9 research outputs found

    Mathematical methods in solutions of the problems from the Third International Students' Olympiad in Cryptography

    Get PDF
    The mathematical problems and their solutions of the Third International Students' Olympiad in Cryptography NSUCRYPTO'2016 are presented. We consider mathematical problems related to the construction of algebraic immune vectorial Boolean functions and big Fermat numbers, problems about secrete sharing schemes and pseudorandom binary sequences, biometric cryptosystems and the blockchain technology, etc. Two open problems in mathematical cryptography are also discussed and a solution for one of them proposed by a participant during the Olympiad is described. It was the first time in the Olympiad history

    The Seventh International Olympiad in Cryptography: problems and solutions

    Full text link
    The International Olympiad in Cryptography NSUCRYPTO is the unique Olympiad containing scientific mathematical problems for professionals, school and university students from any country. Its aim is to involve young researchers in solving curious and tough scientific problems of modern cryptography. In 2020, it was held for the seventh time. Prizes and diplomas were awarded to 84 participants in the first round and 49 teams in the second round from 32 countries. In this paper, problems and their solutions of NSUCRYPTO'2020 are presented. We consider problems related to attacks on ciphers and hash functions, protocols, permutations, primality tests, etc. We discuss several open problems on JPEG encoding, Miller -- Rabin primality test, special bases in the vector space, AES-GCM. The problem of a modified Miller -- Rabin primality test was solved during the Olympiad. The problem for finding special bases was partially solved

    Problems, solutions and experience of the first international student\u27s Olympiad in cryptography

    Get PDF
    A detailed overview of the problems, solutions and experience of the first international student\u27s Olympiad in cryptography, NSUCRYPTO\u272014, is given. We start with rules of participation and description of rounds. All 15 problems of the Olympiad and their solutions are considered in detail. There are discussed solutions of the mathematical problems related to cipher constructing such as studying of differential characteristics of S-boxes, S-box masking, determining of relations between cyclic rotation and additions modulo 22 and 2n2^n, constructing of special linear subspaces in F2n\mathbb{F}_2^n; problems about the number of solutions of the equation F(x)+F(x+a)=bF(x)+F(x+a)=b over the finite field F2n\mathbb{F}_{2^n} and APN functions. Some unsolved problems in symmetric cryptography are also considered

    Simplicity conditions for binary orthogonal arrays

    Get PDF
    It is known that correlation-immune (CI) Boolean functions used in the framework of side-channel attacks need to have low Hamming weights. The supports of CI functions are (equivalently) simple orthogonal arrays when their elements are written as rows of an array. The minimum Hamming weight of a CI function is then the same as the minimum number of rows in a simple orthogonal array. In this paper, we use Rao's Bound to give a sufficient condition on the number of rows, for a binary orthogonal array (OA) to be simple. We apply this result for determining the minimum number of rows in all simple binary orthogonal arrays of strengths 2 and 3; we show that this minimum is the same in such case as for all OA, and we extend this observation to some OA of strengths 44 and 55. This allows us to reply positively, in the case of strengths 2 and 3, to a question raised by the first author and X. Chen on the monotonicity of the minimum Hamming weight of 2-CI Boolean functions, and to partially reply positively to the same question in the case of strengths 4 and 5

    Simplicity conditions for binary orthogonal arrays

    Get PDF
    It is known that correlation-immune (CI) Boolean functions used in the framework of side channel attacks need to have low Hamming weights. The supports of CI functions are (equivalently) simple orthogonal arrays, when their elements are written as rows of an array. The minimum Hamming weight of a CI function is then the same as the minimum number of rows in a simple orthogonal array. In this paper, we use Rao's Bound to give a sufficient condition on the number of rows, for a binary orthogonal array (OA) to be simple. We apply this result for determining the minimum number of rows in all simple binary orthogonal arrays of strengths 2 and 3; we show that this minimum is the same in such case as for all OA, and we extend this observation to some OA of strengths 4 and 5. This allows us to reply positively, in the case of strengths 2 and 3, to a question raised by the first author and X. Chen on the monotonicity of the minimum Hamming weight of 2-CI Boolean functions, and to partially reply positively to the same question in the case of strengths 4 and 5

    О классификации n-Ρ€Π°Π·Π΄Π΅Π»ΠΈΠΌΡ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΌΠ½ΠΎΠ³ΠΈΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Π½Π°Π΄ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΌΠΈ полями ΠΈ ΠΎΠ΄Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ ΠΎΠ»ΠΈΠΌΠΏΠΈΠ°Π΄Ρ‹ NSUCrypto’2019

    Get PDF
    A problem of great importance that arises in designing and implementation of a cryptosystem is countering side channel attacks. Often an appropriate mathematical algorithm, implemented on a specific physical device to work in the physical environment, Β Β becomes vulnerable to such attacks.The β€œfunction sharing” technique is a prospective and efficient way to avoid this problem. In the paper we investigate β€œnon-complete sharing” of Boolean functions and mappings, and functions and mappings over finite fields and provide a complete description of the set of functions with n variables, which have sharing.The main findings are the following: introducing and investigating a new concept of β€œweak” non-complete n-sharing, establishing its connection with β€œweak” and β€œclassical” n-sharing, and substantiating its advantages from the algebraic point-of-view as well as establishing and proving a criterion for the existence of weak non-complete n-sharing for an arbitrary function. The results also include an explicit description of a set of functions which have weak sharing in terms of algebraic normal form, obtaining the precise and simple descriptions for the boundary (β€œborder”) cases: n = 2, n=m and binary fields. Β Applying these results to the AES S-box allows complete solving the problem, Β i.e. a complete answer to the question of a representability of the S-box of the AES cipher as a sharing is available. We believe that the same way can be successful for other cryptographic algorithms.Одной ΠΈΠ· Π²Π°ΠΆΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΈ практичСской Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ криптосистСм, являСтся противодСйствиС Π°Ρ‚Π°ΠΊΠ°ΠΌ ΠΏΠΎ ΠΏΠΎΠ±ΠΎΡ‡Π½Ρ‹ΠΌ ΠΊΠ°Π½Π°Π»Π°ΠΌ. НСрСдко Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹, ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… с чисто матСматичСской Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния Π½Π΅ Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ Π±ΠΎΠ»ΡŒΡˆΠΈΡ… сомнСний, ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ уязвимыми ΠΊ Ρ‚Π°ΠΊΠΈΠΌ Π°Ρ‚Π°ΠΊΠ°ΠΌ ΠΏΡ€ΠΈ ΠΈΡ… Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π½Π° ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΌ физичСском устройствС.Π’Π΅Ρ…Π½ΠΈΠΊΠ° Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ являСтся эффСктивным инструмСнтом для создания Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΉ криптографичСских Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ², Π·Π°Ρ‰ΠΈΡ‰Π΅Π½Π½Ρ‹Ρ… ΠΎΡ‚ Π°Ρ‚Π°ΠΊ ΠΏΠΎ ΠΏΠΎΠ±ΠΎΡ‡Π½Ρ‹ΠΌ ΠΊΠ°Π½Π°Π»Π°ΠΌ. Π’ настоящСй ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΈΡΡΠ»Π΅Π΄ΡƒΡŽΡ‚ΡΡ Π½Π΅ΠΏΠΎΠ»Π½Ρ‹Π΅ раздСлСния Π±ΡƒΠ»Π΅Π²Ρ‹Ρ… ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΈ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π½Π°Π΄ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΌΠΈ полями. Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π΄Π°Π½ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ΅ описаниС мноТСства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΎΡ‚ n ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…, Π΄ΠΎΠΏΡƒΡΠΊΠ°ΡŽΡ‰ΠΈΡ… раздСлСния Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚ n-1 ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΎΠ±ΠΎΠ±Ρ‰Π°ΡŽΡ‚ΡΡ Π½Π° случай ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π½Π°Π΄ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΌΠΈ полями.ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅: Π²Π²Π΅Π΄Π΅Π½ΠΎ ΠΈ исслСдовано понятиС "слабого Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ n-раздСлСния"; установлСна Π΅Π³ΠΎ связь с классичСским понятиСм n-раздСлСния, обоснованы Π΅Π³ΠΎ прСимущСства с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния алгСбраичСской структуры; установлСн ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Π½ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ сущСствования слабого Π½Π΅ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ n-раздСлСния для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π°Π΄ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ ΠΏΠΎΠ»Π΅ΠΌ; Π΄Π°Π½ΠΎ явноС описаниС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΎΡ‚ m ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…, Π΄ΠΎΠΏΡƒΡΠΊΠ°ΡŽΡ‰ΠΈΡ…Β  n-раздСлСния для случая ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… ΠΏΠΎΠ»Π΅ΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ характСристики Π² Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Ρ… алгСбраичСской Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹; ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ ΠΈ простыС описания для Π³Ρ€Π°Π½ΠΈΡ‡Π½Ρ‹Ρ… случаСв n = 2, n=m ΠΈ Π΄Π²ΠΎΠΈΡ‡Π½Ρ‹Ρ… ΠΏΠΎΠ»Π΅ΠΉ; ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° вопрос ΠΎ прСдставимости S-Π±Π»ΠΎΠΊΠ° ΡˆΠΈΡ„Ρ€Π° AES Π² Π²ΠΈΠ΄Π΅ раздСлСния.Π£ΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для построСния Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΉ криптографичСских Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ², Π·Π°Ρ‰ΠΈΡ‰Π΅Π½Π½Ρ‹Ρ… ΠΎΡ‚ Π°Ρ‚Π°ΠΊ ΠΏΠΎ ΠΏΠΎΠ±ΠΎΡ‡Π½Ρ‹ΠΌ ΠΊΠ°Π½Π°Π»Π°ΠΌ. Π’Π°ΠΊΠΆΠ΅ Π΄Π°Π½Π½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ позволяСт Π² рядС случаСв ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ΡŒ ΠΈ количСствСнно ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ ΡƒΡΠ·Π²ΠΈΠΌΠΎΡΡ‚ΡŒ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Ρ… криптографичСских конструкций ΠΊ Π°Ρ‚Π°ΠΊΠ°ΠΌ ΠΏΠΎ ΠΏΠΎΠ±ΠΎΡ‡Π½Ρ‹ΠΌ ΠΊΠ°Π½Π°Π»Π°ΠΌ.Π’Π°ΠΊΠΆΠ΅ Π΄Π°Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ интСрСсны с тСорСтичСской Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния. Π’ частности, прСдставляСтся интСрСсным ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Β Π·Π°Π΄Π°Ρ‡ΠΈ эффСктивной Π΄Π΅ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Данная Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Π°, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π² соврСмСнных систСмах ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ Π°Π»Π³Π΅Π±Ρ€Ρ‹, ΡΠΈΠΌΠ²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… вычислСний ΠΈ машинного обучСния
    corecore