47 research outputs found

    Polyèdres et Compilation

    No full text
    22 pagesInternational audienceLa première utilisation de polyèdres pour résoudre un problème de compilation, la parallélisation automatique de boucles en présence d'appels de procédure, a été décrite et implémenté il y a près de trente ans. Le modèle polyédrique est maintenant reconnu internationalement et est en phase d'intégration dans le compilateur GCC, bien que la complexité exponentielle des algorithmes associés ait été pendant très longtemps un motif justifiant leur refus pur et simple. L'objectif de cet article est de donner de nombreux exemples d'utilisation des polyèdres dans un compilateur optimiseur et de montrer qu'ils permettent de poser des conditions simples pour garantir la légalité de transformations

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Process-Algebraic Models of Multi-Writer Multi-Reader Non-Atomic Registers

    Get PDF
    We present process-algebraic models of multi-writer multi-reader safe, regular and atomic registers. We establish the relationship between our models and alternative versions presented in the literature. We use our models to formally analyse by model checking to what extent several well-known mutual exclusion algorithms are robust for relaxed atomicity requirements. Our analyses refute correctness claims made about some of these algorithms in the literature

    Parallel Processes in HPX: Designing an Infrastructure for Adaptive Resource Management

    Get PDF
    Advancement in cutting edge technologies have enabled better energy efficiency as well as scaling computational power for the latest High Performance Computing(HPC) systems. However, complexity, due to hybrid architectures as well as emerging classes of applications, have shown poor computational scalability using conventional execution models. Thus alternative means of computation, that addresses the bottlenecks in computation, is warranted. More precisely, dynamic adaptive resource management feature, both from systems as well as application\u27s perspective, is essential for better computational scalability and efficiency. This research presents and expands the notion of Parallel Processes as a placeholder for procedure definitions, targeted at one or more synchronous domains, meta data for computation and resource management as well as infrastructure for dynamic policy deployment. In addition to this, the research presents additional guidelines for a framework for resource management in HPX runtime system. Further, this research also lists design principles for scalability of Active Global Address Space (AGAS), a necessary feature for Parallel Processes. Also, to verify the usefulness of Parallel Processes, a preliminary performance evaluation of different task scheduling policies is carried out using two different applications. The applications used are: Unbalanced Tree Search, a reference dynamic graph application, implemented by this research in HPX and MiniGhost, a reference stencil based application using bulk synchronous parallel model. The results show that different scheduling policies provide better performance for different classes of applications; and for the same application class, in certain instances, one policy fared better than the others, while vice versa in other instances, hence supporting the hypothesis of the need of dynamic adaptive resource management infrastructure, for deploying different policies and task granularities, for scalable distributed computing

    Software-assisted cache mechanisms for embedded systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (leaves 120-135).Embedded systems are increasingly using on-chip caches as part of their on-chip memory system. This thesis presents cache mechanisms to improve cache performance and provide opportunities to improve data availability that can lead to more predictable cache performance. The first cache mechanism presented is an intelligent cache replacement policy that utilizes information about dead data and data that is very frequently used. This mechanism is analyzed theoretically to show that the number of misses using intelligent cache replacement is guaranteed to be no more than the number of misses using traditional LRU replacement. Hardware and software-assisted mechanisms to implement intelligent cache replacement are presented and evaluated. The second cache mechanism presented is that of cache partitioning which exploits disjoint access sequences that do not overlap in the memory space. A theoretical result is proven that shows that modifying an access sequence into a concatenation of disjoint access sequences is guaranteed to improve the cache hit rate. Partitioning mechanisms inspired by the concept of disjoint sequences are designed and evaluated. A profit-based analysis, annotation, and simulation framework has been implemented to evaluate the cache mechanisms. This framework takes a compiled benchmark program and a set of program inputs and evaluates various cache mechanisms to provide a range of possible performance improvement scenarios. The proposed cache mechanisms have been evaluated using this framework by measuring cache miss rates and Instructions Per Clock (IPC) information. The results show that the proposed cache mechanisms show promise in improving cache performance and predictability with a modest increase in silicon area.by Prabhat Jain.Ph.D

    Process-Algebraic Models of Multi-Writer Multi-Reader Non-Atomic Registers

    Full text link
    We present process-algebraic models of multi-writer multi-reader safe, regular and atomic registers. We establish the relationship between our models and alternative versions presented in the literature. We use our models to formally analyse by model checking to what extent several well-known mutual exclusion algorithms are robust for relaxed atomicity requirements. Our analyses refute correctness claims made about some of these algorithms in the literature

    Code Generation in the Columbia Esterel Compiler

    Get PDF
    The synchronous language Esterel provides deterministic concurrency by adopting a semantics in which threads march in step with a global clock and communicate in a very disciplined way. Its expressive power comes at a cost, however: it is a difficult language to compile into machine code for standard von Neumann processors. The open-source Columbia Esterel Compiler is a research vehicle for experimenting with new code generation techniques for the language. Providing a front-end and a fairly generic concurrent intermediate representation, a variety of back-ends have been developed. We present three of the most mature ones, which are based on program dependence graphs, dynamic lists, and a virtual machine. After describing the very different algorithms used in each of these techniques, we present experimental results that compares twenty-four benchmarks generated by eight different compilation techniques running on seven different processors

    Computational methods and software systems for dynamics and control of large space structures

    Get PDF
    Two key areas of crucial importance to the computer-based simulation of large space structures are discussed. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area involves massively parallel computers
    corecore