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Abstract

Pointer analysis is indispensable for effectively verifying heap-manipulating programs.
Even though it has been studied extensively, there are no publicly available pointer analyses
for low-level languages that are moderately precise while scalable to large real-world pro-
grams. In this thesis, we show that existing context-sensitive unification-based pointer anal-
yses suffer from the problem of oversharing – propagating too many abstract objects across
the analysis of different procedures, which prevents them from scaling to large programs.
We present a new pointer analysis for LLVM, called TeaDsa, with such an oversharing
significantly reduced. We show how to further improve precision and speed of TeaDsa
with extra contextual information, such as flow-sensitivity at call- and return-sites, and
type information about memory accesses. We evaluateTeaDsa on the verification problem
of detecting unsafe memory accesses and compare it against two state-of-the-art pointer
analyses: SVF and SeaDsa. We show that TeaDsa is one order of magnitude faster than
either SVF or SeaDsa, strictly more precise than SeaDsa, and, surprisingly, sometimes
more precise than SVF.
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Chapter 1

Introduction

Pointer analysis (PTA) – determining whether a given pointer aliases with another pointer
(alias analysis) or points to an allocation site (points-to analysis) are indispensable for
reasoning about low-level code in languages such as C, C++, and LLVM bitcode. In
compiler optimization, PTA is used to detect when memory operations can be lowered
to scalar operations and when code transformations such as code motion are sound. In
verification and bug-finding, PTA is often used as a pre-analysis to limit the implicit
dependencies between values stored in memory. This is typically followed by a deeper,
more expensive, path-sensitive analysis (e.g., [24, 14, 4]).

In both applications, the efficiency of PTA is crucial since it directly impacts com-
pilation and verification times, while precision of the analysis determines its usability.
Moderately precise and efficient PTA is most useful, compared to precise but inefficient or
efficient but imprecise variants.

The problem of pointer analysis is well studied. A survey by Hind [7] (from 2001!)
provides a good overview of techniques and precision vs cost trade-offs. Despite that, very
few practical implementations of PTA targeting low-level languages such as C, C++, and
LLVM are available. In part, this is explained by the difficulty of soundly supporting lan-
guages that do not provide memory safety guarantees, allow pointers to fields of aggregates,
and allow arbitrary pointer arithmetic.

The situation is better for higher-level languages such as Java [2, 8, 7, 18, 23] and Go1.
In this thesis, we focus on the PTA problem for low-level languages.

1https://godoc.org/golang.org/x/tools/go/pointer.
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There are many dimensions that affect precision vs cost trade-offs of a PTA, includ-
ing path-, flow-, and (calling) context-sensitivity, modeling of aggregates, and modular-
ity of the analysis. From the efficiency perspective, the most significant dimension is
whether the analysis is inclusion-based (a.k.a., Andersen-style [1]) or unification-based
(a.k.a., Steensgaard-style [19]). All other things being equal, a unification-based analysis is
significantly faster than an inclusion-based one at the expense of producing very imprecise
results. To improve further precision while retaining its efficiency, a unification-based PTA
can be extended with (calling) context-sensitivity in order to separate local aliasing created
at different call sites. Unfortunately, the combination of a unification-based analysis with
context-sensitivity can quickly degenerate into a prohibitive analysis.

State-of-the-art implementations of unification-based, context-sensitive PTAs (such as
DSA [11] and SeaDsa [5]) perform the analysis in phases. First, each function is analyzed
in an intra-procedural manner (Local). Second, a Bottom-Up phase inlines callees’
points-to graphs into their callers. Third, a Top-Down phase inlines callers’ points-to
graphs into their callees. We observed that both Bottom-Up and Top-Down often copy
too many foreign objects – memory objects allocated by other functions that cannot be
accessed by the function at hand, increasing dramatically both analysis time and memory
usage. In fact, we show in Chapter 7 that the majority of analysis runtime is spent on
copying foreign objects. Even worse, due to the imprecise nature of unification-based PTA
and difficulty of analyzing aggregates precisely, foreign objects can be aliased with other
function objects affecting negatively the precision of the analysis. We refer to oversharing
as the existence of large number of inaccessible foreign objects during the analysis of a
particular function.

In this thesis, we first present a modular formulation of unification-based pointer anal-
yses and use it to describe the main sources of oversharing in a typical combination with
context-sensitivity. Based on the properties of our formulation, we show that a class of
such an oversharing can be avoided. Then, we present a new pointer analysis for LLVM,
called TeaDsa, that eliminates this oversharing. TeaDsa is a new unification-based
PTA implemented on top of SeaDsa. Since TeaDsa builds on SeaDsa, it remains mod-
ular (i.e., analysis of each function is summarized and the summary is used at call sites),
context-, field-, and array-sensitive. The first main difference is that TeaDsa does not add
oversharing during Top-Down while retaining full context-sensitivity. This is achieved
by not copying foreign objects coming from callers. This is a major improvement com-
pared to previous implementations. DSA mitigates the oversharing problem by partially
losing context-sensitivity and treating global variables context-insensitively. SeaDsa does
not tackle this problem since it focuses on medium-size programs such as the SV-COMP
benchmarks [3].
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Second, we observed that oversharing can also come from the Local phase. This is
mainly because the local analysis is flow-insensitive. To mitigate this, we make TeaDsa
flow-sensitive but only at call- and return sites. This preserves the efficiency of the analysis
while improving its precision. Flow-sensitivity is achieved by not propagating memory
objects across functions if a more precise local analysis can infer that they do not alias
parameters or returned values, or if the memory objects are not accessible outside of the
current scope.

Third, we noted that another source of imprecision in SeaDsa is (partial) loss of field-
sensitivity during analysis of operations in which determining the exact field being accessed
is difficult and merging that is inherent to its unification nature. Crucially, in many cases
where field-sensitivity is lost, it is still clear that pointers do not alias if their types are
taken into account. Under strict aliasing rules of the C11 standard, two pointers cannot
alias if they do not have compatible types [9]. By following strict aliasing, we further
improve the precision of TeaDsa.

We have evaluated TeaDsa against SeaDsa and SVF, a state-of-the-art inclusion-
based pointer analysis in LLVM, on the verification problem of detecting unsafe mem-
ory accesses. Our evaluation shows that TeaDsa is one order of magnitude faster than
SeaDsa or SVF, strictly more precise than SeaDsa, and sometimes more precise than
SVF.

3



Chapter 2

Overview

In this chapter, we illustrate our approach on a series of simple examples. Consider a C
program P1 in Fig. 2.1(a) and its corresponding context-insensitive and flow-insensitive
points-to graph G1 in Fig. 2.1(b). The nodes of G1 correspond to registers (ellipses) and
groups of abstract memory objects (rectangles), and edges of G1 represent the points-
to relation between them. As usual, a register is a program variable whose address is
not taken. For example, the local variable s is a register. Similarily, an abstract object
represents concrete memory objects allocated at a static allocation site, such as an address-
taken global or local variable, or a call to an allocating function like malloc. For field
sensitivity, struct fields are associated with their own abstract objects. In Fig. 2.1(a), we
denote corresponding abstract objects in comments. For example, the local integer variable
i is associated with an abstract object o5, while the struct variable c is associated with
abstract objects u.f0 and u.f8 for its label and val fields at offset 0 and 8, respectively.

The edges of G1 denote whether a pointer p may point to an abstract object o, written
p 7→ o. Whenever p may point to multiple abstract objects all of these objects are grouped
into a single (rectangular) node. For instance, x 7→ o1, x 7→ o2, x 7→ o3, x 7→ o4, or
x 7→ {o1, o2, o3, o4} for brevity. We say that two pointers p1 and p2 alias when they may
point to the same abstract object, written alias(p1, p2).

The graph G1 in Fig. 2.1(b) corresponds to the Steensgaard (or unification-based)
PTA [19]. This style of PTA ensures an invariant (I1): whenever there is a pointer p1 and
objects oa and ob such that p1 7→ oa and p1 7→ ob, then for any other pointer p2 if p2 7→ oa
then p2 7→ ob. On one hand, (I1) implies that Steensgaard PTA can be done in linear time
using a union-find data structure to group objects together. On the other, Steensgaard
PTA is quite imprecise. In our running example, it deduces that almost all registers of P1
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1 const char *str1 = "Str1"; // o1

2 const char *str2 = "Str2"; // o2

3 const char *str3 = "Str3"; // o3

4
5 void print(const char *x) {}
6
7 const char *getStr () {
8 const char *p = nondet () ?
9 str1 : str2;

10 print(p);
11 return str1;
12 }
13
14 struct Config
15 { const char *label; int *val; };

16 int foo(struct Config *conf) {
17 const char str4 [5] = "Str4"; // o4

18 print(str4);
19 const char *r = getStr ();
20 print(r);
21 return conf ->label == r;
22 }
23
24 int bar() {
25 int i = 42; // o5

26 const char *s = nondet () ?
27 str2 : str3;
28 struct Config c = {s, &i} // u
29 return foo(&c);
30 }

(a)

o1,	o2,	o3,	o4 o5

u
f0 f8

str1 str2 str3

x

str4

p r s

c conf

i

(b)
Figure 2.1: Sample C program P1 (a) and its Context-insensitive Points-To Graph G1 (b).

may alias, which is clearly not the case. For instance, s 7→ {o1, o2, o3, o4} in Fig. 2.1(b),
even though there is no execution in which s 7→ o1 or s 7→ o4.

A standard way to make the Steensgaard PTA more precise is to perform the analysis
separately for each procedure. This is referred to as (calling) context-sensitivity. The
main idea is to distinguish local aliasing created at different call sites. Data Structure
Analysis (DSA) [11] is an example of a context-sensitive Steensgaard PTA. The results
of a context-sensitive Steensgaard PTA on P1 are shown in Fig. 2.2(a) as four separate
points-to graphs – one for each procedure in P1. An increase in precision (compared to the
PTA in Fig. 2.1(b)) is visible in procedures foo, bar, and getStr: the string str4 does
not alias all the other strings. The improvement comes at a cost – some abstract objects
appear in the analysis results of multiple procedures. For instance, o1, o2, and o3 appear
in all 4 graphs. In the worst case, DSA can grow quadratically in the program size, which
prevents it from scaling to large programs.
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o1,	o2,	o3,	o4

print

x

str1 str2 str3 str4

o1,	o2,	o3r

str1 str2 str3

foo

o5

u
f0 f8

conf

bar

o1,	o2,	o3

getStr

p

str1 str2 str3

o1,	o2,	o3s

str1 str2 str3

o5

u
f0 f8

c

i

o4str4

(a)

print#arg0
AS:	o1,	o2,	o4

print

x

o1r

str1

foo conf

bar

o1,	o2

getStr

p

str1 str2

o2,	o3s

str2 str3

o5

u
f0 f8

c

i

foo#arg0
AS:	uo2,foo#arg0_0

AS:	o2,	o3

o4str4
str2

str1 o1

(b)

Figure 2.2: Context-sensitive Points-To Graphs for P1.

In Chapter 7, we show that in DSA the majority of runtime is often spent on copying
foreign abstract objects coming from other procedures. For example, consider the abstract
objects u.f8 and o5: the procedure foo never accesses the val field of conf. As shown in
Fig. 2.1(a), u.f8 and o5 are only accessible in foo through conf and thus should not appear
in the analysis for foo or any of its callees. However, both u.f8 and o5 are present in the
points-to graph for foo in Fig. 2.2(a), as computed by a DSA-like PTA. This performance
issue was already observed in [11], but only a workaround that loses context-sensitivity for
global objects was implemented.

In this thesis, we show that points-to analysis should refer only to abstract objects
actually used by a procedure. This includes abstract objects in a procedure and its callees,
abstract objects derived from function arguments, and used global variables. Thus, foreign
abstract objects coming from callers are not only unnecessary in the final analysis results of
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their callees, but needless in the first place. Compared to Fig. 2.2(a), in our proposed anal-
ysis, Fig. 2.2(b), function argument accesses are given separate abstract objects, instead
of referring to (foreign) abstract objects of callees.

Furthermore, we observed that DSA maintains the following invariants (I2): if a pro-
cedure F1 with p1 7→ o calls a procedure F2, and there is an interprocedural assignment
to a function argument p2 of F2, p2 := p1, then p2 7→ o; (I3): if F1 calls F2 and p2 7→ o in
F2, and there is an interprocedural assignment to a pointer p1 in F1 by returning p2 from
F2, p1 := p2, then p1 7→ o. For example, foo calls getStr in Fig. 2.1(a), str1 7→ {o1, o2}
in getStr, thus the returned value r 7→ {o1, o2}. (I2) and (I3) are useful to argue that
adding context-sensitivity to Steensgaard preserves soundness. However, they cause un-
necessary propagations of foreign abstract objects. For instance, even though according to
(I1) it must be that locally str1 7→ {o1, o2} in getStr, getStr can only return a pointer
to o1, as str1 is used in the return statement, so r 7→ o1 and r 67→ o2 – that violates (I3).

In addition to not introducing foreign abstract object for arguments, many propagations
caused by a local imprecision are avoided by not maintaining (I2) and (I3). Breaking (I2)
allows the analysis to propagate fewer foreign abstract objects from callers to callees (i.e.,
top-down), while breaking (I3) at return sites to reduces the number of maintained foreign
abstract objects coming from callees (i.e., bottom-up).

In this thesis, we show that a context-sensitive unification-based PTA that does not
maintain (I2) and (I3) can be refined with extra contextual information to reduce the
number of foreign abstract objects, as long as the information is valid for a given source
location in the current calling context.

The strict aliasing rules of the C11 standard specify that at any execution point every
memory location has a type, called effective type. A read from a memory location can
only access a type compatible with its effective type. Consider the program P2 in Fig. 2.3:
dereferencing the integer pointer ip is only allowed when the last type written was int.
We use strict aliasing to improve precision of our PTA.

In order to use types as an additional context, we add an extra abstract object for any
type used with the corresponding allocation site or its field. As a result, every abstract
object has an associated type tag. Following strict aliasing, two objects o1 and o2 can
alias, only when their type tags are compatible. In the P2’s points-to graph in Fig. 2.4,
type tags are shown at the bottom of each abstract object. We maintain soundness by
discovering type tags based only on memory accesses performed, instead of relying on casts
or type declarations. Alternatively, it is also possible to use externally supplied type tags
(e.g., emitted from a C compiler’s frontend).

Although types increase the number of abstract objects, they improve the precision of
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1 const int INT_TAG = 0, FLOAT_TAG = 1;
2 typedef struct { int tag; } Element;
3 typedef struct
4 { Element e; int *d; } IElement;
5 typedef struct
6 { Element e; float *d; } FElement;
7
8 void print_int(int);
9 void baz() {

10 int a = 1; // o6

11 float f; // o7

12 IElement e1 = {{ INT_TAG}, &a}; // v
13 FElement e2 = {{ FLOAT_TAG}, &f}; // w
14 Element *elems [2] = {&e1, &e2}; // x
15
16 for (int i = 0; i < 2; ++i)
17 if (elems[i]->tag == INT_TAG) {
18 IElement *ie = elems[i];
19 int *ip = (int *) ie->d;
20 print_int (*ip);
21 }
22 }

Figure 2.3: Sample C program P2.

elems baz

a f

o7

ip
int int* float*

v,	w
f8f8f0

e1 e2

o6

int*

x
f0

Figure 2.4: Type-aware Points-To Graph of P2.
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our analysis. For example, consider the structs e1 and e2 defined in lines 12 and 13 of P2.
The d field of e1 is assigned a pointer to a, while the d field of e2 is assigned a pointer to f.
Because of these memory writes, we know that e1.d is of type int* and e2.d is float*.
Even though v and w are grouped according to (I1) as elems 7→ {v.f0.int , w.f0.int}, o6
and o7 do not alias, as the abstract objects for e1.d and e2.d differ in type tags: v.f8.int∗
vs w.f8.float∗.

In summary, our enhancements to the standard context-sensitive unification-based PTA
not only dramatically improve the performance, but also the precision of the analysis. This
is due to the interaction between improved local reasoning at call- and return-sites, and
the reduction on propagating foreign abstract objects across functions. We also show that
while the added type-awareness increases the number of abstract objects, there analysis
scales better than a type-unaware one (on our benchmarks). Interestingly, our proposed
PTA is much faster and usually as precise as the SVF PTA [21], and sometimes even
significantly more precise. Note that SVF is a state-of-the-art, inclusion-based PTA that
chooses not to maintain (I1) for more precision, but is not context-sensitive in order to
scale.
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Chapter 3

Background

In this chapter, we present the necessary background to understand the rest of the thesis.
We summarize the basic concepts behind pointer analyses and their properties, such as
flow-sensitivity and field-sensitivity. We establish a formal notation used to describe our
analysis and show that the basic analysis is sound with respect to the semantics of our
input language. We assume a basic understanding of pointer analysis. We refer interested
readers to [15, 7] for additional exposition.

3.1 Language

For presentation, we use a simple LLVM-like language, whose syntax is shown in Fig. 3.1
and operational semantics in Fig. 3.2. Note that while the language is used to simplify the
presentation, our implementation (in Chapter 7) supports full LLVM bitcode.

The semantics are defined using a system of inference rules, where premises appear
above the bar and consequences below the bar – if all premises are met, the consequences
can be derived. We define the program state to be a 6-tuple 〈V ,P ,M ,T , S , i〉 where:

• V – value environment – a map from value registers to their values. Value registers
can be evaluated under the current value environment, written: JrKV = v, which
means that the register r has a value v under the current value environment V . Value
environment V can be modified by assigning a new value v to a value register r, e.g.,
V [r := v]. Although our grammar does not support constants, we allow registers to
be initialized to constant values prior to program execution.

10



P ::= F+
F ::= fun name(f): r {I+}
I ::= r = alloc() | r = cast T, p |

r = load PT p | store r, PT p |
r = gep PT p, fld | r = callee(p) | return z

T ::= BT ∪ PT
BT ::= int | float | char
PT ::= BT* | BT**
fld ::= a | b

Figure 3.1: A simple language.

• P – pointer environment – a map from pointer registers to memory objects. Pointer
registers are evaluated under the current pointer and memory environments. For ex-
ample, JrKP ,M 7→ H means that the pointer register r points to the memory object H
under the current pointer environment P and the current memory environment M .
Similarly to the value environment, pointer environment P can be modified by mak-
ing a register r point to a memory object H, e.g., P [r 7→ H].

• M – memory environment – a set of memory objects. A memory object H can
be evaluated under the current memory environment M , yielding either a value v
or a memory object I, written JHKM = v and JHKM 7→ I, respectively. A fresh,
uninitialized memory object H can be added to an existing memory environment M ,
written M ∪H, forming a new memory environment.

• T – type environment – a map from memory objects to their types. A type envi-
ronment T can be updated by assigning a type t to a memory object H, written
T [H := t].

• S – a stack of function return instructions. The current instruction on top of the
stack S can be obtained with top(S ) and removed with pop(S ). An instruction i can
be added to the top of the stack S with push(S , i).

• i – indicates the next instruction to be executed. We denote the successor of an
instruction i by writing i+ 1.

We denote a program state transition using the V ,P ,M ,T , S , i ↪−→ V ′,P ′,M ′,T ′, S ′, i′

notation, where the left-hand-side of ↪−→ represents a pre-state and the right-hand-side
represents the post-state.
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Our language supports standard pointer and memory operations, but has no control flow
constructs, such as conditional statements or loops, and defines a function by a sequence
of instructions. This simplified setting is sufficient because our PTA is flow-insensitive –
it does not use control-flow information. All registers are of a static (either pointer or
value) type. Although there are no global variables, they are modeled by explicitly passing
them between functions. We allow passing and returning multiple values, modeled as a
vector of function arguments and returns, respectively. For simplicity of presentation, we
assume that all allocations create structures with exactly two fields, and that the size of
an allocation is big enough to store any scalar type, including integers and pointers.

New memory objects are created using the alloc instruction that allocates two fresh
memory objects (one for each field) and returns a pointer to the first one. The result
is saved in a register of type char*, that can be cast to a desired type with the cast
instruction. Contents of a register is written to memory using store and read back with
load. A sibling memory object I of an object H corresponding to field a is obtained
with the gep (GetElementPointer) instruction with b as its field operand; applying the
gep to H (or I) with a field operand a yields H (or I). Note that while our language
has only two possible fields of constant offset, our implementation supports all LLVM
GetElementPointer instructions, even when the offset is symbolic, as described in detail
in [5]. Each time a call instruction ci is executed, ci is pushed onto the stack, and the
formal arguments of the callee are assigned with the passed vector of parameters from
the caller, s.t. the order and type of arguments is preserved. When the callee executes a
return instruction, the execution resumes from the successor of the saved ci instruction.
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Syntax Semantics

r = alloc()
i : r = alloc() Ha, Hb 6∈M

V ,P ,M ,T ,S , i ↪−→ V ,P [r 7→ Ha] ,M ∪Ha ∪Hb,T [Ha, Hb := char] ,S , i+ 1

r = cast T, p
i : r = cast T, p JpKP ,M 7→ H

V ,P ,M ,T ,S , i ↪−→ V ,P [r 7→ H] ,M ,T ,S , i+ 1

i : r = cast T, p JpKV = v

V ,P ,M ,T ,S , i ↪−→ V [r := v] ,P ,M ,T ,S , i+ 1

r = gep PT p, f

i : r = gep T p, a JpKP ,M 7→ H

V ,P ,M ,T ,S , i ↪−→ V ,P [r 7→ H] ,M ,T ,S , i+ 1

i : r = gep T p, b JpKP ,M 7→ H siblingObj (H) = I

V ,P ,M ,T ,S , i ↪−→ V ,P [r 7→ I] ,M ,T ,S , i+ 1

store r, PT p

i : store r, T* p JpKP ,M 7→ H JrKP ,M 7→ I

V ,P ,M ,T ,S , i ↪−→ V ,P ,M [H 7→ I] ,T [H := T] ,S , i+ 1

i : store r, T* p JpKP ,M 7→ H JrKV = v

V ,P ,M ,T ,S , i ↪−→ V ,P ,M [H := v] ,T [H := T] ,S , i+ 1

r = load PT p

i : r = load T* p JpKP ,M 7→ H JHKT = U T v U JHKM 7→ I

V ,P ,M ,T ,S , i ↪−→ V ,P [r 7→ I] ,M ,T ,S , i+ 1

i : r = load T* p JpKP ,M 7→ H JHKT = U T v U JHKM = v

V ,P ,M ,T ,S , i ↪−→ V [r := v] ,P ,M ,T ,S , i+ 1

fun name(f): r
i : fun name(f): r

V ,P ,M ,T ,S , i ↪−→ V ,P ,M ,T ,S , i+ 1

y = callee(p)

i : y = callee(p) j : fun callee(f): r
W = {(k, v) | JpkKV = v} Q = {(k,H) | JpkKP ,M 7→ H}

V ,P ,M ,T ,S , i ↪−→ V [∀(k, v) ∈W · fk := v] ,P [∀(k,H) ∈ Q · fk 7→ H] ,M ,T , push(S , i), j

return z

i : return z j = top(S ) j : y = callee(p)
W = {(k, v) | JzkKV = v} Q = {(k,H) | JzkKP ,M 7→ H}

V ,P ,M ,T ,S , i ↪−→ V [∀(k, v) ∈W · yk := v] ,P [∀(k,H) ∈ Q · yk 7→ H] ,M ,T , pop(S ), j + 1

Figure 3.2: Operational semantics of the language in Fig. 3.1.
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i : r = alloc()

r 7→ Hi

Alloc

r = cast PT, p
p 7→ H

r 7→ H
Cast

r = load PT p
p 7→ H H 7→ I

r 7→ I
Load

store r, PT p
p 7→ I r 7→ H

I 7→ H
Store

Figure 3.3: Inference rules for Inclusion-based PTA: �I.

3.2 Pointer Analysis

In PTA, the potentially infinite set of concrete memory object is mapped to a finite set of
abstract objects. A standard way to identify abstract objects is by their allocation site – an
alloc instruction that created them. A points-to analysis (PTA) of a program P computes
a relation · 7→ ·, called points-to, between pointers and abstract objects. We represent
PTAs using inference rules that derive facts of the 7→ relation. A PTA is computed by
applying these rules until saturation. Fig. 3.3 contains a set of standard inference rules
for the inclusion-based (Andersen-style) context-insensitive analysis in our language. We
let �I represent the rules in Fig. 3.3 and denote a 7→ fact derivable by applying them
exhaustively on a program P , written: �I `P x 7→ H, where x is a pointer and H is
an abstract object. To support the gep instruction and make the PTA field-sensitive, we
extend �I with additional rules �Fld shown in Fig. 3.4.

A unification-based (Steensgaard-style) PTA is obtained by extending the analysis with
additional unification rules �U shown in Fig. 3.5, such that �Steens = �I ∪ �Fld ∪ �U. The
rules �U enforce the invariant (I1) from Chapter 2. Note that �Steens is less precise than
�I ∪ �Fld, because altering a PTA by adding extra inference rules never derives fewer 7→
facts. A unification-based PTA like �Steens is typically implemented using the Union-Find
data structure that allows to perform the abstract objects grouping in (almost) linear time.
It is, however, possible to implement it directly using the presented inference rules in a
Datalog framework (see [16]).

3.3 Soundness of the basic PTA rules

A PTA is sound if whenever p 67→ o then there is no execution of P in which p points to a
concrete memory object corresponding to o. We show that the presented rules �I ∪ �Fld

are sound with respect to the semantics of our language in Fig. 3.2 when analyzing a single
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r = gep PT p, a p 7→ H

r 7→ H
GEP

r = gep PT p, b p 7→ H

fld(H) = a siblingObj (H) = I

r 7→ I
GEP

Figure 3.4: Inference rules for Field-Sensitivity: �Fld.

r 7→ H r 7→ I

p 7→ I

p 7→ H
Incoming

H 7→ I H 7→ J

L 7→ J

L 7→ I
Incoming

r 7→ H H 7→ J

r 7→ I I 7→ K

H 7→ K
Outgoing

H 7→ I I 7→ K

H 7→ J J 7→ L

I 7→ L
Outgoing

Figure 3.5: Unification rules: �U.
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function, and in turn so is �Steens. That is, we show that in every concrete execution of a
program P , if p points to co, then �I ∪ �Fld `P p 7→ o, and whenever co1 points to co2
then �I ∪�Fld `P o1 7→ o2, where o, o1, and o3 are the corresponding abstract objects for
co, co1, and co2, respectively.

Initially, when no instructions of P are yet executed, the concrete program state con-
tains no memory objects, thus any set of 7→ facts computed by a PTA matches the concrete
state. Then, for every subsequent instruction executed that introduces or modifies the con-
crete 7→ facts, there is a matching inference rule in �I ∪ �Fld that can derive it. Suppose
that a sequence of instructions was executed and that the currently calculated set of 7→
facts by the PTA soundly overapproximates the concrete program state. When the next
instruction i is executed, some of its operands may be pointer registers that were results
of the previous instructions. Thus, if a pointer operand p points to some memory object,
the corresponding 7→ fact must already be in the PTA results for i − 1. Because all in-
structions that modify the pointer environment P or the memory environment M have a
corresponding inference rule in �I ∪ �Fld that matches the operation semantics, the PTA
will compute sound results for i as well. This is because an appropriate inference rule will
be eventually applied, even if the order is unspecified, as the derivation is exhaustive.
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Chapter 4

Reducing Oversharing in DSA

This chapter is organized as follows: first, we describe how to extend the �Steens PTA to
be interprocedural and explain (calling) context-sensitivity. Next, we show how to extend
�Steens to a DSA-style analysis. Using this formulation, we define the oversharing that
happens in DSA, and show a way to reduce it. Finally, we show how to make the PTA
partially flow-sensitive to further improve both precision and efficiency.

4.1 Context-sensitivity

The unification-based PTA �Steens from Chapter 3 is an intraprocedural analysis. It ana-
lyzes a single function at a time and does not reason about other functions. Interprocedural
reasoning requires propagating 7→ between callers and callees at all call-sites. For simplic-
ity of explanation, we assume that calls are direct, i.e., callees are statically known, and
that functions are not recursive. Indirect calls can be supported by using PTA to identify
potential callees. Recursion is supported by treating all strongly connected components in
the call-graph intraprocedurally.

A PTA is (calling) context-insensitive when it is interprocedural, but does not distin-
guish between calls to a function at different call-sites. For example, a context-insensitive
unification-based PTA would not be able to tell apart str4 and r passed to print in P1,
as illustrated in Fig. 2.1(b). A context-insensitive unification-based analysis is obtained by
extending �Steens with rules for interprocedural assignments in Fig. 4.1.

A (calling) context-sensitive PTA provides 7→ facts relative to the requested calling
context. In unification-based analyses, this is usually achieved by calculating a separate
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i : y = callee(x) j : return z
fun(j) = callee zk 7→ H

yk 7→ H
CI-Bottom-Up

i : y = callee(x) xk 7→ H

j : fun callee(f): r

fk 7→ H
CI-Top-Down

Figure 4.1: Inference rules for Context-insensitivity: �CI.

i : fun fn(f): r 0 ≤ k < |f|

fk
fn7−→ V a

i,k V a
i,k

fn7−→ V aa
i,k V b

i,k
fn7−→ V ba

i,k

V aa
i,k

fn7−→ V aa
i,k V ba

i,k
fn7−→ V ba

i,k

V ab
i,k

fn7−→ V ab
i,k V bb

i,k
fn7−→ V bb

i,k

Formals

Figure 4.2: Inference rules for formal arguments: �Formals.

F7−→ relation for each function F in the analyzed program. DSA is an example of such
an analysis [11]. Although not formally specified in [11], it is defined by adding rules to
�Steens, �DSA = �L ∪ �BU ∪ �TD, where �L = �Steens ∪ �Formals. Soundness of �DSA in an
interprocedural context is ensured by extending the basic rules �I ∪ �FLD with rules that
handle interprocedural pointer assignments from callees to callers and callers to callees, at
call- and return-sites, closely following our language semantics for function calls.

4.2 Formal Arguments

To perform a local analysis of a function F , DSA calculates F7−→ based on instructions
in F , including function calls. These instructions may access memory derived from for-
mal arguments. Thus, it is necessary to introduce additional abstract objects for them.
We refer to this kind of abstract objects as formals, and provide them for each defined
function. Every formal argument of a function i : fun fn(f): r, fk, has six associated
formals: V a

i,k, V
b
i,k, V

aa
i,k , V

ab
i,k , V

ba
i,k , V

bb
i,k , corresponding to abstract objects for fields a and b,

and abstract objects reachable by dereferencing each of these two fields. Fig. 4.2 shows
inference rules �Formals that specify how these abstract object may point to each other.
The rules model precisely only two levels of indirection. Any memory object obtained by
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i : y = callee(x) fun(i) = caller j : return z

fun(j) = callee zk
callee7−−−−→ H Resolve(i,H, I)

yk
caller7−−−−→ I

Bottom-Up-1

i : y = callee(x) fun(i) = caller Accessible(callee, J)

J
callee7−−−−→ K Resolve(i, J,H) Resolve(i,K, I)

H
caller7−−−−→ I

Bottom-Up-2

i : y = callee(x) fun(i) = caller xk
caller7−−−−→ H

j : fun callee(f): r Resolve(i, I,H)

fk
callee7−−−−→ I

Top-Down-1

i : y = callee(x) fun(i) = caller H
caller7−−−−→ I

Resolve(i, J,H) isFormal(J) Resolve(i,K, I) isFormal(K)

J
callee7−−−−→ K

Top-Down-2

Figure 4.3: Inference rules for Context-Sensitivity: �BU and �TD.

a further dereference is mapped to the same second-level formal, adding a cycle. In prac-
tice, precision of analysis can be improved by computing the necessary levels of indirection
(e.g., [22, 11, 5]), or creating formals on demand, like in our implementation.

4.3 Oversharing

While the local analysis �L only uses abstract objects from the analyzed function (i.e.,
coming from allocation sites in that function or its formals), the rules �BU ∪ �TD, shown
in Fig. 4.3, propagate 7→ facts across functions. They use a helper function Resolve from
Fig. 4.4 to map between callee and caller abstract objects. For any pair of functions F1

and F2, we refer to the abstract objects defined by F2 and present in F17−→ as foreign. A
foreign object is overshared in F1 if it is inaccessible by F1, but needlessly appears in the
analysis results of F1.

DSA, as presented in [11], executes three phases of the analysis for a function F as
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i : return z fun(i) = callee

zk
callee7−−−−→ H

Accessible(callee, H)

i : fun callee(f): r

fk
callee7−−−−→ H

Accessible(callee, H)

Accessible(callee, H) H
callee7−−−−→ I

Accessible(callee, I)

i : y = callee(x) fun(i) = caller

j : fun callee(f): r p callee7−−−−→ H

isAllocSite(H)

Resolve(i,H,H)

i : y = callee(x) fun(i) = caller

xk
caller7−−−−→ H j : fun callee(f): r

Resolve(i, V a
j,k, H)

i : y = callee(x) fun(i) = caller

H
caller7−−−−→ I Resolve(i, V f

j,k, H)

Resolve(i, V fa
j,k , I)

i : y = callee(x) fun(i) = caller

H
caller7−−−−→ I Resolve(i, V fg

j,k , H)

Resolve(i, V fg
j,k , I)

Resolve(i, V a
j,k, H)

fld(H) = a siblingObj (H) = I

Resolve(i, V b
j,k, I)

Resolve(i, V fa
j,k , H)

fld(H) = a siblingObj (H) = I

Resolve(i, V fb
j,k , I)

Figure 4.4: Helper inference rules for Context-Sensitivity.
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follows: (a) Local phase for F ; (b) Bottom-Up for each callee of F ; and (c) Top-Down
for each caller of F . This is equivalent to applying the �L and �BU rules until saturation in
a reverse-topological call-graph order, followed by �TD in a topological order until satura-
tion. The rules can be soundly applied in this sequence and no new F7−→ facts can be derived
by running any of the phases again. The original DSA implementation performs foreign
object propagation during both Bottom-Up and Top-Down: Bottom-Up copies for-
eign abstract objects accessible from formal arguments and returned values from a callee to
its callers, while Top-Down copies all abstract objects accessible (directly or transitively)
from function parameters (actual arguments) in a caller to its callees, even if they are un-
used. We notice that the copying of foreign objects in Top-Down, required to maintain
(I2) from Chapter 2, is a major source of oversharing in DSA. This form of oversharing
led to a workaround in [11] that improves performance at expense of precision by treating
all global variables (major source of foreign objects) context-insensitively.

Our first contribution is to show that such an oversharing of foreign abstract objects is
unnecessary. All abstract objects of a function are known after Local and Bottom-Up
phases:
Theorem 1 (�DSA `P x

F7−→ H) =⇒ ∃y · (�L ∪ �BU `P y
F7−→ H), where x and y are

registers or abstract objects.

Theorem 1 states that no new foreign objects are ever introduced by �TD. The deriv-
able F7−→ facts are always over abstract objects resolved from caller’s abstract object to
callee’s abstract objects. The proof of Theorem 1 follows from the fact that �L models
the operational semantics of our language (see Chapter 3), and that our formulation of
interprocedural rules explicitly uses the callee-caller resolution of abstract objects. By
contradiction, suppose that a new x

F7−→ H fact is derived during �TD, s.t. H did not
appear in analysis result after running �L ∪ �BU until saturation. For this to be the case
there must be an inference rule that can derive facts about new abstract objects. �TD,
together with its helper rules for Resolve, only derive F7−→ facts about (existing) abstract
objects in callees (Top-Down-1) and formals in these callees (Top-Down-2), thus we
reach a contradiction. �

The simplicity of Theorem 1 is solely due to our new formulation of DSA. Prior works
([11, 12]) miss this, now obvious, fact. With our formulation, it is clear that the role of
Top-Down is to use F7−→ at a call-site and use it to instantiate a fully-general summary for a
callee by introducing necessary F7−→ between function arguments and formals. If a client of a
PTA requires to know not only F7−→ but also all the mapping from formals to allocation sites
each formal may originate from, it is possible to maintain such information separately,
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without introducing oversharing during Top-Down, like in our implementation. Our
evaluation (Chapter 7) demonstrates that this improves performance and precision.

4.4 Partial Flow-sensitivity

Our second contribution is to identify additional opportunities to reduce oversharing by
increasing the precision of the analysis at interprocedural assignments – call- and return-
sites. Overall precision of a PTA can be improved by making the Local phase more
precise, or by not propagating the local imprecision interprocedurally. In DSA, a function
with an instruction that operates on two abstract objects can cause these abstract objects
to be grouped in any subsequent function, provided enough interprocedural assignments.
The source of the problem is that DSA preserves any local grouping of abstract objects
by maintaining (I2) and (I3) from Chapter 2. Due to the �U rules, such confusion can
reduce the precision of the whole PTA. For example, once o1 and o2 are grouped together
in getStr from Fig. 2.1(a), in DSA the grouping is propagated bottom-up to foo and bar.

Flow-sensitivity is a simple way to increase precision of a PTA at a cost of performance.
A flow-sensitive analysis computes a relation F@i7−−→ not only at the function level (F ), but
also relative to a particular instruction (i) within F . To improve precision for interprocedu-
ral assignments, we need to know where each function parameter points to at a particular
call- or return-site. For example, in P1 from Fig. 2.1(a), str1 getStr@117−−−−−−→ o1 at the return
statement. We call this refinement partial flow-sensitivity. We present a set of rules, �PFS

in Fig. 4.5, that combine together with �DSA to define an analysis called �PFS-DSA. Note
that �PFS replaces the corresponding two rules from �DSA. We assume that F@i7−−→ is ex-
ternally defined and is a (sound) subset of F7−→. Bottom-Up-1 rule of �PFS propagates
callee@j7−−−−−→ (points-to information at the return-site) into caller7−−−−→, by resolving abstract ob-
jects across these two functions; formals from callee get matched with abstract objects
passed into it at the call-site, while allocation sites from callee are resolved to themselves.
Similarly, Top-Down-1 resolves abstract objects reachable from parameters at a call-site
into appropriate formals for the callee.

Partial flow-sensitivity is much cheaper than a (full) flow-sensitivity, as we do not even
need to maintain a separate flow-sensitive F7−→ at call and return sites. This is because it is
often enough to perform a very cheap local reasoning to determine that given a local fact
p

F7−→ o, p 6 F@i7−−→ o. For instance, str1 6 getStr@117−−−−−−→ o2 because the variable name str1 is used
explicitly at the return-site, and the variable str1 is never reassigned, it must only point
to o1 at line 11.
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i : y = callee(x) fun(i) = caller

j : return z fun(j) = callee zk
callee@j7−−−−−→ H Resolve(i,H, I)

yk
caller7−−−−→ I

Bottom-Up-1

i : y = callee(x) fun(i) = caller

xk
caller@i7−−−−−→ H j : fun callee(f): r Resolve(i, I,H)

fk
callee7−−−−→ I

Top-Down-1

Figure 4.5: Inference rules for Partial Flow-Sensitivity: �PFS.

The only difference between �PDF-DSA and �DSA is the use of the F@i7−−→ relation instead
of F7−→ in Bottom-Up and Top-Down rules, where F@i7−−→ is a subset of F7−→. Assuming
F@i7−−→ is sound at a call-site (return-site), every F7−→ fact is correctly propagated by the
interprocedural assignment rules.
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Chapter 5

Extending DSA with Type-awareness

5.1 Strict Aliasing

The effective type rules of the C11 standard [9] say that memory is dynamically strongly
typed: roughly, a memory read (load) of an object co is valid only when the last write
(store) to co was of a compatible type [9, Sec. 6.5 p. 6-7]. Other languages, including C++
and Swift, impose similar rules. Thus, pointers of incompatible types do not alias, and
the result of a load instruction can only be affected by store instructions of compatible
type. These rules are usually referred to as strict aliasing and are widely exploited in all
major optimizing compilers. In this thesis, we use them to improve precision of the Local
phase of TeaDsa.

5.2 Type Compatibility

We assume that a type compatibility relation, v, on types, is provided as in input to our
analysis. For our simple language, the compatibility relation is defined as a partial order s.t.:

∀τ ∈ T · τ v char ∀τ ∈ PT · τ v char*

That is, char is compatible with all other types, char* is compatible with all pointer
types, and every type is compatible with itself, but int and float are not compatible. In
our implementation, we use a more sophisticated type lattice to handle LLVM’s structure
types. It is also possible to use the type lattice of a compiler frontend (e.g., Clang’s
TBAA tags).
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5.3 Type-aware DSA

Due to the low-level nature of our language, allocations and function definitions do not
specify the types of objects. To allow untyped allocations and function arguments, we ex-
tend our notion of abstract objects to include object type. For example, an i : r = alloc()
instruction has |fld| × |T | allocation sites of a form HT

i – one for each field of any possible
type. Similarly, each formal function argument has |{a, b, aa, ab, ba, bb}| × |T | formals. In
our implementation, we discover abstract object types on demand. We modify the basic
7→ relation to include the type of the pointed-to abstract object and disambiguate it from
abstract objects of other types. For example, a fact r T7−→ H means: the register r may
point to the abstract object H of type T . A sample points-to graph for a type-aware PTA
of a program in Fig. 2.3 is shown in Fig. 2.4.

Although the type of each register is known statically, we only require memory operation
(load and store) to access objects using compatible types, while types used in function
calls, cast, and gep instructions are ignored. Instead of relying on declared types, we
discover them at memory accesses, as shown in type-awareness rules �Ty in Fig. 5.1. We
say that a pointer returned by an alloc may point to any abstract object for the field a
created at this allocation site, and express that with a char7−−→ fact, as char is compatible
with all types. A load accesses only the abstract object pointed-to by the pointer operand
if they are of a compatible type. Similarly, the type of the destination register of a store
dictates which abstract object may be written to. For example, consider a simple hierarchy
C v B v A, where A is a superclass of both B and C, while B is a superclass of C. In our
formalization, a load B* p can access both abstract objects of type A and B, whereas a
store v, B* p writes to abstract objects of type B and C. Such a conservative handling of
memory operations, consistent with the strict aliasing rules of C11, guarantees soundness
of a PTA extended with type-awareness rules. Note that this technique does not require
flow-sensitivity as we do not perform type inference and only ignore stores that definitely
do not affect loads of incompatible types.

The �Ty rules replace the rules in �I; we omit the remaining replacement rules that use
T7−→ instead of 7→, as the modification is straightforward. Finally, we define �TeaDsa to be the
modified set rules �PFS-DSA based on �Ty and the T7−→ relation. Type-awareness improves
both the local and global analysis precision, and in turn further reduces oversharing:

Theorem 2 �PFS-DSA `P x 67→ H =⇒ �TeaDsa `P x 6
T7−→ H

Theorem 2 says that �TeaDsa is not less precise than �PFS-DSA, i.e., no points-to relation
not present in analysis results for �PFS-DSA is present in analysis results for �TeaDsa. This
is because the type-aware rules for load and store are similar to �I, except that they
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i : r = alloc()

r char7−−→ Hi

Alloc

r = load T* p

p U7−→ H T v U

H
X7−→ I

r X7−→ I
Load

store r, T* p

p U7−→ H U v T

r X7−→ I

H
X7−→ I

Store

Figure 5.1: Type-awareness rules: �Ty.

prevent loads from deriving facts about stores of incompatible types. The addition of
type compatibility checks in �Ty is an extra premise (filter), and thus can only prevent
some derivations, compared to �I. With the most conservative compatibility relation:
∀τ, υ ∈ T · τ v υ (i.e., all types are compatible), the �Ty would degrade to �I and derive
exactly the same 7→ facts. �
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Chapter 6

Implementation

In this chapter, we describe our implementation of TeaDsa.

6.1 SeaDsa and Key Data-Structures

We implemented TeaDsa on top of SeaDsa – a context-, field-, and array-sensitive
DSA-style PTA for LLVM [5]. Our implementation inherits many of the advantages of
SeaDsa, including: an effective representation of 7→ using a union-find data-structure;
three analysis passes (Local, Bottom-Up, Top-Down); modular analysis of each func-
tion; handling recursion by losing context sensitivity for strongly connected components in
the call graph; and, on-demand discovery of abstract objects for fields, formals, as well as
their corresponding types. In the evaluation, we devirtualize indirect calls.

SeaDsa, just like DSA, maintains a separate DS graph (a DSA-sepcific name for a
points-to graph) for each analyzed function. A group of abstract objects is represented by
a node, s.t. all sibling objects are represented as different fields of the same node. A node
maintains its point-to set, and each field in a node contains outgoing links, represented
with cells – offset-identified fields within other nodes. One can think of a cell as an
abstract pointer, as it is sufficient to identify both a pointee and an offset within it. Our
implementation supports all GetElementPointer LLVM instructions. Constant offsets
are handled in a precise field-sensitive manner, symbolic array offsets handled in an array-
sensitive manner, while non-array symbolic offsets are handled soundly but not precisely.
When a precise field cannot be determined for a memory access, or when unifying certain
kinds of nodes together, a node may get collapsed and lose (its) field-sensitivity. Note that
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nodes and cells belong to exactly one graph at a time. To maintain efficiency of the data
structure, links are only forward-traversable. A more detailed explanation of the DSA data
structures is presented in the SeaDsa paper [5].

6.2 Top-Down Optimizations in TeaDsa

The Top-Down phase in SeaDsa processes a function at a time in a topological call-
graph order. A graph of a caller is cloned (inlined) into each of its callees. Cloning
starts by creating a new copy of each node reachable from the caller’s parameters and
globals, together with its links, inside the callee’s graph. Next, interprocedural assignment
from caller’s parameters to callee’s formals, including all global variables in the caller, is
performed over the freshly cloned nodes. As a result some of the nodes corresponding to
formals, global variables, and nodes reachable from them may get grouped (unified). This
way of performing cloning causes Top-Down to be worst-case quadratic in the graph size
of Bottom-Up and, in our experience, renders it not scalable for large programs, such as
LLVM and Rippled.

In TeaDsa, we leverage Theorem 1 by performing cloning in a more efficient way.
We know that a callee may perform only as many indirections of formals and globals
as discovered during the Local and Bottom-Up analysis, and it is not necessary to
consider caller’s nodes above that, as they are inaccessible in the callee. For simplicity of
implementation, we mark each to-be-cloned caller’s node as foreign, and remove any foreign
node that was not unified with a callee’s node by the end of cloning. Even though the
whole part of the caller’s graph reachable from formals and globals is initially cloned, the
pruning step ensures that inaccessible nodes are not overshared, and makes Top-Down
linear in the size of Bottom-Up graph.

6.3 Partial Flow-sensitivity in TeaDsa

We perform two partial flow-sensitivity optimizations to increase precision of our imple-
mentation. First, we do not propagate stack-allocated abstract objects during cloning in
Bottom-Up. This is because the LLVM language semantics, similar to most imperative
languages, specify that memory created with an alloca stack allocation instruction is only
valid when the function containing that instruction is being executed. Thus, callee’s stack-
allocated memory is not available in its callers, and it is not necessary to propagate nodes
with only allocas in their points-to sets bottom-up.
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Second, we disambiguate pointers that must alias known allocation sites from other
objects in their points-to sets. Because LLVM uses the Static Single Assignment (SSA)
form, we can determine whether a pointer must point to a known allocation site by following
its use-def chain until we reach an allocation site or an instruction that does not allow us
to determine a precise allocation site. For each interprocedural assignment with a known
allocation site, we clone the associated node with only this allocation site in its points-to set.
We do not copy the other allocation sites if we can prove the cloned node is not reachable
from some other pointer in the cloned-to graph. Determining so is however nontrivial,
as the data-structures used in our implementation do not allow for checking what the
incoming cells to a node are. Instead, we start cloning the source graph by processing
all nodes corresponding to interprocedurally-assigned registers, and check whether some
cloned cell reaches these nodes. If that happens to be the case, we copy all the other
allocation sites from the source node into the node’s points-to set and unify it with other
nodes that share any of the same allocation sites.

A more sophisticated implementation is possible with a similar technique to the one
described above for nodes that may alias a larger number of allocation sites. A more
precise auxiliary flow-sensitive PTA could be used to filter points-to sets (e.g., LLVM’s
BasicAA or TBAA), as long as the notion of allocation sites that the auxiliary PTA uses
is compatible with the one in TeaDsa.

6.4 Type-awareness in TeaDsa with LLVM Type Tags

We use the type compatibility relation v based on the type tags in the code such that the
type of each structure is the same as the type of its first (innermost) field. If the sequence
of nested types forms a cycle, we choose the least of these types as a representative. Two
types are compatible if they have the same type tag. We use the LLVM Type pointers for
type tags, as the in-memory bitcode representation guarantees each type object to have a
single instance for the whole analyzed program.

To support typed abstract objects, we define a field of a node in terms of its offset and
type tag, but leave the definition of a cell unchanged. This follows directly from the fact
that in LLVM, just like in our language in Chapter 3, it is the memory that is typed, and
not pointers, i.e., the content of the memory affected by a memory instruction depends on
the accessed type.
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Chapter 7

Evaluation

In this chapter, we compare TeaDsa, its scalability and precision against other state-of-
the-art PTAs. To meaningfully compare precision, we developed a checker for a class of
memory safety violations, and use it to evaluate the PTAs on a set of C and C++ programs.
Our implementation, benchmarks, and experiments are available at:
https://github.com/seahorn/sea-dsa/tree/tea-dsa.

7.1 Program Verification Task

We chose a problem of statically detecting field overflow bugs. A field-overflow happens
when an instruction accesses a nonexistent field of an object, such that the memory access
is outside of the allocated memory object. For example, consider the field access in line 19
in Fig. 2.3 – loading the value of the field d is not safe if the pointer ie is pointing to an
object of an insufficient size, e.g, o6. To determine whether a field access through a pointer
p causes a field overflow, we identify the set A of all the allocation sites that p might point
to. Then, any allocation site a ∈ A of an insufficient size might cause a field overflow. We
have implemented such a field-overflow-checker in SeaHorn [4], and make it available at:
https://github.com/seahorn/seahorn/tree/tea-dsa.

The checker starts by running a PTA on a single bitcode file for the whole program.
Next, for each memory instruction i and a pointer operand p, the PTA is used to identify
all allocation sites that are in p’s points-to set A. Based on the size of accessed memory
region and the offsets applied, we determine what is the minimum required size s of a
memory object o such that i is not accessing o outside of its bounds. Calculating s is
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only easy for some pointers that are created by constant offsets manipulations; we do not
check for unsafe memory accesses with variable (symbolic) offsets. We then partition A
into three disjoint sets: allocation sites of variable size V ; allocation sites of sufficient,
statically-known size ≥ s, S; and allocation sites of insufficient, statically-known size < s,
I. Next, for each a ∈ I we check whether there is an execution s.t. the pointer p used in i
comes from a and i gets executed.

In order to perform a single safety check for a memory instruction i and an allocation
site a ∈ I, we instrument a program as follows:

• Add two new global variables G and initialize it with false.

• Partition memory into address spaces, X and Y .

• Instrument all allocation sites b ∈ A \ {a} by adding assumptions: assume(b 6∈ Y ).

• Instrument a such that when G is false it nondeterministically returns a fresh
memory object o from either X or Y , and add appropriate assumptions. If o ∈ Y ,
then G is set to true.

• Just before i, add an assertion: assert(G =⇒ p 6∈ Y ).

If there is no execution that violates the assertion in a program instrumented this way,
we conclude that there are no field-overflow bugs for that pair of i and a, i.e., no pointers
originating from a are used (unsafely) in i.

In the evaluation, we do not emit the described instrumentation, and only use the
number of checks that this technique would generate as a proxy for the total verification
time of the whole program.

7.2 Experimental Evaluation

We compare TeaDsa with two state-of-the-art interprocedural PTAs for LLVM: SVF [21]
and SeaDsa [5]. SVF [21] is a flow-sensitive, context-insensitive, inclusion-based PTA. We
compare against two variants of SVF: the most precise Sparse Flow-sensitive analysis (SVF
Sparse), and the same analysis with theWave Diff pre-analysis. As forDSA-style analyses,
we use SeaDsa, PFS-SeaDsa, and TeaDsa to denote SeaDsa, our implementation of
�PFS-DSA, and our implementation of �TeaDsa, respectively. Note that we do not use the
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DSA implementation from LLVM’s Pool-Alloc, as it is not maintained and crashes on
many of our examples.

We perform the evaluation on a set of C and C++ programs. The programs vary in size,
ranging from 140kB to 158MB of LLVM bitcode. All experiments are done on a Linux
machine with two Intel Xeon E5-2690v2 10-core processors and 128GB of memory. We
present performance results in Table 7.1 and precision on the field-overflow detection in
Table 7.2. In the tables, – denotes that an experiment did not finish within 3 hours or
exceeded the 80GB memory limit and was terminated. To ensure that all PTAs are working
in a consistent environment, we modified SVF to use the same notion of allocation sites
that is used by TeaDsa. We asses the precision of the PTAs using our field-overflow
checker. For the performance comparison in Table 7.1, we only measure the time taken to
load bitcode and run a PTA on it. In Table 7.2, we use Aliases to denote the number of
reported 〈allocation site, accessed pointer〉 pairs, and Checks as the number of assertions
and assumptions necessary to show that the analyzed program is free of field overflow bugs.
The lower the numbers, the more precise a PTA is.

In our experiments, TeaDsa is almost always the most scalable PTA, both in terms
of runtime and memory use, closely followed by PFS-SeaDsa. These two analyses scaled
an order of magnitude better than the plain version of SeaDsa. TeaDsa was faster
than SVF, especially on large programs like LLVM tools (prefix llvm-), where it finished
in seconds instead of hours. As for precision, TeaDsa and SVF achieved similar results
on most of the smaller programs. TeaDsa is strictly more precise than SeaDsa, and,
surprisingly, more precise than SVF on C++ programs such as cass, Webassembly tools
(prefix wasm-), LLVM tools, and on the C program htop that uses a C++-like coding
style. When performing a closer comparison of PFS-SeaDsa vs SeaDsa, we noticed
that the performance improvement can be attributed to not copying foreign objects during
Top-Down (up to 96% shorter running time on wasm-opt), while partial flow-sensitivity
explains most of the increase in precision (up to 25% fewer aliases on h264ref).
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Chapter 8

Related Work

There is a large body of work on points-to analysis, both for low-level languages and
for higher-level languages like Java. Throughout the thesis, we compare with the closest
related work: DSA [11] and SeaDsa [5]. In Chapter 7, we compared empirically with two
context-insensitive, inclusion-based implementations of SVF [21] – a state-of-the-art PTA
framework for LLVM. In the rest of this chapter, we compare with other related works.

Sui et al. [22] present a context-sensitive, inclusion-based pointer analysis, called Icon.
The fact that Icon is an inclusion-based PTA and SeaDsa is unification-based makes it
hard to compare them without an experimental evaluation. Unfortunately, Icon is not
part of the SVF framework and its implementation is not publicly available. Therefore,
comparing experimentally is not possible.

The precision of inclusion-based pointer analyses can be improved by flow-sensitivity
(e.g. [6, 20]). However, unification-based PTA are always flow-insensitive to retain their
efficiency. In our work, we improve a context-sensitive, unification-based PTA by making
it flow-sensitive only at call and return statements. This allows us to improve the precision
of the analysis without jeopardizing its efficiency.

Using types to improve precision of a PTA is not new. Structure-sensitive PTA [2]
extends a whole-program, inclusion-based PTA with types. The analysis is object and type-
sensitive ([17]). This work is orthogonal to ours. The main purpose of type sensitivity is to
distinguish multiple abstract memory objects from a given (untyped) heap allocation (e.g.,
malloc) based on their uses. This avoids aliasing among objects that are originated from
the same allocation wrapper or a factory method. We do not tackle this problem. Instead,
we use types to avoid unrealized aliasing under the strict aliasing rules. We mitigate the
problem of using allocation wrappers by inlining memory allocating functions.
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Rakamaric and Hu [13] use DSA ability to track types for an efficient encoding of
verification conditions (VC) for program analysis. Their approach differs significantly from
ours. They do not tackle the problem of improving the precision of a pointer analysis using
types. Instead, they extract useful type information from a PTA to produce more efficient
VCs.
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Chapter 9

Conclusion

We identify a major deficiency of context-sensitive unification-based PTA’s, called over-
sharing, that affects both scalability and precision. We present TeaDsa– a DSA-style
PTA that eliminates a class of oversharing during the Top-Down analysis phase and fur-
ther reduces it using flow-sensitivity at call- and return-sites, and typing information about
memory accesses. Our evaluation shows that avoiding such an oversharing makes the anal-
ysis much faster than DSA, as well as more precise than DSA on our program verification
problem. The results are very promising – TeaDsa compares favorably against SVF in
scalability in the presented benchmarks, and sometimes shows even better precision results.
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