50 research outputs found

    CONTREX: Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-functional properties

    Get PDF
    The increasing processing power of today’s HW/SW platforms leads to the integration of more and more functions in a single device. Additional design challenges arise when these functions share computing resources and belong to different criticality levels. CONTREX complements current activities in the area of predictable computing platforms and segregation mechanisms with techniques to consider the extra-functional properties, i.e., timing constraints, power, and temperature. CONTREX enables energy efficient and cost aware design through analysis and optimization of these properties with regard to application demands at different criticality levels. This article presents an overview of the CONTREX European project, its main innovative technology (extension of a model based design approach, functional and extra-functional analysis with executable models and run-time management) and the final results of three industrial use-cases from different domain (avionics, automotive and telecommunication).The work leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007-2011 under grant agreement no. 611146

    CONTREX: Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-functional properties

    Get PDF
    The increasing processing power of today’s HW/SW platforms leads to the integration of more and more functions in a single device. Additional design challenges arise when these functions share computing resources and belong to different criticality levels. The paper presents the CONTREX European project and its preliminary results. CONTREX complements current activities in the area of predictable computing platforms and segregation mechanisms with techniques to consider the extra-functional properties, i.e., timing constraints, power, and temperature. CONTREX enables energy efficient and cost aware design through analysis and optimization of these properties with regard to application demands at different criticality levels

    Modal Reactors

    Full text link
    Complex software systems often feature distinct modes of operation, each designed to handle a particular scenario that may require the system to respond in a certain way. Breaking down system behavior into mutually exclusive modes and discrete transitions between modes is a commonly used strategy to reduce implementation complexity and promote code readability. However, such capabilities often come in the form of self-contained domain specific languages or language-specific frameworks. The work in this paper aims to bring the advantages of modal models to mainstream programming languages, by following the polyglot coordination approach of Lingua Franca (LF), in which verbatim target code (e.g., C, C++, Python, Typescript, or Rust) is encapsulated in composable reactive components called reactors. Reactors can form a dataflow network, are triggered by timed as well as sporadic events, execute concurrently, and can be distributed across nodes on a network. With modal models in LF, we introduce a lean extension to the concept of reactors that enables the coordination of reactive tasks based on modes of operation. The implementation of modal reactors outlined in this paper generalizes to any LF-supported language with only modest modifications to the generic runtime system

    Using Efficient Path Profiling to Optimize Memory Consumption of On-Chip Debugging for High-Level Synthesis

    Get PDF
    High-Level Synthesis (HLS) for FPGAs is attracting popularity and is increasingly used to handle complex systems with multiple integrated components. To increase performance and efficiency, HLS flows now adopt several advanced optimization techniques. Aggressive optimizations and system level integration can cause the introduction of bugs that are only observable on-chip. Debugging support for circuits generated with HLS is receiving a considerable attention. Among the data that can be collected on chip for debugging, one of the most important is the state of the Finite State Machines (FSM) controlling the components of the circuit. However, this usually requires a large amount of memory to trace the behavior during the execution. This work proposes an approach that takes advantage of the HLS information and of the structure of the FSM to compress control flow traces and to integrate optimized components for on-chip debugging. The generated checkers analyze the FSM execution on-fly, automatically notifying when a bug is detected, localizing it and providing data about its cause. The traces are compressed using a software profiling technique, called Efficient Path Profiling (EPP), adapted for the debugging of hardware accelerators generated with HLS. With this technique, the size of the memory used to store control flow traces can be reduced up to 2 orders of magnitude, compared to state-of-the-art

    Scade 6: from a Kahn Semantics to a Kahn Implementation for Multicore

    Get PDF
    International audienceSCADE is an environment for developing critical embedded software that is used for more than twenty years in various application domains like avionics, nuclear plants, transportation, automotive. It comes with a language and a code generator which complies with the highest safety standards like DO-178C, IEC 61508, EN 50128, IEC 60880 and ISO 26262. The language has been founded on the pioneering work by Caspi and Halbwachs on Lustre. In 2008, a major revision of the language and compiler, named 'Scade 6', was released. One of its novelty was a smooth integration of the traditional data-flow style of Lustre with control-structures inspired from those of Esterel and SyncCharts, with static/dynamic semantics and a compilation inspired from Lucid Synchrone. In particular, it relies on four dedicated type systems-typing, clock calculus, causality analysis, initialization analysis-and a compilation through source-to-source transformations into a minimal clocked data-flow language, based on a Kahn semantics, that is translated to imperative code. One ongoing work is the generation of code for multi-core architectures. Because of the intrinsic deterministic parallelism of Scade, we propose a solution that relies on annotations that specify what must be executed concurrently but do not change the semantics. The paper is a survey of past to ongoing work on Scade 6 language definition and implementation

    Finding False Assurance in Formal Verification of Software Systems

    Get PDF
    Formal verification plays a crucial role in enhancing the reliability of computing systems by mathematically checking the correctness of a program. Although recent years have witnessed lots of research and applications that optimize the formal verification process, the issue of false assurance persists in certain stages of the formal verification pipeline. The false assurance problem is critical as it can easily undermine months if not years of verification efforts. In this thesis, we first generalized the formal verification process. We then identified and analyzed specific stages susceptible to false assurance. Subsequently, a systematization of knowledge pertaining to the false assurance issues observed at these stages is provided, accompanied by a discussion on the existing defense mechanisms that are currently available. Specifically, we focused on the problem of formal specification incompleteness. We presented FAST in this thesis, which is short for underlineFuzzing-underlineAssisted underlineSpecification underlineTesting. FAST examines the spec for incompleteness issues in an automated way: it first locates spec gaps via mutation testing, i.e., by checking whether a code variant conforms to the original spec. If so, FAST further leverages the test suites to infer whether the gap is introduced by intention or by mistake. Depending on the codebase size, FAST may choose to generate code variants in either an enumerative or evolutionary way. FAST is applied to two open-source codebases that feature formal verification and helps to confirm 13 and 21 blind spots in their spec respectively. This highlights the prevalence of spec incompleteness in real-world applications

    Methoden und Beschreibungssprachen zur Modellierung und Verifikation vonSchaltungen und Systemen: MBMV 2015 - Tagungsband, Chemnitz, 03. - 04. März 2015

    Get PDF
    Der Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2015) findet nun schon zum 18. mal statt. Ausrichter sind in diesem Jahr die Professur Schaltkreis- und Systementwurf der Technischen Universität Chemnitz und das Steinbeis-Forschungszentrum Systementwurf und Test. Der Workshop hat es sich zum Ziel gesetzt, neueste Trends, Ergebnisse und aktuelle Probleme auf dem Gebiet der Methoden zur Modellierung und Verifikation sowie der Beschreibungssprachen digitaler, analoger und Mixed-Signal-Schaltungen zu diskutieren. Er soll somit ein Forum zum Ideenaustausch sein. Weiterhin bietet der Workshop eine Plattform für den Austausch zwischen Forschung und Industrie sowie zur Pflege bestehender und zur Knüpfung neuer Kontakte. Jungen Wissenschaftlern erlaubt er, ihre Ideen und Ansätze einem breiten Publikum aus Wissenschaft und Wirtschaft zu präsentieren und im Rahmen der Veranstaltung auch fundiert zu diskutieren. Sein langjähriges Bestehen hat ihn zu einer festen Größe in vielen Veranstaltungskalendern gemacht. Traditionell sind auch die Treffen der ITGFachgruppen an den Workshop angegliedert. In diesem Jahr nutzen zwei im Rahmen der InnoProfile-Transfer-Initiative durch das Bundesministerium für Bildung und Forschung geförderte Projekte den Workshop, um in zwei eigenen Tracks ihre Forschungsergebnisse einem breiten Publikum zu präsentieren. Vertreter der Projekte Generische Plattform für Systemzuverlässigkeit und Verifikation (GPZV) und GINKO - Generische Infrastruktur zur nahtlosen energetischen Kopplung von Elektrofahrzeugen stellen Teile ihrer gegenwärtigen Arbeiten vor. Dies bereichert denWorkshop durch zusätzliche Themenschwerpunkte und bietet eine wertvolle Ergänzung zu den Beiträgen der Autoren. [... aus dem Vorwort

    Time for Reactive System Modeling

    Get PDF
    Reactive systems interact with their environment by reading inputs and computing and feeding back outputs in reactive cycles that are also called ticks. Often they are safety critical systems and are increasingly modeled with highlevel modeling tools. The concepts of the corresponding modeling languages are typically aimed to facilitate formal reasoning about program constructiveness to guarantee deterministic output and are explicitly abstracted from execution time aspects. Nevertheless, the worst-case execution time of a tick can be a crucial value, where exceedance can lead to lost inputs or tardy reaction to critical events. This thesis proposes a general approach to interactive timing analysis, which enables the feedback of detailed timing values directly in the model representation to support timing aware modeling. The concept is based on a generic timing interface that enables the exchangeability of the modeling as well as the timing analysis tool for the flexible implementation of varying tool chains. The proposed timing analysis approach includes visual highlighting and modeling pragmatics features to guide the user to timing hotspots for timing related model revisions

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 24th International Conference on Fundamental Approaches to Software Engineering, FASE 2021, which took place during March 27–April 1, 2021, and was held as part of the Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg but changed to an online format due to the COVID-19 pandemic. The 16 full papers presented in this volume were carefully reviewed and selected from 52 submissions. The book also contains 4 Test-Comp contributions
    corecore