762 research outputs found

    Network layer access control for context-aware IPv6 applications

    Get PDF
    As part of the Lancaster GUIDE II project, we have developed a novel wireless access point protocol designed to support the development of next generation mobile context-aware applications in our local environs. Once deployed, this architecture will allow ordinary citizens secure, accountable and convenient access to a set of tailored applications including location, multimedia and context based services, and the public Internet. Our architecture utilises packet marking and network level packet filtering techniques within a modified Mobile IPv6 protocol stack to perform access control over a range of wireless network technologies. In this paper, we describe the rationale for, and components of, our architecture and contrast our approach with other state-of-the- art systems. The paper also contains details of our current implementation work, including preliminary performance measurements

    IPv6: a new security challenge

    Get PDF
    Tese de mestrado em Segurança Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2011O Protocolo de Internet versão 6 (IPv6) foi desenvolvido com o intuito de resolver alguns dos problemas não endereçados pelo seu antecessor, o Protocolo de Internet versão 4 (IPv4), nomeadamente questões relacionadas com segurança e com o espaço de endereçamento disponível. São muitos os que na última década têm desenvolvido estudos sobre os investimentos necessários à sua adoção e sobre qual o momento certo para que o mesmo seja adotado por todos os players no mercado. Recentemente, o problema da extinção de endereçamentos públicos a ser disponibilizado pelas diversas Region Internet registry – RIRs - despertou o conjunto de entidades envolvidas para que se agilizasse o processo de migração do IPv4 para o IPv6. Ao contrário do IPv4, esta nova versão considera a segurança como um objetivo fundamental na sua implementação, nesse sentido é recomendado o uso do protocolo IPsec ao nível da camada de rede. No entanto, e devido à imaturidade do protocolo e à complexidade que este período de transição comporta, existem inúmeras implicações de segurança que devem ser consideradas neste período de migração. O objetivo principal deste trabalho é definir um conjunto de boas práticas no âmbito da segurança na implementação do IPv6 que possa ser utilizado pelos administradores de redes de dados e pelas equipas de segurança dos diversos players no mercado. Nesta fase de transição, é de todo útil e conveniente contribuir de forma eficiente na interpretação dos pontos fortes deste novo protocolo assim como nas vulnerabilidades a ele associadas.IPv6 was developed to address the exhaustion of IPv4 addresses, but has not yet seen global deployment. Recent trends are now finally changing this picture and IPv6 is expected to take off soon. Contrary to the original, this new version of the Internet Protocol has security as a design goal, for example with its mandatory support for network layer security. However, due to the immaturity of the protocol and the complexity of the transition period, there are several security implications that have to be considered when deploying IPv6. In this project, our goal is to define a set of best practices for IPv6 Security that could be used by IT staff and network administrators within an Internet Service Provider. To this end, an assessment of some of the available security techniques for IPv6 will be made by means of a set of laboratory experiments using real equipment from an Internet Service Provider in Portugal. As the transition for IPv6 seems inevitable this work can help ISPs in understanding the threats that exist in IPv6 networks and some of the prophylactic measures available, by offering recommendations to protect internal as well as customers’ networks

    ISO/EPC Addressing Methods to Support Supply Chain in the Internet of Things

    Full text link
    RFID systems are among the major infrastructures of the Internet of Things, which follow ISO and EPC standards. In addition, ISO standard constitutes the main layers of supply chain, and many RFID systems benefit from ISO standard for different purposes. In this paper, we tried to introduce addressing systems based on ISO standards, through which the range of things connected to the Internet of Things will grow. Our proposed methods are addressing methods which can be applied to both ISO and EPC standards. The proposed methods are simple, hierarchical, and low cost implementation. In addition, the presented methods enhance interoperability among RFIDs, and also enjoys a high scalability, since it well covers all of EPC schemes and ISO supply chain standards. Further, by benefiting from a new algorithm for long EPCs known as selection algorithm, they can significantly facilitate and accelerate the operation of address mapping.Comment: arXiv admin note: text overlap with arXiv:1807.0217

    Mobile IP: state of the art report

    Get PDF
    Due to roaming, a mobile device may change its network attachment each time it moves to a new link. This might cause a disruption for the Internet data packets that have to reach the mobile node. Mobile IP is a protocol, developed by the Mobile IP Internet Engineering Task Force (IETF) working group, that is able to inform the network about this change in network attachment such that the Internet data packets will be delivered in a seamless way to the new point of attachment. This document presents current developments and research activities in the Mobile IP area

    IPv6 and IPsec Tests of a Space-Based Asset, the Cisco Router in Low Earth Orbit (CLEO)

    Get PDF
    This report documents the design of network infrastructure to support testing and demonstrating network-centric operations and command and control of space-based assets, using IPv6 and IPsec. These tests were performed using the Cisco router in Low Earth Orbit (CLEO), an experimental payload onboard the United Kingdom--Disaster Monitoring Constellation (UK-DMC) satellite built and operated by Surrey Satellite Technology Ltd (SSTL). On Thursday, 29 March 2007, NASA Glenn Research Center, Cisco Systems and SSTL performed the first configuration and demonstration of IPsec and IPv6 onboard a satellite in low Earth orbit. IPv6 is the next generation of the Internet Protocol (IP), designed to improve on the popular IPv4 that built the Internet, while IPsec is the protocol used to secure communication across IP networks. This demonstration was made possible in part by NASA s Earth Science Technology Office (ESTO) and shows that new commercial technologies such as mobile networking, IPv6 and IPsec can be used for commercial, military and government space applications. This has direct application to NASA s Vision for Space Exploration. The success of CLEO has paved the way for new spacebased Internet technologies, such as the planned Internet Routing In Space (IRIS) payload at geostationary orbit, which will be a U.S. Department of Defense Joint Capability Technology Demonstration. This is a sanitized report for public distribution. All real addressing has been changed to psueco addressing

    Compact extensible authentication protocol for the internet of things : enabling scalable and efficient security commissioning

    Get PDF
    Internet of Things security is one of the most challenging parts of the domain. Combining strong cryptography and lifelong security with highly constrained devices under conditions of limited energy consumption and no maintenance time is extremely difficult task. This paper presents an approach that combines authentication and bootstrapping protocol (TEPANOM) with Extensible Authentication Protocol (EAP) framework optimized for the IEEE 802.15.4 networks. The solution achieves significant reduction of network resource usage. Additionally, by application of EAP header compacting approach, further network usage savings have been reached. The EAP-TEPANOM solution has achieved substantial reduction of 42% in the number of transferred packets and 35% reduction of the transferred data. By application of EAP header compaction, it has been possible to achieve up to 80% smaller EAP header. That comprises further reduction of transferred data for 3.84% for the EAP-TEPANOM method and 10% for the EAP-TLS-ECDSA based methods. The results have placed the EAP-TEPANOM method as one of the most lightweight EAP methods from ones that have been tested throughout this research, making it feasible for large scale deployments scenarios of IoT
    • …
    corecore