42 research outputs found

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Caracterización de la propagación a 868MHz en una red estática de sensores

    Get PDF
    Wireless Sensor Networks (WSN) are formed by a large number of sensing nodes at the ground level. These devices are monitoring and measuring physical parameters from the environment. Simulation is used to study WSN, since deploying test-beds supposes a huge effort. However simulation results rely on physical layer assumptions, which are not usually accurate enough to capture the real behaviour of WSN. In this work several measurement campaigns are performed in three different scenarios: an open quasi-ideal area, a university yard and a park. The main contribution of this work is that a two slopes lognormal path-loss near ground outdoor channel model at 868 MHz is validated, and compared to the widely used one slope model. This model is usefulEste trabajo ha sido subvencionado parcialmente por la Consejería de Economía, Industria e Innovación de la Región de Murcia bajo el proyecto de investigación SOLIDMOVIL (2I04SU044) y por la Fundación Séneca bajo el Proyecto Arena (00546/PI/04)

    A Survey of Coverage Problems in Wireless Sensor Networks

    Get PDF
    Coverage problem is an important issue in wireless sensor networks, which has a great impact on the performance of wireless sensor networks. Given a sensor network, the coverage problem is to determine how well the sensing field is monitored or tracked by sensors. In this paper, we classify the coverage problem into three categories: area coverage, target coverage, and barrier coverage, give detailed description of different algorithms belong to these three categories. Moreover, we specify the advantages and disadvantages of the existing classic algorithms, which can give a useful direction in this area

    Accurate simulation of 802.11 indoor links: a “bursty” channel model based on real measurements

    Get PDF
    We propose a novel channelmodel to be used for simulating indoor wireless propagation environments. An extensive measurement campaign was carried out to assess the performance of different transport protocols over 802.11 links. This enabled us to better adjust our approach, which is based on an autoregressive filter. One of the main advantages of this proposal lies in its ability to reflect the “bursty” behavior which characterizes indoor wireless scenarios, having a great impact on the behavior of upper layer protocols.We compare this channel model, integrated within the Network Simulator (ns-2) platform, with other traditional approaches, showing that it is able to better reflect the real behavior which was empirically assessed

    Simulation based Study of TCP Variants in Hybrid Network

    Get PDF
    © ASEE 2011Transmission control protocol (TCP) was originally designed for fixed networks to provide the reliability of the data delivery. The improvement of TCP performance was also achieved with different types of networks with introduction of new TCP variants. However, there are still many factors that affect performance of TCP. Mobility is one of the major affects on TCP performance in wireless networks and MANET (Mobile Ad Hoc Network). To determine the best TCP variant from mobility point of view, we simulate some TCP variants in real life scenario. This paper addresses the performance of TCP variants such as TCP-Tahoe, TCP-Reno, TCP-New Reno, TCPVegas, TCP-SACK and TCP-Westwood from mobility point of view. The scenarios presented in this paper are supported by Zone routing Protocol (ZRP) with integration of random waypoint mobility model in MANET area. The scenario shows the speed of walking person to a vehicle and suited particularly for mountainous and deserted areas. On the basis of simulation, we analyze Round trip time (RTT) fairness, End-to-End delay, control overhead, number of broken links during the delivery of data. Finally analyzed parameters help to find out the best TCP variant

    Simulation based Study of TCP Variants in Hybrid Network

    Full text link
    Transmission control protocol (TCP) was originally designed for fixed networks to provide the reliability of the data delivery. The improvement of TCP performance was also achieved with different types of networks with introduction of new TCP variants. However, there are still many factors that affect performance of TCP. Mobility is one of the major affects on TCP performance in wireless networks and MANET (Mobile Ad Hoc Network). To determine the best TCP variant from mobility point of view, we simulate some TCP variants in real life scenario. This paper addresses the performance of TCP variants such as TCP-Tahoe, TCP-Reno, TCP-New Reno, TCPVegas,TCP-SACK and TCP-Westwood from mobility point of view.The scenarios presented in this paper are supported by Zone routing Protocol (ZRP) with integration of random waypoint mobility model in MANET area. The scenario shows the speed of walking person to a vehicle and suited particularly for mountainous and deserted areas. On the basis of simulation, we analyze Round trip time (RTT) fairness, End-to-End delay, control overhead, number of broken links during the delivery of data. Finally analyzed parameters help to find out the best TCP variant.Comment: 09 pages, 09 pages, In proceedings of international conference on 2011 ASEE Northeast Section Conference, At University of Hartford, Connecticut, US

    Performance metrics and routing in vehicular ad hoc networks

    Get PDF
    The aim of this thesis is to propose a method for enhancing the performance of Vehicular Ad hoc Networks (VANETs). The focus is on a routing protocol where performance metrics are used to inform the routing decisions made. The thesis begins by analysing routing protocols in a random mobility scenario with a wide range of node densities. A Cellular Automata algorithm is subsequently applied in order to create a mobility model of a highway, and wide range of density and transmission range are tested. Performance metrics are introduced to assist the prediction of likely route failure. The Good Link Availability (GLA) and Good Route Availability (GRA) metrics are proposed which can be used for a pre-emptive action that has the potential to give better performance. The implementation framework for this method using the AODV routing protocol is also discussed. The main outcomes of this research can be summarised as identifying and formulating methods for pre-emptive actions using a Cellular Automata with NS-2 to simulate VANETs, and the implementation method within the AODV routing protocol

    Resilient Wireless Sensor Networks Using Topology Control: A Review

    Get PDF
    Wireless sensor networks (WSNs) may be deployed in failure-prone environments, and WSNs nodes easily fail due to unreliable wireless connections, malicious attacks and resource-constrained features. Nevertheless, if WSNs can tolerate at most losing k − 1 nodes while the rest of nodes remain connected, the network is called k − connected. k is one of the most important indicators for WSNs’ self-healing capability. Following a WSN design flow, this paper surveys resilience issues from the topology control and multi-path routing point of view. This paper provides a discussion on transmission and failure models, which have an important impact on research results. Afterwards, this paper reviews theoretical results and representative topology control approaches to guarantee WSNs to be k − connected at three different network deployment stages: pre-deployment, post-deployment and re-deployment. Multi-path routing protocols are discussed, and many NP-complete or NP-hard problems regarding topology control are identified. The challenging open issues are discussed at the end. This paper can serve as a guideline to design resilient WSNs

    Are low cost accountability, communications, and management systems for emergency first responders using 3G and 4G cellular technologies feasible?

    Get PDF
    Reliable, easily deployed communication networks are a necessity for emergency responders as the coordination of their efforts and their safety depend on it. As a volunteer firefighter, this researcher is aware of the shortcomings of the current communication technologies presently deployed, and the risks it poses to firefighters. Some studies have proposed deployment of sophisticated hybrid, mesh networks and mobile ad hoc networks that allow for location tracking, environment and personnel vital signs monitoring, and data communications. Unfortunately the cost of these systems and required training in use of the equipment inhibits their adoption and wide scale deployment across the nation\u27s emergency responder agencies. We are surrounded by secure, reliable cellular network technologies that meet our voice and data communication needs, yet current studies focus on building network infrastructures from the ground up and discussing how to address the security and performance issues of their proposed networks. This study proposes the use of the existing cellular network architecture already in place across the nation as a foundation to explore the feasibility of a low cost communication, management and accountability system utilizing 3G and 4G technologies and architecture

    An Energy-efficient Rate Adaptive Media Access Protocol (RA-MAC) for Long-lived Sensor Networks

    Get PDF
    We introduce an energy-efficient Rate Adaptive Media Access Control (RA-MAC) algorithm for long-lived Wireless Sensor Networks (WSNs). Previous research shows that the dynamic and lossy nature of wireless communications is one of the major challenges to reliable data delivery in WSNs. RA-MAC achieves high link reliability in such situations by dynamically trading off data rate for channel gain. The extra gain that can be achieved reduces the packet loss rate which contributes to reduced energy expenditure through a reduced numbers of retransmissions. We achieve this at the expense of raw bit rate which generally far exceeds the application’s link requirement. To minimize communication energy consumption, RA-MAC selects the optimal data rate based on the estimated link quality at each data rate and an analytical model of the energy consumption. Our model shows how the selected data rate depends on different channel conditions in order to minimize energy consumption. We have implemented RA-MAC in TinyOS for an off-the-shelf sensor platform (the TinyNode) on top of a state-of-the-art WSN Media Access Control Protocol, SCP-MAC, and evaluated its performance by comparing our implementation with the original SCP-MAC using both simulation and experiment
    corecore