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Abstract

Wireless Sensor Networks (WSNs) have become a mature technology aimed at per-
forming environmental monitoring and data collection. Nonetheless, harnessing the
power of a WSN presents a number of research challenges. WSN application devel-
opers have to deal both with the business logic of the application and with WSN’s
issues, such as those related to networking (routing), storage, and transport. A
middleware can cope with this emerging complexity, and can provide the necessary
abstractions for the definition, creation and maintenance of applications.

The final goal of most WSN applications is to gather data from the environment,
and to transport such data to the user applications, that usually resides outside the
WSN. Techniques for data collection can be based on external storage, local storage
and in-network storage. External storage sends data to the sink (a centralized data
collector that provides data to the users through other networks) as soon as they are
collected. This paradigm implies the continuous presence of a sink in the WSN, and
data can hardly be pre-processed before sent to the sink. Moreover, these transport
mechanisms create an hotspot on the sensors around the sink. Local storage stores
data on a set of sensors that depends on the identity of the sensor collecting them,
and implies that requests for data must be broadcast to all the sensors, since the
sink can hardly know in advance the identity of the sensors that collected the data
the sink is interested in. In-network storage and in particular Data Centric Storage
(DCS) stores data on a set of sensors that depend on a meta-datum describing the
data. DCS is a paradigm that is promising for Data Management in WSNs, since
it addresses the problem of scalability (DCS employs unicast communications to
manage WSNs), allows in-network data preprocessing and can mitigate hot-spots
insurgence.

This thesis studies the use of DCS for Data Management in middleware for
WSNs.

Since WSNs can feature different paradigms for data routing (geographical rout-
ing and more traditional tree routing), this thesis introduces two different DCS
protocols for these two different kinds of WNSs. Q-NiGHT is based on geographical
routing and it can manage the quantity of resources that are assigned to the storage
of different meta-data, and implements a load balance for the data storage over the
sensors in the WSN. Z-DaSt is built on top of ZigBee networks, and exploits the
standard ZigBee mechanisms to harness the power of ZigBee routing protocol and



network formation mechanisms.
Dependability is another issue that was subject to research work. Most current

approaches employ replication as the mean to ensure data availability. A possible
enhancement is the use of erasure coding to improve the persistence of data while
saving on memory usage on the sensors.

Finally, erasure coding was applied also to gossiping algorithms, to realize an
efficient data management. The technique is compared to the state-of-the-art to
identify the benefits it can provide to data collection algorithms and to data avail-
ability techniques.



Chapter 1

Introduction

In the last few years, hardware and software innovations have been leading Wireless
Sensor Networks (WSNs) from the research labs to deployments in real contexts.

A WSN application is a distributed application that is built on a large number
of low-cost, low-power, battery-powered sensors[1, 2, 3]. Sensors are spread in an
environment (sensor field) without any predetermined infrastructure and cooperate
to execute common monitoring tasks which usually consist in sensing environmental
data and monitoring a variable set of objects. The sensed data are collected by an
external sink node, when connected to the network. The sink node, which could be
either static or mobile, is in turn accessed by the external operators to retrieve the
information gathered by the network.

The design of WSN applications is challenging since they have to deal with their
own business logic, and with the issues that naturally arise when WSNs are taken
into account, such as network formation, data transport and data management,
security and energy saving. This last requirement arises since nodes are typically
battery-powered, and the energy budget of the nodes is limited, hence energy saving
techniques are to be implemented to avoid energy starvation and the subsequent
death of nodes. Dealing with these issues can be done either explicitly, thus adding
complexity to the applications, or implicitly by means of a middleware, that is a
software layer that abstracts from common issues of the WSNs. For example, sensed
data transmission can be implemented on top of 802.15.4 MAC-level send/receive
operations, or an abstraction layers can offer a transparent routing layer. In the
latter, the particular routing protocol that is used becomes a middleware parameter,
and the application developer can switch between different routing mechanisms at
network creation time, instead that at application design time. Distilling a given
high-level behavior from a set of sensors is a challenging problem, especially when
explicitly dealing with WSN issues, since the complexity can be overwhelming.

In this thesis, the goal of WSN middleware is to deal with WSN issues. On
the other hand, there is no unique way to define which issues belong to the WSN,
and which ones are part of the business logic. In general, this depends on the poli-
tics/mechanisms dichotomy, and hence on the level of abstraction that is provided
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by the middleware. Even a minimal middleware can provide benefits to the applica-
tion developer, nonetheless it presents research challenges. For example, one of the
first middleware that was studied is based on directed diffusion[74, 154], that is a
routing mechanism where a special node of the WSN, called the sink, broadcasts an
interest in the data, creating a data collection tree that is used to route all the data
that are produced towards the sink. Directed diffusion provides the user application
a data collection mechanism that is easier to use than explicitly moving all the pieces
of data towards the sink.

Complex scenarios can arise in WSN applications, and a number of theoretical
and practical problems blossomed when the level of the abstraction of the mid-
dleware was deeply pinpointed. This thesis aims at analyzing some of them. For
example, if an application wants to deliver data to more than one sink, or if the sink
is inaccessible for some time, it can be useful to cache data into the network before
sending them to the user application. From this scenario, Data Centric Storage
(DCS)[87] was born. The paradigm states that data are stored inside the network,
in a subset of the sensors that is dependent on a meta-datum that describes the
data, and the sinks query the WSN to retrieve the data they are interested in. DCS
in general is considered as a useful mechanism to decouple data production from
data collection, and it is the central topic of the research work described in this
thesis.

1.1 WSN applications

A large number of low-capacity sensors must be orchestrated into a common behavior
to give support to complex WSN applications. Despite the complexity that must be
faced during the development, several kinds of applications are supported by WSNs,
since they are flexible enough to be applied in diverse areas, such as:

• Environmental monitoring. Monitoring of the effects of industrial plants on
the environment is a key issue in different application domains and particu-
larly in the field of nuclear energy[15]. In “precision agriculture”, [16] shows
that sensing moisture in soil and fertilizer absorption (combined with video
surveillance) can significantly increase crop yield and optimize water use. Sep-
arately, trends and patterns in the Great Barrier Reef[17] may get Australian
government sponsorship for sensor-based monitoring to halt spread of invasive
species. In transportation, [18] considered using WSNs to monitor traffic, for
example to allow other traffic into bus lanes when there are no buses, with the
goal of increasing traffic flow.

• Critical Infrastructure Protection. According to the European Commission,
Critical Infrastructures consist of “those physical and information technology
facilities, networks, services and assets which, if disrupted or destroyed, would
have a serious impact on the health, safety, security or economic well-being
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of citizens or the effective functioning of governments in the Member States.
Critical Infrastructures extend across many sectors of the economy, including
banking and finance, transport and distribution, energy, utilities, health, food
supply and communications, as well as key government services”[19]. The
threat of contaminant intrusion due to leaking pipes [20] or malicious human
action will further increase the projected expenditure. Repairing and securing
this infrastructure requires large investments of money and time, and therefore,
it is essential to direct efforts to upgrading critical areas[152, 153].

• Home systems and health monitoring. A “smart house” is usually made up
of several intelligent devices that can control home appliances or “feel” their
surroundings[21], and it can feature devices that intermix control on “intel-
ligent” furniture and that monitor user position and/or state. This kind of
infrastructure can lead to applications supporting rehabilitation after illness,
such as providing assistive technology for cognitive rehabilitation[25] and in-
dependent aging. For example, the European project PERSONA[22] aims at
advancing the paradigm of Ambient Intelligence through the harmonization of
Ambient Assisted Living (AAL) technologies and concepts for the development
of sustainable and affordable solutions for the social inclusion and independent
living of Senior Citizen. The iDorm project[23] has studied the feasibility of
automated living environments, and in particular has realized a campus dorm
environment. The Monica project[24] has developed a system that identifies
gestures and activities in order to retrieve and project needed information in
a workplace environment.

• Surveillance, and Inventory Management. Companies are developing WSN
technologies to address security scenarios, and industrial applications. For ex-
ample, Motorola’s MERL project[26] has been investigating network protocols
that help conserve node battery power. Their technique incorporates a node’s
residual energy into the cost metric that is computed when determining what
route to send packets on. The applications for such networks include inventory
management, product quality monitoring, factory process monitoring, disaster
area monitoring, biometrics monitoring, and surveillance.

• Architectural support for applications of pervasive computing. For example,
Amigo project[27] aims at overcoming the obstacles to widespread acceptance
of home networking technology, by developing open, standardized, interopera-
ble middleware and attractive user services, thus improving end-user usability
and attractiveness. The goals of the projects are to addressing everyday life
user aspects: home care and safety, home information and entertainment, and
extension of the home environment by means of ambience sharing for advanced
personal communication. The Amigo project aims at supporting interoperabil-
ity between equipment and services within the networked home environment
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by using standard technology when possible and by making the basic middle-
ware (components and infrastructure) and basic user services available as open
source software together with architectural rules for everyone to use.

Middleware based on DCS can provide advantages to applications belonging to
different application areas of WSNs for several reasons. In particular DCS decouples
data producing and data consuming[28], hence empowering the application devel-
oper with a structured model for application design. Moreover WSNs can leverage
on innetwork storage to deliver data to an external application even in scenarios
where the WSN operates unattended, i.e. when sink is not present in the WSN for
part of the WSN lifetime[29]. Finally, critical applications can be deployed in ex-
treme environments, where sensors can be prone to faults[30], and DCS can exploit
different data storages mechanisms to provide data availability to the application,
hence preserving the data in front of sensor faults.

In particular, considering the application areas described in this section, an ad-
vanced design based on decoupling between data producing and consuming can
deliver benefits to smart houses and applications of pervasive computing, since it
can simplify the integration of application modules developed by different parties;
environmental monitoring and surveillance can exploit unattended WSNs to col-
lect data from the environment; critical data collection can leverage on the data
availability features offered by DCS to save data when a subset of the sensors is lost.

1.2 Abstractions and mechanisms for WSN mid-

dleware

The level of abstraction provided by a WSN middleware inherently depends on the
mechanisms that are used by the middleware to implement the high-level primitives.
The analysis of state-of-the-art mechanisms was developed into a structured vision
of the mechanisms, that were organized into three layers (Programming Abstraction
layer, Data Management layer, and Network layer) whose mechanisms can interact
with each other or can be used directly by the application, plus a set of Depend-
ability mechanisms that is orthogonal to the layers and that comprises mechanisms
that are used by all the layers and by the user applications alike. Further informa-
tion about this classification will be provided in Chapter 2, that discusses related
work, aside by presenting in Figure 2.1 a graphical representation of the layers or-
ganization. Examples of them are mobile agents[67] and database[31] abstraction
for the Programming Abstraction layer, DCS[87] for Data Management, GPSR[94]
and MAP[96] for the Network layer, and pure replication (like in [87]) and erasure
coding (like in [160]) for Dependability.

The results that will be portrayed in this thesis are related to DCS, that is based
on a simple statement: data are more important than the single sensor. This implies
that a sensor’s identity is less important than data identity, and it causes a shifts
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from the classical paradigms (a sensor A produced datum d) to a data-centric one
(a sensor in location x produced datum d with meta-datum D). DCS is based on
the assumption that meta-data are globally known, hence they can be the input to
a function that decides which sensors are prone to storing produced data. The most
widely studied DCS system, Geographical Hash Tables[87] (DCS-GHT), concretizes
this paradigm into a system where a meta-datum that describes a set of data is
hashed into a geographical location L into the sensing region, then data are stored
on all the sensors located onto around L in the planarized version of the WSN’s
topology.

This thesis discusses Data Management mechanisms based on DCS. WSNs can
be broadly categorized for paradigms for data routing that is used: location-centric
WSNs use geographical routing protocols, like GPSR[94], to send data towards a geo-
graphical coordinate in the WSN, while traditional routing routes data to nodes (see
for example AODV[101] used in ZigBee networks[58]). Hence, this thesis introduces
two novel DCS protocol, one for each of these two different kinds of WNS routing
paradigm. Q-NiGHT is based on geographical routing, it manages the quantity of
resources that are assigned to the storage of different meta-data, and it implements a
load balance for the data storage over the sensors in the WSN. Z-DaSt is built on top
of ZigBee networks, and exploits the standard ZigBee mechanisms so as to harness
the power of ZigBee routing protocol and network formation mechanisms. Finally,
Dependability mechanisms based on erasure codes are applied to the Data Manage-
ment layer, to provide a better data availability for DCS, and to realize a faster and
more reliable data collection when used together with a gossiping protocol.

1.3 Goals of the Thesis

This thesis analyzes the level of abstractions that can be provided by current WSN
mechanisms, and considers the use of novel mechanisms to expand current capabil-
ities of WSN middleware.

As previously stated, a middleware that is based on DCS would represent a
novelty into the WSN scene and could expand current WSN limitations, by means
of offering a novel structure to application designer for decoupling of data produc-
ing and consuming, allowing applications to operate while the sink is missing, and
offering data availability.

On the other hand, applications would still suffer from the limitations given
by the DCS system in use. With most current DCS systems, for example with
Geographic Hash Tables (DCS-GHT ) that is its most studied implementation:

• the set of the sensors that store the data depends on the topology of the WSN,
and it is not selectable by the WSN application developer

• Dependability is ensured by means of pure replication, in the sense that all
the sensors in the set that must store a given meta-datum must store a copy
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of the datum.

These features imply that DCS uses sensors’ memory in an unpredictable way,
and that most important data cannot receive higher data availability than less im-
portant data. Moreover, pure replication wastes storage space with respect to more
advanced techniques, for example based on erasure codes. While a WSN testbed
would be able to operate for a short time without incurring in faults or memory
depletion, a real deployment of a WSN that should operate for a long time would
benefit from techniques that can

• manage memory used for different data, providing QoS to data storage

• reduce storage memory within a given level of data availability.

Organizing this research using the layers introduced in Section 1.2, the goals of
the thesis are to

• introduce Q-NiGHT and Z-DaSt, that are novel DCS protocols providing QoS
capabilities for data storage and present good load balancing. Q-NiGHT is
similar to DCS-GHT, and it fits WSNs using geographical routing. Z-DaSt is
designed to be used on WSNs that are based on the ZigBee standard.

• review current Dependability mechanisms used for WSNs, and introduce a
new way of exploiting erasure coding that can enhance the Data Management
layer without increasing the complexity of DCS;

• propose a novel Data Management layer mechanism that combines gossip rout-
ing and erasure coding to disseminate data in a WSN in an efficient way.



Chapter 2

Related Work

Current research papers agree that one of the critical points to leverage on the po-
tential usefulness of WSNs is the possibility of abstracting common WSNs problems
by means of convenient middleware, but literature is not coherent when defining
what a middleware is[4, 5, 151, 6, 7, 8, 9, 10, 11, 12, 13, 14].

To define what a middleware is, I will focus on the goals that a middleware
has to achieve. The main purpose of middleware is to support the development,
maintenance, deployment and execution of applications, filling in the gap between
the application layer and the hardware, operating system and network stacks layers.
In the case of WSNs, this can include mechanisms for formulating complex high-
level sensing tasks, communicating this task to the WSN, coordination of nodes to
split the task and distribute it to the individual nodes, data fusion for merging the
sensor readings into high-level result, and reporting it.

The actual analysis of state-of-the-art middleware presented a variety of different
techniques and approaches used to address the aforementioned goals. In fact, WSN
systems offer functionalities that can be collectively called “middleware” but that
are very different from each other. For example, different middleware offer

• low-level mechanisms that operate at packet level, such as routing protocols[94,
159, 96]

• abstract mechanisms that hide the single datum, like database-like systems[31,
33]

• service oriented architectures, for example the ZigBee standard[1]

• platforms for mobile agents, for example AFME[70] or Agilla[67]

This analysis of the state-of-the-art mechanisms identified three layers (Pro-
gramming Abstraction layer, Data Management layer, and Network layer), and the
mechanisms are categorized in terms of this structure. The mechanisms can interact
with each other or can be used directly by the application. A set of mechanisms for
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Figure 2.1: Middleware is structured as a set of layers between the hardware and
the application.

Dependability was also identified, and it can be used at different levels for different
purposes. Figure 2.1 provides a graphical representation of this structure.

Programming Abstraction layer comprises the mechanisms that models the be-
havior of the whole WSN, and that provide the user application with mechanism to
abstract the WSN details. For example, a user application can perceive a WSN as a
relational database[31, 33], as a publish/subscribe system[158], as a service oriented
architecture[1], or as a platform for mobile agents[70].

The Data Management layer lets the user perform store and retrieve operations
on data, either storing them on a specific sensor or set of sensors, or selecting the
set of sensors from a meta-datum of the data to be stored or retrieved, as in Data
Centric Storage systems[87, 159, 110].

The Network layer features explicit send and receive operations, and lets the
user application control the transmissions performed at a finer grain. This layer
nonetheless performs some abstraction, since it hides the routing protocol used,
hence it lets the invoker specify the goal of the routing process, be it a sensor or a
coordinate in the sensor field.

The Dependability mechanisms regard the techniques used to create reliable
primitives on the layers, and are used by all the layers alike. For example, DCS
systems (Data Management layer) can use pure replication, or gossiping routing can
perform erasure coding on data to speedup the data dissemination process.
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A user application can rely on one of these layers, depending on the level of
abstraction required, by addressing the whole WSN using the abstraction provided
by the Programming Abstraction layer, or by performing explicit Data Management
specifying which data are stored and retrieved, or it can be based on network level
send/receive operations.

As an example of interaction of these layers, the Publish/Subscribe system de-
scribed in [158] is based on a Data Centric Storage layer provided in [156]. The DCS
mechanisms such as [87] used geographical routing such as [94] (Network layer) to
transport data and queries to proper sensors. Erasure coding (Dependability mech-
anisms) was used to guarantee data availability in [160] and to optimize access to
data in [140].

2.1 Network layer

The wireless medium is inherently unreliable and WSNs do require robust routing
protocols. The particular nature of the sensors requires the routing protocols to be
tailored towards power saving and self-management. Another critical requirement
is scalability, since WSNs may comprise up to thousands of sensors, hence basing
route discovery on broadcast limits the scalability of the system.

Routing protocols for WSNs should also be lightweight in both processing power
and memory footprint and should require minimal message overhead. Ideally they
should be able to route packets using only information exchanged by a node within
its neighborhood and they should be resilient to node failures and frequent topology
changes.

The figure 2.2 describes how routing protocols can be differentiated depending
on the features that are used during the execution of the routing.

Figure 2.2: Network layers.
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Traditional IP-based

Traditional routing protocols for IP-based networks impose a hierarchical addressing
structure on the network and base routing decisions (i.e., packet forwarding) on the
destination address and a set of tables indicating the next hop for reaching that
address. In a WSN environment, where nodes can be deployed at random and in
large quantities and the network topology may vary due to sensor failures or energy
efficiency decisions, assigning and maintaining hierarchical structures is impractical.
The message overhead to maintain the routing tables and the memory space required
to store them is not affordable for the energy and resource constrained WSNs.

Routing for Ad-Hoc networks

WSN routing protocols originate from ad-hoc protocols, like Ad-hoc On Demand
Vector Routing (AODV)[101] and Dynamic Source Routing (DSR)[102]. These re-
active protocols contribute to alleviate traditional IP-based routing, but do not scale
to very large networks since they depend on flooding for route discovery.

AODV is an on-demand route acquisition system. The WSN has a set of trans-
mission paths that are actively routing packets, characterized by the endpoints of
the route. The nodes store only data that refer to these active paths, and when
a node needs to reach a node for which it has no route, it generates a broadcast
transmission. The first packet that reaches the destination is sent back along the
route it followed, setting up route pointers in the intermediate nodes. A packet
sent along the route needs only to state its destination, since the intermediate nodes
have pointers towards the next and previous steps along the route between the two
endpoints. After some time a route is not used, the data related to it, is flushed, to
free the memory from old and/or unused routes.

DSR approach is different. It is based on source routing and it does not store
data on intermediate nodes. When a nodes needs a route for a destination, it
broadcasts a packet. The packet is relayed through the nodes and it keeps trace of
the hops it performs. The the destination receives the packet, it sends it back using
the information it contains, so that the node that initiated the broadcast receives a
valid route towards the destination. DSR’s approach does not need to store data on
intermediate nodes in the WSN, but on the other hand it relays on source routing
and its packets need to contain the sequence of the hops to perform to get to the
destination, and hence the packets can get quite large.

2.1.1 Routing trees

Even simple data gathering applications need some kind of routing to transmit
readings collected by sensors to the sink, possibly with some aggregation along the
path.

A technique that can be employed to route data to the sink is using routing
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trees[118]. A single sensor (usually the sink) broadcasts its interest in data, and
as the request propagates through the WSN, each node just remembers its parent
toward the broadcast originator, in such a way that the global structure is that of a
tree. When a sensor needs to send data up the tree towards the sink, it sends them
towards its parent in tree.

A refinement of this paradigm is the routing tree, used in Directed Diffusion[74,
154]. Data are named by meta-data that describe them, then the data consumer (a
sink) injects a request for named data (called interest) into the WSN by means of
a broadcast. The interest instructs the sensors to send any data matching with the
interest to the sink. Interest dissemination sets up a routing tree rooted in the sink,
and this tree is used to route the data.

Routing trees are very easy to construct and maintain but this approach is not
suitable for more complex applications that require end-to-end communication.

2.1.2 Geographic routing

Geographic routing naturally supports end-to-end communication. The paradig-
matic protocol for this kind of routing is Greedy Perimeter Stateless Routing (GPSR),
that was introduced in [94].

In GPSR, all nodes are assigned a location according to some coordinate system
and a distance is defined for any two locations. Each node periodically broadcasts
its location to its local neighbors.

The routing is composed by two operation modes, greedy and perimeter, that
are repeated until the destination is reached. One operation mode is the greedy for-
warding. The second operation mode is the recovery mode used to grant guaranteed
delivery to the protocol.

Greedy Routing means that, on the basis of the destination location (carried
in each data packet), a node forwards the packet to the neighbor that minimizes
remaining distance (compass routing[117], is a similar algorithm that chooses the
next hop as the neighbor with the smallest angular distance to the destination).
Although greedy routing is extremely simple and quite effective, some problems
have to be solved:

1. what happens when greedy routing fails. Greedy routing alone cannot guar-
antee delivery in every possible network topology. Resorting to flooding solves
the problem but at a high cost. The solution is to integrate greedy mode with
a special fallback mode that is entered when greedy mode fails.

2. how a node learns about its coordinates. This can be considered a localization
problem, that involves assigning a tuple of coordinates to each node. An
obvious possibility is to use a physical (geographical) coordinate system with
nodes equipped with GPS (or manually configured) or let nodes approximate
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Figure 2.3: GPSR routing around a void region.

their physical position from connectivity information with only a few GPS-
equipped anchor nodes. An alternative to real coordinates is to run a protocol
that assigns virtual coordinates to all the nodes[95].

A fallback mode for geographical routing is the one employed by GPSR. If the
packet reaches a node whose neighbors are all farther than itself to the destination
(i.e. it finds a void region), GPSR switches to the perimeter mode. In perimeter
mode, a packet is forwarded in the planarized topology in order to turn around the
void region. In this mode, the packet is forwarded clockwise along the nodes be-
longing to the perimeter surrounding the void. For this purpose GPSR periodically
computes a planarized topology of the WSN by using a distributed computation
of the Gabriel Graph (GG)[98] or of the Relative Neighborhood Graph (RNG)[97].
The perimeter mode procedure traverses faces in planar graphs ([87] introduced this
concept) and it ends when greedy routing are able to safely take over again (e.g.,
the current node is closer to the destination than the node where greedy routing
failed). Two-dimensionality of the graph is mandatory since the face traversal mode
is applicable only to planar graphs (i.e., having no intersecting edges). If the desti-
nation (x, y) does not correspond to any sensor, the perimeter mode of GPSR goes
around (x, y) and locates the closest sensor to the destination, that is called the the
home node for (x, y).

Figure 2.3 shows an example of GPSR execution. Source is routing a packet to
Destination and it routes the packet to node A and then B using the greedy mode.
Since B is closer to Destination than any of its neighbors, it switches to perimeter
mode. Afterwards, the packet reaches node D that is closer to Destination than the
perimeter mode initiator, hence the routing is switched back to greedy mode and
the packet reaches Destination.

Although geographic routing is likely to contribute to reducing the routing over-
head on the sensors, it requires that the sensors be aware of their location. There
are scenarios where GPS is considered too expensive with respect to the target ap-
plication or because it is not available at all (note that popular sensor platforms
provide GPS only as an option [115]), or in the cases where the location information
of the sensors is unsuitable to support geographic routing (for instance in a domotic
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environment). These scenarios introduce a need for virtual coordinates assign-
ment, to support geographic routing. In the virtual coordinates approaches, the
nodes are assigned (virtual) coordinates that are unrelated to the nodes’ physical
positions, and which are used exclusively for data delivery. For example, the Virtual

Coordinate assignment protocol (VCap)[91] starts by electing 3 anchors that are as
far away from each other as possible, and then the protocol assigns to all the sensors
3 coordinates that are the hop distance from the three anchors.

Figure 2.4: Polar coordinates assignment in GEM.

2.1.3 Virtual coordinates

Issues related with the use of GPSR in practical settings have been discussed in [100].
To solve these problems new solutions were proposed. An example of geographical
routing protocol based on virtual coordinates is Graph EMbedding (GEM)[75], that
proposes to use graph embedding for WSNs, that defines a set of virtual coordinates
that can be used for routing and DCS in place of true geographic coordinates. GEM
distributively defines a Virtual Polar Coordinate System (VPCS) and uses a Virtual
Polar Coordinate Routing (VPCR) algorithm to route over the virtual coordinates.
VPCS is obtained by assigning each node a level in a sink-rooted tree (as the hop
count distance) and a virtual angular range from a fixed size interval. The root
gets the full size interval while its children are assigned a subrange proportional
to the size of their respective subtrees. The subranges are consecutively assigned
to children according to increasing angular position with respect to the root. The
process is repeated recursively by each non leaf node (see for example Figure 2.4).
An optimization over the routing tree is that nodes at the same level that are
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contiguous (according to the assigned subrange) and that can hear each other are
connected by a cross link edge. VPCR routing takes place over the tree level and
cross link edges defined above. When a node must forward a packet it selects the
neighbor which has an angular range that is closer to the final destination than its
own range. If such a neighbor does not exists (e.g., a cross link is missing in the
topology) the node simply forwards the packet to its parent in the tree. Eventually
the packet either reaches the destination or an ancestor of the destination, in which
case it can be routed down the tree. DCS can be supported by using a function
mapping a data name to a virtual coordinate in VPCS so that VPCR can be used
to reach the node storing the data item.

An alternative routing protocol is Beacon Vector Routing(BVR)[92], that bases
its coordinate system on a set of randomly chosen anchor nodes and defines co-
ordinates as the hop distances to such anchors. Its metric function embodies the
preference of moving toward an anchor if it is closer to the destination than to the
forwarding node but also takes into account that moving away from an anchor is
not always good when the destination is farther from it than the current node (the
anchor might lie in between the two nodes and moving away might mean going in
the wrong direction). When greedy routing fails BVR routes the packet along the
path to the anchor that is closest to the destination. Each node on the path will
first try greedy forwarding and send the packet to its parent in case of failure. If the
packet reaches the anchor, this node reverts to a scoped flooding, the scope range
being the destination’s hop distance to the anchor.

2.1.4 Hierarchical routing

Greedy routing is efficient in areas densely and regularly populated with nodes.
It fails in the presence of voids or obstacles that introduce discontinuities in the
topological connectivity structure. Recently developed alternatives to greedy routing
consider taking a compact representation of the global sensor network topology
structure and storing such representation at all nodes. The representation identifies
and divides the network into a set of topologically regular regions. A local coordinate
system is defined within each region and a greedy-like routing algorithm suffices to
perform intra region packet forwarding. The role of the representation is to glue
the regions together and drive long range routing across the network. Routing
decisions within a given node consist of identifying an inter region path from the
current node to the destination, and using local (greedy-like) routing to reach the
next region in the path or the final destination (if it is in the current region). One
of the disadvantages of these approaches lies in the complexity of deriving the high
level topological structure of the whole network. Also the size of this representation
must be small enough to be stored at each node, which precludes very articulated
networks (e.g., sparse networks). Finally, local coordinate systems within regions
tend to be a little more complex than integer tuples (as in flat greedy routing) and
so are the corresponding greedy-like routing functions.
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Medial Axis based naming and routing Protocol (MAP)[96] uses the medial axis
concept to represent the high level topology of the sensor network. The medial
axis is defined as the set of points with at least two closest points on the network
boundary and is a sort of skeleton for the WSN. Adjacent points (nodes) with two
closest boundary points constitute segments of the medial axis. Segments terminate
at medial vertices: points with more than two closest boundary points. Segments,
chords connecting medial vertices with their closest boundary points and the network
boundary define regions.

Another solution based on hierarchical virtual coordinates, is the Gradient Landmark-
based Distributed Routing protocol (GLIDER)[93]. GLIDER first selects a set of
landmarks and for each landmark u it defines a tile as the region of points that
are closer to u than to any other landmark. The high level network topology infor-
mation consists of the tiles (as graph nodes) and information on tile adjacency (as
graph edges), and it is used to plan inter tile routing, to reach the tile where the
destination resides. Within a tile, GLIDER assigns each node a set of coordinates
based on the id of the closest landmark and the distance to the closest landmark and
to the ones of the neighboring tiles. Routing from node a to node b consists in a two
step process. At each hop, the high level topology graph is consulted to determine
the next tile. Intra tile routing then chooses the next hop as the neighbor that is
closest to the landmark of the next tile (local node coordinates include distances to
landmarks of all adjacent regions). When the packet finally reaches the destination
tile, intra tile routing directs the packet toward the destination node. Intra tile
routing falls back to tile flooding when it reaches a local minimum.

2.1.5 Gossiping mechanisms

The Network layers described so far offer routing capabilities to the upper layers and
to the application. The layer lets a node send data in a point-to-point fashion, or it
lets a node broadcast data to all the nodes in the WSN. On the other hand, some
Network layers implement mechanisms that transfer data in a different fashion. For
example, if the goal of data transmission is dispersing the data over all the WSN,
gossiping protocols can be used by the Network layer.

Nodes employing a gossiping protocol communicate in a homogeneous fashion
with one another, so as to spread information. Nodes choose their recipient for
each communication step according to some underlying deterministic or random-
ized algorithm, and the algorithm also prescribes which data are exchanged in each
communication step.

A basic version of gossiping protocol can operate as follows. Let us consider a
WSN of N sensors positioned at the lattice points of a

√
N ×

√
N region of the

plane, monitoring conditions about the underlying environment. Let us assume
that there is an underlying mechanism supporting an abstraction of point-to-point
communication: in a single virtual “step”, any node can send a message to any
other node, regardless of the distance separating them in the plane. Two simple
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approaches at dispersing data over the WSN are

• Uniform gossip. In each step, each node u chooses a node v uniformly at
random (i.e. v is not necessarily a neighbor of u) , and forwards to v all the data
it has. An analysis of the algorithm, performed for example in [125, 139] states
that with high probability, all nodes will receive a copy of a given message m
within O(log N) steps of its initial appearance.

• Neighbor flooding. In each step, each node u chooses one of its closest
neighbors v in the plane, according to a round-robin ordering, and forwards to
v all its data. Any node v that is at distance d from the origin of a message m
will receive a forwarded copy of m within O(d) steps of its initial appearance.
However, the time it takes for all nodes to obtain a given message under this
scheme is θ(

√
N).

Gossiping has been well studied in the past, and different versions of this algo-
rithm select next hop following different logics (neighbors [126, 127, 128, 129, 130],
uniform random node in the network [134], node chosen with non-uniform distribu-
tion [135, 138, 139]), and what information is exchanged between two gossip partners
(simply a message, or linear functions/projections [126, 127, 128, 137, 136]). In a
variety of contexts, the use of randomization to propagate information has been
found to provide better reliability and scalability than more regimented determinis-
tic approaches.

Of particular relevance for this thesis is spatial gossiping, proposed by Kempe et
al in [135]. Spatial gossiping prescribes to choose next routing target leveraging on
spatial proximity: a node at distance d from the origin is chosen with a probability
proportional to 1/dα, with α being a network-wide constant.

The mean cost of one routing step and the total number of routing steps that are
needed to disseminate data to all the WSN depend on α and it is possible to estimate
them if sensors are distributed in the WSN with an uniform distribution. In partic-
ular, the work that proposed the network resource location service Astrolabe[135]
showed that with α ∈ (2, 4), the number of rounds is polylog N , the cost of each
round measured in frame-level sends operation is O(n log n), and hence the total
cost to disperse a datum to all the nodes in the WSN is O(n polylog n).

2.2 Data Management layer

The final goal of a WSN is to gather data from the environment and to route it
to data consumers, and the Data Management layer is responsible for controlling
dataflows and managing the exchange of data between nodes, towards the data
consumers, with the option of caching the data into the WSN before transferring
them out of the WSN. The current paradigm considers that data exit the WSN via
special sensors, called sink nodes. The sink nodes are gateway that are connected
to both the WSN and an external network, like the internet.
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Data can reach the sink in three ways:

1. local storage: data are stored on a set of sensors that depends on the sensor
that produced the data. When the sink wants to access the data, it must
retrieve them explicitly from the sensors.

2. external storage: data are sent to the sink as soon as it is produced.

3. in-network storage: produced data are sent to a subset of the sensors of the
WSN, and they pre-process and aggregate them. When a sink wants to access
the data, it contacts the nodes with an unicast query and it asks for the data
it is interested into.

This section presents some examples of local and external storage techniques,
and it gives a survey of the state-of-the-art of in-network storage techniques.

2.2.1 Local and External Storage

local storage is a Data Management paradigm that prescribes data to be stored
on a set of sensors that depends on the sensor producing them. The most common
implementation of this paradigm stores data on the sensor producing them. When
the sink wants to access the data, it must send a request to the sensors that stored
them. This approach presents some limitations. The first is that, if some sensors
detect a lot of events, their related sets of sensors become burdened by storing more
data and hence they deplete their resources earlier (battery, memory, etc) A second
problem is that the sink does not usually know in advance which sensor is producing
data, and hence the sink must broadcast a request to contact every node for the
data it is interested into.

external storage is another approach where data are sent to the sink as soon
as they are produced. Main drawbacks of this approach are that data can not be
pre-processed and aggregated with other data. Moreover, if there is more than one
sink node, data must be duplicated and sent to each sink. Finally, the sink must
be always connected to the WSN, or the sink would miss data produced while it is
away.

Local storage

A number of proposals for WSN middleware are based on the local storage paradigm,
since it is the most obvious paradigm to cope with discontinuous connection of
the sink to the WSN. The freedom in defining the service to be offered forces the
application developer to consider the sensor as a storage for time series of data,
hence implementing a local storage solution. The most common implementation of
local storage stores data locally on the sensor collecting them.

The work describing tinyDSM [90], presented substantially a local storage Data
Management layer. This middleware allows a node to ask its neighbors to replicate
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data, hence realizing a high-availability local storage system. When a sink queries
the data, data replication assures the information to be available even if some nodes
are exhausted or in sleep mode.

Some of the process-based static entities middleware, like MiLAN [53], and some
of the event-based ones, like SensorWare[52], adopt local storage solutions. Also
in this case, the middleware implements a local storage Data Management layer to
cope with a generic requirements on the application that must be supported.

The middleware presented in [140] proposes a local storage solution that uses
a kind of encoding that enables a fully distributed computation of the code. The
technique refers to a model featuring a set V1 of k source sensors, each producing a
single data packet, and a set V2 of n storage sensors, storing the data. The encod-
ing is based on a bipartite graph that connects each source to O(log k) randomly
selected storage sensors. The encoding is performed by each storage sensor using a
linear combination of all incoming data, where each incoming data are multiplied
by a randomly selected factor. Each storage sensor then stores the random factors
associated to each incoming datum and the result of the linear combination. The
authors show that the sink can reconstruct all k packets querying any k storage
nodes with high probability. This fully distributed encoding results in a memory
overhead that can be ignored only if the data to be encoded are much larger than
the random factors.

Another local storage technique for fully distributed coding is based on the
Growth Codes [141], and it implements linear coding using XOR operations. In
this model the sensors give to the sink codewords obtained as the XOR of different
data, and the sink performs the decoding. The goal of growth codes is to combat
with the “coupon collection phenomena” with random data collection, since in a
pure erasure coding approach, the last few data symbols are often the most diffi-
cult to get, and the coding algorithm implies that for the first data to be encoded,
only the original data are stored, and only after some time the encoding composes a
number of data to construct the codewords to be stored. As long as the sink receives
enough codewords obtained from a single datum, it is able to obtain the different
data from the codewords.

External storage

Data Management layers implementing an external storage solution, cope with data
management by sending data to the sinks as soon as it is produced. In this paradigm,
data are stored and analyzed outside the WSN, hence the WSN’s role is limited to
data acquisition. Data Management layers of this kind are usually more resource
expensive of the other Data Management layers, since they perform a large number
of data transmission operations. In this kind of Data Management layer, data can
be subject to a filter that decides if it has to be sent to the sink, but the filter must
be loose enough not to throw away any data that can become interesting for the
user application during the WSN’s lifetime.
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A refinement of this paradigm is the routing tree, that is used in Directed
Diffusion[74], that is a middleware that implements an External storage system
that is reprogrammable on-the-fly using interest propagation. Data are named by
meta-data that describe them, then the data consumer (a sink) disperses a message
into the WSN by a broadcast to instruct nodes to send him data by a multi-hop
routing tree that is set up by the interest dispersal: every node takes note about the
node he received the interest from, and it sets it up as the next step in a routing
process towards the data consumer. At the same time, every node starts considering
data pertaining to a certain category as “interesting data” and, instead of discarding
them, they send it along the gradient created by the interest dispersal towards the
sink. Some database Programming Abstraction layers (see [31, 33]) employ a refined
version of External storage, where data are sent towards the sink as soon as it is
collected, but where it is processed while it is moving up the routing tree.

Another solution of the external storage kind is publish/subscribe, where nodes
are instructed about sending data concerning interesting data when they collect
them. An example is the Data Management solution adopted in Mires [49], that sets
up data collection by means of a publish/subscribe service. Also SMEPP Light[154],
a global entity Programming Abstraction layer, uses an external storage scheme
based on routing trees.

The main difference with routing trees, is that publish/subscribe is initiated by
a node that advertises the data it can produce, and then the node is explicitly
instructed to send the data to some data consumer. In contrast, routing trees are
about flooding the WSN with an interest, that instructs all the nodes to send data
pertaining a meta-datum to the broadcast initiator.

2.2.2 In-network storage and Data Centric Storage

In-network storage is a Data Management paradigm that prescribes that pro-
duced data are sent to a subset of the sensors of the WSN, so that they pre-process,
aggregate and store them. When a sink wants to access the data, it contacts the
nodes with an unicast query and it asks them for the data it is interested into. The
main drawback of this approach is that the nodes storing (caching) the data can
die, and hence it is important to find strategies to guarantee data availability.

Data Centric Storage (DCS) is a family of in-network storage techniques,
using functions that relate different meta-data describing data to different sets of
sensors. Since in WSNs the content of the data is generally more important than
the identity of the sensors that gathered the data, a node producing a datum d
associates a meta-datum k to d, computes a set of sensors applying a function f to
the meta-datum k, and then the node sends d to the set of sensors f(k) for storage.
At the high-level, a sink directs a retrieve request towards a meta-datum k. This
operation is realized applying the same function f to the meta-datum k to identify
the set of sensors f(k) that stored the data. DSWare[50] is an example of Static
Entities Programming Abstraction layer that relies on DCS to cache data into the
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WSN before providing them to the user application.
The work described in [87] introduced Data Centric Storage (DCS) as an in-

network storage, and also compared it with local and external storage. Comparing
this approach to the external storage approach, the authors observed that in-network
storage contributes to save sensors’ energy and to improve network lifetime. Since
sensors have limited memory capacity, the storage of all the data sensed by the
WSN may result impractical, however, with Data Centric Storage it is possible to
pre-process and aggregate data and thus reduce their size.

A number of different DCS techniques has been proposed, and they differ in the
way they

1. the datum a assigned a meta-datum

2. the nodes that store the datum of a meta-datum are selected

3. the datum is routed to/from the nodes that store it

The assignment of a meta-datum to the datum is inherently application-dependent,
and it will not be discussed in this thesis. On the other hand, different DCS archi-
tectures can use different functions fi from meta-datum k to a subset fi(k) of the
sensors, and they can access different Network layers to implement routing from/to
these subsets of sensors, and the rest of this section describes the state-of-the-art of
DCS architectures based on these two characteristics.

Distributed Hash Tables

An example of Data Centric Storage approach that belongs to the world of Peer-to-
peer networks is the Distributed Hash Tables (DHT)[106]. An abstract keyspace,
such as the set of 160-bit strings, is targeted by a keyspace partitioning scheme,
that splits ownership of this keyspace among the participating nodes. An overlay
network then connects the nodes, allowing them to find the owner of any given key
in the keyspace. Let’s now associate to each file stored into the network, the SHA1
hash of the filename, that is a 160-bit key k. When a peer of the network desires to
store the file in the DHT, the peer invokes a store(k,datum), generating a store

message. The message is forwarded from node to node through the overlay network
until it reaches the single node responsible for key k as specified by the keyspace
partitioning, where the pair (k,datum) is stored. Any other client can then retrieve
the contents of the file by again hashing filename to produce k and asking any DHT
node to find the data associated with k with a message retrieve(k). The message
will again be routed through the overlay towards the node responsible for k, which
will reply with the stored data.

The most notable example of DHT, Chord[106], treats keys as points on a circle,
and the distance between two keys k1 and k2 is δ(k1, k2), that is the distance trav-
eling clockwise around the circle from k1 to k2. The circular keyspace is split into
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contiguous segments whose endpoints are the node identifiers. If i1 and i2 are two
adjacent IDs, then the node with ID i2 owns all the keys that fall between i1 and i2.

DHTs characteristically emphasize the following properties:

• Decentralization: the nodes collectively form the system without any central
coordination

• Scalability: the system should function efficiently even with thousands or mil-
lions of nodes

• Fault tolerance: the system should be reliable (in some sense) even with nodes
continuously joining, leaving, and failing

A key technique used to achieve these goals is that each node needs to coordinate
with only a few other nodes in the system most commonly, O(log n) of the n
participants so that only a limited amount of work needs to be done for each
change in membership.

Geographic Hash Table

The reference model of DCS in WSNs is the Geographic Hash Table (DCS-GHT) [87],
that constitutes the first proposal of DCS. In DCS-GHT, it is assumed that the
geographic coordinate of each sensor is known, and that each datum is described by
a meta-datum (or name). The set of sensors selected to store a datum is computed
by means of a hash function applied to the corresponding meta-datum. This function
returns a pair of geographic coordinates fitting in the area where the sensor network
is deployed.

DCS-GHT exploits the primitive store for data storage and retrieve for data
retrieval. The store primitive takes in input a datum d and its meta-datum k.
By hashing k, it produces a pair of coordinates (x, y) and uses the GPSR routing
protocol [94] (that has been described in Subsection 2.1.2) to select a set of sensors
(called home perimeter) forming a perimeter around (x, y). Then, to enforce data
persistence against sensors’ faults, the sensors in the home perimeter store a copy
of (k, d). The retrieve primitive hashes the input parameter k (the meta-datum)
to obtain the coordinate (x, y), then, by means of GPSR, it sends a request for the
data with meta-datum k to the point (x, y). When this request reaches the sensors
in the perimeter around (x, y), they send back the data they store that correspond
to k. See Figure 2.5 for an example of store and retrieve execution, where the
data producer P stores into the WSN a datum regarding a meta-datum k, and the
data consumer C asks the WSN for data regarding the same meta-datum k. Both
P and C hash k to the same location (x, y), then they route their requests towards
that location. In the case of P , the store primitive semantics involve its request by
storing a copy of its datum on all the nodes in the home perimeter around (x, y).
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Figure 2.5: P stores data, C retrieves them, using DCS-GHT

In the case of C, a retrieve response is generated as soon as the query reaches one
of the nodes belonging to the perimeter around (x, y).

Although innovative, DCS-GHT presents a number of limitations when deployed
on real WSNs. It assumes a uniform distribution of sensors and uniformly hashes
meta-data on them. Moreover, if WSN produces a large amount of data associated to
the same meta-datum, all such data will be stored by the DCS-GHT within the same
home perimeter, thus overloading sensors on that perimeter. To avoid this problem
DCS-GHT employs structured replication(SR), that is a technique that augments
event names with a hierarchy depth d and uses a hierarchical decomposition of the
key space. Let us consider a single meta-datum that is hashed into a location r,
and let us call r the root location for the meta-datum, and d the hierarchy depth.
Let us consider the sensing area as the 0-level cell, and given an i-level cell, let us
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Figure 2.6: Example of Structured Replication with a 2-level decomposition

divide recursively it into 4 smaller cells, splitting each coordinate span in half. For
each hierarchy depth, there 4d cells, and 4d − 1 mirror images of r, replicating the
position of r in its d-level cell into the other cells of d hierarchy level.

For example, Figure 2.6 shows a d = 2 decomposition, and the mirror images of
the root point (3, 3) at every level. A node that detects an event, now stores the
event at the mirror closest to its location, which is easily computable. Thus, SR
reduces the storage cost at one node for one key with n detected events from O(

√
n)

to O(
√

n/2d). DCS-GHT must route queries to all mirror nodes, to find all data
stored into the 4d mirrors of r.

SR is efficient in limiting the quantity of data stored around a single home node,
but this is not sufficient by itself to ensure load balancing, in fact the storage load
can become unbalanced even if there is not an unbalance in the meta-data.

Resilient Data Centric Storage (R-DCS)[76] is an extension of DCS-GHT that
addresses the issue of having all data of the same type stored on the same set of
nodes. It divides the sensing area into zones, and each sensor can either be a monitor

node, a replica node, or a normal node, with respect to a given event type. A normal
node generates events and forwards packets, but it does not store data pertaining
the given event type. Each zone has one sensor that is on monitor mode for each
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event type, and these sensor know the location of replica nodes and forward the
event data the closest replica node. Replica nodes, finally, are monitor nodes that
can store data regarding a given event type.

Bottom line, R-DCS adds to the efficiency of the DCS system limiting the data
transmission from the sensor producing a datum to the monitor node of its zone,
and then to the closest replica node. Moreover, resiliency to failures is improved
since data are not replicated locally, but instead it is located on replica nodes that
are far away from each other, and hence a disaster, that would destroy all sensors
close to it, can not exterminate all replica nodes for a given meta-datum.

Another variant of DCS-GHT is Rendezvous Regions (RR)[77], that has mecha-
nisms similar to DCS-GHT but, instead of directing queries towards an home node,
it makes use of regions in the sensing area, and of all the sensors located into those
regions. In RR the network topology is divided into geographical regions, where each
region is responsible for a set of keys, with keys representing meta-data of sensed
data, or services offered by sensors. The service or data provider stores informa-
tion in the corresponding region, and the service or data user associates directly its
query to the region. The obvious distinction between RR and DCS-GHT is using a
rendezvous region instead of a rendezvous point. Moreover, RR is also targeted to
designing geographic systems that need only approximate location information for
the nodes.

Both DCS-GHT and RR are prone to problems related to the WSN topology:
the number of sensors storing a datum depends on the number of sensors in a
perimeter, or on the population of a region. Chapter 3 will present novel DCS
techniques that let the user application control the number of sensors that store
data, hence providing Quality of Service (QoS) for Data Centric Storage.

Cell Hash Routing

Another DCS Data Management layer based on distributed hash tables is Cell Hash
Routing (CHR)[78], that is based on the notion of cells, which are a subdivision
of the plane into areas of predefined and globally known shape. CHR groups nodes
into clusters (that are sets of nodes) that are located into the same cell using a
distributed protocol (e.g. dividing the sensor field into a mesh of squares), with
the consequence that nodes are not individually addressable, because the relevant
network entity is the cluster. Then CHR uses the clusters, instead of individual
nodes, to both query the WSN and hold the values. In this architecture, produced
data are not the readings of a single sensor, but instead is a value related to a whole
cell, like the maximum temperature in the cell, or the mean humidity level.

A crucial aspect of the clustering is that there is a mapping between the iden-
tification of a cluster and its physical location, to enable the use of a geographical
routing scheme. Data are described by a meta-datum, that is hashed into geographic
coordinates as in DCS-GHT[87], then data are routed to the cell that includes that
location. As soon as the data reach the destination cell, they are stored in all the
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nodes in the cell. If the cell is empty (e.g. it has no sensor) CHR uses an approach
similar to DCS-GHT to replicate the data around the empty cell.

The advantages of this approach are the followings:

• clustering creates a structured and sparsely populated network of clusters,
where a simple protocol is sufficient for routing

• the efficiency of the routing scheme is not affected by increasing node density,
and the routing scheme also scales with increasing network sizes, because it is
localized

• since cells are immutable, clusters can receive an identification that does not
change over time, and nodes can always determine which clusters they are on,
and which clusters their neighbors belong to, even in dynamic scenarios where
nodes move from cell to cell, hence modifying their cluster identifier

The paper that proposed CHR [78] adopts a vision similar to the one in this
thesis, proposing to organize a complex middleware into layers. The paper suggests
that CHR can be used as a component to build, for example, a publish/subscribe
system. Moreover, the routing protocol is described as a variant of GPSR that works
on cells, and hence CHR approach can be considered as building over an existing
GPSR-like Network layer.

Double Rulings

Another approach to information storage and retrieval is Double Rulings[119]. Dou-
ble Rulings stores data not at a single node or its nearby neighbors, but at nodes
that follow a one-dimensional curve, while a data request travels along a set of nodes
that follow another one-dimensional curve. The curves are functions of both the lo-
cations of the producer and the consumer, and of the types of data that are stored
or retrieved. Successful retrieval is guaranteed if every retrieval curve intersects ev-
ery data storage curve. For example, assume the network is a two-dimensional grid
embedded in the plane with nodes located at all the lattice points, like in Figure 2.7.
The information storage curves follow the horizontal lines. The information retrieval
curves follow the vertical lines. Each vertical line intersects each horizontal line, thus
an information consumer can always find the data produced by the producer. This
double-ruling scheme is locality aware (if the producer and consumer are actually
near each other, they must also be near each other along the path connecting them
using the horizontal and vertical lines) and it has better fault tolerance by replicating
data on nodes that are uncorrelated with node proximity.

With real WSNs, the previous scheme is not suitable, since the network has not
such a regular topology. The paper about Double Rulings hence proposes stereo-
graphic projection, a kind of projective geometry, to map nodes onto a sphere (see
Figure 2.8), projecting points on a sphere one-to-one to points in the plane: a sphere



34 CHAPTER 2. RELATED WORK

Figure 2.7: Double ruling on a grid
.

Figure 2.8: Projective geometry, to map point between a sphere and the plane.
.
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with radius r is put tangent to the plane at the origin, and a generic point h∗ on
the plane is mapped to the intersection of the line through h∗ and the north pole
with the sphere. Stereographic projection preserves circularity (circles on the sphere
are mapped to circles in the plane) but it does not preserve distances or area. In
particular, the distortion around the north pole can be high.

Figure 2.9: Producer on longitude curve, consumer on latitude curve.
.

The double ruling scheme for points on a sphere is based on the fact that any
two great circles of the sphere must be intersected. Another solution is to consider
longitude curves for the data producer and latitude curves for the data consumer.
The meta-datum is hashed to a point in the plane, that is where the stereographic
sphere is placed. The curve that is selected for data storage is the longitude curve
that crosses the sensor performing the storage operation, for data retrieval is the
latitude curve that crossing the data consumer. See for example Figure 2.9, that
features a sensor (yellow square) that stores a datum whose meta-datum is hashed
to the black triangle. The datum is stored on the red colored sensors. The data
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consumer (pink square) travels over the blue line, that is the stereographic projection
of a latitude curve of the sphere placed on the black triangle.

K-D tree based DCS

Distributed Index for Multi-dimensional data (DIM)[105] and K-D tree based Data
Centric Storage (KDDCS)[121] are alternatives to DCS-GHT that do not need sen-
sors to know their location in the sensing area.

In DIM, the WSN is organized using a K-D tree. The leaves of the tree partition
the coverage area, and each element of the tree comprises one or zero sensors. The
tree is built using a recursive distributed algorithm, the execution of which is divided
into rounds. Each odd/even round each region of the partition that contains more
than one sensor is bisected horizontally/vertically, and all the sensors that belong
to the new regions have a bit appended to their address, specifying which half of
the region the sensor resides on.

When a datum needs to be stored in the WSN, a long binary code is generated
for the datum, and a path into the K-D tree is followed as far as possible, ending up
on a leaf. Bits of the binary code are considered one by one, and each bit leads to a
region split. When a bit leads to a region that does not exist, the datum is stored
on the sensor residing on the last region that was considered.

DIM copes with node failures by replicating information stored at a node onto
a nearby node, so that it can be reached easily in the search process, with the
constraint that this other node resides in a different region than the first one. As
a totally different alternative the back up region can be the one whose binary code
is the complement of the code for the primary region. With this alternative two
searches can be started in parallel or sequentially. Higher resilience to regional
node failures is offset by higher cost for the parallel search or longer latency. This
technique is easily generalized with a hash function that outputs several different
(possibly far away) storage points for a given event that can be searched in parallel
or sequentially.

KDDCS, on the other hand, does not split each region in half while building up
the K-D tree. Instead, it uses a weighted median, such that the same number of
sensors is on each split of the region. See for example Figure 2.10, that shows an
example of execution of the K-D tree building algorithm for KDDCS.

DCS on virtual coordinates

Most DCS mechanisms are based on geographical Network layers that operate using
the physical coordinates of the sensors. Since this approach has drawbacks (see for
example [100]), some solutions based on virtual coordinates (see Section 2.1.3) were
proposed. For instance, a system that is based on virtual coordinates was presented
in[120]. This Data Management layer is a two-level Data Centric Storage scheme
that integrates the distributed hash table idea and the double-ruling idea, using a
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Figure 2.10: K-D tree based on weighted median division of the sensing area

naming and routing infrastructure, the Gradient Landmark-based Distributed Rout-
ing protocol (GLIDER)[93], that was discussed in Subsection 2.1.4. The DCS scheme
has two levels: a distributed hash table for information storage at the tile adjacency
graph level; and a double-ruling scheme at the lower level (inside each tile), which
ensures information retrieval within each tile. A meta-datum is hashed to a tile (i.e.
the hashed tile). Based on the tile adjacency graph, the shortest path tree rooted at
the hashed tile can be computed at each node. All producers and consumers of the
same content proceed to the hashed tile following this common shortest path tree.
For a producer, data are replicated inside all the tiles (not all the nodes) along the
way from where the producer resides to the hashed tile (which we call the replication
path). The information consumer proceeds towards the hashed tile and checks each
tile on its way for the desired data (which we call the retrieval path), returns when
the retrieval path meets the replication path.

DCS on multiple trees

The middleware pathDCS[110] aims at making DCS more practical, removing the
requirement about a point-to-point routing protocol. Instead, pathDCS exploits
routing trees to find the nodes where data have to be stored.

A few nodes are defined as landmarks, and each of them builds a routing tree
over all the WSN. Each node of the WSN knows about its hop distance from each
landmark, and knows about its parent in each landmark’s routing tree. A procedural
direction is defined as a couple (landmark, number of hops) and it means moving
towards given landmark by the given number of hops, moving up the tree rooted at
the given landmark.

To implement DCS, each name is mapped to a path, and that path is defined
by an initial landmark and a set of procedural directions that are defined in terms
of other landmarks. To query or store that name, a packet goes to the designated
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landmark and thus follows a set of procedural directions; the store or query is
then executed at the node on which the path ends. The end-point of the path is
independent of where the query or store is issued from, since the path starts off by
going to a particular landmark.

DCS and Quality of Service

Quality of Service (QoS) is the ability of a mechanism to provide different priorities
to different tasks. QoS for Data Management in the WSN is the capability of the
Data Management layer to guarantee that a given datum is stored in at least a given
number of sensors, in order to provide the desired level of availability for the datum.

The state-of-the-art mechanisms discussed so far were designed for different goals,
but despite their merits, they did not take into account QoS. For example, the
number of nodes selected by CHR and GLIDER to store a datum depends on WSN
topology (population of a cell, or number of nodes on a path).

On the other hand, Chapter 3 will present novel techniques that do not rely on
WSN topology to decide the level of redundancy in the data storage. Rather, they
let the user application to select the number of nodes storing the datum in the WSN,
in order to guarantee the availability of the datum.

2.3 Programming Abstraction layer

Most applications do not need low-level access to a WSN, and a high-level per-
spective can hide the WSN under a traditional computer science appearance, like a
database[31, 33], or a publish/subscribe system[158], or an agent-based platform[70].

A thorough analysis of research papers showed that a coherent taxonomy is hard
to build, since the approaches applied to WSN middleware design are very different
and focus on different abstraction levels. For example, the Programming Abstrac-
tion layer comprises both the database approach of TinyDB[31], and the process
based approach of the virtual machine Maté[43]. Current literature has produced
taxonomies that do not agree on categories. For example, Maté is defined as a a
process based approach (like in this thesis) or as a virtual machine approach. In this
last case, the category does not really describe the way the system is programmed,
but instead focuses on the underlying structure of the layer.

In this thesis, Programming Abstraction layers are first classified into global en-
tity and local entities layers, then the local entities layers are further divided into
static local entities and mobile local entities, depending on what is addressed
by the user application.

The first category is global entity. This category is inspired by the survey of
Wang et al[8], that called it system level abstraction. The middleware that belongs
to the global entity category “abstract the WSN as a single virtual system and al-
low the programmer to express a single centralized program (global behavior)”[8],
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and the WSN is considered a single virtual machine that process the high-level
program. This approach leaves “only a small set of programming primitives for the
programmer while making transparent the low-level concerns such as the distributed
code generation, remote data access and management, and inter-node program flow
coordination”[8]. Examples of global entity are the database approach[31, 33], that
accesses the WSN like a single database management system, and the service ori-
ented interface offered by the Domain layer of MiSense[36], that considers the WSN
like a single server that offers a set of services to the application programmer.

The second and third categories let the programmer address a number of entities
interacting in the WSN, hence they can be called “local approaches”. Actually, these
two categories differs by the identity of the entities that are considered. Category
static local entities features programmable entities that do not change over time.
Most of these approaches consider the single node as the entity that is executing
the program, even if this category comprises cluster-based approaches, where the
WSN is composed by a number of clusters of sensors, and the clusters are defined at
application initialization and do not change over time. An example of this approach
is the event-driven rule-based middleware of FACTS[54], where the same application
is deployed over all the sensors, and all information is represented by facts. Rules
consist of a predicate over these facts and an action, and the action is triggered by
the rule engine whenever the predicate becomes true. Another example of the static
local entity approach is the virtual machine Maté[43], that organizes programs into
small code capsules and presents a process based interface to the user application.
The application code is processed on the local node, and the state of the application
can not migrate on different nodes. On the other hand, the virtual machine can
execute new programs that are received from the network.

The third category, mobile (local) entities, is based on programmable entities
being not in a static relation with a set of real sensors. Approaches of this category
consider soft entities that can migrate from sensor to sensor, moving their state
with themselves. This category mainly features the mobile agent middleware, like
Agilla[67]. This middleware is based on a set of agents, that own a state and have
a program flow. The agents, while executing their code, can clone and migrate to
other nodes. In particular, clone and migrate operations can have a strong or weak
semantics. Weak semantics means that only the code is transferred or cloned to the
new node, while strong semantics means that the code and the application’s state
are migrated/cloned. Thus, the agent execution resumes from where it left off. This
taxonomy does not consider Impala[56] as a mobile local entities approach, since it
only enables code updates but not state migration. The middleware Envirotrack[72],
on the other hand, fits in the category of mobile local entities. The goal of the
Envirotrack is tracking objects, like a fire or a noise emitter, and the set of sensors
that are sensing the event create a group to locate the object. As the object moves,
the set of sensors that belong to the group changes to follow the object.

The rest of this section reports state-of-the-art middleware that implement a
Programming Abstraction layer, and divides them into the three broad categories
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Figure 2.11: Programming Abstraction layers.

that were described in the first part of the section, and that are summarized into
Figure 2.11.

2.3.1 Global Entity

The middleware belonging to this category offer a view of the WSN as a single,
centralized element that allows the developer to abstract the low-level details. The
drawback is that the developer has less control on resource usage and on the algo-
rithm used for routing and data management.

Databases

The middleware in this category model the whole WSN as a distributed database
system. The user formulates data requests using a SQL-like query language, that
includes syntax for specifying sample rates as well as query duration. The high level
query is translated into a set of data acquisition, data processing and data trans-
fer operations that are carried out by the nodes in the WSN. Query optimization
evalutates the various alternatives of task allocation over the sensor, to choose the
one that minimizes energy consumption. Examples of the Database approach are
TinyDB[31], Cougar[32], MaD-WiSe[33], SINA[34], and Senceive[35].

TinyDB[31], Cougar[32] and MaD-WiSe[33] are all based on a pure database
paradigm. They essentially provide a distributed database solution appropriate
for resource-constrained sensor networks, focusing on efficient query routing and
processing. TinyDB[31] uses a SQL-like language with extensions for query duration
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and sample rates. Queries are expressed over a single sensors table that represent
all WSN sampled data. Moreover, TinyDB supports spatial aggregation operators
and data filtering. Query dissemination is done via Semantic Routing Trees (SRTs),
that are routing trees built from the sink.

Cougar[32] shares a number of features with TinyDB. Nodes are modelled as
Abstract Data Types (ADTs), and the queries can be addressed toward either single
nodes or sets of sensors that satisfy a particular condition, like the physical location
of the sensors.

MaD-WiSe[33] is a distributed database system that supports in-network query
processing, and query optimization is performed on streams that abstract data sam-
pling, by means of transformation rules based on heuristics to consider query ex-
ecution plans. Query processing is based on streams that abstract data channels
between operators of a query algebra and drive their pipelined behavior (compu-
tation and aggregation is carried out on flowing records with almost no need of
storage). Operators include selections, projections, spatial aggregates as well as
unions and joins. Currently, the ability to perform joins between streams is unique
to MaD-WiSe and permits in-network processing of data obtained from different
sources.

SINA[34] uses an attribute-based naming scheme in order to facilitate the data-
centric characteristics of sensor queries and it allows hierarchical clustering of nodes
in order to facilitate scalable operations within sensor networks. The middleware
design is based on the creation of clusters of nodes, that cooperate between them-
selves to orchestrate sensing tasks. The WSN as a whole is considered a collection
of logical datasheets. Each cluster of nodes is related to a datasheet, that is made
up of cells, each of them representing a sensor attribute, that can be a single value
or a time series. Each cell is unique, and each sensor maintains the whole datasheet.
The extensive SQL-like primitives of SINA can be used to issue queries in sensor
networks. However, it does not provide schemes to hide the faulty nature of both
sensor operations and wireless communication, leaving to the application layer the
responsibility to provide robustness and reliability for data services.

Senceive[35] is similar to the previous approaches, but based on a graphical
interface to define the operations to be performed for data gathering, in terms of
SQL-like queries. The WSN is accessed from a special server, that is also a sink to
the WSN. Query processing is performed combining all the queries that are active
on a sensor. The command is sent to the sensor to retrieve data, and the same
command can be sent to a set of nodes using multicast of broadcast routing to save
bandwidth and energy. Data are routed towards the data sink using routing trees
similar to Directed Diffusion[74] ones. Data Storage is realized running a MySQL
server on the server that is the access point to the WSN. Data are then stored and
processed on the server, and then sent back to the application. The database is also
used to store configuration for the WSN and the middleware.
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Global Service Oriented Architectures

Middleware adopting Global Service Oriented Architectures model the WSN as a
single server that offers a set of services to the application programmers.

In particular, MiSense[36] is a service-oriented component-based middleware that
supports distributed sensor applications with various performance requirements.
MiSense copes with application complexity by imposing a structure on top of the
component model in the form of composability restrictions and by offering well-
defined, service-specific interfaces to the rest of the system. MiSense breaks up
the middleware design into fine, self-contained and richly interacting components
in order to resolve the tension between the optimization requirements for specific
scenarios and the need for flexibility and reusability for developing energy efficient
WSN applications. The layered approach allows programmer to use different levels
of abstraction during application design, and the upper layer of the middleware, the
Domain layer, models the WSN as a single server that offers a set of services to
the application programmer, and allows the programmer to address the WSN by
abstracting the low-level details. The middleware is in charge of taking decisions on
communication protocols, network topology organization, sensor operation modes
and other functions typical of WSNs, to adapt the middleware to network changes.

Event Driven Global Programming

Abstract Task Graphs[39, 40] (ATaG) offers a dataflow programming model with a
graphical composition language. It is based on a data-driven program flow and a
mixed imperative-declarative specification that allows developers to declare graph-
ically the data flow and connectivity of virtual tasks and specify the functionality
of tasks using an imperative language. The application developer produces the
declarative part of the ATaG program using a GUI and a description of the target
deployment in the form of an annotated network graph (ANG). A code generator
analyzes the ATaG program, determines the I/O dependencies between tasks and
data objects, and generates code templates for the abstract tasks and data. The
programmer populates the code templates with application functionalities. The
compiler then interprets the program annotations in the context of the ANG, and
generates configuration files for each node that customize the behavior of that node
based on its role in the system. Finally, compile-ready code is generated for each
node in the network.

Magnet[42] is a more traditional Virtual Machine, that starts from considering
network-wide energy management as a primary concern in WSNs, and stating that
this functionality is best provided by a systems layer. MagnetOS is a distributed,
power-aware, adaptive operating system, that targets ad hoc and sensor networks.
MagnetOS provides a single system image of a unified Java virtual machine across
the nodes that comprise a WSN. MagnetOS optimizes energy consumption, avoids
hotspots and increases system longevity by automatically and transparently parti-
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tioning applications into components and dynamically placing these components on
nodes within the WSN. Invocation of methods rely on RMI, while the AODV[101]
protocol supports packet forwarding.

Declarative Systems

The Regiment[38] system consists of a high-level language for WSN programming,
and of a compiler that translates a global program into a node-level code. Regi-
ment allows the programmer to look at the WSN as a set of spatially-distributed
data streams, that may be defined by topological or geographic relationships be-
tween nodes. The middleware provides primitives for in-network data processing
and region manipulation. In particular, Regiment calls deglobalization the process
executed by its compiler, that transforms the network-wide representation of the
program into a node-level, event-driven program. The process maps region oper-
ation into associated spanning trees that establish region membership and permit
in-network data aggregation.

Smart Messages[41] address high-end sensors equipped with several MBs of mem-
ory, and it enables the programmer to reason in terms of Spatial Programming (SP),
a space aware programming models, that is used to program an unkown number of
volatile embedded systems in order to execute a user-defined application in a certain
geographical area. The SP runtime system maintains a mapping between spatial ref-
erences and the nodes they refer to. The mapping is kept into per-application tables,
that are persistent during the application execution. Smart Messages (SMs) are ac-
tually migratory execution units, with code and data sections, and a lightweight
execution stack. The SP program is translated into a SM program, then the nodes
cooperate to support the SM execution by providing virtual machines.

2.3.2 Local Entities

The middleware that features the Local Entities approach offer to the user appli-
cation a system composed by a number of interacting entities, and mechanisms to
orchestrate the interactions to pursue the application goal.

The advantage of this approach with respect to the Global Entity approach
is that it provides an higher degree of resource control to the developer, and its
disadvantage is the user application copes with more complexity while developing
the application, since the developer is allowed a glance at the underlying WSN
structure.

2.3.2.1 Static Local Entities

The middleware that offer a Programming Abstraction layer of the Static Local
Entities kind, adopts the traditional view of considering either a single sensor or a
set of sensors as the recipient of the program. The sets are defined at application
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startup, and the status of the single applications that run on the entities can not
migrate to different entities.

Process based

These middleware allow the developers to write applications in separate, small mod-
ules. The system injects and distributes the modules throughout the network using
tailored algorithms, aiming at minimizing overall energy consumption and resource
use.

Solutions in this category include Maté[43], ASVM[44] and DAViM[45] (of the
static local entities kind) that offer explicitly a virtual machine to the user appli-
cation for the program execution. For example, Maté[43] is a byte code interpreter
that runs on TinyOS. The user code of the application is broken into capsules of 24
byte-long instructions. Each capsule comprises a version number for its code, and
the capsules are disseminated through the network such that every time a sensor re-
ceives a newer version of a capsule, it is installed and then forwarded to the sensor’s
neighbors. Maté does not have to buffer packets nor to store large data because it
uses a synchronous model that begins execution in response to an event such as a
packet transmission or a time out. The synchronous model makes application-level
programming simpler and less prone to bugs than dealing with asynchronous event
notifications, but it limits the expressiveness of the programming model.

Another Process based approach is given by Contiki[47], that is a lightweight
operating system that supports dynamic loading and replacement of individual pro-
grams and services. Contiki is considered a Process based approach since, even
tough it is built around an event-driven kernel, it also provides preemptive multi-
threading that can be applied to individual processes linking the programs to an
apposite library. Contiki is implemented in C and it has been ported to a number of
micro-controller architectures. Contiki includes ways to reduce energy consumption,
and the total size of compiled code fits in 4KB RAM. Contiki has the ability to load
and unload individual programs at run-time. Contiki programs use native code and
can therefore be used for all types of programs including low level device drivers
without loss of execution efficiency.

Another middleware of the Process based kind is MiLAN[53], that lets program-
mers to fine-tune the network by setting QoS parameters on the basis of application
requirements. MiLAN builds on existing networking and service discovery protocols,
applications specify their sensing requirements to the middleware through a stan-
dard API, in terms of graphs describing sensor quality of service and state-based
variable requirements. The benefits that can be drawn from MiLAN are here con-
sidered like a support to the operating system, helping the application to manage
low-level mechanisms.

Impala[56] is a middleware designed to be used in the ZebraNet project, that
aims at implementing surveillance systems for wildlife environments. Impala novelty
relies in its approach to updating the application that is being executed on the
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sensors of the WSN. Applications are modular in order to enable small updates that
require little power during transmission. Even though Impala has been defined in
a number of surveys as a “Mobile Agents” approach, the only migration that can
happen in that middleware is about the code being updated with a new program,
hence this thesis considers it like a static local entities approach.

Event-based programming

Another approach to WSN middleware is based on the notion of events. There,
the application specifies interest in certain state changes of the real world (basic
events). Upon detecting such an event, the middleware sends a so-called event
notification towards interested applications. The application can also specify certain
patterns of events (compound events), such that the application is only notified if
occurred events match these patterns. In [48], a reasonably sophisticated set of
event operators for describing event patterns in sensor networks has been produced.
A crucial limitation of this solution is the complexity that is necessarily involved in
implementing it.

DSWare[50] provides data-centric and group-based services for sensor networks.
The real-time event service handles unreliability of individual sensor reports, corre-
lation among different sensor observations, and inherent real-time characteristics of
events. The event service supports confidence functions which are designed based on
data semantics, including relative importance of sub-events and historical patterns.
When the failure rate is high, the event service enables partial detection of critical
events to be reported in a timely manner. It can also be applied to differentiate be-
tween the occurrences of events and false alarms. Data are cached into the network
using Data Centric Storage (see Subsection 2.2.2) and an SQL-like script language is
used to address a set of sensors for the event that the application wants to subscribe
for.

Abstract Regions[51] is a middleware composed by a family of spatial operators
that capture local communication within the regions of the network, which may
be defined in terms of radio connectivity, geographic location, or other properties
of nodes. Abstract Regions provides interfaces for identifying neighboring nodes,
sharing data among neighbors, and performing reductions on shared variables. In
addition, Abstract Regions exposes the trade-off between the accuracy and resource
usage of communication operations. Applications can adapt to changing network
conditions by tuning the energy and bandwidth usage of the underlying communi-
cation substrate. The group identity is static and set at application start-up and
hence this approach can not perform state migration between nodes.

SensorWare[52] is a middleware that offers good flexibility to the development,
at the expense of increased responsibility for the programmer. SensorWare provides
a language model to implement distributed algorithms, trying to hide unnecessary
low-level details from the application programmer and providing a way to share the
resources of a node among many applications and users that might concurrently use
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the distributed algorithm. The WSN is viewed as executing a set of collaborating
programs in a corresponding set of nodes. In SensorWare these programs are sensor
control scripts. The sensing, communication, and signal-processing resources of a
node are exposed to the control scripts that orchestrate the dataflows to assemble
custom protocols and signal processing stacks. SensorWare is also responsible for
the dynamic deployment of the distributed algorithms into the WSN. Usually, a
distributed algorithm has to be incorporated in several nodes, and hence these nodes
have to be dynamically programmed. The approach of SensorWare is to allow nodes
to program their peers, so that the user does not have to worry about deploying
the distributed algorithm (because the information on how the algorithm unfolds
lies within the algorithm), and the nodes save communication energy because they
interact with their immediate neighbors and not with the sink through multi-hop
routes.

The Mires middleware[49] is a more pragmatic publish/subscribe solution that
has been designed and implemented to run on TinyOS using nesC. It lets the applica-
tions specify interests in certain state changes of the real world and, upon detecting
such an event, a node sends a so-called event notification towards interested applica-
tions. Mires adopts a component-based programming model using active messages
to implement its publish/subscribe-based communication infrastructure.

TinyOS[46] is one of the most popular operating systems for networked embed-
ded devices. It is component-based, event-driven and highly configurable, and it
does not provide dynamic memory allocation. The programming model of TinyOS
is based on the concepts of tasks, events and commands. The task is a low priority
code piece that is run while the processor is not requested by event handlers. Com-
ponents communicate via commands, sent to lower level components, and events,
raised to upper level components. Events can preempt tasks and other events. This
concurrency mechanism is inherited from the nesC language, used to implement the
operating system. A TinyOS application is composed by a component definition file
(.comp) and a wiring description file (.desc). This wiring description defines depen-
dencies between components through the channel interface connecting components.

Marwis[57] is a middleware based on Contiki[47] (on the sensors) and Linux (on
computers managing the WSN), that aims at managing WSNs composed by different
kinds of sensors. Sensors are divided into smaller sensor subnetworks (SSNs), each
containing only sensors of one type, then a wireless mesh network (WMN) operates
as a backbone for the SSNs and as a gateway to the WSNs. A code updater running
on the sensors takes care of code replacement, and the mesh nodes (MNs) contains
a gateway to the WSN and a database of the sensors’ status and sensed data, and
are used to export the sensed data to the external user applications.

Rule-based systems

A rule-based system considers the application as composed by a program that has
to be run on a node, and that is executed whenever a condition is verified. The
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middleware FACTS[54], for example, is both event-driven and rule-based, and it
combines these paradigms to perform energy saving. The same application is de-
ployed to all the nodes, and it comprises a set of actions and a set of conditions
(rules) for the actions to be executed. All data are defined as facts, and the rules
consist of combination of a predicate over these facts and an action. The action is
triggered by the rule engine whenever the predicate becomes true.

Escape[55] is a framework that is used to simplify application development and
deployment, and it promotes the reuse of code. The framework is component-based
and it is aimed at the development of sense-and-react applications that combine the
use of sensors and actuators. The central component of the framework is a pub-
lish/subscribe service broker that manages subscriptions, and that generates data
routing towards the data subscriber. The novelty of the approach is the orches-
tration of two more components, the service layer and the Policy Manager. The
service layer offers all the services that are orthogonal to the publish/subscribe sys-
tem, like data collection, routing, and encryption. The policies are enforced on the
services offered, to ensure the correct behavior of the middleware. Policies can be
used to specify which actions are to be associated with the broker operation, and to
coordinate sensors’s and actuators’ operations.

Service Architectures for Static Local Entities

A different approach to WSN middleware is given by the ZigBee standard [58, 1].
This is a short-range multi-hop wireless protocol constructed over IEEE 802.15.4.
At the network layer it has an inherently node centric behavior, but it offers service-
oriented mechanisms to the applications. Since it offers very general services, it does
not deal with data management and collection, and it has an high degree of com-
plexity and a big footprint. The ZigBee specification includes mechanisms aimed
at limiting the sensors duty cycle, which however are configurable at network cre-
ation and that can not be adapted dynamically to the application. ZigBee defines
a framework under which the programmers develop applications in terms of Appli-
cation Objects (APO). Each ZigBee device can host up to 240 APOs, which exploit
the services offered by ZigBee which include data, binding, discovery services, and
security services. Each APO in the network is uniquely identified by combining its
endpoint address and the network address of the hosting device. In the most simple
setting, an APO consists in a limited set of attributes which can be accessed from
remote APOs using simple get, set, and event transactions. An application profile
is the specification in a standard format of the behavior of an application possibly
operating on several ZigBee devices. An application profile describes a set of de-
vices and clusters and defines the kind of data service. The basic services offered by
ZigBee are device and service discovery, binding of devices, network management
functions to manage connections/disconnections in a ZigBee network, and security
management at network level and device level.

SMEPP Light[154] is written in NesC and runs on top of TinyOS, and it was
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inspired by the European Project SMEPP[37, 151], that aimed at creating a secute,
service-oriented middleware for Embedded Peer-to-peer systems. SMEPP Light is
the version of SMEPP tailored for WSNs, and it supports a subset of SMEPP’s
primitives. In particular, SMEPP Light does not support full-fledged services, but
on the other hand it organizes the sensors into groups and provides eventing mech-
anisms, based on the directed diffusion paradigm [74], for query dissemination and
data collection. A sensor requests events from sensors belonging to the same group
and creates a routing tree rooted in the subscriber. Two levels of security are pro-
vided. Network security uses two keys that are set at compile time, while group
level security uses three keys, and it is based on a masterKey is known in advance
by all the sensors that can get into the group, and it is used to restrict the access to
the group. For energy management purposes, each group defines a duty cycle that
imposes to each node a period of activity followed by a period of inactivity, and each
subscribe can add to the activity periods to sample data from the environment and
send back the data events.

The service approach to WSN was developed also in the direction of the web
services. Open Sensor Web Architecture (OSWA)[6] aims at making various types
of web-resident sensors and instruments, discoverable, accessible and controllable via
the World Wide Web. The novelty of this approach resides in the efforts that have
been made in overcoming the obstacles related to the heterogeneity of the different
sensors and instruments that were targeted by sensor web projects.

RESTful[59] is a web service based middleware, that lets the developer interact
with a REST based web service when querying a node. The middleware bases
its energy-serving strategies on X-MAC[60] protocol, modified to be session-aware.
Multi-hop communication is implemented at application level, using a REST call on
each communication hop.

2.3.2.2 Mobile Local Entities

The middleware in the mobile local entities category do not focus the program-
mer’s attention on physical nodes or on the whole WSN. Instead, they consider
virtual nodes as the target of the programs, so that the actual node that is execut-
ing the data collection or the data processing algorithm is changed at runtime. This
paradigm is an advanced kind of node coordination, where the identity of the com-
putation is not anymore in the sensor that is performing the task, but it is instead a
virtual entity that is associated temporarily with one sensor or a set of sensors, thus
it can change over time to follow the application logic or a physical event. This last
kind of execution is directly related with applications that aim to perform target
tracking.
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Tuple Spaces and Channels

The coordination needed in WSNs has attracted the attention of the Coordination
paradigm community[61]. More specifically, different coordination models and mid-
dleware based on the Linda abstract model[62] have appeared in the area of WSNs.
Linda can be considered one of the most representative coordination languages.
It is based on a shared memory model where data are represented by elementary
data structures called tuples, and the memory is a multiset of tuples and takes the
name of “tuple space”. Examples of this class of middleware are TinyLime[63] and
TeenyLime[64]. For example, in TinyLime, a new operational scenario is assumed,
that naturally provides contextual information, does not require multi-hop com-
munication among sensors, and places reasonable computation and communication
demands on the sensors. Sensors are sparsely distributed in the environment, not
necessarily able to communicate with each other, and a set of mobile base stations
(laptops) move through space accessing the data of sensors nearby. Each base sta-
tion owns a tuple space and federated tuple spaces can be established in order to
communicate and synchronize several base stations and some client hosts.

An alternative to tuple spaces is the proposal based on the use of tuple channels[65]
in order to carry out communication and synchronization among the involved WSN
nodes. Several advantages can be obtained from the use of channels with respect to
shared memory models:

1. Architectural expressiveness: like messaging, using channels to express the
communication carried out within a distributed system is architecturally much
more expressive than using shared data spaces. With a shared data space, it
is difficult to see which components exchange data with each other.

2. Channels support data streams in a natural and suitable way. The application
programmer does not have to deal with head and tail tuples as is necessary
in a tuple space based approach to implement information streams. This
is particularly important in information-flow applications, that is the most
common architecture used in WSN applications.

3. Channel interconnection provides great flexibility for the definition of complex
and dynamic interaction protocols. Sensor data dissemination can be achieved
elegantly, allowing for data redirection, data aggregation and redundant data
elimination.

A representative of Tuple Channels middleware is TCMote[66]. This middleware
is designed to support an operational setting based on a (hierarchical) architecture
of sensing regions, each one governed by a region leader with higher capabilities
(power, memory, processing ability) than the rest of the region’s sensors. A region
leader owns a tuple channel space, which stores tuple channels used to carried out
communication and synchronization between the region’s sensors and the leader in
a single-hop way. A tuple channel is a FIFO structure that allows one-to-many
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and many-to-one communication of data structures, represented by tuples. Channel
consumption behavior contributes to dealing with the data-centric characteristics
of sensor queries. In addition, tuple channels can be dynamically interconnected
through the use of predefined and user-defined connectors, providing great flexibility
for the definition of different topologies.

Mobile Agents

In the traditional client/server-based computing architecture, data produced by mul-
tiple sources is transferred to a destination, whereas in the mobile agent based com-
puting paradigm, a task-specific executable code traverses the relevant sources to
gather the data. Mobile agents can be used to reduce the communication cost, by
moving the processing function to the data rather than bringing the data to a central
node.

Recently, mobile agents have been proposed for efficient data dissemination in
WSNs. Some proposals are Agilla[67], MAWSN[68] and actorNet[69]. We discuss
the first one as the representative of this category of middleware. Agilla can also be
considered of the “tuple space” category as agents coordinate through tuple spaces.
Agilla facilitates the rapid deployment of adaptive applications in WSNs. It allows
the programmer to create and inject mobile agents, which can migrate across the
WSN performing application-specific tasks. Mobile agents can intelligently move
or clone themselves to desired locations in response to changes in the conditions of
the environment. Each node maintains a local tuple space, and different agents can
coordinate through local or remote operations on these tuple spaces. This fluidity of
code and state has the potential to transform a WSN into a shared, general-purpose
computing platform capable of running several autonomous applications at a time.
Code allocation is performed using the tuple spaces, allowing an agent to tell Agilla
that it is interested in tuples which match a particular template.

Agent Factory Micro Edition (AFME)[70] is a middleware featuring the mobile
agent approach, that is an extension of Agent Factory[71] middleware for computa-
tionally constrained devices, like cellular phones and sensors. AFME is developed
on top of Java 2 Micro Edition (J2ME) and it implements a framework where mo-
bile agents operate under the BDI (Belief-Desire-Intention) paradigm to perform
decisions, and where the mobile agents can migrate between devices of different
capabilities, for example between personal computers and sensors. Agent design is
decoupled into core behaviors, that are constant characteristics of the agent, and
platform dependent behaviors, that are changed every time the agent migrates be-
tween different devices. Agent communication is agnostic, in the sense that agents
interact without directly referencing one another entity, hence without having to
know in advance if its peer is running on a personal computer or a sensor. When
an agent is created, it is assigned an unique identifier, then communication is ad-
dressed by means of the unique identifier, that is resolved to an agent, to forward
the message appropriately.
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Envirotrack[72] is an object-oriented middleware that aims at providing an in-
terface to the application programmer geared towards tracking the physical environ-
ment. Sensors which detect certain user-defined entities in the physical environment
form groups, one around each entity. A network abstraction layer associates a con-
text label with each such group to represent the corresponding tracked entity in
the computing system. Context labels are logical addresses of virtual hosts which
follow the external tracked entity around in the physical environment. Objects can
be attached to context labels to perform context-specific computation. The objects
are executed on the sensor group of the context label.

Aware[73] is similar to Envirotrack[72], since it has the same goal of supporting
tracking applications, but it aims also to provide seamless communication between a
network of entities with high capabilities (computers and robots, linked by Ethernet
and 802.11) and the WSN. Aware’s basic premise is to divide sensors into groups that
are located around a certain environmental condition, that characterize the physical
event to be tracked. The conditions that define the physical event are distributed
epidemically in the WSN, then each group of sensors elect a group leader. The
system supports multiple copies of the same physical event (two fires burning at the
same time) and it allows the event to join (the fires joined into one big fire) and to
split (the main fire ignited another fire down an hill) and the sensor group identifiers
are managed accordingly to stay consistent with the semantics of the group.

2.4 Dependability mechanisms

Dependability mechanisms in WSNs are becoming increasingly important, since they
are useful for different goals, ranging from network coding[108] to in-network data
storage[141]. For example, DCS has been proposed to manage in network sensed
data, but it specifies how to select the nodes that store the data, and it is agnostic to
the way that the node will actually perform the storage. Every kind of dependable
data storage must be based on some kind of redundancy on the data that are stored,
to be able to reconstruct the data if/when some nodes fail.

In [83], the authors studied the use of erasure codes in peer-to-peer networks
with frequent changes in peers’ membership. Previous comparisons[79] mostly argue
that erasure coding is the clear victor, due to huge storage savings for the same
availability levels (or conversely, huge availability gains for the same storage levels).
The work of Liskov et al, on the other hand, argues that while gains from coding
exist, they are highly dependent on the characteristics of the nodes that comprise
the overlay. In fact, when a peer leaves the network the fragments it stores are
lost, and to reconstruct them (in order to restore the desired level of redundancy)
it is necessary first to reconstruct the original data by reading a given number of
available fragments. This and the extra complexity can out-weight the benefits of
erasure codes in terms of data availability.

Along this trend of research, the paper presenting the system Total Recall[84]
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suggests a system for automatic transition from replication to erasure codes and
back, depending on the properties of the data to be stored.

2.4.1 Pure replication

Most current approaches adopt pure replication, that is the replication of the whole
data, sometimes in conjunction with the deployment of the copies in regions of
the network that are far away[87], to maximize the lifetime of the data in front of
destructive events.

In this kind of scenario, a useful approach to data management is the generation
of Index Systems[104, 107] to manage small quantity of data at a time.

2.4.2 Erasure coding

Beginning with the work of Shannon[103] in 1948, a number of redundancy tech-
niques have been designed and employed in very different areas (CD, storage[108],
etc). For example, Distributed Storage[113] is adopting solutions based on erasure
coding.

Erasure coding[89] consists in encoding a datum into a set of redundant fragments
that guarantees the survival of the datum in front of the loss (erasure) of a limited
number of fragments.

In particular, given a datum d and m keys, the n out of m coding of d consists
in m fragments (one for each key), with the property that d can be reconstructed
from any subset of n fragments, provided the keys used to construct the fragments
are known. These codes exploit a set of m = n + r keys to encode a datum d of
size L symbols into a set of m fragments of size ∼ L

n
, with the property that d

can be reconstructed if up to r fragments are lost and up to ⌊ r−e
2
⌋ fragments are

corrupted. Examples of erasure codes are Reed Solomon codes [82] and their version
IDA [81],and RNNS [111].

These techniques can lead to improvements in various aspects of WSNs. First of
all, they reduce the storage overhead for DCS. They also reduce transport costs for
the datum. Moreover, they increase the robustness of the system because the system
can use the redundancy properties of the erasure coding to recover the datum if a
packet gets lost, without having to ask it again to the WSN.

Reed Solomon Codes

Reed Solomon codes [82] are examples of erasure codes. They reduce the encoding to
a linear algebra problem, and they have been used successfully in real life scenarios,
like in RAID systems to generate the “checksum” words on redundant disks. The
Information Dispersal Algorithm (IDA)[81] is a particular Reed Solomon code and
it is the technique that is described into this subsection.
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This erasure coding method that disperses information into m fragments, such
that any n of them are enough for the initial file to be reconstructed, with each
piece having size L/n, where L is the size of the original information (measured, for
example, in characters).

With IDA, the original file is segmented into sequences of characters having
length n, and each sequence is processed by the encoding to produce a sequence of
length m. Let us denote the generic original sequence with d = {b1, ..., bn}.

The characters {bi} may be considered as integers taken from a certain range
[O...B]. For example, if the {bi} are eight-bit bytes, then 0 ≤ bi ≤ 255. Take a prime
p such that B < p. For bytes, p = 257 will suffice. All the following computations
are in Zp, that is, mod p, and d is be considered as a string of residues mod p,
that is, a string of elements in the finite field Zp.

Given n and m as the parameters of the erasure code, n vectors ai = (ai1, ..., ain) ∈
Zn

p , 1 ≤ i ≤ m are chosen, such that every subset of n different vectors are linearly
independent. Alternatively, it will suffice to assume that with high probability, a
randomly chosen subset of n vectors in {a1, ..., am} is linearly independent.

Vectors ai are then organized into a rectangular matrix, and the encoding of the
original data are ci =

∑

j aijbj, with the operation performed on Zp.
If n pieces of encoded data are given, for example c = cf1 , ..., cfn

, it is possible
to reconstruct b1, ..., bn as follows. Let A be the matrix obtained composing by
juxtaposing af1 through afn

, A can be inverted since the ai vectors are linearly
independent and original data are b = A−1c.

Redundant Residue Number Systems

Erasure coding can be implemented with Redundant Residue Number Systems
(RRNS )[109], as described in [111]. The RRNS code is defined as follows. Given
m = n + r pairwise prime, positive integers m1, ... , mn+r called moduli, let
M = Πn

p=1mp, MR = Πn+r
p=n+1mp, and, without loss of generality, mp > mp−1 for

each p ∈ [2, n]. Given any non-negative integer X, let xp = X mod mp be the
residue of X modulo mp.

The number system representing integers in [0, M) with the (n + r)-tuples of
their residues modulo m1, ... ,mn+r is called the Redundant Residue Number System
(RRNS ) of moduli m1, ... ,mn+r, range M and redundancy MR [111, 112].

For every (n + r)-tuple (x1, .. ,xn+r), the corresponding integer X can be recon-
structed by means of the Chinese Remainder Theorem [111]:

X =

(

n+r
∑

p=1

(

MMR

mp

(xpβp)mp

)

)

MMR

where, for each p ∈ [1, n], βp =
〈

MMR

mp

〉

mp

is the multiplicative inverse of

MMR/mp modulo mp, that is,
(

MMR

mp

)

mp

= 1, and βp is in the range [0, mp).
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Although the given RRNS can provide unique representations to all integers
in the range [0, MMR) [111, 112], the legitimate range of representation is limited
to [0, M), and the corresponding (n + r)-tuples, are called legitimate. Integers in
[M, MMR) and the corresponding (n + r)-tuples are called illegitimate. Given an
RRNS of range M and redundancy MR, with moduli m1, ... ,mn+r, let (x1, ..., xn+r)
be the legitimate representation of some X in [0, M). An erasure of multiplicity e
is an event making unavailable e arbitrary digits in the representation, and an error

of multiplicity c is an event transforming c arbitrary, unknown digits. If e + 2c ≤ r
then the RRNS can correct the errors to reconstruct X.

If the moduli are single precision integers, the encoding/decoding operations can
be executed in linear time using single precision operations, and the code efficiency
in terms of storage overhead is optimal or nearly optimal in practical applications.
Thus, if the range of representation of the data is [0, M), then each datum can be
represented by L = ⌈log2 M⌉ bits, and the largest modulo of the RRNS used for
encoding is mP , then each fragment can be represented by at most Ln = ⌈log2 mP ⌉,
where Ln ∼ L/n [85].



Chapter 3

Data Centric Storage

This chapter reports the results achieved in this thesis regarding Data Centric Stor-
age. The layered approach to the middleware design proposed in this thesis implies
that different Data Management layers can offer similar semantics to the higher lay-
ers. On the other hand, the Data Management layer uses a Network layer, and it
can benefit of the properties of different Network layers to improve its capabilities.

The problem of managing a large quantity of sensors is not only theoretical.
In 2002, a large WSN was deployed on Great Duck Island[144], and during the
Summer of 2003, about 200 motes monitored the nesting burrows of Storm Petrels,
a kind of endangered sea bird; scientists used them to monitor burrow occupancy
and the conditions surrounding burrows that are correlated with birds coming or
going. A large WSN featuring a uniform distribution was deployed starting in
2001 at the James Reserve[145], in Southern California. The topology chosen for
the WSN was the grid, that features a uniform distribution of sensors. Another
experimental, large-scale uniformly distributed WSN was deployed in a vineyard in
Oregon in 2003[146] to monitor the vines. The WSN macroscope[147], based on
TinyDB (see Subsection 2.3), recorded 44 days in the life of a 70-meter tall redwood
tree, capturing a detailed picture of the complex spatial variation and temporal
dynamics of the microclimate surrounding the tree. The Intel Lab WSN[148] consists
of 54 sensors, deployed in the Intel Lab at Berkeley University, and it was used to
collect various data from the lab environment; the WSN topology was close to
an uniform distribution[149]. Another large WSN deployment is the network for
building infrastructure monitoring and control[150]; this scenario involves a large
number of devices that need to last as long as possible with little or no human
intervention. The described WSN were deployed by hand, with the objective of
attaining a given coverage of the sensing area, and for this reason the distribution
of the sensors can be modeled by a uniform distribution. In other contexts, non-
uniform distributions can appear, and an example can be the Gaussian, where more
sensors are deployed in the center of the area targeted by the WSN, and less sensors
are in the outer part of the sensing area. Although the described WSN deployments
are not DCS-based, we believe that future large deployments of WSN may benefit
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by a DCS-like organization due to its reliability and to its intrinsic capability of
supporting unmanned and autonomous operations in the WSN.

Most state-of-the-art Network layers for WSNs use either a geographical ap-
proach, like the GPSR[94] protocol, or a hierarchical approach, like the tree-based
protocol used by ZigBee[58]. Sections 3.1 and 3.2 present two different protocols that
implement DCS over these two families of Network layers. Q-NiGHT (Section 3.1)
uses a modified version of GPSR and a generalized hash function to offer quality of
service capabilities to WSNs based on geographical routing, and it addresses also
non-uniform WSNs. Z-DaSt (Section 3.2) implements DCS over ZigBee networks,
to exploit the network that is realized by sensors operating under that industrial
standard.

Current research trends about DCS have considered the use of different general-
izations of the hash function. In particular, much research work has been devoted
to the use of locality preserving hashing[114]: given a set of elements {xi}, a set of
elements {yi}, a distance d1(xi, xj) for the elements in the first set and a distance
d2(yi, yj) for the elements in the second set, a locality preserving hashing is a func-
tion from {xi} to {yi} such that, if d1(xi, xj) is small, also d2(hash(xi), hash(xj)) is
small. In this thesis, locality preservation is not among the goals of the research
work, and hence the generalization of hashing that was considered is not the local-
ity preserving hashing. Both Q-NiGHT (Section 3.1) and Z-DaSt (Section 3.2), use
hashing only for load balancing, and they do not address the issue of placing similar
meta-data to sensors that are close to each other.

3.1 Load Balancing and Non Uniformity in DCS

As anticipated in Subsection 2.2.2, in-network storage of data and specifically Data
Centric Storage are considered promising alternatives to external storage since they
contribute to reduce the communication overhead inside the network and to favor
data aggregation. Recent approaches to in-network data storage rely on Geographic
Hash Tables (DCS-GHT)[87] for efficient data storage and retrieval. These ap-
proaches, however, assume that sensors are uniformly distributed in the sensor field,
which is seldom true in real applications. Also they do not allow to tune the redun-
dancy level in the storage according to the importance of the data to be stored. To
deal with these issues, this section proposes a Data Management layer that uses a
generalized hash function, a modified version of GPSR, and a novel dispersal mech-
anism to implement a DCS over geographical routing mechanisms. Experiments
based on simulation show that our dispersal protocol has good load balancing capa-
bilities, and it sensibly reduces data losses due to unbalanced storage load.

In DCS-GHT, each datum d is associated with a meta-datum k. The meta-
datum k is hashed to a pair of destination coordinates (x, y) = f(k) on the sensing
area and the datum d is stored on sensors close to the destination (x, y). Sensors
that actually store the datum are called home perimeter for that datum and may
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vary in number and in actual distance from (x, y) as they correspond to the nodes
traversed by GPSR in perimeter mode (as detailed in Subsections 2.2.2 and 2.1.2).

This section presents an analysis of the behavior of DCS-GHT performed by
means of simulations. In particular, the focus is on the effects of using a uni-
formly distributed hashing on non-uniformly distributed WSNs and the effects of
using perimeters comprising an unpredictable number of sensors. The results show
that, even on uniformly distributed sensors, the amount of stored data per sensor is
extremely variable with DCS-GHT, which may lead to data losses in overburdened
sensors. This phenomenon is even worse if the sensors are not uniformly distributed.

Based on those results, the rest of the section introduces a novel approach to the
dispersal of sensed data in WSNs. The approach considers that each sensor knows
an approximation D of the distribution of the sensors in the WSN. For example,
the Stripes protocol[124] can be used to obtain that information. Then D is used to
bias the hash function in order to distribute the destination coordinates according
to the sensor distribution (more data stored on more densely populated areas in the
sensing field). Finally, a datum is replicated according to a QoS level that depends
on the importance of the datum (as decided by the user). Simulations performed
using NS-2[116] show that this approach guarantees better load balancing of storage
with regard to DCS-GHT, and that it reduces the loss of data due to overburdened
sensors.

In this thesis, the density of a WSN is defined as the mean number of neighbors
per node, hence, if A is the area (measured in square meters) of the region where the
sensors are deployed, N is the number of deployed sensors, and t is the transmission
radius of the nodes (expressed in meters), the density ρ is:

ρ =
Nπt2

A

The results described in this section have been presented in [159, 157].

3.1.1 Load unbalance in DCS-GHT

This subsection presents an analysis of the behavior of DCS-GHT. DCS-GHT per-
forms data storage by replicating a datum in all the sensors belonging to a home
perimeter. This perimeter is chosen around a destination coordinate (x, y) that
is computed by hashing a meta-datum describing the datum. The hash function
assumes uniform distribution of meta-data and sensors. Moreover, the size of the
home perimeter is determined by GPSR[94] and depends on topological properties
of the WSN, thus its size is not controlled by DCS-GHT. This behavior causes a load
unbalance in the storage of data with consequent data losses on overloaded sensors.
The simulations reported in this subsection assess such unbalance and investigate
its main causes.

The simulations consider WSNs deployed in a square area, with a side L = 200m,
and a transmission range of the sensors of t = 10m. In all the simulations, the WSN
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Figure 3.1: Fraction of sensors that leak some data for DCS-GHT.
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Figure 3.2: Fraction of data that are leaked out of sensors for DCS-GHT.

density is in the range [7, 30] to ensure network connectivity with high probability
and to study the scalability on high network densities, and the simulations feature
both uniform and Gaussian distribution of the sensors. The simulator implements
DCS-GHT with GPSR and planarization with GG[98] or RNG[97]. In each sim-
ulation run, the simulator generates a set of network topologies (according to the
chosen sensor distribution); for each topology the simulator generates a number of
store operations (where the source of the store and the meta-data are randomly
chosen with uniform distribution) and it computes the average storage load of the
sensors and the average size of the home perimeter, and their respective standard
deviations.

The results presented in this subsection refer only to the case where GPSR uses
GG for planarization; however the results obtained with RNG planarization are
analogous.
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Average data leakage

The first set of simulations are aimed at evaluating the average load of the sensors
and the leakage of stored data. Data leakage occurs when a sensor serves too many
store operations, that saturate the sensor’s memory. In the simulation experiments,
sensors have storage capacity of 512KB (as it is the case with the Crossbow Mica
family[115]), and the simulator considers a network density and generates a set of
uniformly distributed WSNs.

For each network, the simulator executes a number of store operations for each
sensor, and it computes the number of data that each sensor has to store. If the
number of data to be stored by a sensor exceeds its storage capacity, then the
simulator computes the number of data that the sensor should leak in order to
accommodate the new incoming data. Finally the simulator computes the total
quantity of lost data.

In the simulations we assume a case in which each put requests the storage of
8 bytes (which are sufficient to represent a key and a simple transducer reading).
Moreover, since the memory overhead is dependent on the amount of data produced
by the sensors, we assume that for each sensor this figure is smaller than its storage
capacity. In particular we assume that the number of store operations for each
sensor is such that each sensor produces as many data as it can store in 1/30 of its
storage space. Although this assumption is arbitrary, we observe that this is a very
strong limit to the data produced since each sensor has enough storage capacity to
contain data produced by many other sensors. The simulations show that, despite
of this limitation, DCS-GHT is unable to store all the produced data.

Figure 3.1 shows the fraction of sensors that leak at least one datum and Fig-
ure 3.2 shows the fraction of overall data that is actually lost. In both the figures
the x axis reports the density of the simulated networks. The result is that a sub-
stantial fraction of sensors leak data, and that at least 60% of total data gets lost,
regardless of the network density. This represents a serious problem, since the total
size of produced data has been limited to a fraction (1/30) of total memory size of
the sensors in the WSN, and yet the system is unable to store all the produced data.

Further simulations with different network densities were performed to better
understand the data leakage phenomenon. Figure 3.3 shows the load of sensors in
a WSN whose density is 10, with 95% confidence level. The x axis represents the
memory occupancy degree of a sensor, that is defined as the number of data that
are stored in a sensor, normalized to the data size produced by each node (hence a
node has an occupancy degree equal to 1 if it stores the same quantity of data it
produces). The y axis represents the mean number of sensors that actually store that
number of data, out of the 1273 sensors that are composing the WSN. Figure 3.3
shows that it is common that nodes store even 50 times the data they produce, and
that many nodes store more than 300 times the data they produce.

Figure 3.4 shows the standard deviation of the number of sensors having a given
occupancy degree, for WSNs with density 10. The simulations show that the load



60 CHAPTER 3. DATA CENTRIC STORAGE

occupancy
0 50 100 150 200 250 300 350 400 450 500

fr
e
q

u
e
n

c
y

-310

-210

-110

1

10

210

Figure 3.3: Stored data per node for DCS-GHT in uniformly ditributed WSNs, 95%
confidence level.
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Figure 3.4: Standard deviation of the frequency of having a certain quantity of
stored data per node for DCS-GHT, in uniformly ditributed WSNs.

of nodes that use DCS-GHT is unpredictable, hence the probability that a node
overloads its memory is not negligible.

Effect of WSN topology on load balance

The data leakage of DCS-GHT presented in Figures 3.3 and 3.4 is due to the way
DCS-GHT chooses the set of sensors where it stores the data, and in particular in
the fact that it does not control the size of the home perimeter.

In fact, figures 3.5 and 3.6 show the mean (with a confidence level of 95%) and
standard deviation of the size of the home perimeters in WSNs where sensors are
distributed uniformly. The figures show that, as the network density increases, the
average number of nodes in a perimeter decreases. However, the actual number of
nodes is extremely variable. This variability is mainly due to the fact that in some
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Figure 3.5: Mean of perimeter lengths (number of nodes) measured for different
densities with GG planarization, 95% confidence level.
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Figure 3.6: Standard deviation of perimeter lengths (number of nodes) measured
for different densities with GG planarization.

cases the store selects a point (x, y) that lies outside of the network boundary, and
in such cases the home perimeter is very large since it includes all the sensors on
the network border. A similar behavior occurs also when the GPSR protocol uses
RNG for the planarization.

In order to understand this border effect, another set of simulations was per-
formed, disregarding the cases where the data were stored on the external perime-
ter. The results confirmed the hypothesis that the external perimeters are the cause
of the large standard deviation. On the other hand, implementing this algorithm
on a real WSN is impractical, since there is no easy way to identify the external
perimeters when the topology is not known in advance.

A practical approach to avoid the selection of the external perimeters as home
perimeters is a mapping that shrinks the area that GPSR uses when selecting the
home perimeter: Some (5%) of the area is cut away from each border (the gray area
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Figure 3.7: The border area (gray) and the storing area (white). Mean and standard
deviation of perimeters measured for different WSN densities in case of GG using
only the white area.

in Figure 3.7), for a total of 19% of the total area, and the destination coordinates
(x, y) = f(k) computed by hashing the meta-datum k are mapped on the available
area. Another set of simulations was performed, but the results were similar to
the first scenario, where all the sensing area was available to store the data. These
results show that a mapping technique that cuts away 19% of the area is not good
enough to avoid the selection of the external perimeters as home perimeters. On the
other hand, a mapping technique that ignores a larger fraction of the sensing area
would distribute the storage load on a too small set of sensors.

The behavior of DCS-GHT on WSNs characterized by non-uniform sensor dis-
tribution, was analyzed too. In particular, the previous experiments were repeated
using a Gaussian function (σ = 1, with maximum on the center of the area, nor-
malized to have the 99 percentile matching the area) for the distribution of the
sensors on the sensing area. Figure 3.8 reports the occupancy degree of the sensors
(with 95% confidence level), Figure 3.9 shows the standard deviation of the occu-
pancy degree of sensors, Figures 3.10 reports the lengths of the perimeters (with
95% confidence level), and Figure 3.11 shows the standard deviation of the perime-
ter lengths, and can be compared to the behavior of DCS-GHT on uniform WSNs
(figures 3.3, 3.4, 3.5, and 3.6). The behavior of DCS-GHT in this scenario is worse
than with uniform distribution, because DCS-GHT applies an uniform hash func-
tion to select the perimeters, independently of the actual distribution of the sensors
in the area. This brings to a pathological state of load unbalance that is due to the
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Figure 3.8: Stored data per node for DCS-GHT in Gaussian distributed WSNs, 95%
confidence level.
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Figure 3.9: Standard deviation of the frequency of having a certain quantity of
stored data per node for DCS-GHT, in Gaussian distributed WSNs.

different quantity of data that must be managed by the sensors located in different
parts of the area: a sensor residing in a sparser region of the WSN must manage
a quantity of data that is larger than the quantity managed by a sensor in a more
densely populated region of the WSN.

3.1.2 A Novel Protocol for Data Centric Storage

The ill behavior of DCS-GHT is related mainly to three reasons:

• it assumes that the density of the sensors is known, and hence the protocol
does not provide any means to inspect the sensor density of the network

• it assumes that the sensor density is constant over all the sensing area, and
hence the hash function used by DCS-GHT to map meta-data to sensing area
locations is the uniform hash function
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Figure 3.10: Mean of DCS-GHT perimeter lengths (number of nodes) for different
WSN densities, Gaussian sensor distribution, GG planarization, 95% confidence
interval.
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Figure 3.11: Standard deviation of DCS-GHT perimeter lengths (number of nodes)
for different WSN densities, Gaussian sensor distribution, GG planarization.
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Table 3.1: RejectionHash:
RejectionHash(k, f):
Require: A key k and a function f .
Produces: A coordinate pair (x, y).

i = 0
while(true) {

(x, y, z) = Hash(k + i)
i = i + 1
if z < f(x, y)
return (x, y)

}

• DCS-GHT selects all the sensors on the home perimeters for data storage,
regardless of the size of the perimeters, and can select a perimeter that can be
very large or very small, without any means to control the size of the set of
sensors belonging to the perimeter.

The goals of coping with load balancing issues and non-uniform WSNs led to the
design of Q-NiGHT [159, 155, 161], that uses a generalized hash function to select
the home node, and an improved version of GPSR to route data to the home node.

In particular, considering that all the nodes know an estimation D of the sensor
distribution, for example using the Stripes protocol[124], a generalized hash function
is used to distribute the home nodes evenly on unevenly distributed WSNs. Each
time that a sensor performs a store or retrieve operation, the hashing module
accesses the density information D and applies a generalized hash function to map
meta-data to locations, with the goal of balancing the load of the home nodes.
Then, the Q-NiGHT protocol selects the sensors for data deployment enforcing the
QoS level requested at the grain level of the meta-datum. When a sensor performs
a store operation, instead of relying blindly on the topological properties of the
network, it specifies a QoS level for the datum, that is the number of nodes that the
store operation must use to store the datum. A retrieve operation then directs
the query towards the home node of the meta-datum computed using the same
generalized hash function used by the store operation.

Load balancing the choice of the home node

Q-NiGHT uses a generalized hash function to map each meta-datum to the sensor
that acts as home node for it. Traditional approaches are prone to load unbalance,
since standard hash functions distribute the home nodes uniformly over all the
sensing area, and hence sensors in crowded regions are assigned a smaller number
of meta-data.
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On the other hand, once the sensor distribution is known, it is possible to use a
generalized hash function to distribute home nodes, scattering data approximately
with the same distribution of the sensors. This way home node density is propor-
tional to sensor density in a region, and the mean number of meta-data assigned to
each sensor is constant over the WSN.

A generalized hash function h(k, f(x, y)) is intuitively a pseudo-random number
generator, that receives in input a probability distribution (the sensor distribution
f(x, y)) and a seed (the meta-datum k) and produces an output coordinate (x, y) ∈
R2. The use of a pseudo-random number generator ensures that different keys are
mapped w.h.p. to pairs that are not correlated to each other. The hash function used
in this module is described by Table 3.1 and it uses a strategy similar to the one used
in the rejection method [143] to produce random numbers following any probability
distribution in a limited domain. The probability function f(x, y) is normalized such
that the maximum value of f is 1, then a triple (x, y, z) is generated uniformly at
random, (x, y) being a valid coordinate in the sensing area and z ∈ [0, 1). If (x, y, z)
is below the distribution function, i.e. z < f(x, y) , the value (x, y) is accepted and
returned. Otherwise other triples (x, y, z) are generated until z < f(x, y) for some
triple.

The probability that some value (x, y) is returned by the generalized hash func-
tion is proportional to f(x, y), that is the sensor distribution in (x, y), hence this
technique balances the number of assigned meta-data over the nodes.

Enforcing QoS in the DCS

Similarly to DCS-GHT[87], Q-NiGHT is built atop the GPSR [94, 88] routing pro-
tocol and it offers the two primitives, one for data storage (store) and one for data
retrieval (retrieve). Unlike in DCS-GHT, however, the store primitive takes three
parameters: a datum d, its meta-datum k, and a QoS parameter q that expresses
the level of dependability required for the datum d. The parameter q may be ex-
pressed using different metrics and ranges according to the particular redundancy
technique used. Here q expresses the number of nodes that are required to receive
the datum d for storage. The protocol then routes d to the sensors. The sensors
apply a redundancy technique, such as pure replication[87] or erasure coding[160],
to implement data availability.

Let s be the source node of a store(d, k, q) operation. Node s firstly computes
h(k), where h is the hash function conditioned with the distribution of the sensors
f . Function h(k) returns a pair of geographic coordinates (x, y) as the destination
of the packet Pp =< (x, y), < d, k, q >>. The packet is sent to the destination using
the GPSR protocol. As in DCS-GHT, the home node is the sensor sa (of coordinates
(xa, ya)) geographically closest to the destination coordinates. Thus, sa receives the
packet as a consequence of applying GPSR. Upon the reception of packet Pp, sa

begins the dispersal protocol which selects q sensors that receives (k, d) for storage.
The dispersal protocol is iterative and uses the concept of ball. Given a sensor
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Figure 3.12: Dispersal protocol of datum d around (x, y) represented by the star,
with q = 3. (a) The home node (shaded) broadcasts d up to distance r. (b) The
nodes inside the B(x,y)(r) replay to the home node. (c) The home node sends the
confirmation to the q − 1 closest nodes.

sa of coordinates (xa, ya), let us denote with B(xa,ya)(r) the ball centered in (xa, ya)
of radius r, that is the set of sensors that are within a Euclidean distance r from
(x, y):

B(xa,ya)(r) = {sb located in(xb, yb) :

|(xa, ya), (xb, yb)| < r}

Sensor sa then sends a request for storage to all the sensors within the ball. In
turn, when a sensor in the ball receives the request for storage of Pp it acknowledges
the request to sa. The home sensor sa accepts the q− 1 acknowledgements received
from the closest sensors, it confirms them, and disregards the others. The confir-
mation requires an extra packet sent by sa. Sensors which receive the confirmation
keep the datum while the others flush them out after a timeout. If sa receives q′ < q
acknowledgments, then it executes another iteration of the dispersal protocol with
r = 2r in which it considers only the sensors in B(x′,y′)(2r)−B(x′,y′)(r), and so on.

The dispersal protocol stops as soon as q sensors have been hired or the outermost
perimeter has been reached. See for example Figure 3.12 for an execution of the
dispersal protocol with q = 3. The dispersal protocol is a simple implementation of
a geo-multicasting protocol[99].

When a sensor sg of coordinates (xg, yg) executes retrieve(k), it first computes
(x, y) = h(k), and sends a query packet Pg=<(x, y),<(xg, yg), k>> using the GPSR
protocol. Let us consider for example how the protocol works when pure replication
is used for data availability. Once the query packet reaches the home perimeter
around (x, y), according to GPSR it starts moving on the perimeter. Eventually,
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Source
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Figure 3.13: GPSR routing perimeter mode

the query packet reaches either the home sensor or another sensor containing a
replica of the datum d associated to k. This sensor stops the query packet and
replies to sg by sending back all the stored data that match with the meta-datum
k.

The complexity of the store protocol clearly depends on the choice of r as this
determines the number of iterations made to successfully contact the q storage nodes.
However, if the distribution of sensors f is known, for any given sensor sa (located
in (xa, ya)) and redundancy level q, it is possible to compute r such that, with high
probability, at least q sensors belong to the ball B(xa,ya)(r).

Enhanced GPSR

Q-NiGHT uses a modified version of GPSR[94]. Usually, when GPSR switches to
the perimeter mode, it adopts clockwise turn to reach the destination coordinates
sd = (xd, yd). This behavior leads to pathological situations as the one shown in
Figure 3.13: the right hand rule makes the packet traverse all the external perimeter
of the WSN before reaching the destination node. This is inefficient for DCS-GHT,
where the data are replicated on all the perimeter; this is even a worse situation for
Q-NiGHT, which stores data only on a ball surrounding the destination, and hence
localizes all the data in the proximity of the home node.

This modified GPSR version turns clockwise or counterclockwise depending on
the destination, as shown in Figure 3.14. Let sa be the position of the sender node, c
the position of the center of the deployment area of the WSN, and sd the position of
the destination. Here ŝacsd is considered in the clockwise direction, and the packets
turn clockwise if 0 < ŝacsd < 180, and counterclockwise otherwise. The result is
that the packet traverses the shortest part of the external perimeter that is between
the current sensor and the destination sensor.

3.1.3 Simulations

This subsection presents simulation results on the performance of the rejection hash
technique in the dispersal of data in non-uniform sensor networks, and on the cost
of the store and retrieve protocols of Q-NiGHT and DCS-GHT.
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Figure 3.14: Enhanced GPSR perimeter mode

Simulating rejection hash

The simulations presented here were performed using the same parameters that were
used in Subsection 3.1.1 for DCS-GHT. The initial set of simulations was aimed at
evaluating the fraction of data that was lost by Q-NiGHT. In all the simulations, a
negligible fraction (less than 0.00001) of the nodes leaked some data, and a negligible
fraction (less than 0.00001) of the data was lost, proving that Q-NiGHT guarantees
an higher degree of reliability to data, with respect to DCS-GHT.

Further simulations were thus performed to understand the reasons of this behav-
ior. Figure 3.15 shows the storage load of the sensors of the WSN, with a confidence
level of 95%, and Figure 3.16 shows its standard deviation, and they can be com-
pared to the behavior of DCS-GHT, reported in Figure 3.3 and Figure 3.4. The
x axis represents the memory occupancy degree of a sensor, that is defined as the
number of data that are stored in a sensor, normalized to the data size produced by
each node (hence a node has an occupancy degree equal to 1 if it stores the same
quantity of data it produces). The y axis reports the mean number of nodes that
actually store that number of data. The figure shows that Q-NiGHT performs a
good load-balancing, in particular in this setting it is seen that a very small number
of sensors store more than 30 times the data they produce.

Figure 3.17 and Figure 3.18 show a good behavior of the non-uniform hash
function in non-uniform scenarios, and they can be compared with the behavior of
DCS-GHT on non-uniform scenarios (Figure 3.10 and Figure 3.11). RejectionHash
fits well the sensor distribution in the data dissemination strategy with a good global
load balancing.

Cost of the store and retrieve operations

So far, simulations showed that Q-NiGHT provides an inherent level of load balanc-
ing, and hence a WSN can use the protocol to store efficiently the data produced
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Figure 3.15: Stored data per node for Q-NiGHT, uniform distribution of sensors,
95% confidence level.
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Figure 3.16: Standard deviation of the frequency of having a certain quantity of
stored data per node for Q-NiGHT, in uniformly distributed WSNs.

by the sensors.
This subsection evaluates the cost of the store and retrieve operations of

DCS-GHT and of Q-NiGHT in terms of MAC layer send and receive operations.
The simulations in this subsection were conducted using the ns2 simulator[116].

In these simulations, the sensing area is a square of 200m × 200m, and it is
populated by a variable number of sensors. The communication range of the sensors
is set to 10 meters. The density of the WSN, defined as the mean number of
neighbors per sensor, is in the range [7, 30]. The simulation executes 1000 store

operations, and 1000 retrieve operations, and computes the average number of
packets forwarded and received by the sensors in the various cases.

The simulation results are reported in figures 3.19 and 3.20. In particular Fig-
ure 3.19 reports the number of MAC-level sends for the storage and retrieval oper-
ations of DCS-GHT and Q-NiGHT, while Figure 3.20 reports the number of MAC-
level receives. From the simulations, it results that the store operations are more
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Figure 3.17: Stored data per node for Q-NiGHT, Gaussian distribution of sensors,
95% confidence level.
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Figure 3.18: Standard deviation of the frequency of having a certain quantity of
stored data per node for Q-NiGHT, in Gaussian distributed WSNs.
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Figure 3.19: MAC-level sends for store and retrieve operations of DCS-GHT and
Q-NiGHT.
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Figure 3.20: MAC-level receives for store and retrieve operations of DCS-GHT
and Q-NiGHT.

expensive than the retrieve operations. This happens because, once the store

request has reached the home node, it has also to reach all the nodes that must
store the datum. The number of nodes to be contacted can be large, depending
on the DCS scheme used and on the desired redundancy level of the datum. Fur-
thermore it is seen that the store operation is less expensive with Q-NiGHT than
DCS-GHT, due to the smaller cost incurred by the dispersal protocol, while the cost
of retrieve is almost the same for the two protocols.
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3.2 Data Centric Storage in ZigBee Wireless Sen-

sor Networks

In the recent past a new industrial standard called ZigBee [3, 58] has attracted the
attention of researchers in WSNs. This standard defines a service-oriented frame-
work for the realization of WSN applications, that is built over a tree-based routing
protocol. ZigBee provides to the WSN applications communication mechanisms and
basic mechanisms for the realization of service-oriented applications, for example it
offers to the sensors (called devices in ZigBee terminology [3], and in the rest of this
section) primitives for device discovery and service discovery, and for this reason it
does not provide any DCS mechanism. However a DCS scheme can be constructed
on top of it by implementing the DCS primitives as services at the application level.

The research work that is described here has the goal to close the gap between
the ZigBee standard and the DCS approach. In particular, this section presents
a new DCS scheme (called ZigBee Data Centric Storage, or Z-DaSt) that takes
into account the model adopted by ZigBee for the definition of the address space of
the devices and the ZigBee routing protocol. Thus this DCS scheme does not alter
the internal mechanisms of ZigBee, and it can conveniently be built on top of the
standard. An analytical model evaluates the performance of the operations for data
storage and retrieval, and simulations evaluate the performance of the protocol on
the average case.

The results described in this section are being presented in [163].

3.2.1 The ZigBee network model

The ZigBee standard specifies the network, transport, and application layers built
on top of the IEEE 802.15.4 MAC layer. It supports star, tree, and mesh network
topologies, and the application layer provides a framework for distributed, service-
oriented WSN applications. A tutorial on ZigBee can be found in [3].

The ZigBee network layer defines three types of devices: the end-device (which
does not have routing capabilities), the router, and the network coordinator (which is
also a router). It provides support to three topologies: star (that is a simple two-hop
network), tree, and mesh. Besides routing, the network layer provides services for
the initialization of the network, device addressing, and management of connections
and disconnections of devices. These services construct the network as a tree rooted
in the coordinator that takes network address 0. When a new device wants to join
a network, it identifies a router within the network and it associates to the network
as a child of such router. At the end of the association protocol the new device is
assigned a 16-bits network address.

To the purpose of devices’ addressing, the ZigBee coordinator fixes the maximum
number of routers (Rm) and end-devices (Dm) that can be children to each router
(the end devices can not have children) and the maximum depth of the tree (Lm).



74 CHAPTER 3. DATA CENTRIC STORAGE

Figure 3.21: A tree topology and address allocations for Rm = 2, Dm = 2 and
Lm = 4.

On the basis of its depth in the tree, each router is assigned a range of consecutive
16-bit addresses. This range is such that the router has enough addresses for all
of its children and descendants and it is computed based on Rm, Dm, and Lm. In
particular the router takes for itself the first address of this range, it reserves the
last Dm addresses for the end devices that can be its children, and it assigns in
equal shares the remaining addresses of the range for the routers that can be its
children. Figure 3.21 shows an example of addresses assignment in a network with
Rm = 2, Dm = 2 and Lm = 4, where all the addresses have been assigned to routers
(white circles) and end-devices (gray circles). The address of a device is shown inside
the circle representing the device, while the assigned address ranges are shown in
brackets next to each router.

Note that, although the addresses are always assigned based on a tree topology,
the network layer can be configured by the application layer to implement both
a mesh or a tree topology. If the tree topology is supported, the network layer of
ZigBee routes packets along the routing tree induced by the parent-child relationship
resulting from the network formation. On the other hand, if the mesh topology is
supported, then ZigBee uses an on demand routing strategy, based on the AODV
protocol [101].

Let depth(i) be the depth in the ZigBee address tree of the device with address i
(either a router or an end device), that is, the number of devices in the path in the
tree between the coordinator (that has address 0) and the device i. Thus the depth
of the coordinator is depth(0) = 1.

Let us consider a ZigBee tree with depth Lm = l. It is immediate that the
number of devices in the tree can be expressed by the recursive rule:
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Table 3.2: construction of the path in the ZigBee tree from the coordinator to the
device i

Input: the address of a device i.
Output: the path from the coordinator to the device i.

ComputePath(i)
parent = 0;
return RecPath(i, Lm, parent, < parent >);

RecPath(i, l, parent, path):
if (i == 0) return path;
r = ⌊(i− 1)/N(l − 1)⌋;
m = (i− 1) mod N(l − 1);
if (r ≥ Rm) {

// end device:
path =< path, parent + i >
return path;
}
if (r < Rm and m == 0) {

// router:
path =< path, parent + i >
return path;
}
if (r < Rm and m > 0) {

parent = parent + 1 + r ·N(l − 1);
path =< path, parent >
return RecPath(m, l − 1, parent, path);
}















N(1) = 1
N(2) = Rm + Dm + 1
...
N(l) = Rm ·N(l − 1) + Dm + 1

(3.1)

Solving the above recursive equation yields:

N(l) = Rl−1
m + (Dm + 1)

1−Rl−1
m

1−Rm

(3.2)

Given a device i, its position in the tree can be identified by observing that the
ranges of addresses are assigned as contiguous sequences to the routers. To this
purpose let r = ⌊(i − 1)/N(Lm − 1)⌋ and m = (i − 1) mod N(Lm − 1). If r ≥ Rm

then the device is an end device, it is child of the coordinator, and it is at depth 2.
If r ∈ [0, Rm) and m = 0 then the device is a router, it is a child of the coordinator,
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and it is at depth 2. If r ∈ [0, Rm) and m > 0 then the device belongs to the subtree
of the router j = (r−1)N(Lm−1)+1, that is a router at depth 2 (i.e. it is a child of
the coordinator). Considering the subtree of the router with address j, m expresses
the position of the device in this subtree. Hence, scaling down all the addresses by
j, it is possible to apply recursively the same rule to determine the depth of the
device. Based on this recursive rule, Table 3.2 reports the algorithm that computes
the whole path that joins the coordinator with a device of address i.

3.2.2 DCS over ZigBee

This subsection presents Z-DaSt, a novel DCS system for a ZigBee network that
exploits the tree-based routing protocol of ZigBee. It comprises two primitives to
store and retrieve the data. The primitive store(d, k, q) is used to store a datum
d and its meta-datum k (denoted d : k), with a level of availability equal to q (i.e.
d : k is stored in q different devices). The primitive retrieve(k) is used to retrieve
all the data related to meta-datum k. A common technique in DCS is to resolve k
to an home device h for the meta-datum, to send d : k to h, and then to deliver
d : k to q − 1 more devices for storage [159].

Given d : k, Z-DaSt computes the home device h for a given meta-datum k
with a technique inspired by Distributed Hash Tables (DHT) [106]. In particular,
it considers the address space [0, N(Lm)) of the ZigBee tree, and it produces the
address of the home device h by hashing the meta-datum k into [0, N(Lm)) with
a uniform hash function. Since the address h may not be in use by any device,
then Z-DaSt looks for an existing ZigBee device with the smallest address greater or
equal to h and it uses the ZigBee routing protocol to send d : k to that home device
h. The device h, in turn, looks for q − 1 existing devices with addresses greater or
equal to h and it sends to all of them the datum d : k for storage. The details on
how such devices are identified are described below in this subsection.

The retrieve(k) primitive computes h using the same hash function used by
the store, then it routes its query towards h. As soon as the query reaches a device
j that contains some data d : k related to meta-datum k, j sends back the data to
the device that sent the query. Nonetheless, the query continues its path towards
the home device h, since it is possible that j does not contain all the data related to
meta-datum k, because topology changes may have altered the set of devices storing
d : k. As for the store(d, k, q) primitive, if the device h does not exist, the routing
for the retrieve(k) primitive considers the first existing device with address greater
than h.

Count protocol

The dispersal protocol used to spread the datum d : k to q different devices exploits
a timed count protocol. The effect of this protocol is that each device i knows the set
of its children Ni = {i1, . . . , imi

}, the set Si = {s1, . . . , smi
} where st represents the
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Table 3.3: Timed count protocol, executed by device i
init:

foreach (st ∈ Si)
st = 0;
timestampt = 0;

every τ seconds:
foreach (st ∈ Si)
if (timestampt < 2τ+current time)

st = 0;
send msg(count, 1 +

∑mi

t=1 st) to parent;

On receiving msg(count, val) from device it:
st =val;
timestampt = current time;

number of devices that are in the subtree rooted in the children it, and the number
of descendants di =

∑mi

t=1 st.
This protocol is described in Table 3.3, and it proceeds as follows:

• Initially, each device i sets st = 0 for each t ∈ [1, mi].

• Every τ seconds, device i considers its subtree count variables in Si, and it
resets the ones having a timestamp older than 2τ . Then device i sends to its
parent the count of the devices in its subtree, that is 1 + di.

• Every device i that receives a subtree count variable from one of its children
it, sets the corresponding variable st to the received value, and sets the corre-
sponding timestamp to the current time.

The value of τ is the mean time between two subsequent topology changes, and
it expresses the level of churning of the WSN. If the WSN is very dynamic, and a
lot of devices associate and disassociate to the WSN in one time unit, the count
protocol is executed more frequently to cope with the frequent changes.

Dispersal protocol

Let us now describe the dispersal protocol used to spread the datum d : k to q
different devices.

The Z-DaSt protocol implementing the store primitive is shown in Table 3.4.
A device i that wants to store d : k on q different devices, invokes the primitive
store(d, k, q). The store primitive computes the address h of the home device (by
hashing the meta-datum k), then it creates a message of type deploy, containing
d : k, q and h. The deploy message is thus routed to the device h. As explained
previously, if the device h does not exists in the network, the routing falls back to
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Table 3.4: Z-DaSt store algorithm, executed by device i, starting from Store
Requires: the foreach clauses must return sorted items.

Store(d, k, q):
h = hash(k); send msg(deploy, d : k, q, h) to h;

On receiving msg(deploy, d : k, copies, w) by j:
if (j is an end device) send msg(deploy, d : k, copies, w) to parent;
if (j ≥ w) {
if(AlreadyHas(d : k)) return false;
store(< d : k, q >); copies = copies - 1; w = j + 1; }

if (0 == copies) return true;
tot =

∑

jt≥w st;

if (tot < copies) {
foreach (jt ≥ w)
send msg(deploy, d : k, st, w) to jt;

if (parent 6= null)
return send msg(deploy, d : k, copies-tot, w) to parent;
else

return send msg(deploy, d : k, copies-tot, 0) to myself;
} else {
foreach (jt ≥ w) {
if (copies > st) {
send msg(deploy, d : k, st, w) to jt;
copies = copies −st;
} else {
send msg(deploy, d : k, copies, w) to jt;
return true;
}
}
}

looking for the first existing device that has an address greater or equal to h + 1.
For the sake of simplicity, the algorithm is described assuming that the device h
is present in the network, and that the number q of devices storing the datum is
smaller than the number of devices in the network.

Once the device h receives a message of type deploy, that comprises a datum
d : k and an availability level q, it stores the datum d : k and it looks for q− 1 other
devices whose addresses are greater than h that should receive d : k for storage.
To this purpose h considers the number of its descendants dh. If dh ≥ q − 1 then
h identifies a number of routers that are associated to it (i.e. children routers)
and forwards the request to store the datum to them. In turn they will forward
the storage requests to their subtree. In particular, considering the set of routers
associated to h, and starting from those with minimum address, h send to these
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routers the request to store the datum on a number of devices equal to the minimum
between the size of their subtree and the remaining number of devices that should
store d : k.

On the other hand, if dh < q − 1, then h forwards the storage request of d : k
on q − 1 − dh devices to its parent, that, in turn, will use the same algorithm to
find other devices to store the datum. The details of this procedure are shown in
Table 3.4.

The number of devices q to be used for the storage is decided by the user ap-
plication. The value of q depends on the level of availability that is desired for the
datum, and on the kind of the redundancy technique (for example, pure replication
or erasure coding) that is used by the DCS scheme. A comparison of pure replication
against erasure coding as redundancy method in DCS can be found in [160] and in
Subsection 4.1.

Figure 3.22: Example of execution of a storage operation with redundancy level 5
by device 14, on a network having Rm = 2, Dm = 2 and Lm = 4.

An example of the execution of the dispersal algorithm of Table 3.4 is reported in
Figure 3.22. The figure represents a network characterized by the same parameters
as that in Figure 3.21, where device 14 execute a store to save a datum d, having
key k, with redundancy level 5. In the figure, neither the message type (deploy)
nor the key k are reported, but they are supposed to be implicit in all the messages
exchanged during the execution of the dispersal operation. The key k of the d is
hashed to 2, and a message (yellow line) is routed to device 2. In turn, device 2 stores
the datum d. By means of the Time count protocol (reported in Table 3.3) the device
2 knows that the subtrees rooted in 3 and 4 have just one device each, then it sends
them the request to store the datum d, with redundancy level 1, starting from device
3. The “starting device id” field of the storage message is now 3 to avoid that the
storage request comes again to 2 that already stored the datum d. In the meantime,
device 2 sends to its parent (device 1) a store request for d, starting from device 3,
with data redundancy equal to the device that are still to be contacted. Since device
2 has stored the datum once and 2 more copies will be stored in its descendants,
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Table 3.5: Refresh protocol, executed by any device i every τ seconds
init:

set timer R at τ + current time;

On timer R:
foreach < d : k, q > in local storage {

r = random ∈ [0, 1);
if (r < θ)
Store(d, k, q);

}
set timer R at τ + current time;

the remaining redundancy level is 2. Devices 3 and 4 receive the storage request
and each of them saves one copy of the datum d. Device 1 receive the request,
but it does not store the datum, since its id (1) is lower than the id requested for
data storage (3); on the other hand, device 1 sends the datum to its descendant
7. Since 1 knows that there are 3 suitable devices in the subtree rooted in 7, and
since the remaining redundancy requested is 2, 1 has completed the execution of
the algorithm. Device 7 receives the storage request, it saves d, then it sends d to
its first descendant (8) the storage request, requesting an id equal or greater than
8, and with redundancy level 1. Device 8 receives the request, stores d, and it ends
the execution of the algorithm. The result of the execution of the algorithm is that
the devices highlighted with red circles store d, with a total redundancy level of 5,
as requested by device 14.

Refresh protocol

Due to disconnections of devices, the home device h may disappear. Similarly, if
device h was not existing at the time the store was executed and thus another device
h + k was chosen as home device, any retrieve directed to h may fail. To cope
with such topology changes, Z-DaSt uses a periodic refresh protocol that repeats,
for each datum d : k, the storage request with a given frequency. This is done to
ensure that the devices storing the data are kept updated with the topology of the
network.

The refresh protocol is described in Table 3.5, and it uses a network-wide constant
τ that represents the mean time that is expected between two consequent topology
changes. The constant τ is the same of the refresh algorithm, described in Table 3.3.
A greater degree of churning causes a smaller τ , while a WSN that is more stable
has a larger τ . Once every τ seconds, each device considers all the data it stored,
and with a given probability θ (that is a network-wide constant) the device repeats
the store operation that caused the datum to be stored, asking for the same degree
of data availability. See the algorithm in Table 3.4 for more information about the
algorithm for the store operation.
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3.2.3 Z-DaSt protocol analysis

This subsection presents the evaluation of the proposed DCS system, by means of
analysis, starting with the cost of the routing from a device performing a request to
a home device. Then, there is the estimation of the cost of the dispersal algorithm.

Routing cost of Z-DaSt

This part of the analysis copes with the cost of routing induced by one store or
retrieve operation of Z-DaSt.

Let us consider a device i, that performs a store of a datum into a device j.
There is only one path that connects i with j; this path passes through the common
ancestor a of i and j that has maximum depth. The common ancestor a can be
easily identified by comparing the paths from the coordinator to i and from the
coordinator to j as they are computed by the algorithm in Table 3.2. The path
thus consists of an up phase from i to a, and of a down phase from a to j. The
length of the path is thus given by depth(i) − depth(a) + depth(j) − depth(a) =
depth(i) + depth(j)− 2depth(a).

Let cp be the mean cost (in terms of average number of hops) of routing a packet
between two devices that have the same depth p. The knowledge of cp can be
used to evaluate the cost of routing between i and j, in fact, let us assume that
depth(j) > depth(i), then there exists a device j′ in the path from i to j that is
ancestor of j and that has the same depth as i. Thus the cost of the path from i to
j is given by cdepth(i) + depth(j)− depth(i).

Table 3.6 shows the costs to route a packet between i and j at different depths
in a ZigBee network.

Table 3.6: Cost to route a packet from i to j in a ZigBee network with Lm = 5, Rm =
3, Dm = 0.

depth(j) 1 2 3 4 5

depth(i)
1 c1 c1 + 1 c1 + 2 c1 + 3 c1 + 4
2 c1 + 1 c2 c2 + 1 c2 + 2 c2 + 3
3 c1 + 2 c2 + 1 c3 c3 + 1 c3 + 2
4 c1 + 3 c2 + 2 c3 + 1 c4 c4 + 1
5 c1 + 4 c2 + 3 c3 + 2 c4 + 1 c5

Recalling that the number of devices at depth 1 is 1 (just the coordinator), and
that the number of devices at depth p > 1 is Mp = Rp−2

m (Rm + Dm), it follows that
the average cost of routing between two devices at depth p1 and p2 is

∑Lm−1
p1=1

∑Lm−1
p2=1 Mp1Mp2(cmin(p1,p2)+1 + |p1 − p2|)
∑Lm−1

p1=1

∑Lm−1
p2=1 Mp1Mp2

(3.3)
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Let us now evaluate cp for p ∈ [1, Lm]. For the ease of notation let i and j be the
source and destination of the packet, let a be their common ancestor of maximum
depth, and let us assume that both i and j have depth p.

It is immediate that c1 = 0 since at depth 1 there is only the coordinator. When
p = 2, if i 6= j then the common ancestor a is the coordinator, and the cost is 2.
Clearly, the cost is 0 if i = j. Hence, c2 = 0

M2
+ 2(M2−1)

M2
.

When p > 2, Table 3.7 reports, for any possible depth of a, the routing cost cp

and the frequency with which that depth of a may occur.

Table 3.7: Cost to route a packet between devices of the same depth p:
cp depth(a) routing cost frequency

p 0 1
p− 1 2 M2 − 1

... ... ...
t 2(p− t) Mp−t+1 −Mp−t

... ... ...
2 2(p− 2) Mp−1 −Mp−2

1 2(p− 1) Mp −Mp−1

Thus, if Rm > 1, the value of cp can be expressed as:

cp =

∑p−1
t=1 2(p− t)(Mp−t+1 −Mp−t)

Mp

=
2

Mp

p−1
∑

t=1

t(Mt+1 −Mt)

=
2

Mp

((p− 1)Mp −
p−1
∑

t=1

Mt)

= 2(p− 1)− 2
1 + Dm −Rp−1

m −Rp−2
m Dm

(1−Rm)(Rp−1
m + Rp−2

m Dm)
(3.4)

On the other hand, if Rm is 1, cp can be expressed as:

cp =

∑p−1
t=1 2(p− t)(Mp−t+1 −Mp−t)

Mp

=
2

Mp

p−1
∑

t=1

t(Mt+1 −Mt)

=
2Dm

1 + Dm

(3.5)
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For example, for a WSN with parameters Lm = 7, Rm = 3, Dm = 0, the values
of cp are shown in Table 3.8

Table 3.8: Values of cp for Lm = 7, Rm = 3, Dm = 0.

cp value
c1 0
c2 4/3
c3 28/9
c4 136/27
c5 568/81
c6 2188/243
c7 8020/729

In conclusion, the average cost required by Z-DaSt to reach the home device is
given by the combination of the formulas 3.4 and 3.3:

∑Lm−1
p1=1

∑Lm−1
p2=1 Mp1Mp2(

2
Mmin(p1,p2)+1

∑min(p1,p2)
t=1 t(Mt+1 −Mt) + |p1 − p2|)

∑Lm−1
p1=1

∑Lm−1
p2=1 Mp1Mp2

(3.6)

Cost of Z-DaSt’s dispersal phase

Here is the estimation of the cost of the dispersal phase of Z-DaSt, computed by
evaluating the cost C2 (in terms of number of hops) incurred by the home device
h to find one other device for the storage. The total cost Cq of the dispersal phase
can thus be estimated by multiplying C2 by q − 1. For the sake of simplicity the
analysis is limited to the case Dm = 0 (i.e. the network comprises only routers).

Let us first observe that the communication from a router i whose depth is strictly
smaller than Lm to the device i + 1 always costs 1 hop, since i + 1 is a children of
i. Recalling that there is only one router at depth 1 (the coordinator), and that
there are Mp = Rp−1

m routers at depth p, it follows that the number of routers whose

depth is strictly smaller than Lm is
∑Lm−1

t=1 Mt = (1−RLm−1
m )/(1−Rm).

Let us note that the device of address i = N(Lm)− 1, i.e. the last device of the
network, has the coordinator as its successor, and it performs Lm − 1 hops to reach
it.

Let us now consider a router i whose depth is Lm and its successor i + 1. There
are two cases: either i and i + 1 share the same parent or not.

In the first case it is immediate that the number of hops from i to i + 1 is 2.
There are RLm−1

m routers at depth Lm, and this case occurs for RLm−1
m − RLm−2

m of
them, thus the probability that this first case occurs is 1− 1/Rm.

In the second case i is the last children of its parent. If it is not the last descendant
of its grandparent, then it reaches i + 1 through its grandparent and the number of
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hops is 3. The number of devices that fit this case are RLm−2
m − RLm−3

m . In general,
device i at depth Lm can reach device i+1 with a number of hops ranging in [2, Lm],
and the actual number of hops depends on its position in the tree.

Summarizing, the mean cost for a device to send a packet to its successor, mea-
sured in hops, is:

1−R
Lm−1
m

1−Rm
+ (RLm+1

m −RLm
m )

∑Lm

t=2 tR−t
m + Lm − 1

1−R
Lm
m

1−Rm

(3.7)

and, using a result from summation theory that states that:

n
∑

i=1

ixi = x
1− xn

(1− x)2
− nxn+1

1− x
(3.8)

the mean cost to send a packet from a device to its successor becomes:

=
2Rm − 2RLm

m

1−RLm
m

(3.9)

3.2.4 Simulations

This subsection presents the results on the comparison between DCS-GHT and Z-
DaSt, in terms of the cost of the store and retrieve operations.

DCS-GHT depends on the topology and in particular on the density of the WSN
(see [159] for details). On the other hand, Z-DaSt possesses customizable redundancy
level, and it is agnostic with respect to the density of the WSN, when the parameters
of the ZigBee WSN (Lm, Rm and Dm) are set. Moreover, both DCS-GHT and
Z-DaSt have a management cost, for example related to DCS-GHT planarization
algorithm for the first protocol, and to the ZigBee network construction for the
second one. For sake of fairness, the management cost of both systems is not taken
into account in the simulations.

The simulations were performed using ns2[116], DCS-GHT was simulated over
WSNs featuring a density, defined as the mean number of neighbors per device (see
the definition of WSN density at the beginning of Section 3.1), in the range [8, 20],
and the WSNs were deployed over square-shaped regions. For each density, 10 DCS-
GHT-enabled WSNs were created, and for each network 1000 store operations and
1000 retrieve operations were simulated. The simulations on Z-DaSt featured
1000 WSNs having Lm = 7, Rm = 3 and Dm = 0, and for each network 1000 store

operations with q = 7 and 1000 retrieve operations were simulated.
For both scenarios, the transmission radius of the devices was set to 10 meters,

and all the WSNs comprised 1093 devices (meaning that for DCS-GHT the squared
deployment region had a side comprised in the range [131, 207] meters).

Figures 3.23 and 3.24 report the mean cost of the store and retrieve opera-
tions, with a 95% confidence level, measured in terms of MAC-level send operations,
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Figure 3.23: Cost for store operations
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Figure 3.24: Cost for retrieve operations

against the WSN density, defined as the mean number of neighbors per device. Fig-
ure 3.23 shows that the cost of the store operations is larger for DCS-GHT for all
the considered WSN densities. On the other hand, the retrieve operations, whose
cost is shown in Figure 3.24, are cheaper for DCS-GHT only in very dense net-
works. In particular, in the scenario at hand, DCS-GHT’s retrieve operations are
cheaper only when the WSN density is rather high (at least 16). Considering that
a high network density may prevent communications due to high costs incurred in
the channel arbitration, it is possible to conclude that Z-DaSt is a viable alternative
to DCS-GHT also in practical cases.

A comparison of figures 3.23 and 3.24 with the analysis of Subsection 3.2.3 con-
firms the cost of the store and retrieve operations, in terms of the cost of routing
data from a device i to the home device h, and for the deployment of data to q de-
vices. In fact, the analytical formulas from Subsection 3.2.3 predicted a mean cost
for routing of 10.0174, and a mean cost for a retrieve operation equal to twice the
routing cost (20.0348), and Figure 3.24 shows that the retrieve cost is confirmed.
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Figure 3.25: Comparison on the cost of data deployment

On the other hand, the cost for a store operation is equal to the cost of routing (in
this case predicted to be 10.0174) and the cost for the execution of the deployment
algorithm. A simulation was also performed, to consider the cost for a store request
to reach the home node for a datum, and the simulations confirmed the analytical
cost.

Moreover, simulations reported in Figure 3.25 analyze the number of MAC-
level send operations performed during data dispersal, for different levels of data
availability q. The simulations confirm the results C1 for q = 1 and C2 for q = 2,
while yielding cheaper store operations for q > 2. In fact, the generalization of the
analysis on the cost of the store operation (Cq = (q − 1)C2) predicts the cost of
a depth first visit, while Z-DaSt exploits the knowledge of the number of devices
in each subtree to implement an efficient multicast, hence saving on the number of
MAC-level transmission that are necessary to deploy the datum when q > 2.

For example, consider that a store operation featuring q = 3 is performed on
a router i having depth(i) = Lm − 1. The analysis would predict that i sends the
datum to its first child i1, then i1 sends the datum to i2 through i, for a total of 3
hops. Z-DaSt protocol, described in Table 3.4 and implemented in the simulations,
has i sending immediately the datum to its children i1 and i2, for a cost of 2 hops,
hence saving 1 hop.

Another example of this effect can be visualized with the help of Figure 3.22.
The figure represents the execution of a store of datum d having k, and redundancy
level 5 (it is presented in Subsection 3.2.2 where the Store algorithm of Table 3.4 is
introduced). In that case, ZigBee routing brings the datum to device 2. Without
the multicast enabled by Timed count protocol (reported in Table 3.3), the message
would have reached first device 3, and then, in turn, devices 2, 4, 2, 1, 7 and finally
8, for a total of 7 MAC-level send operations. On the other hand, the knowledge
of the number of devices in each ZigBee subtree limited the number of MAC-level
send operations to 5.



Chapter 4

Erasure Coding for Data
Management

Current approaches of in-network storage of data in WSNs (such as DCS-GHT, for
instance) exploit pure data replication to ensure data availability [87, 159, 157, 75,
80]. The contribution of this thesis from this point of view is in the use of n out

of m codes and data dispersal in combination to in-network storage. In particular,
given an abstract model of in-network storage, n out of m codes were employed, and
three cases of study were analyzed. Since the configuration of the n out of m codes
and of the network is particularly critical with respect to correct data encoding,
this thesis introduces a model aimed at evaluating the probability of correct data
encoding and decoding. Simulations were applied to the cases of study, that refer
to DCS-GHT [87] and Q-NiGHT [159], to show how the parameters of the n out of

m codes and the network can be configured in order to achieve correct data encoding
and decoding with high probability.

A second contribution of this thesis to data coding in data management is the
combined use of erasure coding with spatial gossiping, to realize an efficient data
dispersal system. Following this scheme, in a sensor network of n nodes in which
k of them sense data, each node stores an erasure coded representation of all the
network data using linear combinations of the data with random coefficients. The
dispersal of the sensed data is achieved by means of gossiping, that enables the
computation of the erasure codes for the entire network with a linear number of
message transmissions, thus improving the communication cost in the current state-
of-the-art scheme [140]. In the resulting architecture, as long as there are k nodes
that survive an attack, the data from all the data nodes can be recovered with high
probability. The in-network coding storage scheme also improves data collection
rate by mobile mules (i.e. mobile sinks that collect stored sensed data) and allows
for easy scheduling of data mules. Finally the thesis discusses how this scheme can
be extended to allow for online data reconstruction, by interleaving spatial gossip
steps with mule collection.
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4.1 Distributed erasure coding in DCS

In-network storage may lose stored data in the case of sensors faults. When a sensor
depletes its battery it can be considered faulty at any effect, and any data stored in
it can be considered lost. In-network data storage must exploit redundancy in the
data stored to make them survive despite sensors’ faults.

Most current approaches to in-network storage [87, 159, 157, 75, 80] adopt pure
replication (storing copies of the whole data on the nodes), that leads to a larger
memory overhead as compared to solutions based on erasure codes (also known as n

out of m codes)[79]. Erasure codes are techniques that split the datum into (redun-
dant) parts and guarantee the survival of the datum in front of the erasure (loss)
of a number of its parts. They are based on mathematical techniques that, given
a datum d and m keys, computes m fragments (one for each key), with the prop-
erty that the original datum d can be reconstructed from any subset of n fragments
provided the keys used to construct each of these fragments are known.

A number of metrics have been proposed [79] to express the effectiveness of a
redundant storage system. In particular, the most important metrics are the Mean
Time To Failure (MTTF), that estimates how much time data are able to survive
faults, and the Storage Overhead, measuring the total number of bytes stored in the
system. Since erasure codes offer benefits in terms of storage saving and cost of data
transmission, a trend of research is investigating the use of different data encoding
for the data storage [140, 141, 160, 162].

In this section the in-network storage approach is reconsidered, with the goal of
empowering it with erasure coding, by

• proposing an abstract model of in-network storage that integrates erasure en-
coding

• describing how this model can be applied to two specific in-network storage
protocols

• defining a probabilistic model to evaluate the probability of a correct data
coding and decoding depending on the parameters n and m of the erasure
code, on the WSN configuration, on the number of expected faults, and on the
way in which the erasure code keys are distributed to the sensors

• using the probabilistic model and simulations to compare the performance
of three in-network storage protocols when they use replication or erasure
codes, and showing that the erasure codes can achieve the desired level of
data availability with a smaller memory overhead than that required for pure
replication.

The novelty of this approach, with respect with most existing related work,
is that the proposed system needs no booting operations. A node is assigned a
unique id at compilation time, and it receives a random module based of that id.
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A distributed encoding algorithm can produce the fragments needed to guarantee
data availability. The result is that the system can encode data immediately, and
without incurring in expensive initialization operations. Furthermore a probabilistic
framework to compute the probability of correct encoding and reconstruction, is also
given.

The results described in this section have been presented in [160, 162].

4.1.1 The in-network storage model

Recall that in-network storage approaches associate to each datum d a meta-datum
k (denoted by d:k), and offer to the WSN applications two primitives: store(d:k)
to store d:k and retrieve(k) to retrieve the data whose meta-datum matches k.

The store(d:k) primitive first selects a set of sensors Nk (the set of sensors
selected to store the datum) as a function of k; then it multicasts a storage request
of d:k to the sensors in Nk. In turn, each sensor in Nk stores an encoding of d:k,
denoted g(d:k), in its internal storage.

Data retrieval is performed by means of the retrieve primitive. Given a meta-
datum k, the sensor first computes the set of sensors Nk storing the corresponding
data. Then it sends a request for data matching the meta-datum k to the sensors
in Nk. The sensors in Nk reply to this request by sending all data of meta-datum k
to the sensor performing the retrieve.

A generic sensing task of a sensor that cyclically senses data with meta-datum k
is thus represented by the main loop of the algorithm in Table 4.1. When a datum
d:k is sent to Nk for storage, upon reception of the corresponding storage request
message, a generic sensor in Nk executes the first On reception of branch of the
algorithm in Table 4.1. Once a sensor in Nk receives a request for data of meta-
datum k, it extracts from its memory all the matching data and sends these data
to the requester, as shown in the second On reception of branch of algorithm in
Table 4.1.

In the algorithm in Table 4.1, each sensor p in Nk applies an encoding function g
to the the datum, then it stores encoded datum in its memory. In most of the current
systems, function g used to encode the datum is the identity function [87, 159, 157,
75, 80], hence the sensors store g(d) = d in their memory. However, the function
g can implement an arbitrary n out of m erasure code. In this case, each sensor
would store a fragment of the original datum. Due to the property of the erasure
codes, each fragment occupies a memory space smaller than the space required to
store the original datum.

The implementation of a function g based on a n out of m code also requires that
each sensor is assigned with a key used for the encoding (in the case of the RRNS,
described in Subsection 2.4.2, this key is a module). Recall that the association
between a fragment and the key used for the encoding should be kept to ensure a
correct data reconstruction, and that correct reconstruction is guaranteed if at least
n fragments are produced with different keys.
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Table 4.1: Sensing task of sensor p:
On reception of d:k:
x = g(d:k)
save x:k in its memory

On reception of a request from sensor p for meta-datum k:
foreach stored pair d:k′

if match(k′,k)
send d:k′ to p

main loop:

sense datum d of meta-datum k;
store(d:k);
end main loop

When a datum d:k stored by sensors in Nk is requested by a sensor, the recon-
struction of the datum can be performed according to the following strategies:

• Strategy 1: each sensor in Nk retrieves in its memory the fragment x:k cor-
responding to d:k and sends it to the sink node. In turn the sink node receives
all the fragments corresponding to d:k and reconstructs the datum.

• Strategy 2: one sensor in Nk collects all the fragments corresponding to
d:k and stored by sensors in Nk. This sensor reconstructs d:k and it sends the
reconstructed datum d:k to the sink node.

These two strategies have different advantages and drawbacks:

• Strategy 1: there is a greater energy usage because each sensor storing a
fragment sends the fragment to the sink node, on the other hand the transfer
of these fragment is more reliable: even if some of the fragments are lost, as far
as n of the m different fragments are received by the sink node, it is possible
to reconstruct the datum. The encoding also provides basic confidentiality of
the encoded datum, in fact, once the datum is encoded, it is inaccessible from
external entities eavesdropping the wireless channel during the communication
between the sensors and the sink node.

• Strategy 2: it requires only local communications to reconstruct the data and
only one packet with the data is sent to the sink node. However the transfer
of the data to the sink node in this case is less reliable.
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4.1.2 Data Dispersal & Retrieval based on Erasure Codes

In this subsection I consider erasure codes based on RRNS [109] (described in Sub-
section 2.4.2) and I show how they can be integrated in known in-network storage
protocols. In particular, let us consider the case in which the storage is in an area
close to the node that produce the data (called local storage), and two Data Centric
Storage systems, namely DCS-GHT [87] and Q-NiGHT [159], that were described
respectively in Subsections 2.2.2 and 3.1.2.

Since a RRNS code is used for encoding, each sensor is assigned with a module
used to compute the fragments (that in this case are residues). Let us assume that
for each sensor the assigned module is randomly chosen (possibly at application
compile time) from a library of m = n + r pairwise prime moduli m1, ...,mn+r.
Hereafter notation m(p) denotes the modulo assigned to sensor p.

Once a sensor p assigned with modulo m(p) receives for storage the pair d:k (thus
p belongs to Nk), it stores in its memory the pair x:k where x is the fragment given
by the residue of d module m(p).

When another sensor (say, the sink node) sends a request for data matching the
meta-datum k to the sensors in Nk, the sensor p retrieves x:k (that matches k) and
sends x:k to the requester.

Local storage

Local storage is a very simple storage protocol in which the data are stored into all
the sensors that are reachable by the producer in one hop. That is, when a sensor p
produces a datum d:k, it sends the datum in local broadcast to all the sensors that
are reachable in one hop, thus in this case Nk is the set containing p and all its one-
hop neighbors. Each sensor pj ∈ Nk thus computes the residue xj =d:k mod m(pj)
and stores it in its memory.

Clearly in this case any request for data should be directed directly to the node
that produced them (under this respect this approach is node-centric). In terms of
communications this is less efficient than DCS, however this simple model is kept
with the purpose of comparison and evaluation of memory overhead.

Data Centric Storage

The main difference between local storage and Data Centric Storage is that the
set Nk of the sensors that are selected to store the datum d:k is obtained by the
application of an hash function to the meta-datum k. The hash function returns a
geographical point in the sensing field, i.e.: the home node, and the sensors of set
Nk are either:

• for DCS-GHT, the sensors belonging to the home perimeter around the home
node;
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• for Q-NiGHT, the qk sensors closest to the home node. The parameter qk is an
indication of the QoS requested for the data of meta-datum k in the storage,
as it reflects the number of sensors that store the corresponding data.

In both cases each node in Nk stores a fragment of the datum computed with an
n out of m RRNS code. Thus the retrieve primitive is implemented by a request
message that should reach at least n sensors with different moduli in Nk, and these
sensors provide the data to the requester by using either strategy 1 (i.e. they all send
their fragments to the requester, which in turn reconstructs the data) or strategy 2
(i.e. they reconstruct the data with a distributed algorithm and send the data to
the requester).

4.1.3 Probabilistic Model

This subsection evaluates the probability of correct retrieval of a datum d:k from
the corresponding fragments stored in the sensors in Nk.

Recall that in a n out of m coding, it is possible to decode d only if at least n
residues with different moduli are available. To this purpose it is then necessary to
ensure the following property:

Property 1. For each meta-datum k there exist at least n sensors p1, ..., pn ∈ Nk

such that m(pu) 6= m(pv) for each u, v ∈ [1, n], u 6= v.

In practice, since sensors may fail, the fragments they store might become in-
accessible, and this may impair Property 1, thus preventing the sink node from
decoding d:k. To this purpose, let us require that this property be guaranteed in
the subset N ′

k of Nk of the sensors still alive after a number of sensor faults. In
particular, let F be the set of faulty sensors in Nk, i.e. N ′

k = Nk \F . Let nk = |Nk|,
n′

k = |N ′
k|, and f = |F |; datum d:k encoded into a n out of m code can be correctly

reconstructed if Property 2 is satisfied:

Property 2. For a given meta-datum k, there exist at least n sensors p1, ..., pn ∈ N ′
k

such that m(pu) 6= m(pv) for each u, v ∈ [1, n], u 6= v.

In other words, d:k can be reconstructed as far as the surviving sensors storing
d:k are entitled with at least n different moduli.

It should be observed that, if f = 0, then Property 1 and Property 2 are equiv-
alent, and they can be ensured deterministically during the network deployment
provided that at least n sensors are used to store data of each meta-datum, that is,
nk ≥ n. In particular the sensors could execute a distributed algorithm to initialize
their moduli in order to ensure Property 2 for any k. This however would introduce
additional communication and computational overhead on the sensors. To avoid this
overhead and to cope with sensor faults, let us consider a probabilistic approach,
in which the moduli are assigned to the sensors during the manufacturing process,
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and the sensors are randomly scattered in the sensing field. Depending on the pa-
rameters n and m of the code used and on the number nk of sensors in Nk and of
the number of faults f in Nk, it is possible to evaluate the probability that, for a
given meta-datum, Property 2 holds. Acting on these parameters, it is possible to
achieve the desired level of fault tolerance. In Subsection 4.1.4 this result is used to
evaluate the probability of correct data reconstruction in different storage strategies
(local storage, DCS-GHT, or Q-NiGHT).

Given N ′
k and an arbitrary l ∈ [1, n′

k] let us first evaluate the probability that
the sensors in N ′

k have exactly l different moduli. There are mn′

k different ways
of selecting n′

k moduli randomly chosen in a library of m moduli. Let λ(m, l) be
the number of sequences of n′

k moduli (chosen from the library of m moduli) that
contain exactly l different moduli. It is possible to evaluated λ(m, l) by considering
the number of ways it is possible to select l different moduli among a library of m
moduli, i.e.

(

l

m

)

, multiplied by the number of ways that l moduli can be disposed:

ln
′

k −
∑l−1

j=1 λ(l, j). From which:

λ(m, l) =

(

l

m

)

(

ln
′

k −
l−1
∑

j=1

λ(l, j)

)

It is immediate that λ(l, 1) = l (which corresponds to the l cases where all the
n′

k sensors are assigned with the same modulo). From this analysis, the probability
γ(l, n′

k) that in N ′
k there are at least l different moduli can be expressed as:

γ(l, n′
k) =

λ(m, l)

mn′

k

(4.1)

In order to ensure correct decoding, the number of different moduli in N ′
k must

be at least n. Let θ(n′
k) be such probability, it holds that:

θ(n′
k) = 1−

n−1
∑

l=0

γ(l, n′
k)

In order to evaluate the probability of correct encoding and decoding of datum
d:k after f faults of the sensors in Nk, let n̄ be the total number of sensors in the
network, φ(nk = i) be the probability that |Nk| = i, with i ∈ [0, n̄], and consider the
probability θ(n′

k) = θ(nk − f) that there are at least n different moduli in a given
set Nk of cardinality nk after f of the sensors in Nk have been randomly chosen and
destroyed. The probability θ of correct data decoding after f faults can be thus
expressed as:

θ =
n̄
∑

i=n+f

(φ(nk = i)θ(i− f)) (4.2)
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Montecarlo evaluation of Equation 4.1

The Equation 4.1 has been validated by means of montecarlo simulation, according
to the following setting. A sensor is represented by a data structure containing a
module, and set N ′

k is represented by n′
k of such data structures. In each simulation

run, each sensor is randomly assigned a module out of a library of m modules, then
the sensors in N ′

k are identified and the number of different modules is counted.

The simulator performed 100, 000 runs of the simulator for different values of n′
k

and m, and the outputs confirmed the validity of the analytical expression of γ(l, n′
k).

For example, Figure 4.1 compares the values of γ obtained from Equation 4.1 in the
case where n′

k = 20 and the library contains m = 15 modules. In particular, for each
number of different moduli l in N ′

k (along the X axis),the figure shows an histogram
reporting the number of cases (normalized to 1) in which the simulation reported
exactly l different moduli in N ′

k, and a line showing the analytical value of γ(l, n′
k).

The figure shows that the theoretical estimations fit the simulation output, hence
validating the analysis.
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Figure 4.1: Probability γ(l, n′
k) and Montecarlo simulation results on the number of

different modules in N ′
k: m = 15, n′

k = 20

4.1.4 Cases of study

This subsection evaluates the probability of correct reconstruction of a datum en-
coded with an RRNS and stored according to local storage, the DCS-GHT [87] and
the Q-NiGHT [159] protocols. Let us disregard here the communication overhead
of these methods since this is already analyzed in in [87, 159] and in Subsection 3.1.
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Local storage

The local storage protocol dictates that a datum of meta-datum k produced by a
sensor p be stored in the neighborhood Nk of p, i.e. in the nodes within a single hop
from p.

Let n̄ be the total number of sensors in the network and let us assume that
the sensors are deployed in a square sensing field of side L. Let also nk be the
cardinality of Nk, and t be the transmission range of each sensor. To evaluate the
probability φ(nk = i) that a sensor has exactly nk neighbors, let us assume that the
probability that a sensor q is a neighbor of a given sensor p is πt2/L2. The underlying
hypothesis is that the intersection between the sensing field and the area covered by
the transmission range of a sensor is always circular with radius t. For the sake of
simplicity border effects are neglected. In fact, a sensor in the network border has,
in general, a smaller number of neighbors. On the other hand the approximation
resulting from this assumption does not impair the asymptotic result.

Under these hypotheses φ(nk = i) behaves as the binomial distribution:

φ(nk = i) =

(

n̄− 1

i− 1

)(

πt2

L2

)i−1(

1− πt2

L2

)n̄−i

(4.3)

A Montecarlo simulation was performed in order to estimate the border effect
on the above equation and to assess its validity. In particular let us consider a
WSN of n̄ = 10000 sensors uniformly distributed in a squared field with a side of
L = 400 meters. The transmission radius of the sensors is t = 10 meters. Each
simulation experiment reports the number of neighbors of a randomly chosen sensor
and it is repeated 100 times. The results are reported in Figure 4.2 that shows, for
each possible size i of Nk, a line depicting the probability φ(nk = i) obtained from
Equation 4.3, and an histogram showing the number of cases (normalized to 1) in
which the simulation reported exactly i sensors in Nk. From the equation it is seen
than the border effect introduce a small error in the formula that, however, does not
impair its general validity.

Figures 4.3 and 4.4 depict the probability of correct reconstruction θ when a 5
out of 15 code is used (n = 5 and m = 15 ), for L = 400, t = 10 and network
densities (i.e. average number of neighbors per sensor) ranging in [1, 30]. Note that
the number of sensors n̄ is different for each network density considered. Figure 4.3
shows the probability θ when f = |F | = 0, i.e. there are no faults in Nk, and
when f = 3 and f = 6. Clearly the presence of faults decreases the probability of
correct reconstruction, however this effect is counterbalanced as the network density
increases, that makes θ approach 1 in any case. The graph 4.4 shows the speed with
which θ approaches 1 as the network density increases. The y axis in the graph
shows the number of decimals of θ that have value 9. For example it is seen that θ
is about 0.99 for network density 15 and f = 0.
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Figure 4.2: Local storage: probability φ(nk = i) and Montecarlo simulation results
on the size of Nk: n̄ = 10000, L = 400, t = 10, 100 experiments.
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Figure 4.3: Local storage: probability θ of correct reconstruction for a network
density ranging in [0, 30] and 0, 3, 6 faults in Nk : L = 400, t = 10, n = 5, and
m = 15.

DCS-GHT

In this scenario, the set Nk is the set of sensors that belong to the home perimeter
around a point (x, y) obtained as the hashing of k. In general, it is not possible
to estimate the size of nk = |Nk| with an analytical formula, for this reason nk

is evaluated by means of simulation. In particular, first simulations estimated the
distribution of φ(nk = i), i.e. the number of sensors on a perimeter, then this
distribution was combined with Equation 4.2.

Montecarlo simulations, with the same settings used for the case of local storage,
were performed in order to estimate φ(nk = i). In particular, the sensors were
distributed uniformly in a square field of L = 400 meters, transmission range was
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Figure 4.4: Local storage: ”number of 9s” in the probability θ of correct reconstruc-
tion for a network density ranging in [0, 30] and 0, 3, 6 faults in Nk : L = 400, t = 10,
n = 5, and m = 15.
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Figure 4.5: DCS-GHT: probability θ of correct reconstruction for a network density
ranging in [0, 30] and 0, 3, 6 faults in Nk : L = 400, t = 10, n = 5, and m = 15.

t = 10, and ∆ ∈ [1, 30], network densities (i.e. average number of neighbors per
sensor) ranging in [1, 30]. The simulator generates 100 different networks with such
parameters and in each network it simulates 1000 store operations with a randomly
chosen value of k. For each of these store operations the simulator computes the
size of the resulting nk.

Figure 4.5 shows the probability θ of correct reconstruction obtained combining
Equation 4.2 with the distribution of φ(nk = i) obtained from the simulation, in the
cases where f = 0, f = 3, and f = 6. It is seen that, in all the cases, the probability
of correct reconstruction is maximum for a small value of the network density (for
example it is about 0.95 for network density 5 and f = 0), but it decreases as the
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Figure 4.6: Estimation of the probability φ(nk = i) for sensor density equal to 30
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Figure 4.7: DCS-GHT: probability θ of correct reconstruction for a network density
ranging in [0, 30] and 0, 3, 6 faults in Nk : L = 400, t = 10, n = 3, and m = 15.

network density increases and becomes stable at a value of about 0.85. The reason
for this strange behavior is in the size of the perimeters chosen by DCS-GHT that
becomes smaller as the network density increases, and even worse, in a significant
number of cases it becomes too small to ensure that in the perimeter there are at
least n sensors with different moduli. This effect is shown in Figure 4.6 that depicts
the probability of different sizes of the home perimeter when the network density if
30. It is seen that in about 18% of the cases the home perimeter has less than 8
sensors. A similar behavior is observed for different network densities. As observed
in Subsection 3.1 the DCS-GHT suffers from the fact that it cannot control the
size of the home perimeter, in particular when the coordinate (x, y) is outside of
the network boundary the size of the home perimeter is very large and covers the
external perimeter of the network, while if (x, y) falls in an area densely populated of
sensors then the home perimeter is very small. This behavior of DCS-GHT affects
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seriously the ability of correct encoding of the data using erasure codes. A way
to improve the ability of correct encoding is to reduce the value of n in the code.
Figure 4.7 shows the probability θ when n = 3 and m = 15. It is seen that the
probability θ is now closer to 1, however, as it will be discussed in Subsection 4.1.5
this result comes at the cost of a larger memory overhead.

Q-NiGHT
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Figure 4.8: Q-NiGHT: probability θ of correct reconstruction for nk = qk ∈ [5, 30],
n = 3, and m = 15 and 0, 3, 6 faults.
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Figure 4.9: Q-NiGHT: ”number of 9s” in the probability θ of correct reconstruction
for nk = qk ∈ [5, 30], n = 3, and m = 15 and 0, 3, 6 faults.

In the case of Q-NiGHT, the initial number of sensors in Nk is qk, that is the
number of replicas that are associated with the meta-datum k during the dissemi-
nation of the data. Hence it is possible to describe the distribution φ(nk = i) of the
number of sensors in Nk with the Kronecker delta function, that is 1 when nk = qk

and it is 0 otherwise:
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which (included p) computes (and stores) the fragment xi = modmi, where i ∈ [1, 4],
as shown in Figure 4.10a.

In the case of DCS-GHT, node p determines the point (x, y) as the hash of k and,
by means of GPSR it sends towards (x, y) the pair d:k. Then DCS-GHT identifies
the home perimeter around (x, y) (whose sensors constitute set Nk) and forwards to
each of these sensors the pair d:k. Then each sensor pi ∈ Nk (i ∈ [1, 4]) computes
(and stores) the fragment xi = modmi as shown in Figure 4.10b.

In the case of Q-NiGHT, node p determines the point (x, y) as the hash of k and,
by means of GPSR it sends towards (x, y) the pair d:k. Then Q-NiGHT identifies
the ball of sensors that are the closest around (x, y) (whose sensors constitute set
Nk) and forwards to each of these sensors the pair d:k. Then each sensor pi ∈ Nk

(i ∈ [1, 4]) computes (and stores) the fragment xi = modmi as shown in Figure 4.10c.
Irrespective of the method used to select Nk, the fragments are x1 = d mod m1 =

55696, x2 = 29406, x3 = 55570, and x4 = 16205.
If for some reason p1 and p3 fail, when the sink node connects to the network

the memory of sensors p1 and p3 are no longer available, hence the sink node have
access only to x2 = 29406 and x4 = 16205 from x2 and x4, respectively. However,
since the RRNS can afford up to r = 2 erasures, the original value of d can still
be recovered by the sink node applying the Chinese Reminder Theorem to residues
x2 = 29406 and x4 = 16205 with moduli m2 = 65533 and m4 = 65529, respectively.

4.1.5 Memory overhead
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Figure 4.11: Local storage: load of the sensors for replication and for n = 3, m = 15,
and for n = 5, m = 15, with ∆ = 30.

This subsection presents a comparison of pure replication and n out of m coding
with respect to the memory savings implemented by the coding strategy.

Let us assume that the datum to be stored is represented by L bit, that the
RRNS used for the erasure encoding is an n out of m code, thus each datum is
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Figure 4.12: DCS-GHT: load of the sensors for replication and for n = 3, m = 15,
and for n = 5, m = 15, with ∆ = 30.
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Figure 4.13: Q-NiGHT: load of the sensors with qk = 15 for replication and for
n = 3, m = 15, and for n = 5, m = 15.

encoded into fragments of size Ln ∼ L/n bits, and that the datum is stored in a
set Nk of nk sensors (selected by a local or a DCS storage), or in qk sensors, as per
Q-NiGHT protocol’s mechanism.

It is immediate that with replication the memory overhead per datum per sensor
is L bits, while with the RRNS is Ln ∼ L/n bits. The total memory overhead is
L · nk for the replication strategy, Ln · nk = Lnk

n
for the n out of m coding, hence

the erasure codes strategy outperforms the pure replication one for a factor n on
the memory usage. On the other hand, the pure replication strategy is exceedingly
redundant. Since both the DCS-GHT and the local storage cannot choose nk, it is
just a matter of having network parameters that enable the correct reconstruction
of the data w.h.p., and under this condition the erasure coding outperforms the
replication strategy. On the other hand, Q-NiGHT lets the user assign to a given
meta-datum k a number of replicas qk, hence a connected network is good enough
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to grant to the user the control of probability of correct reconstruction of the data
associated to the meta-datum.

For example, let us suppose that the network is characterized by a network
density of 30, that the sensor field is a square with a side of 400m and that the
transmission radius is 10m. Each experiment consisted in 20 runs, and for each run
2000 meta-data were generated and stored into the network. The figures 4.11, 4.12
and 4.13 show respectively the distribution of the number of fragments stored in
each scenario, for different redundancy strategies. Each scenario guarantees a high
probability of data reconstruction (see Subsection 4.1.4 to relate network density ∆
and replication level of Q-NiGHT qk to the probability of correct data reconstruc-
tion), even though DCS-GHT is at a loss for the high variance of the size of Nk. The
total cost in terms of memory has a related high variance, due to the load balanc-
ing properties of the various data storage architectures (local storage, DCS-GHT,
Q-NiGHT), and the figures show that in particular Q-NiGHT can achieve a much
better memory saving and load balancing from the usage of erasure coding.

Hence the use of n out of m codes presents advantages in terms of global usage
of memory, and provides a better QoS, i.e. each sensor has to store a lesser number
of bits, resulting in a better exploitation of the inherent redundancy of the network,
especially when the data are related with a low number of meta-data: pure replica-
tion would store all the data in a low number of sensors, while n out of m codes
would use a larger number of sensors, with a lesser occupancy on each sensor.

4.2 Resilient Storage for Efficient Mule Collection

Data storage is closely related to the data collection mechanism that gathers the
sensor data to a sink for post-processing and analysis. Earlier schemes have mostly
adopted data collection trees and used multi-hop routing to send data from sensors
to the sink [31]. This scheme presents the problem that nodes near the sink relay
more traffic than an average node, and thus would use up their energy sooner. This
will create a network hole around the sink that isolates the sink from the rest of
functioning sensor network. For this reason, data collection by a mobile sink, called
data mule, is more attractive [131, 132, 133].

A data mule tours around in the network and retrieves data by direct commu-
nication from a sensor when it is in its close proximity. The mule can be either
a vehicle/robot specifically employed for this task, or existing mobile entities (e.g.
animals) that collect data in an opportunistic manner. The problem of using op-
portunistic data mules is that the data collected depends on the set of nodes visited
by the mule and remains out of control of the application. Even for dedicated
data mules, planning the movement trajectory for the data mule is not trivial. The
problem of minimizing the total travel distance (proportional to delay or energy con-
sumption) of the data mule, can be reduced to the traveling salesman problem which
is known to be NP-complete. Alternatively, the mule can use random movement.
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The downside is that the system must cope with the coupon collection problem to
complete the data collection. Specifically, if the data mule visits a random node
each time, initially it picks up new data from each visited node with high probabil-
ity. After the data mule has collected a substantial fraction of all the data from the
network, it is likely that the next random node encountered has been visited before.
Thus it takes the mule a long time to aimlessly walk in the network, hoping to find
the last few pieces. Theoretically for a random walk to cover a grid-like network,
the number of steps is quadratic in the size of the network [122]. When there are
more than one mule in the network, their coordination and motion planning is even
more challenging.

In this section erasure codes are applied to in-network coding, to help with
both resilient data storage and efficient data collection. The state-of-the-art result,
described in [140] and in Subsection 2.4.2, is related to a scenario where k data
nodes produce data, and n nodes can possibly store them (k is a fraction of n).
Each data node sends its data to a constant number of random storage node. A
storage node might possibly receive multiple data from different data nodes. In that
case, the storage node saves a linear combination of them with random coefficients.
The authors of [140] show that if each datum is sent to O(log k) storage nodes, a
random set of k storage nodes can be used to recover the original data with high
probability. Thus, as long as k nodes in the network survive, the data survives as
well.

When n nodes are distributed uniformly at random in a bounded domain, the
number of hops from a storage node to a random node is roughly Õ(

√
n). Thus

the total message cost in the storage scheme of [140] is at least Õ(n
√

n log n). The
research work that is described in this section discusses whether the super-linear
message cost is necessary or not.

In this section, the system model comprises a WSN with n nodes, among which
k nodes produce data that should be received by the sink. Two contributions have
been achieved:

• First, a scheme with spatial gossip is provided, that produces an in-network
coding scheme with near linear message cost, thus improving over the scheme
in [140].

• Second, the in-network coding storage is shown to allow for efficient data
collection by data mules with easy motion plans and increased data collection
rate.

Communication efficient in-network coding

The gossip algorithm can be used to disseminate data and construct the erasure
codes with near linear message cost. In particular, spatial gossip is used for data
transmission, and each node p chooses another node q with probability proportional
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to 1/|pq|3, where |pq| is the Euclidean distance between p and q. The gossip proce-
dure proceeds in synchronous rounds. In each round, every node with data (either
its own data or data received in previous rounds) multiplies its data by a random
coefficient and sends them to another node with the above spatial distribution. If
a node receives m data pieces, it will compute a linear combination of the m data
and its current data and save the linear combination as the current data. After
O(polylog n) rounds, each node in the network stores a random linear combination
of the original data. The result is that, with high probability, any k nodes can be
used to recover the original k data pieces.

Once a node i receives data from node j, either directly or indirectly, some linear
combination comprising the data of node i will be delivered to all other nodes that
j communicates with in the following rounds. Thus the data of node i will be
disseminated to other nodes in the network with an exponential rate. Using spatial
gossip to build the in-network codes greatly improves the message complexity. As
can be verified easily [135, 138], each round of the spatial gossip has an average
number of O(n log n) message transmissions, as a node is likely to choose a gossip
partner nearby. Thus the total number of transmissions needed to build the erasure
codes in O(polylog n) rounds, is O(n polylog n), substantially smaller than the cost
of [140].

Efficient data collection by mules

With the sensor data coded and stored in the whole network, data collection by
mobile mules is more efficient. Notice that before the data mule visits the data
nodes they have no idea where the data are stored. Thus any pre-defined motion
planning is inefficient as the mules may visit many nodes without anything to report.
One can alleviate this problem by data replication (for example, some storage nodes
can hold data copies). Then the problem is that one data mule may collect data
that has been collected before; and multiple mules may collect the same piece of
data (due to lack of coordination). This leads to the waste of resources. As it will
be shown later, in-network coding solves these problems.

The following two problem settings are considered, and their performances are
evaluated:

• Basic mule collection

• Online mule collection

In the basic mule collection setting, before the routine visit of the data mules, the
nodes execute the gossip algorithm to construct the erasure codes in the network. As
each node in the network holds a random linear combination of the available data
in the network, a mule can simply collect codewords from k different nodes and
reconstruct the original data pieces in the sink. Note that, as coding is used, every
new node visited will supply a linear combination with random coefficients and will
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surely contribute to the data reconstruction. Multiple data mules can visit different
sections of the network. As long as they collectively visit k nodes, all the data of the
WSN can be recovered as well. A few different motion plans are evaluated (random
node visit, linear motion and local exploration), and the performance of this novel
scheme is compared with the scheme in [140]. In all these cases, this scheme shows
higher recovery rate and substantially lower message complexity.

In the basic scheme, the mule reconstructs the data after it collects enough
number of independent codewords. This is fine for applications that are not time
critical. For real-time data collection scenarios, the goal is to reconstruct data as
soon as possible. In the Online mule collection scenario, the gossip algorithm and
data collection schemes are modified. After each gossiping round, coded values are
kept at the nodes. With each gossip round, the data in the network is further
‘mixed up’. Denoting the number of original data pieces in a linear combination
as the degree of the codeword, the degree is increasing with the number of rounds.
To allow online recovery of data, initially the mule will pick up the data in the
original form. Gradually when the mule has collected a sufficiently large subset of
data from all that are available in the network and it becomes harder to encounter a
new datum in the original form, the gossip algorithm starts to compute and disperse
codewords of degree 2, and 3, and so on. For each piece of coded data collected,
the mule will use its available data to reconstruct original data as much as it can.
Simulations show that data can be effectively reconstructed while the mule collects
codewords.

Gossip algorithms have been extensively studied in the past [125]. Spatial gossip,
proposed by Kempe et al [135], is of particular relevance to this research. The
analysis uses a theorem proved in [135] on its convergence rate. The application
of gossip algorithm in computing codewords in WSNs, to guarantee a near linear
message cost, to my knowledge, has not been done before.

4.2.1 In-network Coding by Spatial Gossip

Let us assume that a WSN is monitoring a physical environment, and that the
sensors are deployed with uniform distribution such that:

• the distance between any 2 nodes is at least 1;

• any disk of radius 2 contains at least one node.

Please note that with a sensor field having a different sensor distribution, given
that the density is high enough, it is possible to apply clustering to ensure the above
density uniformity (as shown in [138]).

A node that detects events of interest is called a data node. There are n nodes
in the network but only k of them may have data to report at any moment. The
data are initially stored in the local storage of the node where they are generated.
The nodes that do not produce data are called storage nodes. They act as relay and
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additional storage for the produced data. Let us assume that the storage quota at
each node is limited, hence minimizing the amount of storage used at each node is
also desirable, in addition to minimizing the message cost.

Distributed Erasure Codes

As described in Section 2.4.2, an erasure code transforms a message of k blocks
into a longer message with n blocks, (n > k) such that the original message can be
recovered from any k of the n blocks. In this case, random linear codes are used
over a finite field GF (q), q = 2b. A data packet is a vector of GF (q) and is called a
symbol. There are k symbols {s1, s2, · · · , sk} distributed in the network. A codeword

is a linear combination of the k symbols, denoted as wj =
∑k

i=1 λijsi, where λij is
the coefficient used by the sensor j on symbol i. The calculation above is under the
arithmetic of the Galois Field, the size of a codeword w is the same as the size of
the symbols (b-bits long), and the degree of a codeword w is the number of non-
zero coefficients. This coding scheme can be represented by the k by n generator
matrix G = {λij}. Organizing the codewords into a vector w = (w1, w2, · · · , wn),
and the symbols into a vector s = (s1, s2, · · · , sk), the encoding can be represented
by w = sG.

The property required for decoding the symbols by using any k codewords is that
k columns from G form a full rank matrix G′. The decoding procedure is essentially
solving a linear system w′ = sG′ in GF (q) to recover s. For example, one can use
Gaussian elimination to do this with computational cost O(k3).

The coefficients are taken as elements of GF (q) as well and have b bits. The
coefficients are delivered and stored along with the codeword. This causes stor-
age/transmission overhead. However, the overhead can be arbitrarily small by amor-
tization over time by coding a stream of data with the same set of coefficients. The
coefficients are only delivered/stored once. Except for the first time when the algo-
rithm runs and builds these coefficients, in the rest of the lifetime only the codewords
are delivered and stored in the nodes.

Erasure Code Construction by Spatial Gossip

Spatial gossip is used to construct an erasure code in a distributed manner. At the
beginning some subset of k nodes in the network has interesting data (the symbols
si). At the end of the gossip algorithm every node in the network saves a codeword
wj. Let us use t as the indicator of the number of rounds that have been executed.

The current codeword at node j is denoted as wt
j =

∑k

i=1 λt
ijsi. When t = 0 all but

k of them have non-empty codeword as the symbols.
At round t, sensor x takes a random coefficient λt

x and updates its own codeword
as wx ← λt

x · wt−1
x . Suppose at this point that wx is

∑k

i=1 βisi. The node x chooses
a geographical location y∗ and sends its current codeword wx, as well as the current
coefficients of the codeword {βi}, to the node y closest to y∗ using geographical
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routing [94, 138] for example. In particular, y∗ is selected with probability

p(x, y∗) = 1/(2πr3), r = |xy∗| ≥ 1.

Since the sensors are distributed uniformly, the probability that a node y is chosen
is also proportional to 1/|xy|3. The proof is given in [138] and is not repeated here.

A node at round t may receive multiple messages from different nodes. It simply
stores the summation of the incoming data and its own codeword as its current
codeword. The coefficients of wt

x are updated by the summation of the according
coefficients. Note that the coefficients βi’s are only delivered the first time when
gossip algorithm is run. After the first time, the random coefficients and the gossip
partners are fixed. Only the codeword is delivered in the gossip steps. Since the
scheme works for a stream of data and the coefficients are only delivered in the first
phase, the overhead amortized over the streaming data is diminishing and can be
neglected.

Notice that once the coefficient for symbol i in the codeword at node x after t
rounds is non-zero, it will remain so for all the following gossip rounds. The degree of
the codeword at any node is monotonically non-decreasing. The following theorem
has been proved in [135] regarding spatial gossip:

Theorem 1. The symbol from a data node x is propagated to a node y with proba-

bility 1−O(1/d) after O(log3.4 d) rounds, where d = |xy|.

Running the spatial gossip algorithm for m = O(log3.4 n) rounds, for any data
node x and any storage node y, y’s codeword contains symbol from x with high
probability 1−O(1/n).

Recall that at round t, the node x takes a random number λt
x and multiplies it

with the current codeword. The coefficient for symbol i in the final erasure code
at node j is the multiplication of m random numbers corresponding to the nodes
on the path of propagation from i to j, and is null with a very small probability
O(1/n).

Remark. Two different storage strategies can be employed during the encoding
phases. Nodes can store just the current codeword along with the related coefficients.
Or they can save the current codeword and its related coefficients in each gossip step.
This second strategy leads to an increased memory usage by a factor of O(log3.4 n)
but is helpful for data mule collection and online data reconstruction. This will be
discussed more in the next subsection.

4.2.2 Data Recovery and Mule Collection

Data Recovery Upon Node Failures

The goal of the spatial gossip is to construct an erasure coding on the nodes. In
particular, the codewords from any k nodes are able to recover the original symbols if
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G′ has full rank, given that G′ is the matrix having in its j-th column, the coefficients
of the j-th node. From the discussion in the previous subsection, each element of
G′ is 0 with very small probability O(1/n) and is otherwise the multiplication of
random numbers. The following theorem shows that the probability of G′ having full
rank is very high. The proof of the following theorem is similar to the one in [140].

Theorem 2. Take the codewords from any k nodes in the network, computed over

GF (q), and the corresponding k by k generator matrix G′, G′ has full rank with high

probability (1− k/q)c(k), where c(k)→ 0 when k →∞.

Proof. G′ is a matrix with each element equal to some random variable determined
by the gossip process, and it has full rank if its determinant is not zero. There are
two possibilities for det(G′) to be zero:

• the determinant of G′ happens to be zero for the specific random coefficients
that were chosen. This is a rare event and the probability that this happens
can be bounded with Schwartz-Zippel theorem [123]. The degree of det(G′)
is k and all the random coefficients are chosen from the field GF (q), hence
prob{det(G′) = 0} ≤ k/q.

• det(G′) is identically zero regardless of the random coefficients selected in the
gossip algorithm – for example, the entries of one column are all zero. To
analyze this, let us consider a bipartite graph B on vertex set X and Y , with
|X| = |Y | = k. There is an edge between vertex xi and yj if there is a non-zero
element at position (i, j) of G′. Edmonds’ Theorem [123] says that if there
is a perfect matching in B then det(G′) is not identically zero. In the gossip
algorithm, each edge ij is present with probability 1 − O(1/n). By the same
analysis as in [140], the graph B has a perfect matching with high probability.
Thus det(G′) is not identically zero w.h.p.

Basic Mule Collection

When the data in the network is stored by means of erasure coding, data collection
by data mules is much easier. Like in the data recovery scenario described in the
previous subsection, if a data mule visits k nodes and collects k codewords, it is
able to reconstruct the original data symbols with high probability. This scheme
works very well with opportunistic data mules, whose movement is not under direct
control. As long as the opportunistic data mule visits any k different nodes, it can
reconstruct the data from the entire network.

With such network coding, a dedicated data mule does not need to know in
advance which nodes have data and thus need to be visited (in fact, it is impossible
to know this in advance unless these data nodes report to the sink, in which case
they can just report the data instead). It is also not necessary to carefully plan
what routes to follow so as to visit all the nodes in the WSN.



110 CHAPTER 4. ERASURE CODING FOR DATA MANAGEMENT

Online Mule Collection and Data Reconstruction

In the basic mule collection, in-network coding is used to mix up the information in
the network so that the data mule can simply collect from any k nodes to reconstruct
the data. This fits well for many data collection scenarios that are not time-critical.
In the cases when events are time-critical (e.g., emergency rescue events), it would
be preferable to reconstruct data as soon as the mule collects something. Notice
that coding is still very helpful at later data collection phases, when it is difficult to
discover a new data packet in the network. However, early in the collection phase
it is more beneficial to collect the un-coded symbols, as the mule has not enough
independent equations to reconstruct the original symbols and the likelihood of col-
lecting a symbol that the mule has possessed is low. When a sufficient number of
original symbols are collected/reconstructed, it is then beneficial to collect code-
words of degree 2 or higher in hope to discover new packets. For a given gossip
round, the degree of the codeword is capped to a given value, that grows with the
number of gossip rounds that have already been executed.

What is the optimal mechanism to increase the cap of the degree of the codeword
with the number of executed rounds remains an open question and future work. For
centralized LT codes, it has been proved that Soliton distribution [142] achieves
the optimal rate and in practice the robust Soliton distribution has a more stable
performance. It is not possible to directly apply these results in this case for the
complex nature of this scenario (nodes gossip with each other and toss codewords
around, instead of original data symbols). Simulations show that initially the cap
should be fixed as a constant (in fact 1) to allow the data mule to collect enough
data symbols. Then the cap should grow like a linear function. This way for each
codeword received by the data mule, it is possible to reconstruct a new data symbol
almost always.

4.2.3 Simulations

Simulations were conducted to validate the approach introduced in this subsection.
The first goal is to evaluate the message cost to establish the erasure coding in the
network, and compare it with the state-of-the-art approach [140]. The second goal
is to evaluate the data recovery rate when

• there are node failures; or

• when the data mule collects k codewords in the network; or

• when online coding and reconstruction scheme are applied.

All the simulations were performed on WSNs featuring 700 nodes, 100 of the
sensors were producing data, and it was enforced that all the sensors were part of
a unique connected component. The sensors were distributed uniformly at random
inside a 50 by 50 square, and the nodes producing data were randomly distributed
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in the network. The communication graph is modeled as a unit disk graph with
communication range 3. For each data collection trial, a full reconstruction of data
meant that the sink received enough codewords from the data mules to be able to
decode all the produced data.

The first set of simulations deals with the comparison of this approach with
existing state-of-the-art method for constructing erasure codes, as in [140]. The
second set of simulations inspects the effects of different data mule motion patterns.
The third set of simulations analyzes the effect of changing the exponent used in
node selection in the spatial gossip algorithm. Finally, the fourth set of simulations
evaluates the performance of online reconstruction to obtain data as soon as possible
from the nodes.

Communication cost and data recovery rate of different storage schemes

These simulations compare different approaches for data storage. The main focus
of the simulations is on the communication cost for data storage schemes and the
corresponding rate of correct data reconstruction.

The data storage scheme is defined by the format of the data that is exchanged
during communication, and by the algorithm that selects the sensor to send to during
the communication rounds. From the point of view of data format, the data storage
schemes can be:

• Non-gossip if a data producer sends a single original data (symbol) to a
recipient;

• Gossip if a sensor sends out its current codeword.

In both cases, a storage node keeps a codeword (using random linear codes) of
the incoming data packets. Considering the algorithm that selects the sensor to
send data to, the routing of the data storage schemes can be:

• Uniform if a node sends its data to a recipient chosen uniformly at random
over all the nodes in the network;

• Spatial if a node sends its data to a recipient chosen with some spatial dis-
tribution, with higher probability for nearby nodes and lower probability for
faraway nodes.

Combining the choices, four different strategies are compared in the simulations:

• Non-gossip method with Uniform routing (Uniform One): This strat-
egy is the one used in [140]. In each round, the data producers select one
receiver each, uniformly at random in the network. Then each producer sends
its receiver its own data in the original format. A storage node stores a linear
combination of the incoming symbols if it receives multiple data.
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• Non-gossip method with Spatial routing (Spatial One): In each round,
each data producer p select one receiver q, with probability proportional to
1/|pq|3, where |pq| is the hop count distance between p and q. Each producer
p sends to q its own produced packet, to be stored using coding techniques.

• Gossip method with Uniform routing (Uniform Gossip): In each
round, each node that has at least one piece of data (either in the format
of original symbols or codewords) selects one receiver uniformly at random in
the network, then it sends its current codeword to it.

• Gossip method with Spatial Routing (Spatial Gossip): In each round,
each data producer p select one receiver q each, with spatial distribution as
above, then it sends its current codeword to it.

In this set of simulations, 10 sensor networks were randomly created. For each of
them 100 different sets of data producers were simulated. For each data production
scenario 45 data dissemination rounds were completed. After each round of data
dissemination, 100 data collection experiments were performed, each one featuring
a single data mule collecting codewords using the cluster collection strategy (i.e. the
data mule chooses a random location in the sensor network and collects data from
nodes near the location until k codewords are collected. See next set of simulations
for a comparison with different collection strategies.)

The strategy that is proposed in this section is the “Spatial Gossip” one, and
experimental data show that it has the best combined performance with respect to
the other strategies, in terms of smaller message cost and higher data recovery rate.

Figure 4.14 shows the frequency with which the mules were able to correctly
reconstruct all the data, against the number of dissemination round. The Uniform
One strategy initially performs better, and it performs similarly to the Uniform
Gossip strategy, then Spatial Gossip strategy outperforms Uniform One strategy
and starts having results similar to the Uniform Gossip strategy. The number of
rounds that were necessary to perform data dissemination for Uniform One, should
have been 230, as per [140]. This experiment shows that 20 rounds are enough to
reconstruct data most of the times for Spatial Gossip and Spatial One strategies.

Figure 4.15 shows the total communication cost to move data around, against
the round number. The Uniform Gossip strategy is extremely expensive, since a lot
of nodes send data around at each round, choosing recipients uniformly at random
all over the network. Uniform One strategy has a trend similar to Spatial Gossip
strategy. Since Spatial Gossip is both cheap and effective at reconstructing data (see
Fig 4.14), Spatial Gossip strategy is a good candidate to be the new state-of-the-art
for data dissemination and reconstruction for the scenario at hand.
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Figure 4.14: Frequency of correct reconstruction with different data dissemination
strategies, against round number.
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Figure 4.15: Total number of communication hops for different data dissemination
strategies, against round number.
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Figure 4.16: Frequency of correct reconstruction with different collection strategies,
against round number.

Data collection strategies

This set of simulations compares different collection strategies that can be employed
by data mules in conjunction with the Spatial Gossip data dissemination strategy.
The data collection strategies that were taken into account are:

• Random: the data mule collects data from nodes selected uniformly at ran-
dom in the network;

• Line: the data mule walks along a random line in the sensor network and
collects data from the nodes that are close to the line;

• Cluster: the data mule chooses a random location in the sensor network and
collects data from nodes near the location until k codewords are collected.

In this set of simulations, 20 WSNs were randomly generated, for each of them
100 different sets of data producers were simulated, and for each data production
scenario 50 data dissemination rounds were completed. After each round of data
dissemination, 100 data collection experiments were performed, each one featuring a
single data mule collecting codewords using the three different collection strategies.

Figure 4.16 shows the frequency with which the mules were able to correctly
reconstruct all the data, against the round number. The random movement is the
most expensive one for the data mule but it also has the highest reconstruction
rate with a smaller standard deviation when the number of gossip rounds is small.
Nevertheless, after about 18 gossip rounds, all three movement schemes for data
collection show no difference and they can fully reconstruct the network data for all
the trials that were tested. This shows the erasure codes constructed with spatial
gossip allow for flexible choice of movement patterns for the data mule.
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Figure 4.17: Frequency of correct reconstruction with different Spatial Gossip expo-
nent, against round number.
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Figure 4.18: Total number of communication hops.

Varying the exponent for spatial gossip

This set of simulations generalizes and further analyzes Spatial Gossip data dissem-
ination strategy. In particular, it features a comparison of different Spatial Gossip
variants that differ in the exponent used in the node selection step. In each round,
each node p selects one receiver node q, with probability proportional to

1

(di,j)α

The αs analyzed were 1, 2, 3, 4, 5, and the simulations aim at finding out which
exponent performs better in terms of reconstruction frequency and communication
cost.
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α cost per # rounds for successful total
round reconstruction cost

1 6500 10 65000
2 2980 11 32780
3 1300 19 24700
4 867 39 33813
5 758 50 37900

Table 4.2: Cost for correct data reconstruction with different αs.

Figure 4.17 shows the frequency with which the mules were able to correctly
reconstruct all the data, against the round number. Figure 4.18 shows the total
communication cost to move data around, against the round number. With a smaller
α, the data storage scheme has higher communication cost and higher reconstruction
probability. The communication cost that the network incurs to ensure correct data
reconstruction is presented in Table 4.2. With the same reconstruction performance,
the total message cost is the smallest when α = 3, which corroborates with the
theoretical analysis.

Online Reconstruction

An alternative approach to the data survivability problem has been inspected. This
approach was partly inspired by growth codes [141], and it features data mules that
are active into the sensing area while sensors perform data communication. Data
mules not only aim to reconstruct all the original data, but they also try to recon-
struct the greatest number of produced data as soon as possible from the collected
codewords. For example, if a data mule downloads from a sensor a codeword that
was produced using only one produced data, without any “pollution” from other
produced data, the data mule can immediately reconstruct that particular piece of
data. In a similar way, if a codewords is only concerned about data symbols x and
y, and datum x has been already reconstructed, the data mule can reconstruct y,
and so on.

The simulations involved 20 different network, each featuring 700 nodes, 100
of which were data producers. Time is divided up into rounds. In each round all
the sensors perform one gossip round. Then the data mule performs one step of
random walk on the connectivity graph of the WSN. After that, a network wide
parameter called the “maximum codeword degree” is updated. Figure 4.19 shows
this parameter as a function of the gossip round that has just been performed. The
parameter is equal to 1 for the first 40 rounds, then it increases in a sublinear manner
up to round 80, after which it becomes a linear function of the round number.

From the point of view of the sensors, the algorithm is the same for each node. A
node has a “current codeword”, and a storage list. Initially, the “current codeword”
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Figure 4.19: Maximum codeword degree as function of the current gossiping round.
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Figure 4.20: Comparison of the number of data reconstructed and collected by the
data mule against the round number.

is initialized to a produced datum if the sensor is a data producer, else it is initialized
to null. The storage list is initialized with the “current codeword”. In each gossip
round, each sensor selects a recipient with spatial distribution, then it sends to it
its “current codeword”. Each sensor puts all the received codewords into its storage
list, then it creates its next “current codeword” combining elements of the storage
list. Elements chosen at random from the storage list are combined to create a new
“current codeword”, such that the new “current codeword” has a degree equal to or
less than the “maximum codeword degree”.

The data mule performs one random walk step for each round, then it downloads
from a sensor all the codewords it has into its storage list, then the data mule
reconstructs all the original data symbols it can.

Figure 4.20 compares the number of reconstructed data against the number of
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independent codewords collected by the data mule, for each round. The result of
the simulations is that this strategy is able to collect a large number of data as soon
as codewords are downloaded. On the other hand, the data mule is less efficient in
reconstructing all the data than in the previous scenario, since it needs to collect
more than 100 codewords to complete its job. Since there is a cap on the current
codeword’s degree, the new “current codeword” has a limited degree on the original
data. This leads to a slowdown in information dispersal with respect to a scenario
where the codeword degree is as high as it can get, so that a single codeword can
bring information about all data pieces of the WSN. The idea of using a function
to cap the maximum degree of codeword in such a way that, in the first rounds,
the exchanged codewords have degree 1, helps with the online reconstruction, since
a data mule can extract automatically original data from codewords of degree 1.
On the other hand subsequent rounds have a fast increase in the maximum degree,
helping the gossiping to bring entropy around. The result is that the data mule
collects a lot of low degree codewords and hence reconstructs a lot of original data
in the first rounds, and then it can cope with high degree codewords leveraging on
all the original data it has already reconstructed. The nodes store all the data they
receive in their memory, since it is realistic that the energy cost for data transmission
is much higher than the cost to store data in the storage list.
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Conclusions

This thesis has considered the use of novel mechanisms in WSN middleware. A
middleware based on Data Centric Storage (DCS) would represent a novelty into
the WSN scene and could expand current WSN capabilities. On the other hand,
the most studied implementations of DCS have limitations:

• the set of sensors that store the data depends on the topology of the WSN,
and it is not selectable by the WSN application developer

• the storage primitive of DCS assumes uniform distribution of the sensors, and
is thus inefficient when the sensors have a different distribution

• dependability is ensured by means of pure replication, in the sense that all the
sensors that store a given meta-datum, have to store a copy of all related data.

In this thesis such issues have been addressed by introducing new mechanisms
for the Data Management layer of WSN middleware. In particular this thesis:

• introduced Q-NiGHT and Z-DaSt, that are novel DCS protocols that provide
QoS capabilities for data storage; Q-NiGHT is similar to DCS-GHT [87], and
it fits WSNs based on geographical routing; Z-DaSt is designed to be used on
WSNs using tree-based routing mechanisms;

• reviewed current Dependability mechanisms used for WSNs, and introduced a
new way of exploiting erasure coding that can enhance the Data Management
layer without increasing the complexity of DCS;

• proposed a novel Data Management layer mechanism that combines gossip
routing and erasure coding to disseminate data in a WSN in an efficient way.

DCS systems can implement efficient in-network data storage and retrieval, since
they require only unicast communications. However existing approaches disregard
issues related to load balancing of the sensors, and QoS. The work on Q-NiGHT
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addressed these issues in WSNs that use a geographical routing protocol. In particu-
lar, Q-NiGHT uses a rejection hashing technique that produces pairs of coordinates
by taking into account the actual sensor density, and then relies on a novel dispersal
technique that enforces QoS and provides load balance. Simulation results show
that Q-NiGHT significantly balances the storage load on the sensors and it adapts
to different sensors’ distributions.

Z-DaSt is a novel DCS protocol tailored to be used over ZigBee-enabled WSNs,
in which the routing protocol is tree-based. Like Q-NiGHT, Z-DaSt provides QoS
to the data storage, i.e. it lets the user application specify the number of devices
that should store a datum. The communication cost of Z-DaSt was evaluated by
means of theoretical analysis, and of simulations. The simulations also presented
a comparison with DCS-GHT [87] in terms of the cost of store and retrieve

operations, and the results showed that Z-DaSt’s operations are better suited to low
or moderate network densities, hence it can be considered a viable alternative in
such cases.

The thesis showed how Data Centric Storage systems can be combined with
memory-efficient erasure codes. The use of erasure codes is however not immedi-
ate, since it requires the sensors to perform the encoding of the data before the
storage (encoding that is not necessary in traditional DCS since they exploit pure
replication). In fact it is necessary that each sensor be assigned with a coding pa-
rameter, and this assignment is critical from the point of view of correct data coding
and decoding. For this reason a probabilistic model was proposed, and it allowed
the estimation of correct coding and decoding probability; this model was adapted
to estimate this probability in three cases of study: local storage, DCS-GHT, and
Q-NiGHT. From the analytical and simulative results, it was shown that correct
coding/decoding can be achieved with high probability with the three systems for
different network configurations.

Finally, the thesis considered the application of erasure coding to spatial gossip-
ing, and it showed that by using spatial gossip, it is possible to quickly establish an
in-network erasure coding of the generated data. The gossip algorithm has a near
linear message cost. Using erasure codes, generated data can be recovered from a
subset of the nodes with high probability. The application of this storage scheme is
useful to combat node failures and to help with efficient data collections with data
mules. The thesis also presented a variation of the basic gossip algorithm in which
the data mule can effectively reconstruct data as soon as it collects the codewords.

A future direction on DCS systems that take into account sensor distribution,
as it is the case of Q-NiGHT, is the on-the-fly estimation of the distribution of the
sensors, that can be exploited to better tailor the generalized hash function that
associates meta-data to locations in the sensing area and to deal with topology
changes due to sensors’ failures and/or sensors’ mobility. Another important issue
on DCS systems based on geographical routing protocol (as for DCS-GHT and Q-
NiGHT), is to study the effect of using virtual coordinates systems[91] rather than
GPS-based coordinates.
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As shown in Section 3.2, DCS system can be layered on top of the ZigBee pro-
tocol. Future directions in this field regard the load balancing of data over the
devices, for example by employing a generalized hash function better suited to the
tree structure of the sensors addresses, for example by adopting solutions similar to
that used in [159], and by considering the asymmetry of the role of the nodes in a
ZigBee network (some nodes act as routers while others act as end-devices). In this
case, the goal could be to assign more meta-data to sensor that are considered to
be more reliable.

About the use of distributed erasure coding in DCS, future works include are
a deeper comparison with existing distributed encoding systems, the evaluation of
the tradeoffs related to the transport of information stored within the network with
different erasure codes, protocols for the assignment of the moduli for the data
encoding, and the use of different codes such as IDA (see for example [81]) and
Reed-Solomon Coding (see [82] for reference).

Future work on efficient data mule collection (see Section 4.2) will explore two
directions. The first direction is the definition of an optimal strategy for the cap of
the codeword degree for online data reconstruction. The second research direction
is the exploitation of the spatial correlation of the data, to achieve a better network
coding in the WSN.

Finally, the use of DCS schemes in the development of general platform for the
development of WSN applications is still a result to be reached. Under this respect
DCS schemes may be used to improve the dependability properties of existing de-
velopment platforms such as TinyDB[31] or Cougar[32] or of other recent platforms
for WSN (SMEPP[154], MaD-WiSe[33], TinyLime[63], etc).
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