3 research outputs found

    3D chromatin architecture and transcription regulation in cancer

    Get PDF
    Chromatin has distinct three-dimensional (3D) architectures important in key biological processes, such as cell cycle, replication, differentiation, and transcription regulation. In turn, aberrant 3D structures play a vital role in developing abnormalities and diseases such as cancer. This review discusses key 3D chromatin structures (topologically associating domain, lamina-associated domain, and enhancer–promoter interactions) and corresponding structural protein elements mediating 3D chromatin interactions [CCCTC-binding factor, polycomb group protein, cohesin, and Brother of the Regulator of Imprinted Sites (BORIS) protein] with a highlight of their associations with cancer. We also summarise the recent development of technologies and bioinformatics approaches to study the 3D chromatin interactions in gene expression regulation, including crosslinking and proximity ligation methods in the bulk cell population (ChIA-PET and HiChIP) or single-molecule resolution (ChIA-drop), and methods other than proximity ligation, such as GAM, SPRITE, and super-resolution microscopy techniques

    Detection of 3D Genome Folding at Multiple Scales

    Get PDF
    Understanding 3D genome structure is crucial to learn how chromatin folds and how genes are regulated through the spatial organization of regulatory elements. Various technologies have been developed to investigate genome architecture. These technologies include ligation-based 3C Methodologies such as Hi-C and Micro-C, ligation-based pull-down methods like Proximity Ligation-Assisted ChIP-seq (PLAC Seq) and Paired-end tag sequencing (ChIA PET), and ligation-free methods like Split-Pool Recognition of Interactions by Tag Extension (SPRITE) and Genome Architecture Mapping (GAM). Although these technologies have provided great insight into chromatin organization, a systematic evaluation of these technologies is lacking. Among these technologies, Hi-C has been one of the most widely used methods to map genome-wide chromatin interactions for over a decade. To understand how the choice of experimental parameters determines the ability to detect and quantify the features of chromosome folding, we have first systematically evaluated two critical parameters in the Hi-C protocol: cross-linking and digestion of chromatin. We found that different protocols capture distinct 3D genome features with different efficiencies depending on the cell type (Chapter 2). Use of the updated Hi-C protocol with new parameters, which we call Hi-C 3.0, was subsequently evaluated and found to provide the best loop detection compared to all previous Hi-C protocols as well as better compartment quantification compared to Micro-C (Chapter 3). Finally, to understand how the aforementioned technologies (Hi-C, Micro-C, PLAC-Seq, ChIA-PET, SPRITE, GAM) that measure 3D organization could provide a comprehensive understanding of the genome structure, we have performed a comparison of these technologies. We found that each of these methods captures different aspects of the chromatin folding (Chapter 4). Collectively, these studies suggest that improving the 3D methodologies and integrative analyses of these methods will reveal unprecedented details of the genome structure and function
    corecore