224 research outputs found

    Privacy Intelligence: A Survey on Image Sharing on Online Social Networks

    Full text link
    Image sharing on online social networks (OSNs) has become an indispensable part of daily social activities, but it has also led to an increased risk of privacy invasion. The recent image leaks from popular OSN services and the abuse of personal photos using advanced algorithms (e.g. DeepFake) have prompted the public to rethink individual privacy needs when sharing images on OSNs. However, OSN image sharing itself is relatively complicated, and systems currently in place to manage privacy in practice are labor-intensive yet fail to provide personalized, accurate and flexible privacy protection. As a result, an more intelligent environment for privacy-friendly OSN image sharing is in demand. To fill the gap, we contribute a systematic survey of 'privacy intelligence' solutions that target modern privacy issues related to OSN image sharing. Specifically, we present a high-level analysis framework based on the entire lifecycle of OSN image sharing to address the various privacy issues and solutions facing this interdisciplinary field. The framework is divided into three main stages: local management, online management and social experience. At each stage, we identify typical sharing-related user behaviors, the privacy issues generated by those behaviors, and review representative intelligent solutions. The resulting analysis describes an intelligent privacy-enhancing chain for closed-loop privacy management. We also discuss the challenges and future directions existing at each stage, as well as in publicly available datasets.Comment: 32 pages, 9 figures. Under revie

    A Survey of Methods, Challenges and Perspectives in Causality

    Full text link
    Deep Learning models have shown success in a large variety of tasks by extracting correlation patterns from high-dimensional data but still struggle when generalizing out of their initial distribution. As causal engines aim to learn mechanisms independent from a data distribution, combining Deep Learning with Causality can have a great impact on the two fields. In this paper, we further motivate this assumption. We perform an extensive overview of the theories and methods for Causality from different perspectives, with an emphasis on Deep Learning and the challenges met by the two domains. We show early attempts to bring the fields together and the possible perspectives for the future. We finish by providing a large variety of applications for techniques from Causality.Comment: 40 pages, 37 pages for the main paper and 3 pages for the supplement, 8 figures, submitted to ACM Computing Survey

    AI in Learning: Designing the Future

    Get PDF
    AI (Artificial Intelligence) is predicted to radically change teaching and learning in both schools and industry causing radical disruption of work. AI can support well-being initiatives and lifelong learning but educational institutions and companies need to take the changing technology into account. Moving towards AI supported by digital tools requires a dramatic shift in the concept of learning, expertise and the businesses built off of it. Based on the latest research on AI and how it is changing learning and education, this book will focus on the enormous opportunities to expand educational settings with AI for learning in and beyond the traditional classroom. This open access book also introduces ethical challenges related to learning and education, while connecting human learning and machine learning. This book will be of use to a variety of readers, including researchers, AI users, companies and policy makers

    AI in Learning: Designing the Future

    Get PDF
    AI (Artificial Intelligence) is predicted to radically change teaching and learning in both schools and industry causing radical disruption of work. AI can support well-being initiatives and lifelong learning but educational institutions and companies need to take the changing technology into account. Moving towards AI supported by digital tools requires a dramatic shift in the concept of learning, expertise and the businesses built off of it. Based on the latest research on AI and how it is changing learning and education, this book will focus on the enormous opportunities to expand educational settings with AI for learning in and beyond the traditional classroom. This open access book also introduces ethical challenges related to learning and education, while connecting human learning and machine learning. This book will be of use to a variety of readers, including researchers, AI users, companies and policy makers

    Trust in Robots

    Get PDF
    Robots are increasingly becoming prevalent in our daily lives within our living or working spaces. We hope that robots will take up tedious, mundane or dirty chores and make our lives more comfortable, easy and enjoyable by providing companionship and care. However, robots may pose a threat to human privacy, safety and autonomy; therefore, it is necessary to have constant control over the developing technology to ensure the benevolent intentions and safety of autonomous systems. Building trust in (autonomous) robotic systems is thus necessary. The title of this book highlights this challenge: “Trust in robots—Trusting robots”. Herein, various notions and research areas associated with robots are unified. The theme “Trust in robots” addresses the development of technology that is trustworthy for users; “Trusting robots” focuses on building a trusting relationship with robots, furthering previous research. These themes and topics are at the core of the PhD program “Trust Robots” at TU Wien, Austria

    Proposing an Ontology Model for Planning Photovoltaic Systems

    Get PDF
    The performance of a photovoltaic (PV) system is negatively affected when operating under shading conditions. Maximum power point tracking (MPPT) systems are used to overcome this hurdle. Designing an efficient MPPT-based controller requires knowledge about power conversion in PV systems. However, it is difficult for nontechnical solar energy consumers to define different parameters of the controller and deal with distinct sources of data related to the planning. Semantic Web technologies enable us to improve knowledge representation, sharing, and reusing of relevant information generated by various sources. In this work, we propose a knowledge-based model representing key concepts associated with an MPPT-based controller. The model is featured with Semantic Web Rule Language (SWRL), allowing the system planner to extract information about power reductions caused by snow and several airborne particles. The proposed ontology, named MPPT-On, is validated through a case study designed by the System Advisor Model (SAM). It acts as a decision support system and facilitate the process of planning PV projects for non-technical practitioners. Moreover, the presented rule-based system can be reused and shared among the solar energy community to adjust the power estimations reported by PV planning tools especially for snowy months and polluted environments

    Real-time generation and adaptation of social companion robot behaviors

    Get PDF
    Social robots will be part of our future homes. They will assist us in everyday tasks, entertain us, and provide helpful advice. However, the technology still faces challenges that must be overcome to equip the machine with social competencies and make it a socially intelligent and accepted housemate. An essential skill of every social robot is verbal and non-verbal communication. In contrast to voice assistants, smartphones, and smart home technology, which are already part of many people's lives today, social robots have an embodiment that raises expectations towards the machine. Their anthropomorphic or zoomorphic appearance suggests they can communicate naturally with speech, gestures, or facial expressions and understand corresponding human behaviors. In addition, robots also need to consider individual users' preferences: everybody is shaped by their culture, social norms, and life experiences, resulting in different expectations towards communication with a robot. However, robots do not have human intuition - they must be equipped with the corresponding algorithmic solutions to these problems. This thesis investigates the use of reinforcement learning to adapt the robot's verbal and non-verbal communication to the user's needs and preferences. Such non-functional adaptation of the robot's behaviors primarily aims to improve the user experience and the robot's perceived social intelligence. The literature has not yet provided a holistic view of the overall challenge: real-time adaptation requires control over the robot's multimodal behavior generation, an understanding of human feedback, and an algorithmic basis for machine learning. Thus, this thesis develops a conceptual framework for designing real-time non-functional social robot behavior adaptation with reinforcement learning. It provides a higher-level view from the system designer's perspective and guidance from the start to the end. It illustrates the process of modeling, simulating, and evaluating such adaptation processes. Specifically, it guides the integration of human feedback and social signals to equip the machine with social awareness. The conceptual framework is put into practice for several use cases, resulting in technical proofs of concept and research prototypes. They are evaluated in the lab and in in-situ studies. These approaches address typical activities in domestic environments, focussing on the robot's expression of personality, persona, politeness, and humor. Within this scope, the robot adapts its spoken utterances, prosody, and animations based on human explicit or implicit feedback.Soziale Roboter werden Teil unseres zukünftigen Zuhauses sein. Sie werden uns bei alltäglichen Aufgaben unterstützen, uns unterhalten und uns mit hilfreichen Ratschlägen versorgen. Noch gibt es allerdings technische Herausforderungen, die zunächst überwunden werden müssen, um die Maschine mit sozialen Kompetenzen auszustatten und zu einem sozial intelligenten und akzeptierten Mitbewohner zu machen. Eine wesentliche Fähigkeit eines jeden sozialen Roboters ist die verbale und nonverbale Kommunikation. Im Gegensatz zu Sprachassistenten, Smartphones und Smart-Home-Technologien, die bereits heute Teil des Lebens vieler Menschen sind, haben soziale Roboter eine Verkörperung, die Erwartungen an die Maschine weckt. Ihr anthropomorphes oder zoomorphes Aussehen legt nahe, dass sie in der Lage sind, auf natürliche Weise mit Sprache, Gestik oder Mimik zu kommunizieren, aber auch entsprechende menschliche Kommunikation zu verstehen. Darüber hinaus müssen Roboter auch die individuellen Vorlieben der Benutzer berücksichtigen. So ist jeder Mensch von seiner Kultur, sozialen Normen und eigenen Lebenserfahrungen geprägt, was zu unterschiedlichen Erwartungen an die Kommunikation mit einem Roboter führt. Roboter haben jedoch keine menschliche Intuition - sie müssen mit entsprechenden Algorithmen für diese Probleme ausgestattet werden. In dieser Arbeit wird der Einsatz von bestärkendem Lernen untersucht, um die verbale und nonverbale Kommunikation des Roboters an die Bedürfnisse und Vorlieben des Benutzers anzupassen. Eine solche nicht-funktionale Anpassung des Roboterverhaltens zielt in erster Linie darauf ab, das Benutzererlebnis und die wahrgenommene soziale Intelligenz des Roboters zu verbessern. Die Literatur bietet bisher keine ganzheitliche Sicht auf diese Herausforderung: Echtzeitanpassung erfordert die Kontrolle über die multimodale Verhaltenserzeugung des Roboters, ein Verständnis des menschlichen Feedbacks und eine algorithmische Basis für maschinelles Lernen. Daher wird in dieser Arbeit ein konzeptioneller Rahmen für die Gestaltung von nicht-funktionaler Anpassung der Kommunikation sozialer Roboter mit bestärkendem Lernen entwickelt. Er bietet eine übergeordnete Sichtweise aus der Perspektive des Systemdesigners und eine Anleitung vom Anfang bis zum Ende. Er veranschaulicht den Prozess der Modellierung, Simulation und Evaluierung solcher Anpassungsprozesse. Insbesondere wird auf die Integration von menschlichem Feedback und sozialen Signalen eingegangen, um die Maschine mit sozialem Bewusstsein auszustatten. Der konzeptionelle Rahmen wird für mehrere Anwendungsfälle in die Praxis umgesetzt, was zu technischen Konzeptnachweisen und Forschungsprototypen führt, die in Labor- und In-situ-Studien evaluiert werden. Diese Ansätze befassen sich mit typischen Aktivitäten in häuslichen Umgebungen, wobei der Schwerpunkt auf dem Ausdruck der Persönlichkeit, dem Persona, der Höflichkeit und dem Humor des Roboters liegt. In diesem Rahmen passt der Roboter seine Sprache, Prosodie, und Animationen auf Basis expliziten oder impliziten menschlichen Feedbacks an

    Boosting children's creativity through creative interactions with social robots

    Get PDF
    Creativity is an ability with psychological and developmental benefits. Creative levels are dynamic and oscillate throughout life, with a first major decline occurring at the age of 7 years old. However, creativity is an ability that can be nurtured if trained, with evidence suggesting an increase in this ability with the use of validated creativity training. Yet, creativity training for young children (aged between 6-9 years old) appears as scarce. Additionally, existing training interventions resemble test-like formats and lack of playful dynamics that could engage children in creative practices over time. This PhD project aimed at contributing to creativity stimulation in children by proposing to use social robots as intervention tools, thus adding playful and interactive dynamics to the training. Towards this goal, we conducted three studies in schools, summer camps, and museums for children, that contributed to the design, fabrication, and experimental testing of a robot whose purpose was to re-balance creative levels. Study 1 (n = 140) aimed at testing the effect of existing activities with robots in creativity and provided initial evidence of the positive potential of robots for creativity training. Study 2 (n = 134) aimed at including children as co-designers of the robot, ensuring the robot’s design meets children’s needs and requirements. Study 3 (n = 130) investigated the effectiveness of this robot as a tool for creativity training, showing the potential of robots as creativity intervention tools. In sum, this PhD showed that robots can have a positive effect on boosting the creativity of children. This places social robots as promising tools for psychological interventions.Criatividade é uma habilidade com benefícios no desenvolvimento saudável. Os níveis de criatividade são dinâmicos e oscilam durante a vida, sendo que o primeiro maior declínio acontece aos 7 anos de idade. No entanto, a criatividade é uma habilidade que pode ser nutrida se treinada e evidências sugerem um aumento desta habilidade com o uso de programas validados de criatividade. Ainda assim, os programas de criatividade para crianças pequenas (entre os 6-9 anos de idade) são escassos. Adicionalmente, estes programas adquirem o formato parecido ao de testes, faltando-lhes dinâmicas de brincadeira e interatividade que poderão motivar as crianças a envolverem-se em práticas criativas ao longo do tempo. O presente projeto de doutoramento procurou contribuir para a estimulação da criatividade em crianças propondo usar robôs sociais como ferramenta de intervenção, adicionando dinâmicas de brincadeira e interação ao treino. Assim, conduzimos três estudos em escolas, campos de férias, e museus para crianças que contribuíram para o desenho, fabricação, e teste experimental de um robô cujo objetivo é ser uma ferramenta que contribui para aumentar os níveis de criatividade. O Estudo 1 (n = 140) procurou testar o efeito de atividade já existentes com robôs na criatividade e mostrou o potencial positivo do uso de robôs para o treino criativo. O Estudo 2 (n = 134) incluiu crianças como co-designers do robô, assegurando que o desenho do robô correspondeu às necessidades das crianças. O Estudo 2 (n = 130) investigou a eficácia deste robô como ferramenta para a criatividade, demonstrando o seu potencial para o treino da criatividade. Em suma, o presente doutoramento mostrou que os robôs poderão ter um potencial criativo em atividades com crianças. Desta forma, os robôs sociais poderão ser ferramentas promissoras em intervenções na psicologia

    Sensing the Cultural Significance with AI for Social Inclusion

    Get PDF
    Social Inclusion has been growing as a goal in heritage management. Whereas the 2011 UNESCO Recommendation on the Historic Urban Landscape (HUL) called for tools of knowledge documentation, social media already functions as a platform for online communities to actively involve themselves in heritage-related discussions. Such discussions happen both in “baseline scenarios” when people calmly share their experiences about the cities they live in or travel to, and in “activated scenarios” when radical events trigger their emotions. To organize, process, and analyse the massive unstructured multi-modal (mainly images and texts) user-generated data from social media efficiently and systematically, Artificial Intelligence (AI) is shown to be indispensable. This thesis explores the use of AI in a methodological framework to include the contribution of a larger and more diverse group of participants with user-generated data. It is an interdisciplinary study integrating methods and knowledge from heritage studies, computer science, social sciences, network science, and spatial analysis. AI models were applied, nurtured, and tested, helping to analyse the massive information content to derive the knowledge of cultural significance perceived by online communities. The framework was tested in case study cities including Venice, Paris, Suzhou, Amsterdam, and Rome for the baseline and/or activated scenarios. The AI-based methodological framework proposed in this thesis is shown to be able to collect information in cities and map the knowledge of the communities about cultural significance, fulfilling the expectation and requirement of HUL, useful and informative for future socially inclusive heritage management processes
    • …
    corecore