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Abstract—We present a fast time-domain multiphysics simulation
framework that combines full-wave electromagnetism (EM) and carrier
transport in semiconductor devices (TCAD). The proposed framework
features a division of linear and nonlinear components in the EM-TCAD
coupled system. The former is extracted and handled independently
with high efficiency by a matrix exponential approach assisted with
Krylov subspace method. The latter is treated by ordinary Newton’s
method yet with a much sparser Jacobian matrix that leads to substantial
speedup in solving the linear system of equations. More convenient error
management and adaptive control are also available through the linear
and nonlinear decoupling.

I. INTRODUCTION

In recent years, there is a growing demand toward combining stand-
alone electromagnetic (EM) solvers and technology computer-aided
design (TCAD) semiconductor device simulators in mixed-signal, RF
and multi-domain simulation. This is because the simplification of
semiconductors (to conductors with equivalent conductivity) in linear
EM analysis and the neglect of magnetic effects in TCAD simulation
have become insufficient to characterize the field-carrier interactions
that are getting stronger as a direct consequence of the increasing
operational frequency and the decreasing signal level.

The EM-TCAD coupled simulation essentially refers to a con-
current solution of the Maxwell’s equations that describe the EM
dynamics and the transport equations that describe the charge carrier
dynamics in semiconductor. A widely tested co-simulation framework
in the frequency domain was proposed in [1], [2]. The Maxwell’s
equations are formulated in terms of scalar potential V and vector
potential A to obtain straightforward coupling with the drift and
diffusion (DD) semiconductor model. The A-V co-simulator has
been translated into a series of commercial tools [3], and verified
against measurements with a number of industrial examples [4],
[5]. Meanwhile, the A-V formulation has also been coupled with
a quantum mechanical model to enable a multiscale simulation
framework (called QM/EM method) for emerging nano-electronic
devices [6], [7].
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Whereas the frequency-domain A-V solver has been developed in
a rather advanced stage, the transient counterpart so far has been less
explored. Unlike the objective of obtaining small-signal response in
the frequency domain, the need of transient EM-TCAD simulation
comes from the desire to handle large-signal response. The first
implementation of time-domain A-V solver was reported recently
in [8]. The implicit backward Euler (BE) approach was employed for
time discretization and the Newton’s method was used to solve the
nonlinear system arising from semiconductor dynamics. Due to the
complications in physics and numerical treatment, five variables have
to be used in the formulation and solved simultaneously. Therefore,
the number of unknowns in each Newton iteration is commonly
5 ∼ 6 times the number of nodes in the computational grid. This
rapid growth of problem size severely limits applicability of the co-
simulation framework.

In this paper, we develop a new solution technique to dramatically
improve the scalability of the time-domain EM-TCAD simulation.
Our approach starts from separating the linear components in the
coupled system, which commonly arise from the back-end structure,
and the nonlinear components that are resulted from the front-end
structure. The time integration of the linear part is realized with
the lately developed matrix exponential (MEXP) method, where
the matrix exponential is computed efficiently by Krylov subspace
approximation. The MEXP solver has been shown to provide better
scalability than BE [9] for large problems. The nonlinear part of the
system is still handled by the conventional implicit time discretization
and the Newton’s method. The number of nonzeros in the Jacobian
matrix in the Newton’s method, however, is largely reduced, since
the elements from linear sub-system do not appear in the Jacobian
anymore. Therefore, the two main advantages of MEXP are that

• The maximum manageable problem size is substantially elevated
for hybrid structures that include a non-negligible portion of
linear components.

• More convenient error control and adaptive time-stepping are
enabled for further performance enhancement.

Several efforts are exerted to enable the proposed MEXP ap-
proach. The singular matrix problem facing matrix-exponential-based
schemes is circumvented by the introduction of differentiated Gauss
law. The block structure of system matrices is leveraged to enable
a fast computation of matrix vector product that is core to the
Krylov subspace approximation of matrix exponential. The nonlinear
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function is decoupled from the matrix exponential term by a special
technique. Numerical experiments demonstrate that the MEXP solver
can lead to over 10X speedup in Newton iteration compared with
the BE solver.

II. TIME-DOMAIN FORMULATION OF EM-TCAD PROBLEM

The starting point of the time-domain EM-TCAD formulation is
the common full-wave Maxwell’s equations

∇ ·D = ρ, ∇ ·B = 0 (1a)

∇×E = −
∂B

∂t
, ∇×H = J +

∂D

∂t
(1b)

where D,E,B,H,J and ρ are the displacement field, electric field,
magnetic induction, magnetic field, free current density and charge
density, respectively.

In the semiconductor region the Maxwell’s equations are coupled
with the current continuity of electrons and holes

∇ · Jn −
∂

∂t
n−R (n, p) = 0 (2a)

∇ · Jp +
∂

∂t
p+R (n, p) = 0 (2b)

where n and p are the electron and hole densities, and R(n, p)
denotes the net generation/recombination rate of carriers. The particle
current densities in semiconductor are described by the DD model

Jn = qµnnE + qkTµn∇n (3a)

Jp = qµppE− qkTµp∇p (3b)

where µ, k and T are the carrier mobility, Boltzmann constant and
temperature, respectively.

To facilitate the coupling between the EM and TCAD solvers, the
Maxwell’s equations are rewritten with the potential variables V and
A that satisfy B = ∇ ×A and E = −∇V − ∂A

∂t
[1], [2]. A new

variable the pseudo-canonical momentum Π = ∂A
∂t

is also introduced
to avoid the second-order time derivative [8]. The complete system
of equations is then laid out in (4) (under the “de Mari” scaling
scheme [2]){

∇ · [ε (∇V + Π)] + ρ = 0, ρ = p− n+ND
∇·
[
ε
(
∇ ∂
∂t
V + ∂

∂t
Π
)]

+∇·[σ (∇V +Π)]−∇·Jsd = 0
(4a)

∇ · Jn −
∂

∂t
n−R (n, p) = 0 (4b)

∇ · Jp +
∂

∂t
p+R (n, p) = 0 (4c)

∂

∂t
A−Π = 0 (4d)

Kε

(
∂

∂t
Π+∇

∂

∂t
V

)
+K∇

(
−ε

∂

∂t
V

)
+

[∇× (∇×A)−∇ (∇ ·A)]+Kσ (∇V + Π)−KJsd = 0 (4e)

where Jsd = Jn + Jp is the total semiconductor current and K is a
dimensionless constant in the scaling. The upper equation in (4a) is
the common Gauss law, and the lower one is the current continuity
for nodes attached with metals, where the Gauss law will be used to
recover the charge densities that are not explicit unknowns. Eqn. (4e)
represents a “modified” Maxwell-Ampere equation that includes the
subtraction of the divergence of Lorentz gauge condition

∇ ·A +Kε
∂V

∂t
= 0 (5)

to eliminate the intrinsic singularity of the curl-curl operator [10]
through making ∇2 = ∇× (∇×)−∇(∇·).

The system after spatial discretization can be assembled in a matrix
format as shown in (6) on top of next page. I denotes identity matrix

with conformal dimension. Eqn. (6) can be further condensed to a
nonlinear differential equation

Cẋ = −Gx− F (x)− b (7)

where the constant matrices C and G collect the linear dynamics
in the system, F collects the nonlinear dynamics (generally the
nonlinear semiconductor currents), and b the input term.

The work-horse numerical approach to solve (7) consists of first
approximating the time derivative by certain polynomial expansion,
and then solving the resulted algebraic nonlinear equations by the
Newton’s method. For instance, the BE approximation results in the
following nonlinear equation for the solution of the (n+ 1)th step

C
xn+1 − xn

h
= −Gxn+1 − F (xn+1)− bn+1

F (xn+1) +

(
C

h
+G

)
xn+1 −

C

h
xn + bn+1 = 0 (8)

in which h is the time step size. Then the Newton’s method solves (8)
by building and solving the Jacobian matrix in each iteration(

∂F

∂x

∣∣∣∣
xk+1
n+1

+
C

h
+G

)
∆xk+1

n+1 =

−
(
F (xkn+1) +

(
C

h
+G

)
xkn+1 −

C

h
xn + bn+1

)
(9)

where the Jacobian J =

(
∂F
∂x

∣∣
xk+1
n+1

+ C
h

+G

)
. ∆xk+1

n+1 denotes the

update of x at the (k + 1)th Newton iteration in the (n+ 1)th step.

III. TIME EVOLUTION WITH MATRIX EXPONENTIAL

A. Basic Matrix Exponential Method
The matrix exponential method relies on converting (7) to an

ordinary differential equation (ODE) by multiplying the inverse of
C on both sides

ẋ = −C−1Gx− C−1F (x)− C−1b (11)

Note that we assume the inverse of C is easy to obtain at this moment.
The treatment for a singular C and the fast computation of C−1 will
be presented in later subsections.

The analytical solution of (11) for xn+1 is given with the matrix
exponential [11]

xn+1 = eMhxn+∫ h

0

eM(h−τ)
[
−C−1F (tn + τ)− C−1b(tn + τ)

]
dτ

(12)

in which M = −C−1G.
Successful application of the above matrix exponential formula

requires answers to the following three questions:
• Is C really invertible? How to deal with the systems with a

singular C?
• How to compute the matrix exponential eMh (which involves
C−1) efficiently for large-scale problems?

• How to handle the nonlinear function F in the integral?
The following three subsections will be devoted to addressing these
three issues.

B. Regularization of C

The matrix C is generally singular. The singularity arises from the
Gauss law which includes no time derivative term. As evident in (6),
the nodes (collected in V1) where Gauss law is enforced generates
empty rows in C and renders the matrix singular. For the nodes on
which the current continuity is enforced (generally nodes attached
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[
0

∇ · (ε∇)

] [
0

∇ · (ε)

]
−I

I
I

K(ε∇−∇ · (ε)) Kε





[
V̇1

V̇2

]
ṅ
ṗ

Ȧ

Π̇

=−


[
∇ · (ε∇)

∇ · (σ∇)

][
−In

0

][
Ip
0

] [
∇ · (ε)
∇ · (σ)

]

−I
Kσ∇ ∇2 Kσ





[
V1

V2

]
n

p
A

Π

−


[
0

−∇ · J̄semi

]
∇ · J̄n −R (n, p)

∇ · J̄p +R (n, p)
0

−KJ̄semi

−


[
VS +ND

0

]
0

0
0

0

 (6)



[
∇ · (ε∇)
∇ · (ε∇)

] [
−In

0

][
Ip
0

] [
∇ · (ε)
∇ · (ε)

]
−I

I

I
Kε∇−K∇ · (ε) Kε





[
V̇1

V̇2

]
ṅ

ṗ

Ȧ

Π̇

=−



[
0

∇ · (σ∇)

] [
0

∇ · (σ)

]
0

0

0 −I
Kσ∇ ∇2 Kσ





[
V1

V2

]
n

p
A

Π

−


[
0

−∇ · J̄semi

]
∇ · J̄n −R (n, p)

∇ · J̄p +R (n, p)
0

−KJ̄semi

−


[
V̇S
0

]
0

0
0

0

 (10)

with metals), the presence of displacement current (though small
compared with the conduction current) prevents the vacancy in C.

To overcome the singular C problem, we differentiate the Gauss
law, which gives

∇ ·
[
ε

(
∇
∂V

∂t
+
∂Π

∂t

)]
+
∂ρ

∂t
= 0 (13)

In the matrix equation (6), this is equivalent to moving the first row
of G to C and differentiating the b term accordingly, yielding a new
equation system with nonsingular C (10). Note that G and M are
allowed to be singular because the exponential function is analytical.

Several implications are induced from the “regularization” pro-
cess above. From a physical perspective, the differentiated Gauss
law represents essentially another “form” of current continuity in
semiconductor and insulator regions, which equates the displacement
current and the temporal change of charge. The explicitly solved
current continuity equations (4b) and (4c), on the other hand, equates
the particle current and the temporal change of charge. These two
continuity equations together recover the “true” current continuity in
semiconductor (and insulator), viz. the displacement current = the
particle current. Note that the generation/recombination terms for n-
and p-type carriers cancel each other in the differentiated Gauss law.
From a numerical perspective, the regularization converts the original
equation f(t) = g(t) to an equation in the form of ḟ(t) = ġ(t).
Therefore, it is important to guarantee the temporal evolution starts
from a correct initial condition, i.e., ensure that f(0) = g(0). The
correct initial condition can be obtained by a prior static simulation.

In addition, the derivative of source excitation VS is now required,
which is trivial if the sources are defined by continuous differentiable
functions. If the sources are defined in piece-wise-linear form (which
is common in circuit simulation), the selection of time step must
respect the turning points of the waveforms, so as to ensure that
within each step all the derivatives of sources are constant.

C. Fast Krylov Subspace Approximation of Matrix Exponential

The matrix-exponential-vector-product (MEVP) eMhx, which
is the main computation for the time marching scheme (12),
can be done efficiently by projecting the pair of (M,x) onto
an m-dimensional Krylov subspace defined by Km (M,x) =
span{x,Mx, . . . ,Mm−1x}, and computing the MEVP on the
Krylov subspace.

Specifically, an N -by-m orthonormal basis Vm (N = dim(M))
and an (m + 1)-by-m upper Hessenberg matrix H for the Krylov
subspace Km are first constructed by the Arnoldi process. Then eMhx
can be approximated by [12]

eMhx ≈ ‖x‖2VmeHmhe1 (14)

where Hm = H(1 : m, 1 : m). Since m is small (< 100),
the exponential of Hm can be easily computed. A posteriori error
bound [12] is available to estimate the approximation error of (14)

err = ‖x‖2H(m+ 1,m)|eTmeHmhe1| (15)

The main cost of the Krylov subspace approximation lies in the m
matrix vector products Mx involved in the Arnoldi process. Recall
that M = C−1G, then each Mx = −C−1(Gx) involves one sparse
matrix vector product and one sparse linear solve. Since, typically,
C is rather sparser than C + G that needs to be inverted in BE-
type methods when dealing with linear structures, the whole matrix
exponential method can be more efficient than the BE solver as
reported in [9]. Further benefit can be gained from easy parallelization
of the matrix vector multiplications.

The direct computation of Mx, though generally well-performed,
involves still an N -by-N matrix. An even more efficient evaluation
of Mx is available by exploiting the block structures of C and G. As
shown in (16), the inverse of C can be constructed explicitly with the
block matrix inverse lemma, and the computation of Mx boils down
to a series of block matrix operations requiring only the inverse of a
much smaller matrix S.

Mx=−C−1Gx

=−


CV V CV nCV p 0CVΠ

−I
I

I
CΠV 0 0 0CΠΠ


−1

GV V 00 0 GVΠ

0

0

0 −I
GΠV 00GΠAGΠΠ



xV
xn
xp
xA
xΠ



=−


X C̃V n C̃V p 0Y

−I
I

I

Z C̃Πn C̃Πp 0U



GV V 00 0 GVΠ

0

0
0 −I

GΠV 00GΠAGΠΠ



xV
xn
xp
xA
xΠ



=−


XGV V + Y GΠV 00Y GΠAXGVΠ + Y GΠΠ

0
0

0 −I
ZGV V + UGΠV 00UGΠA ZGVΠ + UGΠΠ



xV
xn
xp
xA
xΠ



=−


(XGV V + Y GΠV )xV + Y GΠAxA + (XGVΠ + Y GΠΠ)xΠ

0

0

−xΠ

(ZGV V + UGΠV )xV + UGΠAxA + (ZGVΠ + UGΠΠ)xΠ


(16)

where

X = S−1, Y = −S−1CVΠC
−1
ΠΠ, Z = −C−1

ΠΠCΠV S
−1,

U = C−1
ΠΠ

(
CΠV S

−1CVΠC
−1
ΠΠ + I

)
,

S = CV V − CVΠC
−1
ΠΠCΠV (17)
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Note that the inverse of the diagonal matrix CΠΠ is trivial to obtain.
With further reuse of intermediate results (the derivation is given in
Appendix), the cost of Mx can be ultimately reduced to only one
sparse linear solution with S and several sparse (sub)-matrix vector
products. This explicit construction process substantially reduces the
size of linear system to be solved, since for general hybrid structures

dim(S) = # of nodes <
1

5
dim(M) (18)

D. Solution of Nonlinear System
The nonlinear function in (12) is approximated with a second-order

implicit formula F (τ) = (F (xn) + F (xn+1)) /2 (which renders the
scheme A-stable even for the nonlinear term [13]). Assuming further
a constant derivative of source in each step (i.e., b is a constant), the
integral in (12) can be integrated explicitly, yielding

xn+1 =
h

2

eMh − I
Mh

F (xn+1) + eMhxn + h
eMh − I
Mh

(
Fn

2
+ bn

)
(19)

The function of matrix exponential before F (xn+1) is highly
undesirable. In each Newton iteration the Jacobian matrix will be
pre-multiplied with a matrix exponential, the computation of which
is generally prohibitive. Recall that we prefer computing only the
product of a matrix exponential and a vector. A close analysis reveals
that the first term in (19) represents a coupling between the linear
dynamics in eMh and the nonlinear dynamics in F (xn+1). Hence,
we adopt a technique developed in [14], which decouples the linear
and the nonlinear terms by approximating the entire integrand in (12)
with Lagrange polynomial. The second-order approximation yields

xn+1 =−
h

2
C−1F (xn+1) + eMh

(
xn −

h

2
C−1Fn

)
+
eMh − I
M

(
−C−1bn+1

) (20)

Now F (xn+1) has a constant coefficient and eMh is only multiplied
with terms involving known quantities from the previous step. Further
saving can be achieved by merging the last two terms in (20) into
one single matrix exponential with a slightly larger matrix [15]

xn+1 =−
h

2
C−1F (xn+1)

+ [IN , 0] exp

{[
M−C−1bn+1

0 0

]
h

}[
xn − h

2
C−1Fn
1

]
=−

h

2
C−1F (xn+1) + un+1

(21)

The vector un+1, denoted as the linear update term, is calculated
only once at the beginning of each time step by the Krylov subspace
method described in Subsection III-C.

With (21), the Newton’s method solves the following linear system
in each iteration(

C +
h

2

∂F

∂x

∣∣∣∣
xk+1
n+1

)
∆xk+1

n+1 =

−
(
h

2
Fkn+1 + Cxkn+1 − Cun+1

)
(22)

The local truncation error (LTE) of the approximation (20) is

−
1

12

(
(Mh)2Fn + (Mh)Ḟn + F̈n

)
(23)

One major advantage that MEXP can bring is a sparser Jacobian
matrix in the Newton iterations. Comparing (9) and (22), the Jacobian
in BE consists of

(
∂F
∂x

+ C
h

+G
)
, whereas in MEXP it is only(

C + h
2
∂F
∂x

)
. In large-scale computation, improvement in sparsity in

a linear system can lead to significant computational savings.
The rationale behind this improved sparsity is that, the linear com-

ponents of a system generally do not change during the treatments for

nonlinear components. As reflected in the composition of Jacobian
matrix, the C and G matrices in the BE context are both constant in
the whole duration of Newton’s method; only the Jacobian of F varies
among iterations. In conventional approaches, the stable linear com-
ponents are mixed into the Jacobian of each Newton iteration, which
do not provide new information while still consuming a substantial
part of computation. In contrast, the MEXP approach separates the
linear and the nonlinear parts of the system, and represents the linear
sub-system in a matrix exponential form. The linear sub-system is
then handled by the efficient Krylov subspace technique in one run,
leaving just the nonlinear sub-system participating in the subsequent
Newton iterations.

E. Error Control and Adaptivity

Whereas constant step size is simple to implement, adaptive time-
stepping commonly provides better accuracy and performance in
simulation. The adaption requires certain error control to determine
when to change a step size and re-evaluation scheme when the step
size does change. The separation of linear and nonlinear components
in MEXP, from this perspective, also enables convenient and efficient
error control and adaptive scheme compared with that in traditional
methods. The left flowchart in Fig. 1 shows the flow of BE-like
methods, wherein the linear accuracy (i.e., the accuracy of the
polynomial expansion of the time derivative) is tested only after the
Newton iterations converge. Once the temporary solution cannot pass
the test, the time step must reverse and a new round of Newton
iterations will be restarted, incurring possibly a significant waste of
computation.

Xn

Newton iterations

Converged?

Temp Xn+1

Lin. accuracy check

Pass?

Final Xn+1

Yes

No (scale h if max iter is reached)

Yes

No

Traditional MEXP
Xn

Construct Vm, Hm
Compute eAxn

Lin. accuracy check

Pass?

Yes

Scale h,Hm
Re‐cal eAxn

No

Newton iterations

Converged?
No

Final Xn+1

Yes

Max iter

Nonlin. accuracy check

Pass?

Yes

No

Fig. 1. Flows of traditional methods and MEXP.

On the contrary, the linear accuracy check (15) in MEXP, as shown
in the right flowchart in Fig. 1, is prior to the nonlinear solution. The
accuracy in the matrix exponential approximation can be checked
and tuned to be satisfactory before the algorithm enters the nonlinear
phase. In addition, the Krylov subspace approximation (14) has a nice
scaling invariant property that αM → αHm, which suggests that the
calculated Vm and H can be reused (with corresponding scaling) to
generate a new solution without demanding a new Arnoldi process
when h is changed, i.e.,

eMh1x ≈ ‖x‖2VmeαHme1, α = h1/h (24)

Therefore, the step size can be adjusted multiple times at a negligible
cost since each re-evaluation involves merely an exponential of Hm.

Although the nonlinear accuracy check (23) may also result in
restart of Newton iterations in the MEXP flow, the chance is far lower
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TABLE I
SPECIFICATIONS OF TEST STRUCTURES

Name Description # of nodes
(unknowns)

Breakdown of
lin./nonlin. nodes

CNT Single carbon
nanotube embedded
in silicon substrate

3,825
(27,294)

63/3,753

SUB Substrate noise isola-
tion structure [10]

6,384
(41,368)

1,064/5,320

VCO 8-shaped inductor in
voltage controlled os-
cillator [8]

21,312
(149,898)

4,736/16,576

than in the BE flow. This is because in general the majority of error
in time-domain discretization comes from the linear components,
e.g., the small parasitics in back-end structures that require small
time step to capture. Hence, the separation of linear and nonlinear
components can help avoid effectively the waste of Newton iterations
when adaptive scheme is applied.

IV. NUMERICAL RESULTS

The time-domain EM-TCAD simulation with MEXP solver is
implemented in Matlab. For comparison a BE solver is also im-
plemented. Three test structures with the specifications detailed
in Table IV were simulated to compare their performance. The
linear/nonlinear nodes 1 refer to the nodes attached without/with
semiconductor volumes, respectively. All tests were conducted on a
3.2GHz 16Gb-RAM Linux-based server. The iterative solver involved
in the test is GMRES (tol = 10−6), equipped with incomplete LU
preconditioner ILU(10−3) and column approximate minimum degree
(COLAMD) permutation [16]. The combination represents the state-
of-the-art in iterative solution of large linear system.

Fig. 2 shows the transient current through the left contact of the
CNT example when a sinusoidal voltage of 100GHz is applied. A
small step size of 0.25fs is used to guarantee that the BE method
is accurate enough to serve as a benchmark. The dimension m = 65
of Krylov subspace approximation in MEXP is selected to guarantee
the (estimated) error throughout the simulation smaller than 10−8. A
nice agreement is observed between the BE and the MEXP curves,
which confirms the validity of the regularization of C as well as the
accuracy of the MEXP method.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−14

−150

−100

−50

0

50

100

150

Time

C
u

rr
en

t 
(m

A
)

 

 

BE

MEXP

Fig. 2. Current through the CNT structure obtained by BE and MEXP.

The runtime breakdown of the two methods for one step are shown
in Table II. The time taken by each matrix vector product Mx
via (16) (the numbers in parenthesis are the time taken by a direct

1Nonlinear nodes can still generate nonzeros in the G matrix

(a) (b)

Fig. 3. Sparsity pattern of the Jacobian matrices in BE and MEXP solvers
(VCO example).

computation), and the total time for the Krylov subspace calculation
of matrix exponential are reported. In the Newton iteration sector,
the runtime per iteration is measured for using a direct solver (back-
slash in Matlab) and the iterative solver (COLAMD+ILU+GMRES
combo). The numbers of nonzeros in the Jacobian in Newton iteration
are also shown.

It is seen that the cost of matrix exponential computation, which
is sole for MEXP, is generally moderate because of the efficiency of
Krylov subspace method. The fast computation of Mx in (16) enables
further saving (over 2X for the larger VCO example) compared
with the direct computation. For the runtime of Newton iteration,
remarkable speedup is observed for the MEXP solver, ranging from
5X to 10X for the direct solver and 5X to 20X for the iterative
solver. Note that, given the memory bottleneck and the lack of
parallelizability for direct solvers, in general the iterative solvers
remain the only feasible choice for large-scale problems. Therefore,
the speedup from MEXP for iterative solvers is more indicative.
The improved sparsity in Jacobian matrices is also evident from the
reduction in the number of nonzeros. In general, the more Newton
iterations in one time step, the higher gain from MEXP.

Fig. 3 shows the difference in sparsity of the Jacobian in BE and
MEXP. Because of the absence of the G component, the Jacobian in
MEXP is free of the ∇2 term in the last row of (10) and the identity
term for Π in the equation of A. In particular, the matrix block for
the former tends to be the most dense one in the Jacobian of BE,
the elimination of which in MEXP thus represents rather significant
saving when the sparse system is solved.

Table III compares the performance of BE and MEXP using a sim-
ple adaptive time-stepping scheme. The CNT structure is simulated
with a time span of 50fs and an initial h of 0.25fs. In BE, the step
size is decreased by 0.8X when the linear LTE (which is estimated
by h2ẍ/2) is larger than 10−4, and increased by 1.25X for the next
step when LTE < 10−6 and the Newton’s method converges fast
within ≤ 2 iterations. In MEXP, the linear accuracy is measured by
(15) and tuned by the fast re-evaluation (24). The step size is enlarged
with the same criteria as BE. The m is fixed to be 60.

In the adaptive BE, more then 1/5 of the Newton iterations are
wasted due to the withdrawing of temporary solutions that cannot
pass the linear accuracy check. For more stringent linear accuracy
requirement, more Newton iterations may be discarded. On the other
hand, no Newton iteration is wasted in the adaptive MEXP, since the
linear accuracy has been guaranteed before the nonlinear solution
and the time-domain error from the linear components is more
dominant. This adds additional runtime saving on top of the speedup
in individual Newton iteration reported in Table II.

Some remarks are in order:

• Solving large linear system in Newton-like methods has long
been a bottleneck in time-domain scientific computing involving
nonlinearity. Workarounds have been investigated actively from
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TABLE II
RUNTIME BREAKDOWN OF BE AND MEXP (TIME UNIT: SECONDS)

Cases Method
Krylov approx. of matrix exp. Newton’s method (per iteration)

m time per Mx total time direct GMRES nnz(Jacob)

CNT BE - - - 5.7 10.3 0.4M
MEXP 65 0.086(0.12) 5.76 0.9 1.9 0.2M

SUB BE - - - 4.6 12.9 0.5M
MEXP 40 0.11(0.19) 4.58 0.9 2.3 0.3M

VCO BE - - - 57.5 380.3 1.8M
MEXP 60 0.71(1.51) 47.7 5.6 27.1 1.2M

TABLE III
PERFORMANCE OF BE AND MEXP WITH ADAPTIVE TIME STEPPING

(TIME UNIT: SECONDS)

Method # of steps
# of NT # of NT

Ttotal(total) (wasted)

BE 101 299 59 1993.0

MEXP 92 201 0 258.4

various perspectives, including divide-and-conquer (e.g., domain
decomposition) to reduce the problem size of individual solution,
matrix-free nonlinear solvers (fixed point method and matrix-
free Newton’s method, etc.) to avoid solution of linear systems,
and fast linear solvers (exploiting advanced preconditioners and
parallelization).

• The MEXP framework proposed in this work pursues yet another
direction. Since it is still desirable to keep the Newton’s method
in the game for better convergence and stability, we aim to
minimize the portion of system that will participate in the
nonlinearity treatment and handle the remaining (linear) portion
with techniques that have better scalability than direct solving
of linear systems, e.g., matrix exponential formula + Krylov
subspace method. This way, the overall simulation capacity can
be substantially expanded until the solution to the nonlinear
fraction itself hits again the ceiling of available computation
power. The division of linear and nonlinear components also
facilitates error control and adaptive time-stepping.

• The real benefit of dividing linear and nonlinear components
depends on their proportion in the system. The more linear
components, the higher gain one can expect, and vice versa. In
the extreme case that the structure contains no linear component,
the MEXP scheme will perform similarly with the BE method.
Hence, the MEXP method is specially devised for the EM-
TCAD context where front-end and back-end structures are
commonly coexistent in the same simulation domain.

V. CONCLUSION

We have presented a fast solution technique for time-domain EM-
TCAD co-simulation. The essence lies in the division of linear
components and nonlinear components, and handling the two with
different strategies. The sparsity of the Jacobian matrix in the non-
linear treatment is largely improved, since the linear components will
no longer participate in the treatment. Several techniques have been
developed to guarantee the scalability of the solution of linear part.
It has been demonstrated that the new MEXP method can improve
substantially the performance of the coupled simulator and provides
convenient control of error and adaptive stepping.
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APPENDIX

Following (16),

Mx = −


(XGV V + Y GΠV )xV + Y GΠAxA + (XGVΠ + Y GΠΠ)xΠ

0
0
−xΠ

(ZGV V + UGΠV )xV + UGΠAxA + (ZGVΠ + UGΠΠ)xΠ

 (25)

with

X = S−1, Y = −S−1CVΠC
−1
ΠΠ, Z = −C−1

ΠΠCΠV S
−1, U = C−1

ΠΠ

(
CΠV S

−1CVΠC
−1
ΠΠ + I

)
, S = CV V − CVΠC

−1
ΠΠCΠV (26)

The top and bottom elements in (25) are respectively

(XGV V + Y GΠV )xV + Y GΠAxA + (XGVΠ + Y GΠΠ)xΠ

= M−1GV V xV −M−1CVΠC
−1
ΠΠGΠV xV −M−1CVΠC

−1
ΠΠGΠAxA +M−1GVΠxΠ −M−1CVΠC

−1
ΠΠGΠΠxΠ

= M−1
[
(GV V xV +GVΠxΠ )− CVΠC

−1
ΠΠ (GΠV xV +GΠAxA +GΠΠxΠ )

] (27)

and
(ZGV V + UGΠV )xV + UGΠAxA + (ZGVΠ + UGΠΠ)xΠ

= −C−1
ΠΠCΠVM

−1GV V xV +
(
C−1

ΠΠCΠVM
−1CVΠC

−1
ΠΠ + C−1

ΠΠ

)
GΠV xV +

(
C−1

ΠΠCΠVM
−1CVΠC

−1
ΠΠ + C−1

ΠΠ

)
GΠAxA

−C−1
ΠΠCΠVM

−1GVΠxΠ +
(
C−1

ΠΠCΠVM
−1CVΠC

−1
ΠΠ + C−1

ΠΠ

)
GΠΠxΠ

= −C−1
ΠΠCΠVM

−1
[
(GV V xV +GVΠxΠ )− CVΠC

−1
ΠΠ (GΠV xV +GΠAxA +GΠΠxΠ )

]
+ C−1

ΠΠ (GΠV xV +GΠAxA +GΠΠxΠ )

(28)

Defining
v1 = GV V xV +GVΠxΠ , v2 = C−1

ΠΠ (GΠV xV +GΠAxA +GΠΠxΠ) , v3 = S−1 (v1 − CVΠv2) (29)

one can obtain

Mx = −


v3

0
0
−xΠ

−C−1
ΠΠCΠV v3 + v2

 (30)

which involves only one sparse linear solution and several sparse matrix vector multiplications.
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