6,084 research outputs found

    Whalesong

    Get PDF
    Election Results -- Mulnix named AASCU's director of public affairs in Washington D.C. -- UAJ's Womens Basketball? -- UAJ must deal for dollars -- Thanks to all -- Biking safety -- Kudos for Majestic Kid -- Budget crises afflict state schools -- Centralized printing to save UAJ substantial -- Funds for UAJ's new library to be unfrozen -- Duncan favors continued ed. dollars -- Men's b-ball recruitment starts -- Classifieds -- UAJ Students breaking out of unstable employmen

    Whalesong

    Get PDF
    Phase I of UASE's new 52,000-square-foot Library underway -- The University of Alaska-Southeast? -- Morgan fields UASE Women's Basketball team in two weeks -- A hot summer at the University of Alaska-Southeast -- Chancellor welcomes students -- USUAJ Welcome -- Vice Chancellor for Academic Affairs welcomes new and returning students -- Classified

    Continuous upflows and sporadic downflows observed in active regions

    Full text link
    We present a study of the temporal evolution of coronal loops in active regions and its implications for the dynamics in coronal loops. We analyzed images of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) at multiple temperatures to detect apparent motions in the coronal loops. Quasi-periodic brightness fluctuations propagate upwards from the loop footpoint in hot emission at 1MK, while sporadic downflows are seen in cool emission below 1MK. The upward motion in hot emission increases just after the cool downflows. The apparent propagating pattern suggests a hot upflow from the loop footpoints, and is considered to supply hot plasma into the coronal loop, but a wavelike phenomenon cannot be ruled out. Coronal condensation occasionally happens in the coronal loop, and the cool material flows down to the footpoint. Emission from cool plasma could have a significant contribution to hot AIA channels in the event of coronal condensation.Comment: 5 pages, 6 figures, A&A in pres

    Resonant Inelastic X-Ray Scattering at the K Edge of Ge

    Full text link
    We study the resonant inelastic x-ray scattering (RIXS) at the KK edge of Ge. We measure RIXS spectra with systematically varying momenta in the final state. The spectra are a measure of exciting an electron-hole pair. We find a single peak structure (except the elastic peak) as a function of photon energy, which is nearly independent of final-state momenta. We analyze the experimental data by means of the band structure calculation. The calculation reproduces well the experimental shape, clarifying the implication of the spectral shape.Comment: 17 pages,9 figures, Please also see our related paper: cond-mat/040500

    The Whalesong

    Get PDF
    Let's hear it for commencement: two students speak -- Summer housing storage -- Congratulations, graduates

    The Whalesong

    Get PDF
    Eaglecrest is now open for the winter season -- New degree programs offered: English, Social Science degrees now available -- Alaska Native Heritage celebration comes to a close -- To whom much is given -- Union letter of thanks to students for support -- "Tidal Echoes" submissions due Jan. 15 -- How to have your cake and eat it too: holiday food tips -- Student housing celebrates Thanksgiving -- Internship opportunities abound for college students at the Alaska Sea Life Center -- Native American poet and novelist Adrian Louis visits UAS -- Alaska Board of Game's wolf decision stirs controversy -- ADEC approves aerial spraying of pesticide

    Dielectron widths of the S-, D-vector bottomonium states

    Full text link
    The dielectron widths of Υ(nS)(n=1,...,7)\Upsilon(nS) (n=1,...,7) and vector decay constants are calculated using the Relativistic String Hamiltonian with a universal interaction. For Υ(nS)(n=1,2,3)\Upsilon(nS) (n=1,2,3) the dielectron widths and their ratios are obtained in full agreement with the latest CLEO data. For Υ(10580)\Upsilon(10580) and Υ(11020)\Upsilon(11020) a good agreement with experiment is reached only if the 4S--3D mixing (with a mixing angle θ=27∘±4∘\theta=27^\circ\pm 4^\circ) and 6S--5D mixing (with θ=40∘±5∘\theta=40^\circ\pm 5^\circ) are taken into account. The possibility to observe higher "mixed DD-wave" resonances, Υ~(n3D1)\tilde\Upsilon(n {}^3D_1) with n=3,4,5n=3,4,5 is discussed. In particular, Υ~(≈11120)\tilde\Upsilon(\approx 11120), originating from the pure 53D15 {}^3D_1 state, can acquire a rather large dielectron width, ∼130\sim 130 eV, so that this resonance may become manifest in the e+e−e^+e^- experiments. On the contrary, the widths of pure DD-wave states are very small, Γee(n3D1)≤2\Gamma_{ee}(n{}^3 D_1) \leq 2 eV.Comment: 13 pages, no figure

    Band structure approach to the resonant x-ray scattering

    Full text link
    We study the resonance behaviour of the forbidden 600 and 222 x-ray Bragg peaks in Ge using LDA band structure methods. These Bragg peaks remain forbidden in the resonant dipole scattering approximation even taking into account the non local nature of the band states. However they become allowed at resonance if the eigenstates of the unoccupied conduction band involve a hybridization of p like and d like atomic states. We show that the energy dependence of the resonant behaviour, including the phase of the scattering, is a direct measure of this p-d hybridization.and obtain quantitative agreement with experiment. A simple physical picture involving a product of dipole and quadrupolar transition matrix elements explains this behaviour and shows that it should be generally true for cases where the resonating atom is not at an inversion center. This has strong implications for the description of the resonance behavior of x-ray scattering in materials where the resonant atom is not at an inversion center such as V2O3 and in ferro and antiferro electric and piezo electric materials in general.Comment: 4 pages, 5figure
    • …
    corecore