This empty cell management protocol is designed to meet the

basic requirements that are highlighted at the beginning of that chapter.

• Chapter 4 presents the results of extensive simulations for a simple resource

discovery protocol with and without Hidagrid. The comparative simulations

evaluate the severity of the empty cell problem in grid based resource discov-

ery protocols and also measure the benefits of Hidagrid, for a wide range of

scenarios.

• Chapter 5 concludes this thesis, highlighting the major contributions of this

research. This chapter also discusses the limitation of Hidagrid and presents

possible future research directions.

Chapter 2

Literature Review

2.1 Introduction

Service or data discovery is an important function in wireless ad hoc and sensor

networks. For example, location service, service discovery or data storage, among

others, strongly rely on the resource discovery layer. The nature of the resources

managed by these protocols greatly depends on the application and will include

the following items:

• Files: In a collaborative environment, users need to exchange documents

and to find them easily on the network.

• Services: Services were initially provided for hardware devices like printers

or cameras. However with the development of wireless devices, many new soft

services are proposed over a network. The variety of such services should grow

in the future in order to provide the mobile users with the ability to handle

any operation from anywhere. Thus, the research of services should be a

keystone for the commercial development of ubiquitous networks.

12

Chapter 2. Literature Review 13

• Small data items: The query for small data items could include location

information, measurements in sensor network or encryption keys for transac-

tions.

This chapter presents the different solutions proposed in the literature to

develop efficient resource discovery protocols in MANETs. The protocols must

overcome the specific challenges of these unstable and resource limited networks.

However, the review focuses only on the discovery mechanisms among the numerous

issues that need to be addressed to deploy real databases over a wireless network.

Such issues include: network and transaction security, the definition of an adapted

description language for the data items and the definition of a query language,

compatibility in a heterogeneous environment, and eventually QoS support.

This chapter is divided in four sections. The requirements for the design of a

discovery protocol in wireless networks are first described in section 2.2 and expla-

nations about the inadequacies of the solutions developed for wired networks will

be given. In section 2.3, schemes using no location information will be introduced.

We refer to such schemes as link based protocols in contrast to the location aided

protocols that will be studied in section 2.4. Section 2.5 concludes this chapter

with a comparison of the approaches analyzed in the chapter and an analysis of

the strengths and weaknesses of the grid based protocols. In particular, the empty

cell problem for this category of protocols is analyzed.

Chapter 2. Literature Review 14

2.2 Design Requirements

Wireless networks are characterized by their unstable environment. Therefore, the

first constraint for the protocols deployed over these networks is decentralization.

Indeed, due to the lack of infrastructure, it can not be assumed that a node is

reliable or powerful enough in terms of memory, computation capacities or even

bandwidth to support the load of a protocol for a full network. Therefore several

nodes or even all the nodes must share the workload and cooperate to provide ser-

vices to each other. Decentralization is therefore the first requirement for a resource

discovery protocol in wireless networks and the reason why approaches like Jini [13],

Salutation [14], (service discovery), UDDI [15] (web services) or Napster [16] (file

sharing) are not applicable here.

In a wireless communication environment, bandwidth is also a scarce resource.

As a support function, resource discovery is therefore expected to consume as lit-

tle bandwidth as possible. Bandwidth consumption is also related to the power

consumption in the wireless devices. Therefore, limiting the overhead generated

by the resource discovery protocol not only improves the network load and the

quality of communications but it also increases the battery use time of the de-

vices. For these reasons, network flooding should be limited as much as possible

in wireless networks, as explained in [4], because of the congestion that it quickly

generates. UPnP [17], SLP [18] for service discovery, Gnutella [1] for file sharing

and DREAM [19] or RLS [20] in location service are examples of protocols relying

on pure broadcasting to discover resources, they can therefore not be used in a

wireless environment.

Chapter 2. Literature Review 15

Due to mobility and wireless connections, the topology of the wireless net-

work is also expected to continuously change. The resource discovery protocol

should then be able to adapt quickly to the local changes without generating much

overhead. File sharing systems like Pastry [2], Tapestry [3] or CAN [21] create a

virtual organization of the network using hash functions. This mechanism requires

periodic checks of the virtual structure’s consistency in order to detect node fail-

ures. To route and recover from failures, nodes also need to maintain routes with

other nodes. These two operations are extremely costly in a mobile and unstable

network. Furthermore, the virtual structure usually routes messages from neighbor

to neighbor in the virtual space. But, as the virtual space is built using a hashing

function, two neighboring nodes in the virtual space are not likely to be close to

each other in the actual network. Message routing then results in important in-

efficiencies. Protocols using this kind of mechanism are therefore not suitable for

wireless networks.

As a result, an efficient resource discovery protocol for wireless network must

possess at least the following characteristics: decentralization, adaptability to fre-

quent topological changes and limited communication overhead.

2.3 Connectivity based protocols

This section introduces resource discovery protocols that do not make use of any

location information. This category has been mainly studied for service discovery

protocols. Two basic flooding solutions exist to find an item in the network: in

data pull clients flood the network with a query message, while in data push the

Chapter 2. Literature Review 16

Figure 2.1: Classification of the link based resource discovery protocols

servers flood advertisement messages for the hosted resources. These solutions have

a good hit ratio but they obviously do not scale in terms of number of nodes or

query and advertisement frequency. The main goal of resource discovery is then

to find a trade off between the spread of advertisements and queries such that

a query matches an advertisement for the same resource with high probability.

Basic flooding could also be improved using smart flooding or epidemic diffusion [4,

22], but these mechanisms are beyond the scope of this review. Due to the large

number of schemes that have been proposed in the literature, a taxonomy depicted

in Fig. 2.1 is defined to classify the proposals. Each branch of the tree will be

introduced in the next sections.

2.3.1 Selective Forwarding

In selective forwarding protocols, the advertisements are propagated in a gossip

fashion without flooding and are cached by the nodes. Nodes then use their cache

to forward queries to areas where the queried item is likely to be hosted. Usually,

these schemes rely on a language that describes data items using a tree structure in

order to evaluate the forwarding opportunities. Even if the approach might prove

Chapter 2. Literature Review 17

efficient, it can only suit the needs of small or medium networks.

2.3.1.1 Allia

In Allia [23], servers periodically broadcast advertisement beacons to their H hops

neighbors. Nodes providing the same kind of services cache each others’ advertise-

ments to create an alliance. The advertisement beacons are forwarded depending

on local policy. When a node receives a query, it replies if the data item queried is

hosted or cached. If not, it selectively forwards it to other members of its alliances

or to very active neighbors. The strength of Allia relies in the flexibility given by

the agents ruling the caching, forwarding, and advertising policies. The protocol

easily adapts to local conditions and user’s characteristics. For example, unlike

other protocols, the scope of messages can be easily adapted. In order to detect

environment changes and facilitate policies adaptations, Allia is also more push-

oriented than pull-oriented and tends to forward more the advertisements. It is

however not clear how these policies are implemented as the paper mainly focuses

on describing the framework. The agent approach could also be difficult to use for

devices with small computational capacities.

2.3.1.2 Group-based Service Discovery

The Group-based Service Discovery (GSD) [24] is based on an XML description

language that classifies each service in a tree. Services can then be characterized

by the groups they belong to. Every node advertises the description of its services

every T seconds to its H hops neighbors. The message also includes the list of the

Chapter 2. Literature Review 18

groups the node has heard of in its vicinity, in order to create a gossip environment.

These items are all cached by the neighbors. The cached information is then used

when a query is created to select the nodes that have heard of similar services

in the vicinity. The query will be sent to these nodes. Each query contains the

description of the service as well as the group it belongs to. The nodes receiving

the query use the group field to duplicate the message and forward it to other nodes

hosting similar services.

GSD reduces efficiently the number of messages to discover a service as it

targets the potential hosts. However, this scheme can only be efficient in small and

medium networks whose diameter (in hops) is rather limited. Indeed, a service

will be discovered if it is less than 2H hops away from the querying node. Above

this limit, network flooding may be necessary. With this limit in mind, GSD

could be used over a network whose diameter reaches 2H+3 or 2H+4 with good

performances compared to pure flooding. Protocols mixing proactive and reactive

mechanisms, like GSD, recommend spreading the beacons for only 2 or 3 hops in

mobile networks. As a result, it can be estimated that GSD could perform quite

well on networks of diameter 8 or 10 hops maximum depending on the mobility

and application considered. Finally, the size of the advertisement beacons should

be limited in order to restrict the bandwidth consumed.

2.3.2 Creating a node hierarchy

Some protocols create a hierarchy of nodes to handle the resource discovery. Usu-

ally, this hierarchy consists of only two levels: the normal nodes and the back-

bone nodes. Resource providers then register their services to the backbone nodes

Chapter 2. Literature Review 19

which also receive the queries submitted. The messages are then propagated and

processed in the backbone using the links that are maintained between backbone

nodes. This approach generates high overhead in a mobile environment because

the backbone nodes have to maintain the backbone structure.

[25] is one of the first proposals suggesting an alternative to the client-

server paradigm in service discovery for wireless networks. It uses a third type of

nodes called mediator which form the backbone. In this scheme, the mediators

are exclusively elected among the service providers. Thus, the clients reach the

available services without querying zones that do not provide any service. In this

case, the behavior of the service discovery is unpredictable as it depends only on

the repartition of the servers in the network and if a client does not have any

mediator in its vicinity, it has to fall back to flooding. It is also inappropriate

to concentrate the mediators in areas that host the resources because the clients

without any resource are more likely to issue queries than powerful server nodes.

For these reasons, the mediators should be evenly spread in the network.

2.3.2.1 Creating a dominating set

In [26], a dominating set is created to handle the discovery of services. A dominat-

ing set is defined as a set that nodes belong to or are 1 hop away of, as shown in

Fig. 2.2. This allows creating and maintaining the backbone structure, as well as

routing messages, with only hello beacons sent 1 hop away. This message sent by

each node contains: the status of the node, its ID, its virtual access point (VAP) to

the backbone, some routing information and some other measures used to maintain

the structure. This information is enough for the backbone nodes to know their

Chapter 2. Literature Review 20

Figure 2.2: The grey nodes form a dominating set in the graph

backbone neighbors which are 2 or 3 hops away. For example, in the figure, let us

assume that node 4 has node 5 as VAP. This information is included in the hello

message and node 4 also adds that it sees node 3 as a backbone node. Then, node 3

knows the route to node 5 and reciprocally. For the three hops case, node 6 informs

its VAP 5 that it sees node 7 with VAP 8 in its vicinity; node 5 knows the path to

node 8. This structure is quite efficient for the discovery of services and it could

be easily adapted for routing purpose for low or medium quality routes. Further-

more, only local communication is needed to achieve this double task, making this

proposition quite appealing for low mobility scenarios. However, it is extremely

costly to maintain the structure if it changes frequently as nodes need to register

their services every time their VAP changes. Furthermore, the multicast algorithm

used in the backbone to propagate messages requires some stability. Not only the

overhead but also the hit ratio would be affected by mobility. This analysis is

confirmed by the results displayed in the paper: the hit ratio and delay of the

protocol is better compared to AODV or DSR based service discovery, but at the

price of a huge overhead (at least 10 times higher). The hit ratio also decreases

Chapter 2. Literature Review 21

with mobility. Thus this scheme could be only efficient in almost static networks,

but it has the advantage of combining routing and resource discovery.

2.3.2.2 Backbone and selective forwarding

In order to make the service discovery backbone more robust to mobility, [27]

widens the area covered by the backbone nodes and loosens at the same time

the links between the backbone nodes, called directories. They are responsible

for an area covering H hops around them. A directory caches proactively the

services in its area and periodically broadcast its presence over H hops. No service

description is sent. On top of this structure, directories also create summaries of

the cached services using bloom filters [28]. This summary is sent periodically

over 2H hops and flooded from time to time when the hit ratio of the discovery

protocol degrades. This mechanism helps targeting specific directories when a

global discovery is initiated. The links between the directories are not formally

maintained but each directory knows the ID of all other directories in the network

because each newly elected directory broadcasts its identity to the network. This

scheme greatly improves the scalability of the backbone mechanism, but compared

to the previous approach, this protocol cannot act as a routing protocol and it

requires the help of a routing layer, increasing the costs. But in low mobility

networks, this scheme should outperform the previous ones because of the selective

forwarding achieved with the summaries.

Chapter 2. Literature Review 22

2.3.2.3 Semantic Hierarchy

The previous protocols only build a flat hierarchy. In [29], a more complex hierarchy

is built using the nodes’ geographic and semantic proximity. In this scheme, nodes

create local, or level 0, rings and elect one member of the ring as ring head. The

ring heads can then create level 1 rings, and so on. Each ring head caches the

summary of the services hosted in its ring. A query for a service then travels up and

down in the hierarchy of appropriate rings. No simulation is reported in the paper

and even if this solution is quite elegant, this scheme is extremely unstable and

requires major reconfigurations and maintenance in mobile environments. However

in almost static scenarios, the hierarchy should make the protocol scale very well

with the size of the network as the rings and their summaries are geographically

and semantically formed.

2.3.3 Quorums

A quorum system is created by forming sets of nodes (quorums) where the intersec-

tion between two quorums is not empty and no quorum includes another one. For

example, the sets {1,2,3}, {1,4}, {2,4,6}, {3,4,5,6} form a quorum system. This

approach is strongly related to the previous one as the proposals using quorums

assume the creation of a backbone in the network. Therefore, all the following

protocols will suffer from the high cost of backbone maintenance in mobile envi-

ronment. However their appeal lies in the cost reduction of the registration and

discovery for resources in the backbone. In the following, we will assume that

n nodes called servers form the backbone. The resource discovery can then be

Chapter 2. Literature Review 23

Figure 2.3: Resource discovery with quorums: Node A registers a resource in a

write quorum, Node B queries that resource in a read quorum.

described as shown in Fig. 2.3:

• Write: Node A sends a registration message to its closest server (S0) that

will propagate it in one of the quorums it belongs to: (S0, S1, S2).

• Read: Node B sends a location query for node A to its closest server (S3).

The query will be propagated in one of the server’s quorum (S1, S3). By

construction, an intersection server resolves the query (S1).

2.3.3.1 Creating fixed quorums

[30] is the first proposal using quorums in wireless network. The authors build a

quorum system of q quorums, each quorum of equal size k having r common servers

with any other quorum, r > 1 to support server failures or disconnections. In order

to spread the load among servers, each server should appear in the same number

m of quorums. However the quorum system (n, q, k, m, r) has no simple solution

and approximations of the parameters are used for cost analysis which proves that

Chapter 2. Literature Review 24

the quorum system is optimized when the number of servers is small. Therefore

several quorum systems with few servers are created in the network. Each node is

attached to one quorum system only and the write/read operations are modified:

client A sends a write/read message to its closest server (S0). Using A’s ID, S0

derives A’s quorum system and forwards the message to the closest server in A’s

quorum system (S1). S1 will then propagate the message in one of its quorum.

This complex system lacks flexibility: each quorum system has its (n, q, k,

m, r) fixed. If servers appear or disappear, the system cannot be easily adapted,

especially if several quorum systems coexist in the network: the quorum systems

must be balanced and close to their optimal parameters (n, q, k, m, r) to avoid

performance deterioration. Second, the system relies on a very strongly connected

backbone as each server must not only be linked to its own quorum, but also to

the other quorum systems. Finally, having several quorum systems increases the

write/read costs as each message must be transferred to the good quorum system.

All these issues, added to the costs of maintaining a backbone, make it likely that

simple flooding could perform better, even in low mobility networks.

2.3.3.2 Probabilistic Quorums

The previous proposal ensures that the quorums intersect, but at the high cost of

maintaining a complex structure and lacking flexibility. Another solution is to build

a simpler quorum system where the intersection between quorums is not guaranteed

but only highly probable, resulting in a probabilistic quorum [31]. Haas et al. [32]

propose that each write/read operation is sent to k randomly chosen servers among

the n available ones. The choice of k is a trade off between overhead and expected

Chapter 2. Literature Review 25

intersection probability. Analysis shows that the system can optimally adapt to

a wide range of situations as long as k/n ≈ 0.6. However, this assumes that all

the servers are able to distribute the write/read messages to any other server in

the network, which requires costly maintenance. [33] relaxes this hypothesis using

epidemic dissemination: when a server receives a write message it forwards it to

F of its known server, where F is the fan-out of the epidemic algorithm [34] than

can be locally adapted. The read operation is conducted as earlier: the query is

send to a fixed number of servers ξr. The spread of the read query using epidemic

propagation has not been studied although it could further decrease the number of

links maintained by each server.

One of the main issues of these schemes is their reliance on backbones: their

performances are strongly correlated with the shape of the backbone and its main-

tenance costs. Otherwise, the schemes are flexible and can adapt to the number

of servers easily. If the network remains quite stable, the protocol could prove effi-

cient. Because no flooding is used, this kind of protocol should also scale well for

stable networks. Finally, if replicated items are present on the network, the query

cost should be greatly decreased.

2.3.4 The small-world effect

The concept of small world, studied in the 60’s in social networks showed that

a letter could be delivered anywhere in the world in six steps in average, using

only acquaintances. The authors of [35, 36, 37, 38] use this theory to create a

scalable system for resource discovery in wireless networks. In this scheme, nodes

proactively cache the resources present in their H hops vicinity when receiving

Chapter 2. Literature Review 26

Figure 2.4: Resource discovery using two contacts: the source node sends the query

to its contacts which forward it to their own contacts

beacons from their neighbors. The proactive protocol also allows each node to

know the route to any neighbor in the H hops vicinity. When a node does not find

a resource in its cache, it seeks the assistance of some nodes called contacts that are

out the vicinity. Usually each node has around 4 contacts. The contact selection is

fully distributed and decentralized. When the contacts receive a query, they start

investigating their vicinity and if no match is found, they query their own contact

and so on, as in Fig. 2.4. In order to limit the search, a depth of search is included

in each query.

Several algorithms are proposed in [35, 36] and [37, 38] to select contacts

whose vicinities do not overlap. The authors study the protocol with proactively

maintained contacts in [35, 36], while [37, 38] propose to select the contacts on

the fly when a query is issued. The authors also evaluate three different policies to

Chapter 2. Literature Review 27

determine the depth of search. The reactive solution seems much more efficient than

the proactive one which maintains contacts in a mobile environment, which results

in high overhead. The reactive approach proves efficient for resource discovery

in wireless networks because it combines a proactive and local monitoring with

a reactive and delocalized query system. This combination proves scalable with

the network size (up to 30000 nodes in [38]) and robust to mobility because no

structure has to be maintained. The extensive simulations present a good hit ratio,

while keeping the overhead very limited compared to other solutions. Another

interesting feature of this solution relies in its sensitivity to resource replication:

the simulations show great improvements when some replicas are scattered in the

network.

The same proactive/reactive approach is also used in [39], where ZRP [40] is

modified for resource discovery. However the performance is not as good, as shown

in [38]. The difference lies in the number of nodes used as contacts in the protocol:

ZRP ”bordercasts” all the nodes at the border of the vicinity, while CAPTURE [38]

contacts only a few nodes further away. Thus, the vicinities of the contacts in ZRP

overlap a lot, resulting in inefficiencies.

2.3.5 The global table approach

In order to solve the location service problem for small to medium networks,

LEAP [41, 42] uses a global table called legend that references the position of

all the nodes in the network and travels from node to node.

In this protocol, nodes periodically send a beacon containing their position to

Chapter 2. Literature Review 28

their neighbors that cache this information. A table containing an entry for each

node in the network is also created by one elected node. The table contains three

fields: node ID, position, update time, visited. The legend then visits all the nodes.

When receiving it, a node synchronizes its local cache and the legend so that both

record the latest known information. It also sets the visited field corresponding to

its address to 1 and then sends the legend to another unvisited node. When the

legend has visited all the nodes, another one is created after a pause time.

Scalability is the main drawback of this protocol that can solve easily the

location service problem for small and medium networks. As the network size

grows, the size of the legend and the time for it to visit all the nodes increase.

The use of several legends over a large network could solve this problem, but the

coordination of these legends and the share of location information between legend

systems are still open issues. The system has also no use for file sharing or service

discovery applications as it is designed to share small data items that are frequently

updated.

2.3.6 Conclusion

In this section, we reviewed the different approaches for link based resource discov-

ery protocols and classified them in five categories. Most of the categories suffer

from a lack of scalability and cannot adapt well to high mobility scenarios. The

backbone/quorum approach suffers from the difficulties of maintaining a structure

in unstable environments, while the legend approach does not scale well because of

the legend’s size. From this review, it seems, that the small world approach is the

most promising technique to adapt to challenging scenarios. This class of protocol

Chapter 2. Literature Review 29

T
ab

le
2.

1:
C

om
p
ar

is
on

ta
b
le

of
th

e
li
n
k

b
as

ed
p
ro

to
co

ls

P
ro

to
co

l
C

a
te

-
g
o
ry

S
ca

la
b
il
it
y

M
o
b
il
it
y

H
it

R
a
ti

o

S
el

ec
ti
ve

F
or

w
ar

d
-

in
g

D
o
es

n
ot

sc
al

e
w

el
l

L
im

it
ed

eff
ec

ts
G

o
o
d

fo
r

sm
al

l
n
et

w
or

k
s

N
o
d
e

H
ie

ra
rc

h
y

G
o
o
d

sc
al

ab
il
it
y

fo
r

st
at

ic
n
et

w
or

k
s

N
ot

ad
ap

te
d

to
m

ob
il
e

n
et

-
w

or
k
s

b
ec

au
se

of
h
ig

h
ov

er
-

h
ea

d

G
o
o
d

in
st

at
ic

n
et

w
or

k
s

S
m

al
l
W

or
ld

E
ff
ec

t
G

o
o
d

sc
al

ab
il
it
y

M
ob

il
it
y

h
as

a
li
m

it
ed

im
p
ac

t
on

p
er

fo
rm

an
ce

G
o
o
d

if
th

e
d
ep

th
of

se
ar

ch
is

ad
ap

te
d

to
th

e
si

ze
of

th
e

n
et

-
w

or
k
.

Q
u
or

u
m

s
D

o
es

n
ot

sc
al

e
w

el
l

V
er

y
se

n
si

ti
ve

to
m

ob
il
it
y

G
o
o
d

in
st

at
ic

n
et

w
or

k
s

on
ly

G
lo

b
al

T
ab

le
L
im

it
ed

sc
al

ab
il
it
y

D
es

ig
n
ed

fo
r
m

ob
il
e

n
et

w
or

k
s

G
o
o
d

if
th

e
n
et

w
or

k
is

n
ot

to
o

la
rg

e

Chapter 2. Literature Review 30

is extremely adaptable because it can operate without maintaining any structure

or link between the nodes. The strength of the protocol in large network lies in its

ability to scan the network by sending messages to areas that do not overlap. This

geographic forwarding is quite close to the semantic forwarding used by the selective

forwarding protocols like GSD. But these protocols have their application limited

to medium networks due to the predominance of the proactive component of the

protocol. However, we believe that the two approaches could be complementary, as

selective forwarding could be more efficient than small-world approaches in small

and medium networks. Thus the semantic forwarding could be efficiently used for

resources that are queried in the vicinity of the node, while a small world approach

could be in charge of global queries. The legend approach seems also quite effi-

cient for small networks but it does not scale well and is limited to location aware

networks. Finally, the backbone and quorum protocols lack flexibility due to the

structure they create. But in low mobility scenarios, these approaches could prove

efficient, especially in large networks where the hierarchy of nodes could lower the

costs of insertions and queries. This solution also suits to heterogeneous networks

where powerful nodes and weak nodes coexist and collaborate. The most active

and powerful nodes could then naturally play the role of backbone nodes. This

would limit the election process of the nodes forming the backbone and stabilize

the backbone.

2.4 Location aided protocols

In this section, we introduce the resource discovery protocols developed for location

aware networks. Therefore, it is assumed that all the nodes know their position

Chapter 2. Literature Review 31

Figure 2.5: Classification of the link based resource discovery protocols

through any localization system such as GPS or one of the localization protocols

proposed in the literature. Location service is the main application for resource

discovery in this kind of network. So most of the proposals presented in this section

aim at solving this problem. We group these protocols in five categories, as shown

in Fig. 2.5.

2.4.1 Geocasting and epidemic dissemination

Geocasting consists in delivering a packet to all the nodes located in a geographic

area. It can be seen as a geographically limited flooding. The most simple location

services use this technique to locate a node. The Distance Routing Effect Algorithm

for Mobility (DREAM) [19] is a proactive scheme in which each node broadcasts

its position in the network. Each location packet (LP) contains the node’s ID,

position, and speed. When a node looks for another node D, it evaluates the

expected area the target should reside in. This area is defined as the circle of radius

v(t1 − t0) centered at D’s last known position, where v is D’s speed at the update

received at t0, and t1 the current time. The query is then geocasted in the requested

area depicted in Fig. 2.6. If the query fails, it is flooded over the network. The

Chapter 2. Literature Review 32

Figure 2.6: Location Query in DREAM and LAR: the query is geocasted in the

requested area.

reactive protocol Location Aided Routing (LAR) [43] uses the same mechanisms

but modifies the shape of the request zone to improve the hit ratio for remote

nodes, as shown in Fig. 2.6. Finally, [44] proposes to expand gradually the request

zone of LAR instead of flooding when the first query fails, because the target node

should be in the vicinity of the expected zone. These basic mechanisms obviously

generate too much overhead for the localization performances provided.

A comparison [20] of reactive flooding, proactive flooding and epidemic dis-

semination shows that the epidemic dissemination of the location table has the

best performance for a 100 nodes network. But only the accuracy of the location

information is measured: the cost of finding a destination is not evaluated, thus the

results are not fair with the reactive flooding algorithm that usually finds a route

in the process. Epidemic dissemination only consists of periodically broadcasting

the node’s current position and the cached location information of E other nodes.

This scheme is enhanced in [45]. The node broadcasting a location packet (LP)

includes its velocity vector and the E entries are chosen among the entries updated

Chapter 2. Literature Review 33

since the last LP sent. Active caching is also introduced and the protocol uses

linear movement prediction to evaluate a destination’s position. Simulations show

a good accuracy of the cached positions compared to other protocols like GLS [7]

or LEAP [42] for a lower cost. However, the simulations are not fair because the

authors use the Random Waypoint mobility model where the nodes have a uniform

and linear movement that matches the prediction algorithm. It is doubtful that

the performance of the algorithm is as good in real scenarios. Epidemic mechanism

proves also inefficient when the network size increases, in which case flooding would

be more frequent. This approach remains close to LEAP and should prove efficient

for small and medium networks.

2.4.2 The small-world effect

Using the small-world concept presented in the previous section, the Acquaintance

Based Soft Location Management (ABSLM) [46] modifies the selection of the con-

tacts using location information. As explained earlier, nodes select C contacts in

the network and the resource discovery is achieved with the help of these contacts.

In the proposal, the contacts are proactively created and maintained as shown in

Fig. 2.7. Using periodic beacons, nodes are aware of their neighbors’ position. The

symmetrical contact selection then takes place in the vicinity of the node: two

neighbors first agree being each others’ contact and send their positions to each

other when moving apart. However, if two contacts remain neighbors, the link is

broken and a new contact selection starts over.

As we have explained earlier the resource discovery is propagated between

contacts, with a depth of search specified by the requesting node. Simulations show

Chapter 2. Literature Review 34

Figure 2.7: Contact selection in ABSLM

that ABSLM performs well with medium networks. A good hit ratio is reached

with a low cost compared to LAR and SLALoM [10] (a grid based protocol studied

in subsection 2.4.6.1). However, we believe that the difference in overhead perfor-

mances between SLALoM and ABSLM would drop if the radius transmission (350

meters in the simulations) decreases. Indeed, a smaller radius requires more con-

tacts, a deeper search among the contacts and more frequent updates. Scalability

is not studied here, but SLALoM should scale better when the network size grows,

i.e., the update and query costs should only linearly increase, while the query cost

exponentially increases in ABSLM. A reactive selection of the contacts as in [37]

should also improve the performances, especially in real scenarios where nodes are

likely to stay grouped, making the proactive selection less efficient when nodes do

not move apart.

Chapter 2. Literature Review 35

2.4.3 Geographic quorums

In the geographic quorums approach, nodes share the network in geographic shapes

where any write shape intersects any read shape.

2.4.3.1 Straight lines quorums

[47] proposes to store the advertisements in a straight north-south line, while

queries are sent over a west-east line, as shown in Fig. 2.8. Both lines are supposed

to cross at a node. In order to increase the intersection probability in mobile

environments, the column is widened over two or three hops using overhearing of

the messages. An important issue is the update frequency of the advertisements.

As a basic update, a node broadcasts its location to its neighbors when a broken or

a new link is detected. After E basic updates, a main update along the north-south

column is initiated. To increase the intersection rate, [48] sends the messages along

a cross shape and [49] improves that scheme by limiting the propagation of duplicate

services in the network. These propagation schemes are shown in Fig. 2.8. The

main drawback of this solution lies in the high update/query costs in large networks

because the number of nodes implied in each operation is O(
√

n). The difficulty of

routing around local obstacles or holes raises also some issues for the messages to

propagate in the whole network. Some simulations show that geographic routing

algorithms still regularly fail [50, 51]. Therefore this kind of protocol could be quite

efficient in low mobility, medium networks.

Chapter 2. Literature Review 36

Figure 2.8: Crossing lines in geographic quorums

Chapter 2. Literature Review 37

2.4.3.2 A spiral approach

The protocol in [52] is based on spirals that store the location of a node. The spiral,

built on a hierarchical grid is displayed in Fig. 2.9. The nodes close to the corners of

the rectangles are responsible for storing the advertisements. The origin of the grid

is determined with a hashing function and the ID of the advertising node. Using

the same algorithm, a query follows a spiral intersecting with the advertisement

spiral. Some more mechanisms described in [52] improve the performances of the

protocol. However, this scheme multiplies the number of storage points because for

each corner of all the spirals, the closest node stores the advertisements associated.

This results in numerous data transfers when nodes move. Instability and overhead

should easily appear in mobile environments. This issue is studied in the next

section. Finally, compared to a simple line propagation, the long length of the

spiral increases the update costs and the risk of routing failures in environments

with obstacles.

2.4.4 The Personal Home Region

In a personal home region protocol, each item is stored in its own and unique

attributed geographic area that acts as a server. This concept is first developed

in [53] [54] with the Virtual Home Region (VHR) that consists of selecting a circle

to store a node’s location. All the nodes know a hashing function H that is used

to map a node’s ID to a position (x,y). The VHR of a node is defined as the circle

centered at H(ID) = (x,y) of radius R. When a node moves to a new position, the

new location is then geocasted to its VHR and all the nodes in the area store the

Chapter 2. Literature Review 38

Figure 2.9: The spiral of node N is built on a hierarchy of rectangles. The nodes

close to the intersections of the spiral with the hierarchical rectangles store the

advertisements. A similar spiral is created for the queries.

update. The nodes also have to resolve the queries of the VHR they reside in.

However, adjusting R to the local density of nodes is still an open issue. If it is too

small, the VHR could be empty, but it should not be too large either in order to

limit geocasting. Data management in mobile environment is also an issue. When

a node enters a VHR, it should have its cache updated to be able to resolve queries.

But there are as many VHRs as nodes, so the update operation would be extremely

frequent. On the other side, if the nodes are not updated when arriving in a VHR,

the performance of the protocol may degrade, unless frequent updates arrive in the

VHRs. For these reasons, this mechanism should not outperform other solutions.

In order to solve the radius and mobility problems of the VHR approach, the

Geographic Hash Table system (GHT) [55] for data centric storage sets R to 0, and

a fixed point is used as server. The nodes around that point are elected as servers

using the perimeter mode of the Greedy Perimeter Stateless Routing (GPSR) [56]

protocol, i.e., GPSR recovers from greedy forwarding by routing around a hole

Chapter 2. Literature Review 39

using the right hand rule. In GHT, when a data packet is sent to a destination

D, no node will be exactly on that point. The packet will then travel around

D in perimeter mode and the nodes receiving it store the data item. In order

to ensure consistency in mobile environment, refresh packets are periodically sent

around D. This approach has been adapted with minor modifications for location

service in [12] for comparison purpose. GHT performs well in dense networks

with medium mobility, and scales very well with the number of nodes. But this

mechanism lacks the ability of adapting to its geographic area. Indeed, GHT fails

if the hashing function points to an empty area created by a geographic obstacle or

node movement patterns. Some more mechanisms should then be added to ensure

that data items are effectively assigned a populated area.

2.4.5 The Grid Location Service (GLS)

GLS [7] is one of the first scalable location services using a hierarchical grid and

it includes many innovative features. Therefore it is often used as a reference and

we only briefly describe the protocol. More detailed information and proofs can be

found in [7, 12, 50].

The geographic area is recursively divided in a hierarchy of squares from level

0 to λ where each square of level i > 0 is divided into four identical sibling squares

of level i− 1. The smallest squares, of level 0, are called cells. With this structure,

each node is located in exactly one square of each level and selects one node in each

of its sibling square to act as a location server. 3(λ + 1) servers are then selected

and they only record the node’s cell because the nodes sharing the same cell know

each other’s coordinates using periodic beacons. The servers for a node A are the

Chapter 2. Literature Review 40

nodes with the least ID greater than A’s ID in their square. Fig. 2.10 displays an

example of grid and the server repartition for a node A in the network.

If node B seeks node A, it sends a query to the node with the least ID greater

than A’s ID that it knows. This node will then forward the query to another node

in the same way. This mechanism will find in a few steps one of A’s server in the

square common to A and B. When the server receives the query, it forwards it to

A which replies to B. The update mechanism is quite similar. When A updates the

servers in a square, the message is first sent to that square and then routed in the

same way as a query. After a few steps, a node in the square won’t have cached any

other node with an ID between A’s and its own. This node will act as the server.

To limit overhead, a distance effect is implemented such that the closer servers

receive more frequent updates than the remote ones, i.e., when a node travels the

distance 2i−1d, it updates the servers in the square of level i, where d is a protocol

parameter. The proofs for these mechanisms can be found in the original paper [7].

The mechanisms GLS rely on are extremely simple and easily implemented.

The protocol does not use any form of flooding and is totally distributed and

seamless as the nodes do not know the ID of their servers. However, mobility is

an important factor in the performance of the protocol. [12] extensively compares

GLS with a variant of GHT named GHLS and a line-quorum protocol called XYLS.

Even in static networks, GLS creates much more overhead than GHLS due to the

higher number of updates produced and longer query path length. The situation

deteriorates with mobility. The overhead of GLS jumps far above that of the other

protocols. The difference is deepened as the precision of the positions stored in

GLS servers are often not good enough for routing. [45] and [50] observed the

Chapter 2. Literature Review 41

Figure 2.10: Repartition of the servers for node A (ID = 21) in GLS: the node with

the least ID greater than 21 is elected server in each sibling square of node A.

Chapter 2. Literature Review 42

same inaccuracy. This phenomenon is generated by the distance effect. If nodes

are uniformly spread on the grid, 75% of them access the position of node A

with the worst granularity because they stay in the level λ sibling squares of A.

Therefore we believe that each level should be updated in a round robin fashion

at the same frequency. This modification only improves the accuracy of GLS but

not the overhead. Another solution would be to hierarchically route the queries

from a server to node A, i.e., a level i + 1 server would point to the level i square

of A. Updates would then be initiated only when a node crosses region borders.

But the query path length would then jump because the servers could be anywhere

in their square. Further consistency problems would also raise when servers move

out their region. Therefore, no simple modification improves the performances of

GLS and based on the results of [12], we believe that GLS is not efficient enough

compared to other protocols, even if it develops an elegant and innovative solution

to the location service problem.

2.4.6 Grid based protocols

As in GLS, other resource discovery protocols divide the geographic area into cells

that form a grid. In those grid based protocols, each cell acts as an independent

server. We did not include GLS in the grid based protocols because this category

groups the schemes that use the cells as servers. In GLS specific nodes are elected

servers. For all the protocols in this section, it is assumed that all the nodes know

the shape of the grid and periodically broadcast a periodic hello beacon with their

position to their neighbors.

Chapter 2. Literature Review 43

2.4.6.1 Flat Grid

The Scalable Location Update-based Routing Protocol (SLURP) [11] is one of the

first location services using a grid. In SLURP, each node sends the ID of the cell it

occupies (host cell) to another cell called home cell. This cell is determined with a

hashing function H that hashes the ID of the node to the ID of a cell: H(node ID)

= cell ID. Any node that wants to locate a target T only needs to hash T’s ID and

to send a query to the home cell using geographic routing. The knowledge of the

host cell is enough to locate T, because intra cell routing is based on a link state

protocol. Location updates are triggered when a node changes cell and geocasted

in the home cell. All the nodes in the home cell store the location information

and resolve the queries addressed to their host cell. Some updates must also be

initiated when a node changes cell to maintain the consistency of the database, i.e.,

all the nodes in a cell maintain a list of the nodes present in their host cell, a node

changing cell must then geocasts a message to erase or register its ID in the cells.

This message is also used as a request to transfer the location information stored

in the new cell to the node.

In this scheme, many messages are geocasted, which can be costly with high

mobility. Compared to SLURP, Rendezvous Regions (RR) [9] modifies the internal

management of the cell and creates a set of server nodes inside the cell. Only

a few nodes inside a cell play the role of server, limiting the number of updates

and geocast messages if the servers are known by the nodes inside a cell. Another

solution to limit geocasting in stable networks is presented in [57]. Summaries of

the nodes present in each cell are created and sent to the home regions.

Chapter 2. Literature Review 44

2.4.6.2 Hierarchical Grid with uniform repartition of the servers

In a flat grid organization, all the location updates and queries travel to the unique

home region of a node. This organization is quite efficient as long as the number of

cells is limited. But in large networks, the path could be quite long resulting in high

cost for both updates and queries. To solve this problem, nodes could choose several

home cells to decrease the cost of the updates or the queries. Hierarchical grids

are used for this purpose. For this kind of grid, the cells are grouped together to

form regions of different hierarchical levels with the specific condition that regions

of the same level do not overlap.

In the Distributed Location Management (DLM) [58], the hierarchical grid is

organized in λ hierarchical levels. It is assumed that the diagonal of a cell is smaller

than the transmission radius of a node, resulting in very small cells. This design

aims at avoiding flooding, but it increases the update rate. It is also assumed

that all the regions of same level have the same shape and the same number of

cells. Each node then selects a position in a level m region, where m is a network

parameter, with an hashing function and its ID. All the cells with this position in

the level m regions will act as home cells, as shown in Fig. 2.11.

The location updates are triggered when a node changes cell and could be

sent to all the servers. But this mechanism is expensive for mobile nodes because

numerous servers are scattered in the grid. A second solution takes advantage of

the hierarchical structure as shown in Fig. 2.11. If a node stays in the same level m

region, it only updates the server in that region, while all the other servers point

to the level m region. All the servers are updated only when a node moves to

Chapter 2. Literature Review 45

Figure 2.11: DLM with 3 levels, m = 1 and hierarchical discovery. Node S selects

one server in each region of level m, but only the server in S’s region knows its

exact location. The other servers point to the level m region of S.

Chapter 2. Literature Review 46

another level m region. When a node A initiates a query, it first evaluates the

target’s (T) server in its level m region and sends the query to that server. If the

server knows T’s host cell, it replies to A. Otherwise, the query is forwarded to

the server cell in T’s level m region, which will be able to reply to A. This second

mechanism greatly decreases the update costs. This phenomenon is clearly shown

in the simulations of [58]. The two update mechanisms bring flexibility because

the nodes can adapt their update policy to their mobility, i.e., static nodes update

all servers while mobile nodes use the hierarchical mechanism.

The ScaLable Ad-hoc LOcation Management (SLALoM) [10] is almost a spe-

cific case of DLM using two hierarchical levels (1 and 2) and setting m = 2. However

the cells are supposed to be wider than in DLM and a state link routing is main-

tained inside the cells, as in SLURP. The position update uses a variant of the

hierarchical mechanism of DLM. All the home cells surrounding a node (9 over-

all) store its exact host cell. Simulations show that SLALoM outperforms SLURP

when the network size increases, demonstrating the benefits of hierarchical grids.

2.4.6.3 Hierarchical Grid with logarithmic repartition of the servers

It is envisioned that communication between nodes will mainly take place between

close nodes. Thus it is unnecessary to update many remote server cells. The server

density should then decrease with the distance to the node. Logarithmic repartition

of servers in a hierarchical grid addresses this issue.

The Hierarchical Grid Location Management (HGRID) [59] relies on the same

grid as GLS, i.e., a hierarchical construction sharing each region into 2x2 sub

Chapter 2. Literature Review 47

regions for (λ + 1) levels. In each region, a cell is selected as a leader, as displayed

in Fig. 2.12. For each level i (0 < i < λ) the top rightmost Li−1 leader is the i

hierarchical leader of the bottom left Li region, the top leftmost Li−1 leader is the

hierarchical leader of the bottom right Li grid, the bottom rightmost Li−1 leader is

the hierarchical leader of the top left Li grid and the bottom leftmost Li−1 leader

is the hierarchical leader of the top right Li grid.

HGRID is based on a hierarchical update and query process as explained in

the previous section. Each Lλ leader stores the level λ region of all the nodes. For

i ≤ λ, the Li region leaders point to the level Li−1 regions of the nodes occupying

the same level Li region. When a node changes its home cell, it sends a location

update message with the movement to the L1 leader managing the new cell. The

first node in the leader receiving the update geocasts the message in the cell and

evaluates if the movement requires a higher level update. If needed, the message

is forwarded to the L2 leader and the same mechanism is recursively repeated.

Another update is eventually sent to the leaders which should erase the node from

their database. A location discovery message is then sent to the local L1 leader of

the querying node. If the leader cannot resolve the query, it is forwarded to the

L2 leader and so on, until the query reaches the leader of the region common to

the querying node and its target, as shown in Fig. 2.12. This server replies with

the location of the next location server towards the target. The querying node

will then contact that server and the message will be routed hierarchically to the

destination.

With this structure, each node only has one server in each hierarchical region

and the update costs are further reduced, but the query cost increases a lot with the

Chapter 2. Literature Review 48

Figure 2.12: Structure of HGRID for 3 levels. Node S sends a message to D in

three steps: 1) S issues a Location Query to find one of S’s leader; 2) The leader

Li replies with a pointer to the leader Li−1 of D; 3) S sends the message that is

hierarchically routed from Li−1 to D

Chapter 2. Literature Review 49

distance to the target. Compared to SLURP and SLALoM, HGRID performs best

in high mobility scenarios taking advantage of the lower update costs. However,

this protocol relies only on the region leaders. Only 25% of the cells are in charge

of maintaining the structure and the Lλ leaders are even keystones in the scheme

because any query between two nodes residing in two different level λ regions passes

through one the four Lλ leaders. HGRID is then extremely weak to empty cells

and the lack of workload sharing could create bottlenecks in the network.

To solve these problems, the Hierarchical Location Service (HLS) [60] takes

the advantages of SLURP and HGRID. HLS can be implemented on any hierarchi-

cal structure where the regions of same level do not overlap. Each node chooses a

home cell in each hierarchical level it resides in using an hashing function adapted

to each region, like: Hregion(node ID) = node ID mod (number of cells in the re-

gion). Then the update mechanism is the same as in HGRID, and queries travel up

the hierarchy of the potential home cells of their target until reaching the home cell

of the region common to the querying node and its target. HLS should have almost

the same efficiency as HGRID even if the delay and the communication overhead

of the queries should be higher because the path in the hierarchy is longer than in

HGRID, in which the hierarchy of servers forms a straight line. But the workload

is well spread among the nodes, limiting any bottleneck effect and sensitivity to

empty cells in the grid.

2.4.6.4 Location dissemination in hierarchical grid

The Geographical Region Summary Service (GRSS) [61] relies on the same grid as

GLS or HGRID. But the location service approach is totally different, as it is based

Chapter 2. Literature Review 50

on information dissemination and not a server structure. As in many schemes,

intra cell routing is performed by a link state protocol and inter cell routing by a

geographic routing.

The boundary nodes of each region, for each hierarchical level, create sum-

maries of the nodes inside the region and geocast them to their sibling regions. The

summaries of level 0 regions are created using bloom filters on the ID of the nodes

hosted by the cell. Whenever a node leaves or arrives in a cell, a new summary

is created and geocasted. Summaries for level i regions are created with a simple

bitwise OR operation on the summaries of the level i-1 sub regions and they are

geocasted only when modified. The bloom filter creates small summaries that can

be quickly spread with one small packet. The nodes then use the summaries to

find a region that a target T occupies. The query is then forwarded to that region.

Once in that region, a node using a more precise summary forwards the query to

a smaller region where T is located, until reaching the right cell.

The extensive simulations of GRSS exhibit a good hit ratio and a good scal-

ability with the size of the network and the speed of the nodes. The bandwidth

consumed by the protocol is quite small, as long as the summary size is below a few

hundred bytes. These results could seem surprising considering the extensive use

of geocasting. Indeed, the location update cost is quite high, but the query cost is

almost null as the queries are almost optimally delivered to the target node with

the direct routing, i.e., the queries do not have to travel to servers before being for-

warded to the target like in SLURP or HGRID. GRSS appears to be an original and

efficient solution for the location service problem that would deserve comparison

simulations with other protocols. But contrary to the server approaches, GRSS can

Chapter 2. Literature Review 51

only be applied to service discovery because of the small summary size required.

2.4.7 Conclusion

In this section, we have grouped the location aided resource discovery protocols in

5 categories. Compared to section 2.3, the quorum and the small world approaches

have been augmented with location awareness to improve their efficiency. However,

for a location service application, the grid protocols should perform better in large

networks. Indeed these protocols send only one message for updates or queries to

a server cell while the small world approach requires sending several messages for

each query, and the quorum approach suffers from mobility weakness. The grid

based protocols could also benefit from large cells. With large cells, the number of

location updates decrease because border crossing would become less frequent. But

this requires an efficient data management inside the cells limiting geocasting, as

introduced in RR. However research is still needed in that area, in order to design

adaptive policies that could be efficient for any cell size and any number of nodes

inside the cell.

Grid based protocols can also adapt to a wide range of mobility scenarios

and network sizes using hierarchical grids and different repartition of servers in the

network. However, the grid based protocols fail with varying effects when empty

cells appear in the grid. This weakness is common to the home region approaches

which store data items at geographic points. If wide areas are empty, items sent

there would experience problems to be stored and queried. For these protocols

however, adapting the common hashing function to the nodes’ position seems a

very difficult task and would require a high amount of communications. There-

Chapter 2. Literature Review 52

fore, we believe that this approach would be unsuitable in mobile scenarios where

the node distribution could vary greatly over time. The performance comparison

works [12] [9] show that this approach, close to the grid mechanism, outperforms

easily the quorum protocols and GLS. This protocol, even if elegant, seems to

generate too much overhead and performs poorly in large, mobile networks. The

quorum approach could prove quite efficient in medium networks with low mobility.

It also has the advantage of not relying any kind of hashing functions, which make

it easily adaptable for service discovery.

2.5 Conclusion

2.5.1 Strengths and weaknesses of grid based protocols

Even if some link based protocols achieve successful resource discovery, they still

suffer from a lack of scalability and their efficiency decreases with the diameter

of the network, except for the small world approach that performs best in large

networks. However, location information greatly improves the performances of

resource discovery protocols. Comparison works like [12] or [9] also show that the

grid based and GHT-like protocols have the best performances among the location

aware protocols. These protocols use only few messages to maintain the structure

of the resource discovery, and only need to send one message for each insertion

and query, resulting in good efficiency. But both approaches cannot dynamically

adapt to topology changes that create empty spaces on the geographic area. We

believe that adapting the hashing function of GHT to the topology is not possible

or would require too much communication between the nodes. Thus this approach

Chapter 2. Literature Review 53

should be used in scenarios where the density of nodes would remain quite high

everywhere.

Grid based protocols not only perform well, they also offer a wide adaptability

in their implementation. The shape of the grid, its management, as well as the

intra cell mechanisms offer a wide choice of designs that could be separately studied

and improved. Thus they could be used and adapted to many different scenarios

using large networks. We could also imagine a resource discovery protocol mixing

a grid with a link based resource discovery inside the cells in order to improve the

research of close services, while taking advantage of the grid structure for global

queries.

For these reasons, we believe that the grid based protocols are a promising

approach to resource discovery in wireless networks, even if many improvements

have to be made to use them in real scenarios.

2.5.2 The effect of empty cells on grid based protocols

The main weakness of the grid based protocol is their sensitivity on empty cells.

The empty cells in the grid have severe effects for two reasons. First, if a cell

is empty, all the queries that will arrive there won’t be replied. The hit ratio

of the protocol then quickly decreases. If the application using the grid based

protocol is a service or file sharing application, then the resources are lost and not

accessible anymore. But the phenomenon is worse for a location service supporting

a geographic routing protocol because all the nodes which use the empty cell as

home cell cannot have their position queried. This means that many nodes in

Chapter 2. Literature Review 54

the network are not contactable anymore because their position is unknown. This

situation is unacceptable in a collaborative environment. Second, all the messages

that are sent to an empty cell don’t actually have any destination, so the packets

just wander around the empty cell exhausting their TTL and creating useless traffic

in this area. Therefore, empty cells, not only result in denial of service, but they

also generate overhead and maybe congestion if the utilization of the protocol is

high.

The severity of holes on the hit ratio also depends on the type of grid based

protocol. If a flat grid is considered, like in SLURP, all the nodes having an empty

home cell are affected. In a hierarchical grid, the situation is more complex and the

effects vary between two extreme cases. In the best case, the servers are uniformly

distributed and they all know the host cell of the node they work for. As a result,

the information is replicated in the network, and the effect of the empty cell could

be easily limited. For example, a node receiving no reply for one of its query could

query another server cell containing the information. The worst case scenario

occurs with a hierarchical grid like in HGRID where the protocol relies on only

25% of the cells, the leaders. If one of those cells is empty, all the queries arriving

in that cell are lost. The area covered by the leader is then virtually isolated.

Adapting the grid is therefore a necessary task to maintain the good perfor-

mance of the grid based protocols. We describe our solution, Hidagrid, in the next

chapter.

Chapter 3

Description of the Protocol

Grid based protocols are powerful schemes but they lack the ability to dynamically

adapt to the density of nodes. Some basic solutions have been proposed, and we

will analyze them in the first section of this chapter to identify the challenges

Hidagrid must face. Then, based on these requirements, we describe our solution,

Hidagrid in section 3.2. Additional features and improvements are discussed in

Section 3.3, in particular we will see how to stabilize the state of the cells, and will

generalize some mechanisms for any scenario. Section 3.4 concludes this chapter

with a summary of Hidagrid’s distinct features.

3.1 The design requirements of Hidagrid

3.1.1 Basic strategies for empty cells management

All the grid based protocols reviewed in the previous chapter fail with varying

effects when a cell is empty, except GLS [7] and GRSS [61]. However their database

55

Chapter 3. Description of the Protocol 56

management differs from the other approaches that use cells as servers: in GLS,

nodes are selected as servers, while GRSS is based on gossiping and not storage.

Thus these two grid protocols do not suffer from the hole problem by design.

However, some proposals are aware of the empty cell problem and mention simple

mechanisms to deal with them. But none of them strives looking for an efficient

empty cell management, and no simulation with empty cells has been reported in

those works.

SLURP [11] deals with the empty cells by locally maintaining a list of the

nodes present in each cell. When the last nodes in a cell leave, they replicate the

locally stored items in the eight cells surrounding the empty cell which form the

new server for the messages targeted to the empty cell. As a result, any update or

insertion targeted to the empty cell must be geocasted in the eight cells, generating

high update and insertion costs. This mechanism also increases the size of the

storage space in the network because the data items are then replicated in eight

cells instead of being stored in only one cell.

HLS [60] slightly improves this scheme by storing the items hosted in an empty

cell in only one cell: a node detecting an advertisement message that cannot reach

a target will temporarily save the item in its own cell and try to insert it regularly

in the original host cell. This mechanism results in vain reinsertions attempts for

each item as long as the cell remains empty. Queries looking for such data items

also have to wander around the empty cell to find the temporary host cell, because

the relocation is not determined by a policy. This increases highly the query cost

and this system easily fails as messages do not have any assigned target and just

visit all the cells to try to find the queried item. Even if the relocation in only one

Chapter 3. Description of the Protocol 57

cell is an improvement, this approach lacks a common relocation policy. It is also

not explained how a node differentiates an empty cell from a routing failure.

DLM [62] follows the same lead as HLS but the backup server is designed

with the help of a common policy. Nodes can detect empty cells because of the

very small size of the cells: the area covered by a node’s transmission radius is

supposed to cover a full cell. This small size increases highly the risk of empty

cells. However, more importantly here, nodes are not aware of an empty cell being

populated again. As a result, an item could be stored in a backup server but it will

not be reinserted in the main server cell when it becomes active.

Finally, RR [9] also mentions the empty cell problem and proposes to use

a backup hashing function when an insertion acknowledgement or a reply is not

received. This means that in the case of an empty cell, at least two messages have

to be sent for each insertion and query. Furthermore, this mechanism cannot make

the difference between empty cells and routing failures that are quite common in

wireless networks. Thus after a simple routing problem, a node would change the

target cell instead of trying to contact one more time a cell that may be active.

3.1.2 Requirements for empty cells management

This short review shows that all the simple mechanisms proposed do not manage

to bring an effective solution to the empty cells. But these proposals highlight the

problems encountered when empty cells appear in the grid. A protocol dealing

with that issue must face the following challenges:

Chapter 3. Description of the Protocol 58

• When holes are detected, the items must be relocated in one or several other

servers according to a common policy that can be used to route queries to

the right cell.

• The mechanism should not increase the update or query cost in order to keep

the bandwidth consumed by the discovery service as low as possible.

• Consistency must also be maintained when empty cells get populated: the

data items that were stored away must be relocated quickly in order to avoid

denial of service.

• Finally, the protocol is only a background protocol that should generate min-

imum overhead when the grid is stable. However, the changes in the grid

depend only on the local variation of node density, which is a slow process.

As a result, to ensure the protocol’s consistency, higher communication over-

head is acceptable when a cell gets deserted or populated, as these events

should have a low frequency.

Based on these requirements, we describe Hidagrid in the next section.

3.2 Description of Hidagrid

3.2.1 Assumptions

A mobile wireless data network is considered. We assume that the network is well

connected but that the node density can strongly vary, resulting in empty areas as

well as dense clusters, as shown in Fig. 3.1. The nodes know their location through

Chapter 3. Description of the Protocol 59

Figure 3.1: Example of network supported by Hidagrid: the movement of the nodes

(numbers) is restricted by the obstacles (dark shapes), creating empty areas.

Global Positioning System (GPS) or any other localization algorithm proposed in

the literature [63] [64] and this ability supports a geographic routing protocol such

as the Greedy Perimeter Stateless Routing (GPSR) [56].

The network space is divided into a grid formed of basic rectangular zones

that we call cells. To divide the network area into cells, all the nodes must know

the extent of the area as well as the dimensions of the cells. They can then compute

the borders of the cells.

Finally, we assume that the discovery protocol supported by Hidagrid uses

the messages displayed in Table 3.1 and that it implements an acknowledgement

mechanism after the successful insertion of a data item in a cell.

Chapter 3. Description of the Protocol 60

Table 3.1: Messages used by the discovery protocol and Hidagrid

Discovery Protocol

INSERT Insertion of a data item in a server cell.

INSERT ACK After a successful insertion the server cell sends an

acknowledgement.

QUERY Query for a data item.

REPLY The reply for a query can be positive if the queried

item is stored in the cell, or negative otherwise.

Hidagrid

GRID UPDATE Advertisement for the state change of a cell.

UPDATE RQT Request for updating the internal table of a node.

UPDATE RPL Reply to UPDATE RQT containing an internal table.

Chapter 3. Description of the Protocol 61

3.2.2 Overview of Hidagrid

Hidagrid is located between the routing layer and the service discovery protocol

layer. It is not responsible for the data items management inside the cells (this is

the role of the discovery protocol), but it distributes items of empty cells among

the populated ones. Its role is then to consistently route the QUERY and INSERT

messages of the discovery protocol to a populated cell, based on the original server

cell decided by the discovery protocol, the data item identifier and the state of

the grid. To support this task, Hidagrid implements five main functions that are

described in the next sections: (i) advertising cell state changes, (ii) updating

the node’s internal table, (iii) routing messages hierarchically, (iv) relocating data

items, and (v) detecting the state changes of the cells.

3.2.3 Advertising cell state changes

Each Hidagrid cell is characterized by a state: active or inactive. When a cell is

inactive, the nodes inside can still use the discovery service but the cell will not be

in charge of storing any information, i.e., all the workload is transferred to active

cells with higher node densities. When the state of a cell changes, as explained

in Section 3.2.7, the event is advertised in the network with a GRID UPDATE

message. A simple solution would be to flood that message, but in large networks

with many cells, the frequency of state changes and then the overhead could be

high. To limit this, Hidagrid is built on a hierarchical grid that defines the spread

of these advertisements. A GRID UPDATE message is then geocasted in one of

the regions of the hierarchical grid, as described in this section.

Chapter 3. Description of the Protocol 62

Figure 3.2: A 4 levels hierarchical grid with 6 level-3 regions, and the internal table

of the nodes located inside region 302. The hierarchy is depicted in the lower left

corner and each hierarchical region is created with four regions of lower level. The

internal table lists the state of the regions depicted on the figure.

3.2.3.1 The hierarchical grid structure

The hierarchical grid is built by grouping cells into regions of different levels. Four

neighboring cells form a region of level 1 and the hierarchy is built by grouping four

neighboring regions of level i into a region of level i+1. Regions of the same level

do not overlap and as a result each cell belongs to only one unique region for each

level of the hierarchy. Four regions of level i sharing the same region of level i+1

are called sibling regions, while the region of level i+1 is called the parent region of

its child regions of level i. We will consider a grid of λ+1 hierarchical levels with a

cell being a level 0 region. The N number of regions of level λ can vary in order to

Chapter 3. Description of the Protocol 63

adapt to the shape of the network area. Fig. 3.2 shows an example of a hierarchical

grid with 4 levels and 6 level-3 regions.

Each region of the grid is also characterized by a state, active or inactive. The

state of a region is based on the state of its child regions and is evaluated according

to the State Policy. Data items hosted by an inactive region are relocated to active

regions so that no information is stored in any cell of a region with low node density.

3.2.3.2 The State Policy

Each time the state of a cell changes, the state of the regions containing that cell is

evaluated by the State Policy when the node advertising the change evaluates the

scope of the GRID UPDATE message. The State Policy is displayed in the pseudo

code of Fig. 3.3. It first evaluates the state of the lower hierarchical levels, and

the algorithm stops when the state of a region does not change. Let us consider

a region R of hierarchical level i. If R is inactive, it is activated when aR > A(i),

where aR is the number of active child regions and A(i) is the activation level for

the hierarchical level i. Similarly, R is deactivated when D(i) ≥ aR where D(i) is

the deactivation level for the hierarchical level i, with A(i) ≥ D(i). As a result, a

region is deactivated when few active cells populate it so that the workload of the

discovery protocol is shared between the most populated areas.

3.2.3.3 The spread of GRID UPDATE messages

Using the hierarchical grid and the State Policy, a node changing the state of a cell

first evaluates the impact of the change on the hierarchy of regions. It determines

Chapter 3. Description of the Protocol 64

for(i = 1; i ≤ λ; i + +;){

R = Region Of Level(i) ;

old state = R.state ;

TR = R.total child regions ;

aR = R.active child regions ;

if(!Is Active(R) && aR > A(i)){

R.state = active ;}

if(Is Active(R) && D(i) ≥ aR){

R.state = inactive ;}

if (R.state == old state) {return i;}}

Figure 3.3: Pseudo code of the State Policy.

the first region in the hierarchy whose state remains unchanged after updating. A

GRID UPDATE message containing the identity of the cell and the new state of

the cell will then be geocasted in that region only. For example, in Fig. 3.2, the

table lists the state of the regions displayed on the graph. It is assumed that a

region is declared inactive when at least two of its child regions are inactive. As

a result, region 302 is active because three of its child regions (3020, 3021 and

3022) are active, as shown in the table. If we assume that cell 3022 turns inactive,

region 302 then also turns inactive because only two of its child regions are active.

However, region 30, the parent region of region 302 remains inactive after the state

change. As a result, the GRID UPDATE message is geocasted in region 30.

Chapter 3. Description of the Protocol 65

3.2.4 Updating the node’s internal table

Each Hidagrid node only needs to know the state of the regions it resides in (λ),

the state of its sibling regions (3λ), and the state of all the level λ regions (N),

i.e., the highest level in the grid. As a result, the nodes only store the state of

4λ+N regions in order to have an accurate knowledge of the grid in their vicinity

while remote regions’ states are not precisely known. For example, Fig. 3.2 displays

the internal table of the nodes inside region 302. The internal table of the nodes

depends only on the cell occupied by the nodes and it must be updated when a

node changes cell or after receiving a GRID UPDATE message.

• When a GRID UPDATE is received by the node, it first checks if it is located

inside the geocasted area, otherwise it discards the packet. Then it updates

its table according to the information carried by the message and broadcasts

it to its neighbors.

• When moving to a new cell, a node sends an UPDATE RQT message to the

center of the new cell. The first node in the cell receiving the message replies

with an UPDATE RPL message containing its internal table. Upon receiving

that reply, the node only updates the fields that it needs in its internal table.

This mechanism is illustrated in Fig. 3.4.

However, it is possible that a node arrives in a totally empty cell. In that case,

Hidagrid tries to send an UPDATE RQT message several times. If this operation

fails, the node widens the range of the request by sending it to the center of its

higher level regions, starting with level 1. When receiving an UPDATE RPL, the

node updates its internal table and if the state of some low level regions cannot

Chapter 3. Description of the Protocol 66

Figure 3.4: The internal table update mechanism: the dark node crossing the cell

border must update its internal table and sends an UPDATE RQT message in the

new cell.

be known, Hidagrid assumes that they are inactive. Indeed, if those regions had

been populated and active, the perimeter mode of the routing protocol would have

found nodes in these regions and they would have replied to the UPDATE RQT

message.

3.2.5 Routing messages hierarchically

When the discovery protocol of a node sends a query or an insertion message,

the packet is transferred to Hidagrid, which interacts with the routing layer to

determine the destination cell of the message. Each packet contains the unique

identifier (ID) of the data item, the type of operation (insertion or query), the

coordinates of a destination cell (destination), a hierarchy level (level) and some

Chapter 3. Description of the Protocol 67

Figure 3.5: Hierarchical routing of insertions and queries in the grid: Hidagrid

reevaluates the destination of the packet when it enters the region of level level

containing the destination cell of the packet.

information related to the resource discovery protocol. The replies or insertion

acknowledgements are not processed by Hidagrid as they target a specific node, and

not a region. Hidagrid then uses the internal table to route the packet hierarchically

in the grid, from level λ to level 0, as shown in Fig. 3.5.

3.2.5.1 Changing the destination cell of a message

When receiving a packet from the discovery protocol, the destination field is already

set by the discovery protocol, and Hidagrid initializes the level field to λ + 1.

Then the hierarchical routing algorithm depicted in the pseudo code of Fig. 3.6

Chapter 3. Description of the Protocol 68

is executed each time the packet arrives in the region of level level containing

the destination cell stored in the packet. The node checks if the level (level-1)

region of the destination cell is active. If it is, the packet is sent to the center of

that region after decrementing by one the level field. If the region is not active,

Hidagrid determines a new host region with the Relocation Policy described in the

next section. In that case, the destination cell of the message has to be modified.

This is simply realized by translating the position of the destination cell inside the

original region to the new region. This mechanism is illustrated in Fig. 3.5. In this

example, the Relocation Policy has to be used for the routing steps of level 3 and 2

because the destination cell lies in an inactive region. The packet initially has the

cell 15-7 as the destination cell, but its region of level 3 is inactive. The Relocation

Policy then decides that the region of level 3 in the right top corner should host the

packet. The destination cell is then modified to be 15-15 because 15-15 and 15-7

have the same position in their respective level 3 regions. The same mechanism is

used at the level 2 routing.

i = packet->level;

R = region of level i -1 containing packet->destination;

if (i ==0) then {

send packet to discovery protocol;}

else if (R is inactive) then {

R = Relocation Policy (packet);}

packet->level--;

packet->destination = update destination (R, packet);

forward packet to R;

Figure 3.6: Pseudo code of the hierarchical routing at each level.

Chapter 3. Description of the Protocol 69

3.2.5.2 The Relocation Policy

The previous section shows the importance of the Relocation Policy as it is re-

sponsible for assigning a destination to packets that are sent to inactive regions.

Therefore, it should evenly share the workload of the inactive regions between

active regions.

The Relocation Policy is slightly different for the level λ routing and the other

levels.When the level λ region of a packet is inactive, we simply use a hashing

function H on the data item identifier that returns the identity of one of the active

region. A simple solution is to choose a function returning a value between 1 and

the number of active regions of level λ like: H(item) = item ID mod(number of

active regions) and to attribute one value to each active region in the increasing

order of their identity.

A more advanced policy is implemented for the lower levels if a region remains

activated when at least two of its child regions are still active. We use a hashing

function F on the identifier of the data item returning an integer between 0 and

5 to share the workload. When one region is inactive each active region hosts the

items whose hashed value, or index corresponds to {0,1} or {2,3} or {4,5}: the

region with the smallest identity takes care of the smallest indexes and the region

with the highest identity takes care of the highest indexes. When another region is

deactivated, the active regions host the same indexes and one of the indexes of the

deactivated region, as shown in Fig. 3.7. In this example, region 3 and then region

0 turn inactive. In this scenario, region 1 and region 2 are first responsible for the

indexes {2,3} and {4,5} respectively, and then for indexes {0,2,3} and {1,4,5}. The

Chapter 3. Description of the Protocol 70

Figure 3.7: Share of workload with the Relocation Policy when region 3 and then

region 0 close: the items stored in those regions are shared between the active

regions.

indexes region 0 was responsible for are then implicitly shared.

3.2.6 Relocating data items

When the state of a cell changes, the hierarchical routing of some data items stored

in the network may change. Therefore, when nodes receive a GRID UPDATE

message, they check the consistency of the data item distribution after updating

their internal map. This test is carried out by simulating internally the hierarchical

routing of the items stored in each node with the pseudo code of Fig. 3.6. If one

of the routing steps returns a region the node does not reside in, the data item

Chapter 3. Description of the Protocol 71

must be reinserted somewhere else. With this mechanism, a cell that has just

been activated only waits for data items to be inserted, while inactive regions

automatically transfer all their items to active regions.

3.2.7 Detecting state changes

3.2.7.1 Deactivation detection

We have assumed that the discovery protocol is responsible for the data item man-

agement inside the cell and builds a server structure inside it. It is then easy to

implement a function evaluating a lack of nodes in the cell at that level, as in

SLURP and RR. Therefore, the deactivation detection ability is delegated to the

discovery protocol and when this event is detected, the information is passed to

Hidagrid which starts deactivating the cell.

3.2.7.2 Activation detection

The activation of a cell is managed by the Hidagrid layer only. Each time a node

crosses a cell border, it first updates its internal table and if it arrives in an inactive

cell, it checks the number of its 1-hop neighbors that belong to the new cell. If

that number is above the activation threshold, Hidagrid activates the cell.

The activation and deactivation processes then consist only in launching and

stopping the server structure of the discovery protocol inside the cell and then

advertising in the network the state change of the cell with a GRID UPDATE

message.

Chapter 3. Description of the Protocol 72

3.3 Improvements on the basic scheme

As Hidagrid relocates data items to adapt to the condition of the grid, the frequency

and the impact of the state changes on the hierarchy have an important influence on

the performances of our protocol. Indeed, frequent and large state changes generate

numerous relocations which highly increase the overhead and the risk of losing data

items. It is therefore important to stabilize the state of the grid using hysteresis.

We address this issue in this section. Another main drawback of the protocol is

its reliance on a specific grid. We show how this assumption could be removed by

generalizing the State Policy and the Relocation policy for any hierarchical or even

flat grid.

3.3.1 Hysteresis mechanisms

3.3.1.1 Hysteresis at the cell level

Instability is extremely harmful to our scheme as it generates numerous data item

transfers, resulting in high overhead and risk of losses. Therefore, we have to

implement some hysteresis at the cell level to avoid oscillations of the cell state. The

goal is then to activate a cell with a good confidence that it will not be deactivated

in the near future. As density hysteresis is already implemented to activate and

deactivate cells, some more types of hysteresis could be used to improve the stability

of the cells:

• Geographic hysteresis: The cells overlap a little, creating wide borders

Chapter 3. Description of the Protocol 73

Figure 3.8: Unnecessary cell changes could be avoided with wide borders.

where nodes belong to only one cell. As long as the nodes stay in the border,

they belong to their previous cell. They must reach the heart of another

cell to be attached to that new cell. This technique prevents the ping-pong

phenomenon, as shown in Figure 3.8 and decreases the number of internal

table updates when nodes change cells.

• Time hysteresis: An arriving node measures for a period of time T the

number of neighbors that are present in an inactive cell. If during T, the

mean number of nodes is above a threshold, the node assumes there are

enough nodes in the cell to declare it active. This mechanism could be also

associated with a mobility indicator in order to make sure that the nodes

present in the cell are likely to stay there for a long time.

Chapter 3. Description of the Protocol 74

3.3.1.2 Hysteresis at the region level

In the State Policy, the parameters A(i) and D(i) are used to control hysteresis at

the region level. If A(i) = D(i) the policy does not benefit from any hysteresis. In

this situation state oscillations for high level regions could occur. In the example

of Figure 3.9, A(i) = 2 and D(i) = 2 for all the levels. Let us consider for example

the cells in region 2. If one of its inactive cells turns active, then the whole region

would be declared active. But if that same cell turns back to inactive, without

any other state change in the region, the whole region 2 would also be deactivated.

The same situation arises in the active region 1, where any cell deactivation turns

the status of the whole region to inactive. If that same cell returns to active, the

state of region 1 would also change back to active. Finally, if we assume that the

regions in Figure 3.9 form a parent region of level 3, then the state of that region

would suffer from the same oscillations. As a result, for some configurations and

without hysteresis, oscillations at the cell level could result in oscillations of high

level regions. To avoid this kind of situation, the State Policy creates hysteresis by

setting A(i) > D(i) for some hierarchical levels.

3.3.2 Generalizing the State Policy for any grid

To adapt Hidagrid to a wider set of grids, we only need to modify the State and

the Relocation Policies because the other mechanisms used in Hidagrid are totally

grid independent. Therefore we slightly improve these policies for a general case.

Here, we consider a region R, of level i, with cR child regions (previously cR = 4),

and aR active child regions. The State Policy can then be easily generalized by

Chapter 3. Description of the Protocol 75

Figure 3.9: Example of unstable grid if A(i) = 2 and D(i) = 2 for all levels.

changing the definitions of the activation and deactivation levels A(i) and D(i). For

the general case, A(i) and D(i) should be defined as activation and deactivation

ratios. R is then activated when aR

cR
> A(i) and deactivated when D(i) ≥ aR

cR
, with

A(i) and D(i) ∈ [0, 1]

3.3.3 Generalizing the Relocation Policy for any grid

In this section we first justify the design of the Relocation Policy described previ-

ously in Section 3.2.5.2, in order to highlight the design goals and to introduce the

generalized Relocation Policy.

Chapter 3. Description of the Protocol 76

3.3.3.1 Justification of the Relocation Policy

The goal of the Relocation Policy is to relocate data items in active regions, but for

efficiency purpose it must minimize the number of transfers when the state of the

grid changes. This means that data items must move from inactive regions to active

regions, or the opposite, without transferring data items between active regions.

In our basic grid where each region is constituted of 4 child regions, the efficiency

problem is raised when a region remains active with 2 active child regions. When

three child regions are active, the workload of the inactive region can be easily

shared. But if another child region is deactivated, the Relocation Policy must

avoid transfers between the two active sibling regions. Let us consider the scenario

in Figure 3.10 where region 3 is first deactivated, followed by region 0. We assume

that their parent region remains active. In this example, two different hashing

functions (f1 and f2) are used to relocate the items of regions 3 and 0 to the active

regions. First, region 3 turns inactive and its workload is shared by hashing with

f1 the identifiers of the data items in region 3 to one of the active regions 0,1 or 2.

When region 0 also turns inactive, f2 is used to relocate all the data items of the

inactive regions. Then, not only the data items of region 0, but also those of region

3 will be relocated, independently of their current location. As a result, some items

of region 3 will be transferred between region 1 and 2. To solve this problem, we

must use a hashing function F returning an integer between 0 and 5 and share the

responsibility of those indexes between active regions as described earlier in this

chapter.

Chapter 3. Description of the Protocol 77

Figure 3.10: Share of data items with two hashing functions: data items are ex-

changed between two active regions, resulting in inefficiencies.

Chapter 3. Description of the Protocol 78

3.3.3.2 Generalization

We now need to generalize the basic Relocation Policy for any kind of grid. For

this purpose, we use the indexes returned by a hashing function F to share the

responsibility for data items equally between active regions. Statistically, each

index corresponds to the same number of data items. Therefore to share evenly the

workload, each active region must be responsible for the same number of indexes,

when sibling regions are deactivated.

In this section, we consider a region R of level i with cR child regions, aR

active child regions, and a deactivation ratio D(i). Therefore, R remains active as

long as aR > D(i)× cR.

If the child region R1 is deactivated, its workload must be shared among cR−1

regions. Then, if R2 is deactivated, its own workload must be shared among cR− 2

regions, as well as the workload it received from R1. This sharing mechanism must

be repeated until the parent region R is deactivated. As a result, to enable fair

sharing, the number of the indexes given to a region can be divided by j for any

j ∈ [cR − 1, D(i)× cR + 1]. To create sets of indexes satisfying this condition, F is

chosen such that the indexes are integers between 0 and ((cR−1)!
(cR−cR×D(i))!

− 1).

The indexes have then to be shared between the active child regions in a

distributed way. For this purpose, the index space is shared into slices that are

attributed to active regions. We now assume that l child regions are active, with

l > D(i) × cR + 1 (if a region is deactivated, the parent region remains active).

We first consider the case of a child region being deactivated. When a region turns

inactive, all the slices it hosts are cut into l−1 sub slices that will be attributed to

Chapter 3. Description of the Protocol 79

Figure 3.11: Sharing the indexes: Region R0 is deactivated and its index slice

[c, c + 5k − 1] is split into 5 sub slices that are attributed to each active sibling

region.

the l − 1 remaining active regions, as illustrated in Figure 3.11. This mechanism

will always create sub slices of equal sizes because the size of any slice is in the

form (cR−j)!
(cR−dR)!

where j ≥ l.

An example of that general Relocation Policy is given in Figure 3.12 with

cR=6, and D(i) × cR=2. In this example, the indexes have their value between 0

and 5x4x3-1=59, and slices of 12 items are created when Region 5 is deactivated.

When Region 0 also turns inactive, its slice is cut into 4 sub slices of 3 items. Finally,

when Region 2 is deactivated, the two slices it is responsible for are cut into 3 slices

of 4 items or 1 item. This mechanism can be derived in a fully decentralized way

based only on the state changes history of the parent region R.

Chapter 3. Description of the Protocol 80

Figure 3.12: Generalized Relocation Policy: indexes are equally shared between

the active regions, spreading evenly the data items among the regions

Chapter 3. Description of the Protocol 81

However, when a child region gets active, the consistency of the slices has to

be maintained and the activated region will then be responsible for the slices of

the last region that was deactivated. This mechanism implies that a short history

of the state changes in R is maintained in order to rebuild the slices. As a result,

when a region is activated, it receives its data items together with this history. A

last issue is then raised, when region R is activated, because several of its child

regions are inactive, without any history. This history is then implicitly created by

assuming that the inactive regions with the smaller identity turned inactive first.

The slices are then computed by all the nodes.

These mechanisms evenly spread the workload between active regions and

ensure that no data item transfer takes place between two active regions. However,

maintaining this structure is quite complex when (cR −D(i) × cR) increases, and

we believe that using the simpler mechanisms described earlier should be enough

to achieve good performances.

3.4 Conclusion

This chapter presented the mechanisms used by Hidagrid to address the various

constraints of empty cells management. Based on a hierarchical grid, Hidagrid

locally achieves the grid adaptation tasks. This local adaptation restricts the effect

of cell state changes to small areas. Hidagrid then uses the State Policy to define the

spread of the state changes advertisements, and relies on the Relocation Policy and

a hierarchical routing mechanism to consistently route data queries and insertions.

As a result, Hidagrid manages to host data items in active regions when the original

Chapter 3. Description of the Protocol 82

targeted region suffers from a lack of nodes. We now investigate the performances

of Hidagrid to check whether it manages to fulfill all the requirements listed in

Section 3.1.2.

Chapter 4

Simulation Results

4.1 Implementation of a Simple Discovery Pro-

tocol (SDP)

For our simulations, we implement a simplified and general discovery protocol so

that the evaluation of Hidagrid is independent of the discovery protocol charac-

teristics. The Simple Discovery Protocol (SDP) that we use for the simulations is

based on a flat grid and exhibits the following features:

• The nodes use a unique hashing function to determine the server cell of the

data items that they insert (INSERT) or query (QUERY) in the network.

• The data item management inside the cells relies on a server structure that

is able to detect a lack of nodes in the cell, as in RR or SLURP.

• When changing cells, the nodes need to update some information for the

data management inside the new cell (like a list of servers or data items).

Therefore they send an UPDATE RQT message to the center of the new cell

83

Chapter 4. Simulation Results 84

and receive an UPDATE RPL message from one of the nodes inside the new

cell. These messages are shared with Hidagrid when it is used.

• An insertion acknowledgement (INSERT ACK) is sent when an item has been

correctly inserted inside a cell.

Designing a server structure is out of the scope of this thesis so we only

simulate the above characteristics. The database of the cell is actually a part of

the simulating computer memory. A node accesses it with a pointer that is used

to insert data items inside the cell when receiving an insertion, or to check the

content of the cell database when replying a query. When changing cell, the nodes

erase their current pointer when sending an UPDATE RQT message and the new

one is passed with the UPDATE RPL message.

The number of nodes in the cells is also globally monitored. When the number

of nodes inside a cell is below the deactivation threshold, the discovery protocol

detects a lack of nodes:

• SDP alone: A lack of nodes characterizes a database failure, so we sim-

ply erase the cell memory in that case. This mechanism also simulates the

phenomenon of temporary empty cells, as it is difficult to create temporary

empty cells with the classical mobility models.

• SPD and Hidagrid: When SDP detects a lack of nodes, Hidagrid initi-

ates a deactivation at the node closest to the center of the cell. It sends the

MAP UPDATE message and transfers the data items out of the cell. How-

ever, when using Hidagrid, we also need to activate the cells when they get

Chapter 4. Simulation Results 85

populated. This operation is still distributed, and initiated by a node enter-

ing an inactive cell and detecting at least activation threshold nodes in that

cell, as described in section 3.2.7.

4.2 Simulation scenario

Hidagrid has been implemented on the ns2 simulator [65]. The geographic routing

protocol GPSR [56] has been modified and linked with Hidagrid in order to share

location information and to route packets hierarchically. The GPSR beacon interval

is set to 1.5 seconds, the beacon expiration to 4.5 seconds and perimeter mode is

activated to route packets around obstacles. We use the 802.11 MAC provided

with ns2 and the two-ray ground model for signal propagation.

The simulations assess the benefits of Hidagrid in a pedestrian scenario whose

parameters are summarized in Table 4.1. Therefore, the speed of the nodes is

chosen between 1 and 2 m/s. We choose to set the transmission range of each

node to 50m based on the measurements found in [66]. Many grid based discovery

protocols recommend to choose the cells as squares whose side is two times the

transmission range. Therefore, each cell is a 100x100m square. The simulations

also use different mobility models as advised in [67]. In particular, it has been shown

that the distribution of the nodes in the Random Waypoint (RW) model is far from

uniform and that it creates periodic oscillatory movements [67, 68, 69]. As the node

distribution is an important factor in Hidagrid, we also use the Random Direction

(RD) and the Gauss-Markov (GM) mobility models implemented in ANSiM [70]

for our simulations. The detailed parameters of the mobility models are displayed

Chapter 4. Simulation Results 86

in Table 4.1.

Finally, we simulate a network of 4x4 cells, with 250 nodes and 100 data items

for 1000 seconds. As a result, each cell is populated with 15.6 nodes on average.

The activation threshold of the nodes is heuristically set to 6 in order to activate a

cell when 10-11 nodes populate the cell, while the deactivation threshold is set to

4. We implement Hidagrid without hysteresis and use the basic State Policy and

Relocation Policy, as described in Section 3.2. For the State Policy, we decide to

deactivate a region when two of its child regions are inactive. As a result, we choose

the activation and deactivation levels such that A(i) = 2 and D(i) = 2 for all the

hierarchical levels. The reason behind this simple choice is to create instability for

the level 1 regions to test the robustness of Hidagrid. The other parameters of SDP

and Hidagrid are summarized in Table 4.2. In the simulations, the insertions of data

items start after 10 seconds: a node is randomly chosen to insert a random data

item. The mean delay between two insertions is 1.5 seconds. After 100 seconds,

the queries start by randomly choosing a node and an inserted item, with a mean

delay of 0.5 seconds between two queries. We evaluate the benefits of Hidagrid

by comparing the performance of SDP alone and the performance of SDP with

Hidagrid.

4.3 Impact of Mobility and deactivation thresh-

old

We first study the effect of the mobility model (GM, RD, RW) and the deactivation

threshold (4, 5, 6, 7) on SDP and Hidagrid, and on SDP alone. We do not display

Chapter 4. Simulation Results 87

Table 4.1: Simulation Parameters

Number of nodes 250

Number of cells 4x4

Transmission range 50 m

Dimension of cells 100x100 m

Number of data items 100

Simulation time 1000 sec.

Mobility Models GM, RD, RW

GM, RD, RW Velocity [1.0 ; 2.0] m/s

GM Angle Variation 5.0

RD Pause Time [20.0 ; 50.0] sec.

RD Move Time [30.0 ; 120.0] sec.

RW Pause Time [20.0 ; 50.0] sec.

Table 4.2: Protocols Parameters

SDP

Insertion time out 3 sec.

Number of insertion attempts 10

Deactivation Threshold (for cells) 4 nodes

Hidagrid

UPDATE RQT time out 2 sec.

Number of UPDATE RQT attempts 5

Activation level, A(i)(for regions) 2

Deactivation level, D(i) (for regions) 2

Activation Threshold (for cells) 6 nodes

Chapter 4. Simulation Results 88

Figure 4.1: Number of state changes vs deactivation threshold in a 4x4 grid.

performance results for other deactivation thresholds because values smaller than 4

result in a stable environment while values greater than 8 create extremely unstable

scenarios in which cells are deactivated and reactivated almost simultaneously.

Hidagrid fails in the latter situation.

As shown in Figure 4.1, the two parameters affect greatly the stability of the

grid and test the robustness of Hidagrid in a dynamic environment. The figure

displays in plain lines the number of state changes, activation and deactivation

are counted, during the 1000 simulated seconds. While the grid remains stable

with RD and GM with a maximum of 5 state changes, RW generates a growing

instability with up to 29 state changes on average with a deactivation threshold

of 7. A state change takes place on average every 35 seconds, but the simulations

oscillate between long stable periods and short grid adaptations, because of the

oscillations occurring with RW. This means that Hidagrid has to adapt to high

frequency updates. The hit ratio displayed in Figure 4.2 proves that Hidagrid

Chapter 4. Simulation Results 89

Figure 4.2: Hit ratio vs deactivation threshold in a 4x4 grid.

(plain lines) copes with this unstable environment as the percentage of successful

queries remains high and stable with the mobility model: around 97% of successful

queries for RW and 95% for RD and GM.

The dotted lines in Figure 4.1 show the number of cell deactivations when SDP

alone is used. Only the RW mobility model generates instability with a number

of deactivations between 7 and 55 when the deactivation threshold increases. As

we explained in section 4.1, when Hidagrid is not used, a deactivated cell has

its database fully erased. However, the deactivations mainly hit the cells in the

corners, and the center cells are almost never deactivated. As a result, the hit ratio

of SDP, in dotted lines in Figure 4.2, drops when the grid becomes unstable and

reaches only 55% with RW and a deactivation threshold of 7, although Hidagrid

manages a 97% hit ratio in the same conditions by relocating the items.

Figures 4.3 and 4.4 respectively show the proportion of negative replies and

Chapter 4. Simulation Results 90

Figure 4.3: Negative replies vs deactivation threshold in a 4x4 grid.

Figure 4.4: Queries which were not replied vs deactivation threshold in a 4x4 grid.

Chapter 4. Simulation Results 91

queries that were not replied, for Hidagrid (plain lines) and SDP alone (dotted

lines). The query failures of Hidagrid are almost all due to loss of messages oc-

curring with routing failures.These routing failures could have two sources. First,

the short transmission range of the nodes may generate a small lack of connectiv-

ity, as calculated in [71]. Second, in perimeter mode, GPSR sometimes fails, as

explained in [51]. But due to the higher concentration of nodes in the center of

the network, RW loses fewer messages than the other mobility models, resulting in

a better hit ratio. However, a slight increase of negative replies is experienced in

unstable scenarios with RW, but this phenomenon is limited to 1% of the queries

sent and Hidagrid still manages a 97% hit ratio with RW. Indeed, these negative

replies result from the data item relocations when the state of a cell changes. The

items have to be transferred according to the Relocation Policy. Thus, between the

initiation of a grid update process and the end of the relocations, a small inconsis-

tency period takes place, resulting in query failures. The two figures also show in

dotted lines the effect of instability on SDP alone. The number of negative replies

sharply increases with instability because more data items get erased when cells

are deactivated.

The good performance of Hidagrid however incur some communication over-

heads. The stacked bars in Figure 4.5 display the average number of messages sent

by each node. Each layer represents a type of message and the thickness of the

layers indicates the number of messages sent. The overhead of RW jumps from

120 to 160 messages when the deactivation threshold varies from 4 to 7. The ex-

tra insertions (INSERT and CONFIRM INSERT) generated by the state changes

make up the majority of the overhead increase while the geocasted MAP UPDATE

messages represent only 25% of the extra overhead. These MAP UPDATE mes-

Chapter 4. Simulation Results 92

Figure 4.5: Number of messages sent by each node with Hidagrid for each mobility

model (GM, RD, RW) and varying deactivation threshold.

Figure 4.6: Number of messages sent by each node with SDP alone for each mobility

model (GM, RD, RW) and varying deactivation threshold.

Chapter 4. Simulation Results 93

sages only appear in unstable environment with RW, none of them is generated

in the stable scenarios with RD and GM. The UPDATE RQT and UPDATE RPL

messages also have an important impact on the overhead of Hidagrid and SDP as

they make up for around 20% of the total overhead. This source of overhead is

quite important and is a major weakness of Hidagrid. Each time a node crosses

a border it must generate 2 messages, which makes Hidagrid unsuitable for high

mobility environments. However, no special mechanism has yet been implemented

to limit the number of UPDATE RQT and UPDATE RPL messages transmitted,

like piggybacking with the GPSR beacon or on another data packet. This solu-

tion may prove efficient. Finally, Figure 4.5 also confirms the higher concentration

of nodes in the center of the map with RW as the number of queries and replies

forwarded by RW are lower than that of RD and GM.

The detailed communication of SDP alone is displayed in Figure 4.6. For

each mobility model, the number of messages sent remains stable with the deacti-

vation threshold. Indeed with SDP alone, the deactivation threshold only erases the

memory of the cells, without initiating any other mechanism, so the deactivation

threshold only has an impact on the hit ratio and the number of negative replies.

The figure shows that SDP alone generates less overhead than with Hidagrid. Less

than 115 messages are sent by each node for SDP alone, while the minimum is

118 with Hidagrid. In stable situation (GM, RD), the overhead difference between

Hidagrid and SDP alone represents on average 4.5% because of the hierarchical

routing of the insertions and the queries. But as the grid becomes unstable, even

if the total overhead of Hidagrid increases due to the relocations, it is interest-

ing to notice that the number of QUERY and REPLY messages sent by Hidagrid

decreases under that of SDP alone. This phenomenon is observed in the RW simu-

Chapter 4. Simulation Results 94

lations with a deactivation threshold of 7: nodes forward 35 QUERY messages with

Hidagrid and 39 with SDP only. Indeed, Hidagrid concentrates the data items in

the populated areas, shortening the average path between a querying node and

the location of the item. Therefore, in a stable clustered network, the overhead of

Hidagrid should be smaller than that of the simple protocol. We investigate this

hypothesis in the next section.

4.4 Static empty cells

For this set of experiments, we create cells that are empty of nodes during the whole

simulation due to the mobility patterns of the nodes or geographic obstacles. The

mobile nodes have then to go around these empty areas during their movement.

These experiments measure the effect of Hidagrid in an environment with static and

dynamic inactive cells. In the previous section, inactive cells only appear when the

number of nodes is below the deactivation threshold. However the cells are never

empty and queries sent to inactive cells with SDP alone always receive replies.

Here, if Hidagrid is not used, SDP sends messages to fully empty cells. In this

situation, the insertions and queries should wander around the empty server cell

without being able to reach their destination, generating useless overhead. This

phenomenon is also one of the motivation behind Hidagrid, i.e., the protocol is not

only supposed to improve the hit ratio, but it should also generate less overhead

than a resource discovery protocol alone by directing messages to populated areas.

Based on the previous results, we only simulate RW and RD because RD

and GM have similar impacts on the simulations. We vary the number of empty

Chapter 4. Simulation Results 95

Figure 4.7: The maps used for the empty cells scenarios: each dark cell remains

empty during the whole simulation.

Chapter 4. Simulation Results 96

cells from 1 to 6 in a 4x4 grid, create 5 different maps for each case and carry

out 4 simulations on each map for each mobility model, with the parameters of

Table 4.1. The maps used for this set of simulations are displayed in Figure 4.7.

ANSiM is used to create the maps and generate the movement patterns of the

nodes. The deactivation threshold of the cells is set to 4 in order to simulate

a stable environment with RD and a relatively unstable one with RW. We do

not set the threshold higher in order to limit the number of inactive cells in the

network, because all the empty cells are already inactive. We also limit the TTL

of the messages to 32 hops instead of the standard 124 TTL, in order to limit

the congestion generated by the wandering packets around empty areas. Finally,

for fair comparison, the density of nodes should remain roughly stable, but we

also want to increase it slightly to improve the routing performances around the

empty cells. Therefore, we heuristically set the number of nodes to 250 − 10 ×

number of empty cells so that the density slightly grows from 16 to 19 nodes per

cell.

Figure 4.8 compares the resource discovery performances of SDP with and

without Hidagrid, for the two mobility models. Each bar displays the hit ratio,

the percentage of negative replies, and the percentage of unreplied queries for each

number of empty cells in the maps.

4.4.1 Resource discovery performance of Hidagrid

As we noticed earlier, the results vary a lot between RD and RW, although the

simulations ran on the same maps. First, the number of unreplied queries is usually

much higher for RD because of routing difficulties around the empty cells, which

Chapter 4. Simulation Results 97

Figure 4.8: Performances of the resource discovery with and without Hidagrid in

an environment with static empty cells.

Chapter 4. Simulation Results 98

Figure 4.9: Percentage of queries which were not replied with static empty cells.

behave as obstacles for the routing protocol. While RD evenly spreads nodes

everywhere, RW usually concentrates the nodes around the center of the map

making it less sensitive to empty cells. However RD does not exhibit any negative

replies due to the stable repartition of the nodes. The instability generated by

RW triggers the relocation of the data items from time to time, which results

in temporary unavailability of some items. This phenomenon is amplified by the

inactive empty cells that facilitate state changes of level 1 regions. The State Policy

closes a level 1 region as soon as two cells are inactive, generating many relocations.

4.4.2 Comparison of SDP alone and with Hidagrid

Even if the performance of Hidagrid degrades in some maps because of routing

failures, the hit ratio of SDP with Hidagrid always remains much higher than that

of SDP alone. These benefits are more pronounced for the RW scenarios where

Chapter 4. Simulation Results 99

Hidagrid manages to keep the hit ratio around 95% for any number of empty cells,

while the hit ratio of SDP alone degrades from 70% to 45% when the number of

empty cells grows to 6. Two factors contribute to decreasing the hit ratio. First, it

can be observed in Figure 4.9 that the number of unreplied queries is much higher

for SDP alone because of the empty cells. The queries cannot enter the server

cells and get lost in the network. The percentage of unreplied queries increases on

average linearly with the number of empty cells.

Second, due to mobility, cells are also dynamically deactivated, like in the

previous simulations. When SDP alone is used, data items are then lost resulting

in negative replies when queried, as shown in Fig. 4.10. Thus SDP alone also suffers

from negative replies, especially for RW. In our simulations, this phenomenon can

still be severe and reach up to 16% of negative replies. However, it can be noticed

that for this mobility model the number of negative replies decreases with the

number of empty cells because of a better stability of the grid: the density of nodes

slightly increases and a growing number of empty cells makes the other cells less

likely to be deactivated.

4.4.3 Overhead comparison

Figures 4.11 and 4.12 compare the average overhead of SDP with and without Hida-

grid for a varying number of empty cells. As expected, the overhead of Hidagrid is

always much lower than that of SDP alone for all the scenarios, and that difference

greatly increases with the number of empty cells because of the growing proportion

of queries and insertions that wander around the empty cells. For example, with

RD and SDP alone, the number of INSERT messages sent per node grows from 15

Chapter 4. Simulation Results 100

Figure 4.10: Percentage of negative replies with static empty cells.

Figure 4.11: Number of messages sent by each node with Hidagrid for RD and RW

in a static empty cells environment.

to 60, while the number of QUERY messages sent per node increases from 60 to 130.

However, the overhead with Hidagrid increases also a little because of the longer

Chapter 4. Simulation Results 101

Figure 4.12: Number of messages sent by each node with SDP alone for RD and

RW in a static empty cells environment.

paths caused by the obstacles. The number of messages sent per node varies from

124 to 168 with Hidagrid while SDP alone generates an overhead varying between

136 and 240 messages per node. With this set of simulations, Hidagrid proves its

efficiency in both reducing the traffic of the resource discovery and improving its

hit ratio, as soon as the network is slightly heterogeneously populated.

4.5 Sensitivity to mobility

Mobility is the main weakness of Hidagrid, and of the grid based protocols in

general because communications is triggered when nodes cross cell borders. In the

case of Hidagrid, an UPDATE RQT and an UPDATE RPL message will at least

be sent by the nodes changing cells. We evaluate the behavior of Hidagrid in high

Chapter 4. Simulation Results 102

Figure 4.13: Maps used for the simulations with increasing query frequency. The

dark cells are empty during the simulations.

mobility scenarios and study the effect of mobility on these messages. We choose

to use RD for evaluation as the mobility parameters allow more freedom. In RW

only the maximum speed and the pause time range can be chosen, while a mobile

scenario with RD is described by a speed range, a pause time range and a movement

time range. Therefore, we design three types of simulations by varying one of the

parameters (speed, pause time, movement time) while the other two parameters

keep the values in Table 4.1. First, the speed of the nodes increases from 1m/s

to 10 m/s (the minimum speed and the maximum speed are the same). Then,

with a speed range of [1.0 ; 2.0] m/s and a movement time range of [30.0 ; 120.0]

seconds, the pause time varies from 0 to 100 seconds. Finally, with the same speed

range and a pause time range of [20.0 ; 50.0] seconds, the movement time grows

from 1 second to 120 seconds. We simulate these experiments on the two maps of

Fig. 4.13.

Figures 4.14 and 4.15 present the hit ratio and the percentage of unreplied

queries with Hidagrid for the three scenarios. As earlier, the main reason for failure

Chapter 4. Simulation Results 103

Figure 4.14: Hit ratio of Hidagrid with different settings of Random Direction.

Figure 4.15: Percentage of queries which were not replied with Hidagrid for different

settings of Random Direction.

Chapter 4. Simulation Results 104

is the loss of queries and replies. The grid remains stable even with high mobility,

and the items are not widely transferred in the grid, therefore no negative reply is

received (each simulation usually generates one or two state changes only). With

high mobility, the routing layer does not adapt quickly enough to route safely all the

messages, because of the short transmission range (50 meters). As a result, the hit

ratio drops from 95% to 88% on Map 1 and from 92% to 88% on Map 2. Adapting

the beacon frequency of GPSR to mobility could improve the situation but this

issue is not in the scope of this thesis. If the speed of the nodes remains in the

range 1m/s-2m/s, the movement time and the pause time have only little influence

on the routing and the network remains stable enough for GPSR to efficiently

adapt.

Figure 4.16: Number of messages sent by each node with Hidagrid for different

settings of the Random Direction mobility model on Map 1. The scale for the

varying speed is different from the two other graphs.

Figures 4.16 and 4.17 display the overhead of Hidagrid for the three cases

on each map. As expected, the overhead increases a lot with the mobility as

Chapter 4. Simulation Results 105

Figure 4.17: Number of messages sent by each node with Hidagrid for different

settings of the Random Direction mobility model on Map 2. The scale for the

varying speed is different from the two other graphs.

nodes cross more often the cell borders. For example, on Map 2, the number

of UPDATE REQUEST and UPDATE REPLY messages jumps from 6 to 68 and

from 5 to 56, respectively, when the speed of the nodes reaches 10 m/s. The routing

problems are also illustrated in the number of queries and replies forwarded which

significantly increases between the 1m/s and the 10 m/s simulations. On Map

2, the queries jump from 50 to 90 messages per node, and from 40 to 70 for the

replies. The same trends appear with varying pause and movement times, but they

are more limited. For example, on Map 2, when the movement time grows from 10

to 120 seconds, the total number of messages increases from 105 messages to 124,

and when pause time grows, the number of messages decreases from 132 to 115

messages, because of the UPDATE RQT and UPDATE RPL messages only. As a

result, the total overhead is almost multiplied by three between the 1 m/s and the

10 m/s scenarios, but it only varies of 30%-40% per node when the pause or the

Chapter 4. Simulation Results 106

movement time vary, with a speed limited to 2 m/s.

These results show Hidagrid’s sensitivity to the nodes’ speed. Hidagrid itself

is sensitive to high mobility due to the frequent border crossings, but the geographic

routing also experiences difficulties of routing in such environment. And even if

the simulations do not take into account the data management inside the cells, this

part of the resource discovery protocol should also face problems in very mobile

environment. For these reasons, we think Hidagrid should be used in pedestrian

scenarios only.

4.6 Varying the query rate

In this section, we evaluate the robustness of our protocol when the query rate

increases. The goal is to compare the performances of the discovery protocol under

heavy load and measure the impact of a growing number of wandering messages

on the delay of the queries when Hidagrid is not used.

In the previous sections, the time between two queries was uniformly distrib-

uted between 0 and 1 second. As a result, a query was sent on the network every

0.5 second on average. In this section, the inter query time is uniformly distributed

between 0 and timemax, with timemax ∈ {0.2, 0.4, 0.6, 1, 2}. The number of queries

sent during the 1000 simulated seconds is displayed in Fig. 4.18 and varies between

900 and 9000. In order to generate wandering packets, we use the Map 1 from

Fig. 4.13. The other simulation settings are listed in Table 4.1 and Table 4.2.

Even under heavy load, the discovery performances remain stable with and

Chapter 4. Simulation Results 107

Figure 4.18: Number of queries sent when the query frequency increases.

without Hidagrid, as shown in Fig. 4.19. But the total overhead displayed in

Fig. 4.20 increases a lot for SDP alone as well as for Hidagrid, due to the growing

number of queries sent in the network. However, we can notice that the communica-

tion overhead difference between SDP alone and Hidagrid increases with the query

frequency. With an average inter query time of 1 second, SDP alone generates

around 100 messages per node more than Hidagrid. But with a 0.1 second inter

query delay, the difference between Hidagrid and SDP alone reaches almost 300

messages. These results show that the wandering messages generate high overhead

in the network.

Because of this overhead difference, we measure the delay between the de-

parture of a query and the arrival of the corresponding reply. Both positive and

negative replies are counted but the lost queries are not included in our results.

Fig. 4.21 shows that the wandering messages created by SDP alone generates con-

gestion in the network because the delay increases with the number of queries.

Chapter 4. Simulation Results 108

Figure 4.19: Hit ratio of SDP with and without Hidagrid vs inter query time.

Figure 4.20: Overhead of SDP with and without Hidagrid vs inter query time.

Chapter 4. Simulation Results 109

Figure 4.21: Delay between the departure of a query and the arrival of the corre-

sponding reply vs inter query time.

The wandering messages saturate the areas around the empty cells, resulting in

long delays when queries are targeted to active cells surrounding empty cells. As

a result, Hidagrid also proves robust to heavy load by limiting the overhead and

avoiding network congestion.

Chapter 5

Conclusion and Discussion

In this thesis, we investigated the management of empty cells for grid based dis-

covery protocols in ad hoc networks. All the proposed protocols in the literature

assumed that the network was homogeneously populated and fail if empty cells

appeared in the grid. Even if some simple solutions have been proposed, they did

not succeed in coping efficiently with empty cells. Furthermore, no resource discov-

ery simulations with empty cells had been reported to evaluate the severity of this

phenomenon. We addressed this issue and designed Hidagrid to efficiently manage

the empty cells.

After an extended literature review on the resource discovery protocols for

ad hoc networks, we highlighted the requirements for an efficient empty cell man-

agement protocol, i.e., consistency in relocating data items when their server cell is

empty and low communication overhead. Based on these requirements, we designed

the Hidagrid. Hidagrid acts as a sub-layer located between the routing layer and

a grid based resource discovery protocol. As a result, it could be used with several

discovery protocols. Hidagrid relies on a hierarchical grid that is used to locally

manage the empty cells in order to limit the communication overhead and simplify

110

Chapter 5. Conclusion and Discussion 111

the different mechanisms. When the state of a cell changes, Hidagrid advertises

that event in one of the hierarchical region of the grid, and data items relocation

takes place in that region only. Based on the local knowledge of the grid, Hida-

grid manages to consistently route queries and insertions to achieve good discovery

performances.

Extensive simulations have proven the severity of empty cells for resource

discovery protocols, i.e., loss of data items and denial of service. Hidagrid signifi-

cantly improves the hit ratio of the discovery protocol as soon as the network is a

little clustered. But it also improves the communication overhead of the discovery

protocol by avoiding sending messages to empty areas, thus preventing congestion

around those empty areas.

However, Hidagrid still suffers from some limitations that could be the sub-

ject of future research. First, Hidagrid cannot adapt to any grid, and a specific

hierarchical grid must be designed. This results in limitations for the deployment

of Hidagrid. We investigated this issue by generalizing the State Policy and the

Relocation Policy for any grid. However, the generalized Relocation Policy could

prove quickly complex, which could result in a lack of robustness. More research

is therefore needed to develop an adaptable and efficient Relocation Policy, using

different approaches.

Second, Hidagrid needs to stabilize the hierarchical grid as much as possible in

order to avoid massive relocations. Some sophisticated hysteresis mechanisms must

therefore be implemented at the cell level as well as at the State policy level. Even

if we discussed the possible enhancements in that area, some investigations should

be made to determine the optimal parameters, for Hidagrid to adapt efficiently to

Chapter 5. Conclusion and Discussion 112

a wide range of scenarios.

The hierarchical grid could also prove harmful when the size of the network

is much smaller than the grid. If a small network is deployed in the center of the

grid, the nodes could be located in several top level regions that are not populated

enough to be activated. As a result, all the top level regions would be inactive,

and nodes could only access the data items inserted in their region only because

of the hierarchical structure. The hierarchical grid then virtually disconnects the

network resulting in denial of service. The solution to that problem would be to use

an adaptive State Policy when all the top level regions of the hierarchical grid are

inactive. This area of future research could significantly improve the adaptability

of Hidagrid so that Hidagrid could be deployed on any field. As a result, a grid

based protocol could be used in any situation without setting up any grid.

Finally, as our simulations have shown, the communication overhead of Hida-

grid increases significantly in high mobility scenarios because of its grid based

structure. Each node crossing a cell border triggers communication. Therefore, it

could be useful to limit the communication of the fast mobile nodes. For example,

in Hidagrid, a fast mobile node should not update its internal table, and could

delegate to one of its stable neighbor the task of inserting or querying an object

if needed. This kind of mechanism could prove efficient if a majority of the nodes

remain stable. Some studies [72] have shown the realism of such scenarios.

But even if Hidagrid suffers from some limitations, it proves to be an efficient

protocol for a wide range of scenarios. The grid based discovery protocol and the

whole network greatly benefit from Hidagrid by preventing the transmission of

useless messages which can not be successfully processed. Even in the worst case

Chapter 5. Conclusion and Discussion 113

where the grid remains stable and homogeneously populated, the extra overhead

generated by Hidagrid due to the hierarchical structure remains low, i.e., around

5% in our simulations. Hidagrid is also a step towards developing protocols which

adapt to realistic scenarios. For this reason, we decided to use in our simulation a

small transmission range (based on actual measurements), several mobility models,

and obstacles in our maps, in order to catch as much as possible the features of

a realistic network. We believe that research for ad hoc networks has reached a

step where realistic considerations should be taken into account and therefore we

developed Hidagrid with this idea in mind.

Bibliography

[1] “Gnutella.” [Online]. Available: http://rfc-gnutella.sourceforge.net/

[2] “Pastry, a substrate for peer-to-peer applications.” [Online]. Available:

http://research.microsoft.com/∼antr/Pastry/

[3] “Tapestry, infrastructure for fault-resilient, decentralized location and

routing.” [Online]. Available: http://www.cs.ucsb.edu/∼ravenben/tapestry/

[4] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm

problem in a mobile ad hoc network,” in MobiCom ’99: Proceedings of the 5th

annual ACM/IEEE international conference on Mobile computing and net-

working. New York, NY, USA: ACM Press, 1999, pp. 151–162.

[5] M. Mauve, A. Widmer, and H. Hartenstein, “A survey on position-based rout-

ing in mobile ad hoc networks,” IEEE Network, vol. 15, no. 6, pp. 30–39, 2001.

[6] A. Khelil, C. Becker, J. Tian, and K. Rothermel, “An epidemic model for

information diffusion in manets,” in MSWiM ’02: Proceedings of the 5th ACM

international workshop on Modeling analysis and simulation of wireless and

mobile systems. New York, NY, USA: ACM Press, 2002, pp. 54–60.

114

http://rfc-gnutella.sourceforge.net/
http://research.microsoft.com/~antr/Pastry/
http://www.cs.ucsb.edu/~ravenben/tapestry/

[7] J. Li, J. Jannotti, D. S. J. D. Couto, D. R. Karger, and R. Morris, “A scalable

location service for geographic ad hoc routing,” in MobiCom ’00: Proceedings

of the 6th annual international conference on Mobile computing and network-

ing. New York, NY, USA: ACM Press, 2000, pp. 120–130.

[8] S. J. Philip and C. Qiao, “Hierarchical grid location management for large

wireless ad hoc networks,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 7,

no. 3, pp. 33–34, 2003.

[9] K. Seada and A. Helmy, “Rendezvous regions: a scalable architecture for

service location and data-centric storage in large-scale wireless networks,” in

Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th In-

ternational, 2004.

[10] C. Cheng, H. Lemberg, S. Philip, E. van den Berg, and T. Zhang, “Slalom: a

ScaLAble LOcation Management scheme for large mobile ad-hoc networks,”

in Wireless Communications and Networking Conference, 2002. WCNC2002.

2002 IEEE, vol. 2, 2002, pp. 574–578.

[11] S.-C. M. Woo and S. Singh, “Scalable routing protocol for ad hoc networks,”

Wirel. Netw., vol. 7, no. 5, pp. 513–529, 2001.

[12] S. Das, H. Pucha, and Y. Hu, “Performance comparison of scalable location

services for geographic ad hoc routing,” in INFOCOM 2005. 24th Annual Joint

Conference of the IEEE Computer and Communications Societies. Proceedings

IEEE, vol. 2, 2005, pp. 1228 – 1239.

[13] “Jini.” [Online]. Available: http://www.sun.com/software/jini

[14] “Salutation.” [Online]. Available: http://www.salutation.org

115

http://www.sun.com/software/jini
http://www.salutation.org

[15] “Uddi.” [Online]. Available: http://www.uddi.org

[16] “Napster.” [Online]. Available: http://www.napster.com/

[17] “Upnp.” [Online]. Available: http://www.upnp.org

[18] “Slp.” [Online]. Available: http://www.openslp.org/

[19] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward, “A Distance

Routing Effect Algorithm for Mobility (DREAM),” in MobiCom ’98: Pro-

ceedings of the 4th annual ACM/IEEE international conference on Mobile

computing and networking. New York, NY, USA: ACM Press, 1998, pp.

76–84.

[20] T. Camp, J. Boleng, and L. Wilcox, “Location information services in mobile

ad hoc networks,” in Communications, 2002. ICC 2002. IEEE International

Conference on, vol. 5, 2002, pp. 3318–3324.

[21] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A scalable

content-addressable network,” in SIGCOMM ’01: Proceedings of the 2001 con-

ference on Applications, technologies, architectures, and protocols for computer

communications. New York, NY, USA: ACM Press, 2001, pp. 161–172.

[22] C. Lindemann and O. P. Waldhorst, “Exploiting epidemic data dissemination

for consistent lookup operations in mobile applications,” SIGMOBILE Mob.

Comput. Commun. Rev., vol. 8, no. 3, pp. 44–56, 2004.

[23] O. Ratsimor, D. Chakraborty, A. Joshi, and T. Finin, “Allia: alliance-based

service discovery for ad-hoc environments,” in WMC ’02: Proceedings of the

2nd international workshop on Mobile commerce. New York, NY, USA: ACM

Press, 2002, pp. 1–9.

116

http://www.uddi.org
http://www.napster.com/
http://www.upnp.org
http://www.openslp.org/

[24] D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin, “GSD: a novel Group-based

Service Discovery protocol for manets,” in 2002. 4th International Workshop

on Mobile and Wireless Communications Network, 2002, pp. 140–144.

[25] H. Koubaa and E. Fleury, “A fully distributed mediator based service location

protocol in ad hoc networks,” in Global Telecommunications Conference, 2001.

GLOBECOM ’01. IEEE, vol. 5, San Antonio, TX, 2001, pp. 2949–2953.

[26] U. Kozat and L. Tassiulas, “Network layer support for service discovery in mo-

bile ad hoc networks,” in INFOCOM 2003. Twenty-Second Annual Joint Con-

ference of the IEEE Computer and Communications Societies. IEEE, vol. 3,

2003, pp. 1965–1975.

[27] F. Sailhan and V. Issarny, “Scalable service discovery for manet,” in Pervasive

Computing and Communications, 2005. PerCom 2005. Third IEEE Interna-

tional Conference on, 2005, pp. 235–244.

[28] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”

Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[29] M. Klein, B. Konig-Ries, and P. Obreiter, “Service rings - a semantic overlay

for service discovery in ad hoc networks,” in Database and Expert Systems

Applications, 2003. Proceedings. 14th International Workshop on, 2003, pp.

180–185.

[30] Z. J. Haas and B. Liang, “Ad hoc mobility management with uniform quorum

systems,” IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 228–240, 1999.

[31] D. Malkhi, M. K. Reiter, A. Wool, and R. N. Wright, “Probabilistic quorum

systems,” Inf. Comput., vol. 170, no. 2, pp. 184–206, 2001.

117

[32] Z. Haas and B. Liang, “Ad-hoc mobility management with randomized data-

base groups,” in Communications, 1999. ICC ’99. 1999 IEEE International

Conference on, vol. 3, Vancouver, BC, 1999, pp. 1756–1762.

[33] J. Luo, J.-P. Hubaux, and P. T. Eugster, “Pan: providing reliable storage

in mobile ad hoc networks with probabilistic quorum systems,” in MobiHoc

’03: Proceedings of the 4th ACM international symposium on Mobile ad hoc

networking & computing. New York, NY, USA: ACM Press, 2003, pp. 1–12.

[34] P. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulie, “Epidemic

information dissemination in distributed systems,” Computer, vol. 37, no. 5,

pp. 60–67, 2004.

[35] A. Helmy, “Small large-scale wireless networks: Mobility-assisted resource

discovery,” 2002. [Online]. Available: http://www.citebase.org/cgi-bin/

citations?id=oai:arXiv.org:cs/0207069

[36] A. Helmy, S. Garg, P. Pamu, and N. Nahata, “Contact-based Architecture for

Resource Discovery (CARD) in large scale manets,” in Parallel and Distributed

Processing Symposium, 2003. Proceedings. International, 2003.

[37] A. Helmy, “Capture: location-free contact-assisted power-efficient query res-

olution for sensor networks,” SIGMOBILE Mob. Comput. Commun. Rev.,

vol. 8, no. 1, pp. 27–47, 2004.

[38] A. Helmy, “Contact-extended zone-based transactions routing for energy-

constrained wireless ad hoc networks,” IEEE Transactions on Vehicular Tech-

nology, vol. 54, no. 1, pp. 307–319, 2005.

118

http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:cs/0207069
http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:cs/0207069

[39] C. Ververidis and G. Polyzos, “Routing layer support for service discovery in

mobile ad hoc networks,” in Pervasive Computing and Communications Work-

shops, 2005. PerCom 2005 Workshops. Third IEEE International Conference

on, 2005, pp. 258–262.

[40] Z. Haas, “A new routing protocol for the reconfigurable wireless networks,” in

Universal Personal Communications Record, 1997. Conference Record., 1997

IEEE 6th International Conference on, vol. 2, San Diego, CA, 1997, pp. 562–

566.

[41] X. Jiang and T. Camp, “An efficient location server for an ad hoc network,”

The Colorado School of Mines, Tech. Rep. MCS-03-06, May 2003.

[42] X. Jiang and T. Camp, “An information dissemination protocol for an ad

hoc network,” in Performance, Computing, and Communications, 2004 IEEE

International Conference on, 2004, pp. 337–345.

[43] Y.-B. Ko and N. H. Vaidya, “Location-Aided Routing (LAR) in mobile ad

hoc networks,” in MobiCom ’98: Proceedings of the 4th annual ACM/IEEE

international conference on Mobile computing and networking. New York,

NY, USA: ACM Press, 1998, pp. 66–75.

[44] F. De Rango, A. Iera, A. Molinaro, and S. Marano, “A modified location-

aided routing protocol for the reduction of control overhead in ad-hoc wireless

networks,” in Telecommunications, 2003. ICT 2003. 10th International Con-

ference on, vol. 2, 2003, pp. 1033–1037.

119

[45] X. Luo, T. Camp, and W. Navidi, “Predictive methods for location services in

mobile ad hoc networks,” in Parallel and Distributed Processing Symposium,

2005. Proceedings. 19th IEEE International, 2005.

[46] J. Ghosh, S. Philip, and C. Qiao, “Acquaintance Based Soft Location Man-

agement (ABSLM) in manet,” in Wireless Communications and Networking

Conference, 2004. WCNC. 2004 IEEE, vol. 1, 2004, pp. 166–171.

[47] Y. Stojmenovic and P. E. V. Pea, “A scalable quorum based location update

scheme for routing in ad hoc wireless networks,” SITE, University of Ottawa,

Tech. Rep. TR-99-09, September 1999.

[48] I. Aydin and C.-C. Shen, “Facilitating match-making service in ad hoc and

sensor networks using pseudo quorum,” in Computer Communications and

Networks, 2002. Proceedings. Eleventh International Conference on, 2002, pp.

4–9.

[49] J. Tchakarov and N. Vaidya, “Efficient content location in wireless ad hoc

networks,” in Mobile Data Management, 2004. Proceedings. 2004 IEEE Inter-

national Conference on, 2004, pp. 74–85.

[50] M. Ksemann, H. Hartenstein, H. Fler, and M. Mauve, “ Analysis of a location

service for position-based routing in mobile ad hoc networks ,” in Proc. of the

1st German Workshop on Mobile Ad-hoc Networking (WMAN 2002), Ulm,

Germany, March 2002, pp. 121 – 133.

[51] K. Seada, A. Helmy, and R. Govindan, “On the effect of localization errors on

geographic face routing in sensor networks,” in IPSN’04: Proceedings of the

120

third international symposium on Information processing in sensor networks.

New York, NY, USA: ACM Press, 2004, pp. 71–80.

[52] I. Abraham, D. Dolev, and D. Malkhi, “LLS: a Locality aware Location Service

for mobile ad hoc networks,” in DIALM-POMC ’04: Proceedings of the 2004

joint workshop on Foundations of mobile computing. New York, NY, USA:

ACM Press, 2004, pp. 75–84.

[53] S. Giordano and M. Hamdi, “Mobillity management: The virtual home re-

gion,” EPFL-ICA, Switzerland, Tech. Rep., March 2000.

[54] L. Blazevic, L. Buttyan, S. Capkun, S. Giordano, J.-P. Hubaux, and J.-Y.

Le Boudec, “Self organization in mobile ad hoc networks: the approach of

terminodes,” IEEE Communications Magazine, vol. 39, no. 6, pp. 166–174,

2001.

[55] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker,

“GHT: a Geographic Hash Table for data-centric storage.” in WSNA, 2002,

pp. 78–87.

[56] B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing for

wireless networks,” in MobiCom ’00: Proceedings of the 6th annual interna-

tional conference on Mobile computing and networking. New York, NY, USA:

ACM Press, 2000, pp. 243–254.

[57] S. Sivavakeesar and G. Pavlou, “Scalable location services for hierarchically

organized mobile ad hoc networks,” in MobiHoc ’05: Proceedings of the 6th

ACM international symposium on Mobile ad hoc networking and computing.

New York, NY, USA: ACM Press, 2005, pp. 217–228.

121

[58] Y. Xue, B. Li, and K. Nahrstedt, “A scalable location management scheme

in mobile ad-hoc networks,” in Local Computer Networks, 2001. Proceedings.

LCN 2001. 26th Annual IEEE Conference on, Tampa, FL, 2001, pp. 102–111.

[59] S. J. Philip, J. Ghosh, and C. Qiao, “Performance evaluation of a multilevel

hierarchical location management protocol for ad hoc networks.” Computer

Communications, vol. 28, no. 10, pp. 1110–1122, 2005.

[60] W. Kiess, H. Fuessler, J. Widmer, and M. Mauve, “Hierarchical location ser-

vice for mobile ad-hoc networks,” SIGMOBILE Mob. Comput. Commun. Rev.,

vol. 8, no. 4, pp. 47–58, 2004.

[61] P.-H. Hsiao, “Geographical region summary service for geographical routing,”

SIGMOBILE Mob. Comput. Commun. Rev., vol. 5, no. 4, pp. 25–39, 2001.

[62] J. Tyan and Q. Mahmoud, “A network layer based architecture for service

discovery in mobile ad hoc networks,” in Electrical and Computer Engineering,

2004. Canadian Conference on, vol. 3, 2004, pp. 1379–1384.

[63] A. Rao, C. Papadimitriou, S. Shenker, and I. Stoica, “Geographic routing

without location information,” in MobiCom ’03: Proceedings of the 9th annual

international conference on Mobile computing and networking. New York,

NY, USA: ACM Press, 2003, pp. 96–108.

[64] S. Capkun, M. Hamdi, and J. Hubaux, “GPS-free positioning in mobile ad-hoc

networks,” in HICSS ’01: Proceedings of the 34th Annual Hawaii International

Conference on System Sciences (HICSS-34)-Volume 9. Washington, DC,

USA: IEEE Computer Society, 2001, p. 9008.

122

[65] “The network simulator - ns-2.” [Online]. Available: http://www.isi.edu/

nsnam/ns/

[66] G. Gaertner and V. Cahill, “Understanding link quality in 802.11 mobile ad

hoc networks,” IEEE Internet Computing, vol. 8, no. 1, pp. 55–60, 2004.

[67] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for

ad hoc network research,” Wireless Communications & Mobile Computing

(WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends

and Applications, vol. 2, no. 5, pp. 483–502, 2002. [Online]. Available:

citeseer.ist.psu.edu/camp02survey.html

[68] C. Bettstetter, H. Hartenstein, and X. Perez-Costa, “Stochastic properties

of the random waypoint mobility model,” Wirel. Netw., vol. 10, no. 5, pp.

555–567, 2004.

[69] C. Bettstetter, “Mobility modeling in wireless networks: categorization,

smooth movement, and border effects,” SIGMOBILE Mob. Comput. Com-

mun. Rev., vol. 5, no. 3, pp. 55–66, 2001.

[70] “Ansim.” [Online]. Available: http://www.ansim.info

[71] C. Bettstetter and J. Zangl, “How to achieve a connected ad hoc network

with homogeneous range assignment: an analytical study with consideration

of border effects,” in 2002. 4th International Workshop on Mobile and Wireless

Communications Network, 2002, pp. 125–129.

[72] T. Henderson, D. Kotz, and I. Abyzov, “The changing usage of a mature

campus-wide wireless network,” in MobiCom ’04: Proceedings of the 10th an-

123

http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
citeseer.ist.psu.edu/camp02survey.html
http://www.ansim.info

nual international conference on Mobile computing and networking. New

York, NY, USA: ACM Press, 2004, pp. 187–201.

124

List of Publications

Submitted for Review

S. Heuguet, K.C. Chua, M. Motani, “Empty cell management for grid based dis-

covery protocols in ad hoc network,”submitted in the IEEE Transactions on Mobile

Computing.

125

	Acknowledgement
	Table of Content
	Summary
	List of Figures
	List of Tables
	Introduction
	The need for efficient resource discovery protocols in wireless ad hoc networks
	The empty cell problem for grid based resource discovery protocols
	Contributions
	Thesis organization

	Literature Review
	Introduction
	Design Requirements
	Connectivity based protocols
	Selective Forwarding
	Allia
	Group-based Service Discovery

	Creating a node hierarchy
	Creating a dominating set
	Backbone and selective forwarding
	Semantic Hierarchy

	Quorums
	Creating fixed quorums
	Probabilistic Quorums

	The small-world effect
	The global table approach
	Conclusion

	Location aided protocols
	Geocasting and epidemic dissemination
	The small-world effect
	Geographic quorums
	Straight lines quorums
	A spiral approach

	The Personal Home Region
	The Grid Location Service (GLS)
	Grid based protocols
	Flat Grid
	Hierarchical Grid with uniform repartition of the servers
	Hierarchical Grid with logarithmic repartition of the servers
	Location dissemination in hierarchical grid

	Conclusion

	Conclusion
	Strengths and weaknesses of grid based protocols
	The effect of empty cells on grid based protocols

	Description of the Protocol
	The design requirements of Hidagrid
	Basic strategies for empty cells management
	Requirements for empty cells management

	Description of Hidagrid
	Assumptions
	Overview of Hidagrid
	Advertising cell state changes
	The hierarchical grid structure
	The State Policy
	The spread of GRID_UPDATE messages

	Updating the node's internal table
	Routing messages hierarchically
	Changing the destination cell of a message
	The Relocation Policy

	Relocating data items
	Detecting state changes
	Deactivation detection
	Activation detection

	Improvements on the basic scheme
	Hysteresis mechanisms
	Hysteresis at the cell level
	Hysteresis at the region level

	Generalizing the State Policy for any grid
	Generalizing the Relocation Policy for any grid
	Justification of the Relocation Policy
	Generalization

	Conclusion

	Simulation Results
	Implementation of a Simple Discovery Protocol (SDP)
	Simulation scenario
	Impact of Mobility and deactivation threshold
	Static empty cells
	Resource discovery performance of Hidagrid
	Comparison of SDP alone and with Hidagrid
	Overhead comparison

	Sensitivity to mobility
	Varying the query rate

	Conclusion and Discussion
	Bibliography
	Publications

