25 research outputs found

    Scalability-First Pointer Analysis with Self-Tuning Context-Sensitivity

    Get PDF
    Context-sensitivity is important in pointer analysis to ensure high precision, but existing techniques suffer from unpredictable scala- bility. Many variants of context-sensitivity exist, and it is difficult to choose one that leads to reasonable analysis time and obtains high precision, without running the analysis multiple times. We present the Scaler framework that addresses this problem. Scaler efficiently estimates the amount of points-to information that would be needed to analyze each method with different variants of context-sensitivity. It then selects an appropriate variant for each method so that the total amount of points-to information is bounded, while utilizing the available space to maximize precision. Our experimental results demonstrate that Scaler achieves pre- dictable scalability for all the evaluated programs (e.g., speedups can reach 10x for 2-object-sensitivity), while providing a precision that matches or even exceeds that of the best alternative techniques

    Source Code Analysis: A Road Map

    Full text link

    VLDL Satisfiability and Model Checking via Tree Automata

    Get PDF
    We present novel algorithms solving the satisfiability problem and the model checking problem for Visibly Linear Dynamic Logic (VLDL) in asymptotically optimal time via a reduction to the emptiness problem for tree automata with B\"uchi acceptance. Since VLDL allows for the specification of important properties of recursive systems, this reduction enables the efficient analysis of such systems. Furthermore, as the problem of tree automata emptiness is well-studied, this reduction enables leveraging the mature algorithms and tools for that problem in order to solve the satisfiability problem and the model checking problem for VLDL.Comment: 14 page

    Comparing Rapid Type Analysis with Points-To Analysis in GraalVM Native Image

    Full text link
    Whole-program analysis is an essential technique that enables advanced compiler optimizations. An important example of such a method is points-to analysis used by ahead-of-time (AOT) compilers to discover program elements (classes, methods, fields) used on at least one program path. GraalVM Native Image uses a points-to analysis to optimize Java applications, which is a time-consuming step of the build. We explore how much the analysis time can be improved by replacing the points-to analysis with a rapid type analysis (RTA), which computes reachable elements faster by allowing more imprecision. We propose several extensions of previous approaches to RTA: making it parallel, incremental, and supporting heap snapshotting. We present an extensive experimental evaluation of the effects of using RTA instead of points-to analysis, in which RTA allowed us to reduce the analysis time for Spring Petclinic, a popular demo application of the Spring framework, by 64% and the overall build time by 35% at the cost of increasing the image size due to the imprecision by 15%

    Cautiously Optimistic Program Analyses for Secure and Reliable Software

    Full text link
    Modern computer systems still have various security and reliability vulnerabilities. Well-known dynamic analyses solutions can mitigate them using runtime monitors that serve as lifeguards. But the additional work in enforcing these security and safety properties incurs exorbitant performance costs, and such tools are rarely used in practice. Our work addresses this problem by constructing a novel technique- Cautiously Optimistic Program Analysis (COPA). COPA is optimistic- it infers likely program invariants from dynamic observations, and assumes them in its static reasoning to precisely identify and elide wasteful runtime monitors. The resulting system is fast, but also ensures soundness by recovering to a conservatively optimized analysis when a likely invariant rarely fails at runtime. COPA is also cautious- by carefully restricting optimizations to only safe elisions, the recovery is greatly simplified. It avoids unbounded rollbacks upon recovery, thereby enabling analysis for live production software. We demonstrate the effectiveness of Cautiously Optimistic Program Analyses in three areas: Information-Flow Tracking (IFT) can help prevent security breaches and information leaks. But they are rarely used in practice due to their high performance overhead (>500% for web/email servers). COPA dramatically reduces this cost by eliding wasteful IFT monitors to make it practical (9% overhead, 4x speedup). Automatic Garbage Collection (GC) in managed languages (e.g. Java) simplifies programming tasks while ensuring memory safety. However, there is no correct GC for weakly-typed languages (e.g. C/C++), and manual memory management is prone to errors that have been exploited in high profile attacks. We develop the first sound GC for C/C++, and use COPA to optimize its performance (16% overhead). Sequential Consistency (SC) provides intuitive semantics to concurrent programs that simplifies reasoning for their correctness. However, ensuring SC behavior on commodity hardware remains expensive. We use COPA to ensure SC for Java at the language-level efficiently, and significantly reduce its cost (from 24% down to 5% on x86). COPA provides a way to realize strong software security, reliability and semantic guarantees at practical costs.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/170027/1/subarno_1.pd

    Scalable Context-Sensitive Pointer Analysis for LLVM

    Get PDF
    Pointer analysis is indispensable for effectively verifying heap-manipulating programs. Even though it has been studied extensively, there are no publicly available pointer analyses for low-level languages that are moderately precise while scalable to large real-world programs. In this thesis, we show that existing context-sensitive unification-based pointer analyses suffer from the problem of oversharing – propagating too many abstract objects across the analysis of different procedures, which prevents them from scaling to large programs. We present a new pointer analysis for LLVM, called TeaDsa, with such an oversharing significantly reduced. We show how to further improve precision and speed of TeaDsa with extra contextual information, such as flow-sensitivity at call- and return-sites, and type information about memory accesses. We evaluate TeaDsa on the verification problem of detecting unsafe memory accesses and compare it against two state-of-the-art pointer analyses: SVF and SeaDsa. We show that TeaDsa is one order of magnitude faster than either SVF or SeaDsa, strictly more precise than SeaDsa, and, surprisingly, sometimes more precise than SVF

    A scalable mixed-level approach to dynamic analysis of C and C++ programs

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 107-112).This thesis addresses the difficult task of constructing robust and scalable dynamic program analysis tools for programs written in memory-unsafe languages such as C and C++, especially those that are interested in observing the contents of data structures at run time. In this thesis, I first introduce my novel mixed-level approach to dynamic analysis, which combines the advantages of both source- and binary-based approaches. Second, I present a tool framework that embodies the mixed-level approach. This framework provides memory safety guarantees, allows tools built upon it to access rich source- and binary-level information simultaneously at run time, and enables tools to scale to large, real-world C and C++ programs on the order of millions of lines of code. Third, I present two dynamic analysis tools built upon my framework - one for performing value profiling and the other for performing dynamic inference of abstract types - and describe how they far surpass previous analyses in terms of scalability, robustness, and applicability. Lastly, I present several case studies demonstrating how these tools aid both humans and automated tools in several program analysis tasks: improving human understanding of unfamiliar code, invariant detection, and data structure repair.by Philip Jia Guo.M.Eng

    Dynamically fighting bugs : prevention, detection and elimination

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 147-160).This dissertation presents three test-generation techniques that are used to improve software quality. Each of our techniques targets bugs that are found by different stake-holders: developers, testers, and maintainers. We implemented and evaluated our techniques on real code. We present the design of each tool and conduct experimental evaluation of the tools with available alternatives. Developers need to prevent regression errors when they create new functionality. This dissertation presents a technique that helps developers prevent regression errors in object-oriented programs by automatically generating unit-level regression tests. Our technique generates regressions tests by using models created dynamically from example executions. In our evaluation, our technique created effective regression tests, and achieved good coverage even for programs with constrained APIs. Testers need to detect bugs in programs. This dissertation presents a technique that helps testers detect and localize bugs in web applications. Our technique automatically creates tests that expose failures by combining dynamic test generation with explicit state model checking. In our evaluation, our technique discovered hundreds of faults in real applications. Maintainers have to reproduce failing executions in order to eliminate bugs found in deployed programs. This dissertation presents a technique that helps maintainers eliminate bugs by generating tests that reproduce failing executions. Our technique automatically generates tests that reproduce the failed executions by monitoring methods and storing optimized states of method arguments.(cont.) In our evaluation, our technique reproduced failures with low overhead in real programs Analyses need to avoid unnecessary computations in order to scale. This dissertation presents a technique that helps our other techniques to scale by inferring the mutability classification of arguments. Our technique classifies mutability by combining both static analyses and a novel dynamic mutability analysis. In our evaluation, our technique efficiently and correctly classified most of the arguments for programs with more than hundred thousand lines of code.by Shay Artzi.Ph.D
    corecore