279 research outputs found

    Performance Evaluation for IP Protection Watermarking Techniques

    Get PDF

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    A fast time-domain EM-TCAD coupled simulation framework via matrix exponential

    Get PDF
    We present a fast time-domain multiphysics simulation framework that combines full-wave electromagnetism (EM) and carrier transport in semiconductor devices (TCAD). The proposed framework features a division of linear and nonlinear components in the EM-TCAD coupled system. The former is extracted and handled independently with high efficiency by a matrix exponential approach assisted with Krylov subspace method. The latter is treated by ordinary Newton's method yet with a much sparser Jacobian matrix that leads to substantial speedup in solving the linear system of equations. More convenient error management and adaptive control are also available through the linear and nonlinear decoupling. © 2012 ACM.published_or_final_versio

    High-Level Synthesis for Embedded Systems

    Get PDF

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing

    On Uniformly Sampling Traces of a Transition System (Extended Version)

    Full text link
    A key problem in constrained random verification (CRV) concerns generation of input stimuli that result in good coverage of the system's runs in targeted corners of its behavior space. Existing CRV solutions however provide no formal guarantees on the distribution of the system's runs. In this paper, we take a first step towards solving this problem. We present an algorithm based on Algebraic Decision Diagrams for sampling bounded traces (i.e. sequences of states) of a sequential circuit with provable uniformity (or bias) guarantees, while satisfying given constraints. We have implemented our algorithm in a tool called TraceSampler. Extensive experiments show that TraceSampler outperforms alternative approaches that provide similar uniformity guarantees.Comment: Extended version of paper that will appear in proceedings of International Conference on Computer-Aided Design (ICCAD '20); changed wrong text color in sec 7; added 'extended version

    Analyzing multiple conflicts in SAT: an experimental evaluation

    Get PDF
    Unit propagation and conflict analysis are two essential ingredients of CDCL SAT Solving. The order in which unit propagation is computed does not matter when no conflict is found, because it is well known that there exists a unique unit-propagation fixpoint. However, when a conflict is found, current CDCL implementations stop and analyze that concrete conflict, even though other conflicts may exist in the unit-propagation closure. In this experimental evaluation, we report on our experience in modifying this concrete aspect in the CaDiCaL SAT Solver and try to answer the question of whether we can improve the performance of SAT Solvers by the analysis of multiple conflicts.All authors are supported by grant PID2021-122830OB-C43, funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF: A way of making Europe”Peer ReviewedPostprint (published version
    • …
    corecore