9 research outputs found

    Internet of things: Vision, applications and research challenges

    Get PDF
    The term “Internet-of-Things” is used as an umbrella keyword for covering various aspects related to the extension of the Internet and the Web into the physical realm, by means of the widespread deployment of spatially distributed devices with embedded identification, sensing and/or actuation capabilities. Internet-of-Things envisions a future in which digital and physical entities can be linked, by means of appropriate information and communication technologies, to enable a whole new class of applications and services. In this article, we present a survey of technologies, applications and research challenges for Internet-of-Things

    GEOMATICS FOR EMERGENCY MANAGEMENT

    Get PDF
    La geomatica gioca un ruolo cruciale nel ciclo di Gestione delle emergenze. Le Spatial Data Infrastructures (SDI) mettono a diposizione dati e servizi  georefernziati a scala globale, mentre l’utilizzo sempre più massiccio di formati interoperabili di dati basati su standard internazionali, rende estremamente più semplice la loro integrazione con dati locali. Sistemi di allerta precoce spesso si basano sulla disponibilità di dati telerilevati, capaci anche di alimentare sistemi di previsione e nowcasting concepiti per disseminare allerte tempestive ed efficaci. Dal punto di vista operativo invece, recenti emergenze (il terremoto di Haiti del 2010, le alluvioni in Pakistan del 2011, lo tsunami in Giappone e il terremoto dell’Emilia del 2012) hanno chiaramente dimostrato l’importante ruolo della geomatica nel supporto alla risposta e alla fase di ricostruzione emergenziale. Il telerilevamento è al giorno d’oggi usato sempre più frequentemente per supportare sia i decisori che il personale impiegato sul campo durante i disastri naturali e come chiaramente sottolineato dalle nazioni Unite nel 2011 “[…] Remote sensing in the hours and days after the Haiti earthquake yielded estimates of numbers of severely affected people that stood the test of time and allowed an unusually rapid flash appeal. [...] Similarly, in Pakistan, the plans in the revised flash appeal were mostly able to encompass the still expanding scale of needs thanks to information management using remote sensing and other resources necessary for a situation of limited ground access.” (United Nations 2011. Section “Major natural disasters in 2010 and lesson learned”).Questo panel intende presentare I più recenti sviluppi nel campo della geomatica, con particolare attenzione alle nuove tecnologie, best practices e progetti di cooperazione rivolti all’assistenza umanitaria

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business

    Traversal, Case Analysis, and Lowering for C++ Program Analysis

    Get PDF
    To work effectively, programmers need tools to support their typical development activities, such as the creation, analysis, and transformation of source code. Analysis and transformation tools can be difficult to write for modern programming languages and, without a reusable framework, each tool must separately implement nontrivial algorithms like name lookup and type checking. This thesis describes an extension to one such framework, named Pivot, that focuses on programs written in C++. This extension, named Filter, assists the tool builder in traversal, case analysis, and lowering of the data structure representing C++ programs. Comparisons described in the thesis show a 2-4x code reduction when solving basic problems (e.g., searching for uses of a given declaration) using the extension and a performance overhead that drops below 2x for larger problems (e.g., checking C++ layout compatibility)
    corecore