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Abstract

Finding and understanding patterns in gene expression guides our understanding of living
organisms, their development, and diseases, but is a challenging and high-dimensional
problem as there are many molecules involved. One way to learn about the structure of
a gene regulatory network is by studying the interdependencies among its constituents
in transcriptomic data sets. These interdependencies could be arbitrarily complex, but
almost all current models of gene regulation contain pairwise interactions only, despite
experimental evidence existing for higher-order regulation that cannot be decomposed
into pairwise mechanisms. I set out to capture these higher-order dependencies in single-
cell RNA-seq data using two different approaches. First, I fitted maximum entropy (or
Ising) models to expression data by training restricted Boltzmann machines (RBMs).
On simulated data, RBMs faithfully reproduced both pairwise and third-order interac-
tions. I then trained RBMs on 37 genes from a scRNA-seq data set of 70k astrocytes
from an embryonic mouse. While pairwise and third-order interactions were revealed,
the estimates contained a strong omitted variable bias, and there was no statistically
sound and tractable way to quantify the uncertainty in the estimates. As a result I next
adopted a model-free approach. Estimating model-free interactions (MFIs) in single-cell
gene expression data required a quasi-causal graph of conditional dependencies among
the genes, which I inferred with an MCMC graph-optimisation algorithm on an initial
estimate found by the Peter-Clark algorithm. As the estimates are model-free, MFIs
can be interpreted either as mechanistic relationships between the genes, or as substruc-
tures in the cell population. On simulated data, MFIs revealed synergy and higher-order
mechanisms in various logical and causal dynamics more accurately than any correlation-
or information-based quantities. I then estimated MFIs among 1,000 genes, at up to
seventh-order, in 20k neurons and 20k astrocytes from two different mouse brain scRNA-
seq data sets: one developmental, and one adolescent. I found strong evidence for up to
fifth-order interactions, and the MFIs mostly disambiguated direct from indirect regula-
tion by preferentially coupling causally connected genes, whereas correlations persisted
across causal chains. Validating the predicted interactions against the Pathway Com-
mons database, gene ontology annotations, and semantic similarity, I found that pairwise
MFIs contained different but a similar amount of mechanistic information relative to net-
works based on correlation. Furthermore, third-order interactions provided evidence of
combinatorial regulation by transcription factors and immediate early genes.

I then switched focus from mechanism to population structure. Each significant MFI can
be assigned a set of single cells that most influence its value. Hierarchical clustering of
the MFIs by cell assignment revealed substructures in the cell population corresponding
to diverse cell states. This offered a new, purely data-driven view on cell states because
the inferred states are not required to localise in gene expression space. Across the four
data sets, I found 69 significant and biologically interpretable cell states, where only 9
could be obtained by standard approaches. I identified immature neurons among de-
veloping astrocytes and radial glial cells, D1 and D2 medium spiny neurons, D1 MSN
subtypes, and cell-cycle related states present across four data sets. I further found evi-
dence for states defined by genes associated to neuropeptide signalling, neuronal activity,
myelin metabolism, and genomic imprinting. MFIs thus provide a new, statistically sound
method to detect substructure in single-cell gene expression data, identifying cell types,
subtypes, or states that can be delocalised in gene expression space and whose hierar-
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chical structure provides a new view on the semantics of cell state. The estimation of
the quasi-causal graph, the MFIs, and inference of the associated states is implemented
as a publicly available Nextflow pipeline called Stator.
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Chapter 0

be interesting characters at every scale of Life: Enormous ecosystems are made from
interacting species, which are composed of individual organisms, which are made from
cells and other organisms living inside them, each of which has echoes of its ancestors
and their experiences scattered throughout its genetic material and might host many
viruses. None of these levels unequivocally deserves to be called fundamental, so any
description of life depends on which list of characters it is based on. Plato recognised
this choice as the central challenge of what we now call science, and called it Carving
Nature at its joints.

The atlases of life The importance of decomposing wholes into parts has filled much
of the history of biology with atlases—catalogues of the wide variety of cast members—
of the various ecologies on earth and interconnected webs of species and food chains,
to the diversity of seashells and beetles. Many scientific breakthroughs have come from
describing and understanding the structure of these catalogues of life. Most famously,
Darwin described the source of all species on earth and their relationships in On the
Origin of Species.

Modern biology has found one particularly interesting collection of entities that can
explain some of the diversity in life: Genes. Genes are interesting because while they
are physically small, they are present in all living things, and reveal the entangled history
of life on earth. They describe not only the diversity of species on earth, but also the
variability within a species. However, they leave one final source of diversity unexplained:
why do the cells that make up an individual—that make up you—all look different, even
though they contain the same DNA? That is the question this thesis is based on. I
wanted to describe the differences between cells by describing how genes interact and
come together to constitute the cell’s identity. This is important because it would
describe how our bodies develop from an embryo into an adult, how cells respond to
each other and the environment, but could also provide insight into diseases, many of
which begin as a problem in one or more cells.

Listening in on genetic conversations One description of cell biology is so fa-
mous and ubiquitous, it is known as the central dogma. It describes how genes (DNA
molecules) are used to make proteins that perform functions in the cell. This alone is
not enough to make cells with identical DNA behave differently, but it turns out that the
proteins that are made from the DNA can interact with the DNA itself to change which
other proteins get made. By doing this, cells can control what happens inside them and
change their behaviour.

To gain insight into these regulatory relationships, I ‘listened in’ on the way the genes
were active in the cells. This is possible, because each time a gene is used by the cell,
it produces a single molecule, called an RNA transcript, that is unique to that gene.
By counting the transcripts in a single cell, you can get an idea of which genes were
active, also called expressed. If you do this in many cells, and see for example that
two genes are always active together, or inactive together, then these genes might be
coordinating their expression. Doing this for all genes can give a description of which
genes coordinate their expression together. This has been done many times before, and
is a common technique throughout biology. However, such descriptions currently only
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find pairs of genes that interact, that is, two genes that coordinate their expression.
However, there might be more complex coordination present among the genes. What
does coordination between three genes look like? Which genes do this? What does such
coordination lead to? These are the first questions I tried to answer.

I found that many genes do coordinate their expression in such higher-order interactions,
involving up to five genes at the same time. The genes that did so tended to be special
kinds of genes called transcription factors. These are genes whose main function is to
regulate the expression of other genes. It was already known that they can do this in
complex ways, regulating the expression of many other genes in various ways, and the
fact that precisely these genes show these higher-order interactions supports this idea.

Given a set of genes with such a higher-order interaction, I asked: in which cells do
these genes most strongly coordinate their expression? This set of cells corresponded to
the cells in which the genes are collaborating to get something done. Like this, I found
interactions that revealed which cells were in the process of dividing, for example. I call
such a set of cells with conspiring genes a cell state. I found cell states that relate to
active neurons, states with cells that were slowly transforming into other kinds of cells,
states that corresponded to special kind of neurons not visible with other techniques,
and many more.

Together, these results showed that such higher-order interactions are indeed important
to descriptions of gene expression, and that they can reveal some of the diversity among
cells that results from gene expression.
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4.9 Shown is the fold enrichment in transcription factors of the parent genes
in a collider triplet, relative to the children genes. A value > 1 indicates
that the upstream parents were more likely to be transcription factors
than their downstream children genes. This enrichment is shown for
all 4 data sets, both for all collider triplets and for triplets that had a
significant 3-point interaction (α = 0.05). As a control, I also selected
sets of equal size but of randomly selected genes, and show the mean
enrichment and the standard deviation (not the standard error on the
mean) over 1,000 of these random selections. It can be seen that the
parents of collider triplets were already slightly (1.5 − 2-fold) enriched
in transcription factors, but this effect was stronger (2 − 3-fold) in the
triplets with a significant 3-point interaction. Each bar is annotated with
the number of triplets used in the calculation. . . . . . . . . . . . . . . 135

4.10 Venn diagrams of the true positives found by MFIs, log-odds ratios (OR),
and Pearson correlations (Cor). Pairwise MFIs at significance level α =
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ratios—i.e. unconditioned MFIs—reproduced mostly interactions that
were already discovered by correlation networks. . . . . . . . . . . . . . 139
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4.12 Enrichment in IEGs, TFs, and HKGs, in Louvain-clusters of 2-point in-
teraction graphs (α = 10−4, perfect significance). Some clusters were
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line indicates the Bonferroni-corrected p-value threshold of 0.05

nT
, where

nT is the number of clusters that contain more than one gene. . . . . . . 143

5.1 Increasing the cut-off from 0 to 1 decreased the total number of clusters
at different rates for the different distance measures. The Dice distance
and the cosine similarity behaved similarly, and had the desirable property
that the fewest number of branchings occur at a distance close to 0 or 1.
The Yule distance metric had a range beyond 1, but this is not included
as it already distinguishes very few clusters at a distance of 1. . . . . . 154

5.2 The different modules in the Stator pipeline. . . . . . . . . . . . . . 157

xix



Chapter 0

5.3 An example of a summary of a higher-order interaction, in this case the
3-point interaction among (Id2, Id3, Slc1a3), estimated using the MCMC
graph, on a merged data set of developmental neurons and astrocytes.
The top left shows the local structure of the MAP CPDAG, the top
right the hypergraph of MFIs. The middle row shows the expression of
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UpSet plots (see Figure 5.21 for more details on such plots) of both the
conditioned joint state (bottom left) and the unconditioned joint state
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5.24 One of the stable branches from the bootstrap resampled dendrogram
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Chapter 1

Introduction

Gradually, a general connection
presents itself—not a linear one, but
a net-like entangled fabric, with
higher-order formation and
destruction, with many fluctuations
in the relative proportions of the
parts—through the curious inquiry of
Nature.

Alexander von Humboldt [286], p.33
(translation mine)
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1.1 The importance of stamp collecting

Philately starts where the catalogue
ends.

Anonymous

Biology is often called a messy science, full of noise, exceptions, and contingencies.
Indeed, general but predictive biological principles are few and far between, but the
ones that have been found have turned out to be very deep explanations, with an
explanatory range far beyond the limits of biology. Three of the most stunning examples
of general principles of life were all published in the 19th century. In 1845, Alexander
von Humboldt published his Kosmos [286], in which he described the different ways
life organises itself within various environments as an interconnected web, laying the
foundations for ecology [304]. Inspired by Humboldt’s ecologies, Darwin published his
On the origin of species [63] in 1859, only fourteen years later, describing in detail his
theory of evolution. Six years later, Mendel published his (initially ignored) study of
hereditary traits in pea plants [162], introducing the study of genetics. Here, we have
the three central principles of biology—ecology, evolution, and genetics—all published
within two decades of the 19th century. Even though the principles apply to life at
very different scales—ecosystems, species, and organisms, respectively—they share a
common pattern. Each of the discoveries started with the observation that there is a
richness and diversity to living systems that needs an explanation. Humboldt offered an
explanation for the diversity in ecologies, Darwin for the wealth of species on earth, and
Mendel explained the variation of traits within a species. This illustrates the importance
of cataloguing the diversity of life, and stands in stark contrast to the critique, generally
attributed to Ernest Rutherford, that all science is either physics or stamp collecting.

In fact, we might go further, and take the catalogues of life’s diversity to be the central
observations that need to be explained by biology. This leads us to the current state
of biology, at a scale beyond that of even Mendel’s individuals, to look at heterogeneity
within an individual. While genetics can explain heterogeneous phenotypes among mem-
bers of a species, it cannot explain why any given individual is composed of cells that each
contain the same genetic material1, but look and behave very differently. Furthermore,
each cell can be traced back to a single zygote with a single genome and phenotype.
It is this emergent cellular diversity in particular that is crucial to understand, since not
only does it form the basis for the development and functioning of all multicellular life,
it also lies at the root of most diseases, many of which seem to manifest themselves first
as a cellular phenotype, before disrupting the functioning of a tissue or organism. The
most striking example of this is cancer, where the disruption of a single cell’s behaviour
can result in unpredictable, organism-wide, and typically fatal phenotypes. The need to
catalogue and understand how a single genome can lead to different cellular phenotypes
is thus twofold: It is both the next obvious source of variation in need of an explanation,
and it could help characterise and understand many diseases [195].

To address and describe this diversity, we need to turn our attention to molecular biology.
Molecular biology is generally understood in terms of the central dogma [60], illustrated

1Modulo mutations, mosaicism, and germ-line cells.
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on the left of Figure 1.1, which says that the genetic sequence information flows from
DNA to RNA to proteins in processes that are known as transcription and translation,
respectively. In particular, it states that sequence information cannot flow from proteins
to nucleic acids. During transcription, the protein RNA-polymerase binds to a DNA
molecule at a specific location along the sequence, and generates an RNA molecule,
complementary to the DNA to which it is bound. This messenger-RNA (mRNA) molecule
gets transported from the nucleus to the cytoplasm, where ribosomes use the RNA
molecule to generate the corresponding sequence of amino acids and form it into a
protein (translation).

The central dogma illustrates that if the rates at which transcription and translation
happen vary across cells, then that leads to different concentrations of molecules inside
the cells, potentially altering their behaviour and morphology. However, it still falls short
of explaining how cells with identical DNA can show different phenotypes, as it provides
no mechanism by which these rates can change. The crucial issue that the central dogma
does not address is how RNA-polymerase binds to any particular location on the DNA,
and when the mRNA gets translated by a particular ribosome. That is because not all
information flows within a cell correspond to sequence information of either nucleic- or
amino acids. There are many more processes involved in the communication and con-
trol between these three classes of molecules, as illustrated on the right of Figure 1.1,
and there are important degrees of freedom besides sequence. For instance, the three
classes of molecules can affect themselves: DNA can affect its own spatial configura-
tion depending on its sequence and epigenetic modifications [311, 130], RNA molecules
can bind to themselves or other RNA molecules, changing their tertiary structure or the
accessibility of other RNA molecules, and proteins can bind and fold other proteins to
change their behaviour. However, perhaps the most important flow of information not
included in the central dogma is that of proteins to DNA. Proteins can bind to DNA,
changing the DNA’s three-dimensional chromatin structure and the rate at which tran-
scription of a particular sequence can occur. Protein-DNA binding consists primarily of
the formation of hydrogen bonds and van-der-Waals forces that can be highly sequence-
and protein-specific. These binding reactions close the loop in Figure 1.1, which ex-
plicitly introduces regulation into the system, allowing the genome to regulate its own
expression. The cellular dynamics are thus driven by the communication and control
among different genes. In accordance with Wiener’s definition of classical cybernetics
[298], I will call this a cybergenetic system, and draw inspiration from general cybernetic
theory throughout this thesis. Finally, note that for each of the processes in Figure 1.1,
there is also a process in the opposite direction. RNA can be reverse transcribed into
DNA (though this primarily happens in viruses), proteins change the sequence structure
of RNA molecules in a process called splicing, and the higher-level organisation of DNA
can affect protein binding and cooperativity [128, 134].

1.2 Gene expression and regulation
The abstraction generally used to refer to differences in concentrations of gene products
is called gene expression. Genes themselves are already abstractions of the discrete units
of inheritance, but many DNA, RNA, and protein sequences can be associated with a
particular gene by matching sequences through the complementarity of nucleotides and
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Figure 1.1: Sequence information flow in the central dogma (left), versus more general
in vivo observed regulatory information flows (right), which include reverse transcription
(RT), RNA-splicing by proteins, DNA-mediated protein binding (DMPB), and DNA-
binding by proteins.

the genetic code. Each gene can thus be assigned an expression level by measuring the
concentrations of the corresponding molecules, either RNA or proteins. Good evidence
that it is indeed these relative concentrations of molecules that differentiate cell types
comes from so-called cell atlases, which cluster cells by their gene expression profiles,
and will be discussed in more detail in Section 1.3. This clustering often matches
with microscopically observed cell types, and can even reflect differentiation dynamics.
Regulatory networks can dynamically change the expression profiles within cells, but
preserve transcriptional states across mitosis [120], leading to the stable diversity seen
across the cell types in an organism.

Molecular biology of gene expression We say that a gene is expressed inside a cell
if any of the gene’s products, be they RNA molecules or proteins, are present or being
produced inside the cell. For a gene to be expressed, it first needs to be transcribed.
The process of transcription is divided into three steps: initiation, elongation, and termi-
nation. During initiation, an RNA polymerase (RNAP) molecule must bind to the DNA
at the correct location near the gene, which is facilitated by the presence of so-called
promoter regions. A promoter is a region of DNA that allows RNAP to bind stably to
the DNA and start transcribing a particular gene. How RNAP finds the promoter region
in the first place is an issue of active research and debate. It is generally assumed that
most biochemical processes inside the cell are stochastic in nature, and that the rate and
location at which proteins bind to DNA are driven by thermodynamic diffusion effects
[95], either 1-dimensional diffusion along the DNA strand, or 3-dimensional diffusion
through the nucleus. However, recent studies have suggested that liquid-liquid phase
separation can occur at specific locations along the DNA, allowing for more controlled
and directed diffusion of proteins like RNAP to promoter regions [33, 54]. In both these
cases, the accessibility of the promoter regions is crucial, so the regulatory degrees of
freedom that determine the rate of transcription are the chemical and 3-dimensional con-
figuration of the DNA molecule and the concentrations of molecules like RNAP. Certain
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proteins, called transcription factors (TFs), can alter the binding affinity of RNAP to the
promoter by binding to the DNA. Some TFs do this by directly binding to the promoter
sequence to affect the binding of RNAP, while other TFs bind so-called enhancer re-
gions, located elsewhere in the genome. These enhancers can be cis-acting on genes in
the genomic neighbourhood, or trans-acting on genes several million base pairs (Mbp)
or chromosomes away. Enhancer regions can help recruit RNAP to the promoter region
by physically changing the geometry of the DNA molecule. On top of these regulatory
mechanisms, the DNA molecule can contain chemical epigenetic modifications, which
change the accessibility of the affected regions, affecting the rate at which transcription
can take place. This leads to a model of transcription in which the rate at which a certain
gene is transcribed depends on the configuration of the DNA, which in turn depends on
the presence and activity of many proteins, most notably RNAP and the TFs that target
that particular gene.

Once RNAP has bound to the promoter region and transcription has started, the elon-
gation phase begins, and RNAP traverses the DNA molecule in the 3’ to 5’ direction of
the template strand, forming the complementary RNA molecule in the 5’ to 3’ direction.
The speed at which RNAP generates the RNA, as measured in bases per unit of time,
is variable, regulated, and consequently affects the rate of transcription [172].

At the end of the gene, there is a region called the terminator, which releases the
generated RNA molecule from RNAP upon transcription. In eukaryotes, the released
RNA molecule is called a pre-mRNA molecule, as it could still be modified by a process
called splicing before it gets translated. Not only can splicing alter the rate at which a
gene product becomes functional, it can also create different versions of the same genes,
called splice-variants, by splicing and combining the exons in different ways. While the
RNA concentration is usually what defines a gene’s expression level, most genes’ primary
function is in the form of proteins. To translate the processed (or mature) mRNA
into proteins, the transcripts are transported to the cytoplasm, where ribosomes bind
to the RNA and synthesise the corresponding protein from amino acids, using transfer
RNA (tRNA) to read out the genetic code. The rate at which the ribosomes bind to and
translate the RNA is controlled mainly by the presence of proteins called initiation factors,
and by regulatory sequences on the mRNA molecule, most notably the 5’ untranslated
region (5’ UTR). Finally, the mRNA molecules are degraded at a rate that is controlled
by their sequence, and the rate of translation, most notably by the trimming of their
stabilising polyadenylated tail by exonucleases.

Gene regulatory networks These regulatory mechanisms give a general description
of gene regulation in which gene expression is controlled by the concentration of RNA
and proteins, which are themselves gene products. This leads to the notion of a gene
regulatory network (GRN), which is a summary of these regulatory relationships among
genes. In a GRN, the information at which biochemical level the regulation occurs is
usually abstracted away, and one only talks about genes and their regulatory relationships.
For example, a transcription factor B might bind to an enhancer region that increases
RNAP recruitment to the promoter region associated with a gene A. In the GRN, this
could simply be summarised as an activating relationship B → A. If B is itself the target
of another transcription factor C , the GRN would contain the chain C → B → A. In a
GRN, it is not clear if B → A means that the protein B directly binds to the promoter,
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if it recruits RNAP by binding to an enhancer, or if it increases the transcription of long
noncoding regulatory RNA molecules that affect A (so-called lncRNAs [282], including
enhancer-derived RNA [205]). Each of these biologically different situations leads to a
gene-gene relationship where the expression of B affects the expression of A. How to
abstract the biochemistry into a GRN is the central question in the construction of GRNs,
and there are many proposed methods—each with its own (dis)advantages—all relying on
the intuition that a regulatory relationship will reveal itself in the relative concentrations
of the gene products [75]. Some of the most common techniques to construct GRNs from
expression data are introduced and discussed in Section 1.5. Not all regulatory pathways
are active in each cell, so which relationships are found will depend on the data used to
construct the GRN. When inferring a GRN on data from a single tissue, the GRN will
contain both organism-wide, and tissue-specific regulatory relationships, but pathways
that are specific to only one of the cell types in the tissue might be averaged out and
disappear, or be cancelled by the opposite regulatory relationship in a different cell type
[216, 273, 171]. A given GRN is thus only interpretable relative to the context in which it
was constructed. This makes validation against known biology challenging, since many
of the expert-curated databases of regulatory relationships, like the STRING [264] or
Pathway Commons [219] databases, integrate multiple different sources of information,
and do not specify tissue- or cell-type-specificity. In the absence of a clear ground-truth
network, it is difficult to say exactly how a GRN should be judged. An alternative to
using a ground-truth network is combining known biological annotations of genes with
the intuition that genes with a similar annotation should be more likely to interact. Such
biological annotations are summarised in gene-ontology (GO) databases [56]. Methods
to compare such annotations will be discussed in more detail in Section 4.1.1.

Still, the question of what kind of biology should be captured by GRNs is unanswered.
Certainly, edges in a GRN should reflect direct regulatory relationships like a transcription
factor binding to its target’s promoter region. But should the binding of two proteins
to form a complex be reflected as a regulatory relationship in the network? Should
protein function be reflected in RNA concentration? These are open questions, and
different GRNs address them in different ways. Simpler to state is the requirement that
the interactions in the network be direct. That is, if a particular biochemical pathway
decomposes as A → B → C , then this should result in the edges A → B and B → C
being present in the model, but not the edge A → C . More generally, this means
that the edges should contain causal information. In his work on causal inference [190],
Pearl describes the different levels of causal reasoning: statistical, interventional, and
counterfactual. Certainly, all models should accurately capture statistical relationships.
Ideally, a network could also make interventional predictions that would allow for targeted
therapies in disease, and provide control over cell and tissue differentiation. Furthermore,
such predictions can be explicitly falsified by interventional experiments. Counterfactuals
require not only a causal model, but also functional dependencies and detailed knowledge
of unobserved confounders, so are probably out of reach for most networks that only use
one data source.

Mammalian development and cell differentiation As an organism develops, a
single zygote must give rise to many different kinds of cells and tissues. It does so
through a combination of cell division and gene regulatory programs. Crucially, as a
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cell divides, its daughter cells inherit part of an epigenetic state, which includes (but is
not limited to) the transcriptome, proteome, metabolome, and methylome, although cell
division is not necessarily symmetric. After fertilisation, a zygote enters a cell state that
sets off a series of changes in gene expression that, upon cell division, leaves the daughter
cells in different states. These daughter cells will in turn develop differently due to the
regulatory dynamics between the molecules they contain, and their different environments
and internal states. Since both the molecules and their regulatory relationships are
determined by the genome, it is in this sense that the whole developmental programme
is encoded in the genome and the initial state of the zygote. The zygote can generate
all other cell types, and is therefore called totipotent. In many animals, the zygote first
forms a blastula (in mammals also called a blastocyst) of many totipotent cells, before
rearranging itself into three germ layers—the endoderm, ectoderm, and mesoderm—in
a process called gastrulation. These will form the inner- and outer boundaries and the
inside of the organism, respectively. Cells in these three layers are no longer totipotent,
but will go on to generate the many different cell types in the body, so are still called
pluripotent. As such, each cell in a body has a lineage, a sequence of cell states that
traces its origins, starting from the zygote. The process by which a cell traverses this
lineage towards a cell type is called cell differentiation. In general, differentiation is a
process of specialisation, as more and more cell states are excluded as future cell fates.
A cell at the end of a lineage that can no longer specialise further is called terminally
differentiated. However, there are important exceptions to this general pattern. Under
the right circumstances, cells can also dedifferentiate to an ‘earlier’ state in the lineage.
For example, the introduction of just four transcription factors, the Yamanaka factors, is
enough to dedifferentiate common somatic cell types like fibroblasts into fully pluripotent
stem cells, called induced pluripotent stem cells (iPSCs). Charting the landscape of the
different cell types and states is thus a challenging task. Section 1.3 introduces the
central ideas and techniques currently used to define and identify different cell identities,
and anticipates one of the central contributions of this thesis: a new way to identify cell
states in a population of single cells.

Embryonic and adult neurogenesis As an interesting example, and because this
lineage will turn out to be relevant to the final chapter of this thesis, I want to highlight
one particular lineage: embryonic and adult neurogenesis in mice.

Neuroepithelial cells derive from the ectoderm early in embryonic development and dif-
ferentiate into radial glial cells (RGCs) [160]. That such cells play an important role in
neurogenesis has been known since the late 19th century [208], but their precise role and
functioning remained unclear for almost a century. Early images from electron micro-
scopes suggested that immature neurons are generated and then mature as they migrate
to their final destination along a cellular scaffolding of radial glial cells (RGCs) [207].
However, subsequent experiments showed that perhaps the main role of the RGCs is
to serve as the precursor cells from which most neurons and astrocytes in the central
nervous system derive [158, 179]. RGCs localise in a region of the brain known as the
ventricular zone (VZ), but they divide asymmetrically to produce neuronal intermediate
progenitor cells (nIPCs) which localise in the subventricular zone (SVZ) [181]. These
two zones then form the main neurogenic regions during brain development. In mice,
the production of neurons from these two regions and cell types then starts as early

7



Chapter 1

as eight days after conception (E8), but in most regions of the brain around E10, and
peaks around E14 [97]. However, some neurons, astrocytes, and oligodendrocytes might
already be produced by neuroepithelial and early radial glial cells [139]. Due to this
multipotency, RGCs are also referred to as neural stem cells (NSCs). As RGCs ma-
ture and have produced most neurons and neural precursors, they mostly transform into
astrocytes [139]. Throughout development, different regions of the brain generate dif-
ferent kinds of neurons. The two main classes of mature neurons are excitatory neurons,
which mostly derive from the developing pallium in the ventricular zone, and inhibitory
GABAergic neurons, which mostly derive from a transitory structure in the SVZ known
as the ganglionic eminence [77, 240]. A subregion of the ganglionic eminence, known as
the lateral ganglionic eminence (LGE), is the source of a particular lineage that produces
medium spiny neurons and a population of interneurons that will migrate to the olfactory
bulb. I found evidence of cells from this lineage in a population of developing neurons
which is presented in Section 5.3.5 of this thesis.

It was commonly thought that neurogenesis was restricted to the embryonic stages of
development, but evidence of postnatal neurogenesis was found in rodents in the 1960s
[246, 10]. It was found that cells commonly thought to be normal astrocytes were
actually astrocyte-like RGCs (also called radial glia-like cells) that still retained their
neurogenic ability, in particular in the SVZ and a region in the hippocampus known as
the subgranular zone (SGZ) [139]. These two regions are known as the adult neurogenic
niches, as they provide the microenvironment in which the radial glia-like cells retained
their NSC identity [30]. Evidence for neurogenic niche activity in a population of late-
developmental astrocytes is presented in Section 5.3.4 of this thesis.

1.3 Cell identity: states and types

Ignoring causation invites disaster.

Dogen Zenji [265]

Cell types and atlases The dynamic nature of cell differentiation highlights the dif-
ficulty in defining cell identities as distinct and stable cellular phenotypes. It is generally
assumed that genetic programmes drive development and differentiation, that the pro-
grammes function by generating gene products at different rates, and therefore that
the concentrations of different gene products within the cells characterise the different
cell identities present in the population. Furthermore, it is then assumed that cells of
the same type have a similar expression profile on average, and can thus be found by
clustering cells by their transcriptional profile. Genes that are most predictive of cluster
identity are thought to be characteristic of that cell identity, so the marker genes for a
particular identity are the genes that are expressed at different (typically higher) levels
in that cluster relative to all other clusters. Such genes are called differentially expressed
(DE). Typically, each cluster’s DE genes are then compared with a reference list of
marker genes for cell identities to assign biological meaning to the clusters (in what is
called the marker-based approach to cell identity annotation). Alternatively, an already
annotated population of a particular cell type can be used to compare a cell population
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with the pre-annotated cells from the reference population (the correlation-based, or
supervised approach to cell identity annotation). Popular software packages that au-
tomate this annotation process are e.g. SingleR [13], scmap [135], CellAssign
[315] and SCINA [318]. Note that using the same data to define the clusters and to
find the differentially expressed genes artificially inflates the number of significant marker
genes in a process known as double-dipping [88]. This is an often overlooked problem
of cluster-based approaches and will be further addressed in Section 5.2.4.

The biological annotation of a cluster of cells is usually referred to as a cell type. Creating
a taxonomy of cell types thus requires discretising expression space, but this is not a priori
biologically justified. For example, two regions in expression space could be separated
only by the expression of genes that are not relevant to a cell’s type (like cell-cycle
related, or housekeeping genes). Before genome-wide expression data was available, cell
types were hypothesised to be discrete attractors of the regulatory dynamics, described
by a ‘very constrained pattern of gene expression’ [131], but modern transcriptomic
studies refute the presence of such a clear discrete landscape [273], and especially during
development cells occupy a continuum of states along developmental pseudotime [274].
While one can use knowledge of developmental trajectories to impose a direction of
pseudotime on the cell population, inferring dynamics from a static snapshot of a cell
population has inherent limitations [295]. Consequently, modern cell atlases are not
algorithmically constructed but require the careful yet subjective analysis of experts
to identify cell types based on gene expression, cellular context, morphology, cross-
species homology, perturbation experiments, lineage tracing, etc. [171]. Such (partial)
atlases have for instance been constructed for the mouse Mus musculus [57], the jellyfish
Clytia hemisphaerica [51] and Nematostella vectensis [235], the worm Caenorhabditis
elegans [47], and different consortia are working on the primate Homo sapiens [58, 213].
However, crucially, all these atlases are fundamentally based on a discretisation of gene
expression space, and annotate all cells in a given region as the same cell type.

Identifying cell states Throughout, and even after development when they are termi-
nally differentiated, cells can show dynamic behaviours that preserve their cell type but
change their function, morphology, or location. These changes are typically transitory
and not large enough to warrant being called a different cell type, so are referred to as
cell states. There is no clear difference between cell state and cell type, but a cell’s state
is generally considered a more fine-grained description than a cell’s type, based on the
transitory processes happening inside the cell [171]. Different cells from a single cell type
can be in different states. For example, T-cells can be in a resting or an activated state
[314]. However, just as T-cells can be in different states, there are also different stable
(sub)types: Helper/CD4+ T cells, cytotoxic/CD8+ T cells, and regulatory T cells. The
notions of cell state and type are thus not clearly separable. Because of this, some
notions of cell state transcend cell types and can be spread throughout expression space.
For example, different cell types in a given tissue can be in a cycling state at the same
time. This notion of cell state depends more on the activity of a particular set of genes
or pathway than on the average gene expression. Similar regulatory processes could still
preferentially lead to similar transcriptional profiles, so cell states might still localise in
expression space, but their definition cannot be based on clustering in expression space.

Identifying cell states in a population of cells is made easier by knowing in advance the
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cell states of interest, and which genes to base the annotation on, so is most commonly
done for cell-cycle related states and, by extension, cancerous states. The authors
of [115] annotate cells to states along the cell-cycle, and find that they require the
expression of just five genes to do so accurately. Furthermore, including additional genes
did not improve the accuracy. In the absence of knowledge of the relevant cell states
and genes, dimensionality reduction techniques can also be used to find substructure in
the data. In [201] and [18], the authors use nonnegative matrix factorisation (NMF)
to find co-expressed gene modules that define delocalised (in gene expression space)
cell states, while the authors of [188] use principal component analysis (PCA) to find
state-associated gene modules. A gene-agnostic approach is taken by the authors of
[175] who define cancerous states by clustering only on genes that were consistently DE
across tumours, and defining gene expression relative to a set of control genes. Another
popular framework to cluster cells by module activity, based on coexpression modules of
TF-target pairs, is SCENIC [7]. All these approaches are based on identifying interesting
modules of genes that show non-random expression in the population to identify the cell
states. In this thesis, and in particular in Chapter 5, I will use the notion of a model-
free interaction to automatically detect cell states based on higher-order conditional
dependencies, that can delocalise in gene expression space and allow each cell to be in
multiple states. Furthermore, these higher-order interactions also contain mechanistic
and regulatory information, can define states by both the absence and the presence of
gene products, and induce a hierarchical structure on the cell states.

Cybergenetic semantics Defining cell states through their internal regulation is a
‘systems’, or cybernetic view on cell state, where relationships and regulation are deemed
at least as fundamental as the instantaneous value of any variable. By adopting the
cyclic view of regulation from Figure 1.1, the cell is represented as a unitary homeostatic
system—an autopoietic machine. These are defined in [161]:

An autopoietic machine is a machine organized (defined as a unity) as a
network of processes of production (transformation and destruction) of com-
ponents that produces the components which: (i) through their interactions
and transformations continuously regenerate and realize the network of pro-
cesses (relations) that produced them; and (ii) constitute it (the machine)
as a concrete unity in the space in which they (the components) exist by
specifying the topological domain of its realization as such a network.

Genes form the components that are both the cause and the effect of the processes inside
the cell—and as such constitute a strange loop [111]. I will define cellular states through
this cybernetic lens on cells, using only regulatory but acausal interactions among the
genes. I focus on acausal interactions because causal inference on gene expression data
is too hard, but it is hard precisely because causality is a slippery concept in autopoietic
systems. Causal inference on gene expression might not be a well-defined question. The
causal power a butterfly has in triggering a hurricane is often mentioned to emphasise
how complex causal networks are, but I would argue that it illustrates very well that
causality is not just complex, but nonsensical in sufficiently complex systems—that
causal questions in complex systems do not have interesting or actionable answers. In
fact, that a departure from causality can bring you closer to a cybernetic/autopoietic
view on biological systems was already anticipated in [161]. In its introduction, Maturana
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reflects on his use of causal language:

I made a concession which I have always regretted. I submitted to the pres-
sure of my friends and talked about causal relations when speaking about
the circular organization of living systems. To do this was both inadequate
and misleading. It was inadequate because the notion of causality is a notion
that pertains to the domain of descriptions, and as such it is relevant only in
the metadomain in which the observer makes his commentaries and cannot
be deemed to be operative in the phenomenal domain, the object of the
description. It was misleading because it obscured the actual appreciation of
the sufficiency of the notion of property as defined by the distinctive opera-
tion performed by the observer when specifying a unity, for the description of
the phenomenal domains generated by the specified unities. It was mislead-
ing because it obscured the understanding of the dependency of the identity
of the unity on the distinctive operation that specified it. It was mislead-
ing because it obscured both the understanding of the phenomenal domains
as determined by the properties of the unities that generate them, and the
non-intersection of the phenomenal domains generated by the operation of
a composite unity as a simple unity in a medium and by the operation of its
components as components.

Throughout this thesis, I will be oscillating between this domain of descriptions and
metadomain of commentaries, so will inevitably be using causal language. In fact, a
significant portion of this thesis will be dedicated to the identification of causal rela-
tionships, as they will, paradoxically, be essential in the estimation of the non-causal
networks. Still, I hope to present a view on regulation and cell identity that transcends
causal language, and develop a cybergenetic semantics of cell state.

1.4 Measuring gene expression

If you try and take a cat apart to see
how it works, the first thing you have
on your hands is a non-working cat.

Douglas Adams [5]

A gene’s expression can be quantified in terms of the concentration of its products,
so to measure gene expression, one has to measure the concentrations of some or all
of the relevant gene products. Most gene regulation affects the rate of transcription,
which is most directly reflected by the concentration of RNA molecules (though steady-
state mRNA abundance is not always directly correlated to the rate of transcription
[89]), but regulation is often implemented by transcription factors, which are proteins.
Across species and experiments, it has been noted that the correlation between the con-
centration of mRNA and the corresponding protein typically is low [26, 285], an issue
generally attributed to the wide range of protein degradation rates [156]. Measuring
gene expression as RNA or protein concentration can thus lead to different descriptions
of the same cell. A complete description of gene expression thus requires simultane-
ous measurements of the whole transcriptome (all transcripts present in the cell), and
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the proteome (all proteins present in the cell). However, single-cell measurements of
the proteome generally require mass-spectrometry analysis, and are thus more difficult
than measuring the transcriptome [284], which can be done using the massive parallel
sequencing techniques developed for DNA. As a result, single-cell measurements of the
proteome are currently limited to a few thousand genes in hundreds of cells [168], or
around a thousand genes in thousands of cells [232]. In contrast, the (polyadenylated)
transcriptome can be measured in a genome-wide way in over a million cells in parallel
[4]. In this thesis, I decided to focus on the transcriptional profiling of cells while ignoring
protein abundances. This can in part be justified by the focus on regulation, the effects
of which should be most directly measurable in RNA concentrations, but it is also a
practical decision as transcriptomic data is more readily available.

To measure the transcript abundance across the genome, one first needs to isolate the
RNA from the cells in the sample. This RNA is then reverse transcribed into the comple-
mentary cDNA molecule, at which point it can be PCR-amplified and sequenced using
DNA sequencing technology. The found sequences, called reads, can then be compared
to a reference genome to assign each read to a gene. This is not trivial, because the
amplified transcripts are first cut into small fragments—typically of a few hundred base
pairs—that can be more easily sequenced, which complicates the subsequent genome
alignment. Finally, a gene’s expression can then be quantified as the relative abundance
of the reads that mapped to that gene. The collection of methods that use a protocol like
this is referred to as RNA-seq [293], and different RNA-seq experiments differ in the way
they isolate the RNA from a sample, how they prepare the cDNA (called library prepa-
ration), and how the library is sequenced. In this thesis, I will focus on gene expression
measurements from single cells, using the droplet-based library preparation of the 10X
Chromium system to process hundreds of thousands of cells in parallel [2]. By tagging
each transcript with a unique molecular identifier (UMI), and sequencing from a primer
at the 3’ end, the Chromium protocol eliminates the bias in the read counts as a result
of gene length or PCR amplification. The Chromium system isolates all RNA molecules
with a polyadenylated tail, which includes all protein-coding genes and many non-coding
regulatory RNAs, and attaches TruSeq adapter sequences to the captured transcripts
to prepare them for Illumina sequencing. This provides genome-wide gene expression
profiles for all cells in the sample. There is a tradeoff in this protocol where increasing
the total number of cells results in a more shallow sequencing of the library for a fixed
number of total reads. This means that especially in data sets with many cells, the data
is often artificially sparse, and many genes get incorrectly annotated as not expressed—a
phenomenon known as dropout [133]. How to interpret the gene expression profiles in
light of this inflated proportion of zeros is an area of active debate, and opinions range
from dropout being something that needs to be corrected for [210, 39, 281] to it being
a signal as useful as the actual read count [204, 11, 37]. Besides dropout, there are
other sources of technical and biological noise that have to be taken into consideration,
which will be described in more detail in Sections 2.2.5 and 4.2.6. Only once the gene
expression data has passed all these quality control (QC) steps, is it ready to be analysed.
Section 1.5 introduces some of the most common techniques to construct a GRN based
on expression data.
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1.5 Models of pairwise interaction
Given a set of expression data across samples, be they organisms, tissues, or cells, recon-
structing a regulatory network involves capturing the statistical dependencies among the
genes. As the most common type of genome-wide expression data is observational data
at a single time point, I will focus the discussion here on inferring GRNs from such data,
not addressing dynamical inference on time-series data. There are many ways to describe
and define a statistical dependency, and I will describe some of the most common tech-
niques here. What all of these methods have in common is that they describe pairwise
relationships between genes. That is, they assign a regulatory relationship to a pair of
two genes. This makes them all suitable to a description in terms of a mathematical
graph:

Definition 1 (Graph). A graph G is a tuple (V , E ), where V is a set of vertices, and
E ⊆ {(v , w) | v , w ∈ V } is a set of pairs of vertices, and each such pair is called an
edge. If E consists of unordered pairs, we call G an unoriented graph. If E consists of
ordered pairs, we call G an oriented graph.

Definition 2 (Weighted graph). A weighted graph G is a tuple (V , E , w), where (V , E )
forms a graph, and w is a function w : E → R that assigns a weight to each edge.

Consider the weighted graph G = (V , E , w) with E = {(gi , gj) | (gi , gj) ∈ V × V },
called the complete graph on V . When V is a set of genes, and E describes the
relationships between them, I will refer to G as a gene regulatory network. The different
ways to construct a GRN correspond to different choices and interpretations for the
weight function w . I will describe four different classes of GRN construction methods
here: coexpression networks, regression networks, Bayesian models, and Ising models,
and highlight some relationships between them.

1.5.1 Coexpression networks

Coexpression networks are non-parametric GRN inference methods that assign a weight
wij to each edge (gi , gj), based on some coexpression pattern of the two genes. There
are different ways to quantify coexpression, four of which are discussed below.

Correlation The most straightforward way to create a genetic network based on ex-
pression is by pairwise Pearson correlation. Computing the correlation for each pair of
genes results in a fully connected, undirected graph of statistical association. Such net-
works are sometimes simply called coexpression networks. To use quantities based on the
network topology, one can introduce a threshold on the edges to end up with a network
of just strongly correlated genes, though simply thresholding on correlation strength is
known to induce spurious structure [46]. A commonly used framework is [316]. Since
correlations are only sensitive to linear relationships, nonlinear pairwise interactions can
result in false negatives. False positives can appear whenever a third gene interacts with
two genes that do not interact among each other, since correlations do not disentangle
direct from indirect effects.
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Partial Correlation To calculate partial correlations, gi , gj ∈ G are first regressed
against G \ {gi , gj}, and the correlation is calculated on the residuals. For jointly Gaus-
sian data, this partial correlation exactly captures the conditional dependence structure.
Partial correlations can thus disentangle direct and indirect associations, at the cost of
assuming Gaussianity, and still assume linearity. In practice, one often does not have to
condition on all other genes, and a correlation between residuals after a regression on
n genes is referred to as an nth-order partial correlation [64]. If the genes’ expression
levels are described by a multivariate normal distribution, then the inverse covariance
matrix (if it is defined) contains precisely the partial correlations, which is why partial
correlation networks are sometimes also called gaussian graphical models [140].

Distance Correlation Alternatively, to get rid of the linearity constraint, distance
correlations can be used, which are sensitive to nonlinear relationships [185, 263]. The
authors of [262] combined these ideas and used a partial distance correlation for GRN
inference.

Mutual information Another attractive, nonlinear alternative to correlations is to use
quantities based on information theory, like mutual information (MI). MI is sensitive to
nonlinear relationships, and can be conditioned on any number of genes, but is still a
symmetric measure of association so results in an undirected graph. Mutual information
is arguably the canonical definition of dependence between two variables, as it is the
KL-divergence between the joint distribution and the product of the marginals. Popular
GRN inference techniques based on MI are ARACNE [159], and context likelihood of
inference (CLR) [79]. MI has a natural extension to beyond-pairwise dependencies that
will be introduced, and play an important role, in Section 3.3.1. Higher-order mutual
information has been used in combination with CLR to win the DREAM2 challenge of
inferring GRNs from expression data [292].

1.5.2 Regression
In coexpression networks, the edges are all undirected, and there is no notion of predic-
tion. To introduce a direction to associations, each gene gi is regressed against all other
genes gj , and coefficients βij that have an inherent direction and weight gj

βij−→ gi are
obtained. These regression coefficients predict the expression of a gene from the other
genes’ expression. The DREAM4 challenge was won by an algorithm that used such
regression coefficients together with a tree-based ensemble method to choose the most
important coefficients [119]. Due to its simplicity and intepretability, regression is used
in many different contexts. In [288], the authors construct networks of gene-gene asso-
ciations by regressing phenotypic profiles across experimental conditions. While this is a
fundamentally different kind of data, the resulting network is similar and complementary
to expression-based GRNs.

1.5.3 Bayesian models and causal DAGs
The joint probability of an expression profile over all n genes p(G) = p(g1, ... , gn) can
be factorised using the chain rule for probabilities:
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p(G) = p(g1 | G \ g1) p(g2 | G \ {g1, g2}) p(g3 | G \ {g1, g2, g3}) ... p(gn) (1.1)

This is always true, but can be simplified further when not all genes directly affect each
other. Note that if two genes ga and gb are conditionally independent given gc , then

ga⊥⊥ gb | gc =⇒ p(ga | gb, gc) = (ga | gc) (1.2)

Such conditional independencies can reduce the conditioning sets in each of the terms
in Equation (1.1). If there exists an assignment of a set of genes Pa(gi) to each gene
gi—called its parents—such that

p(G) =
n∏

i=1
p (gi | Pa(gi)) (1.3)

then the distribution in Equation (1.3) is called a Bayesian network and has an associated
oriented graph G = (G , E ) where E = {(a, gi) | gi ∈ G , a ∈ Pa(gi)}, that is, each gene
has incoming arrows from all its parent genes.

While each joint probability distribution can be assigned a decomposition graph like
this, not all graphs correspond to a valid decomposition of a joint distribution. In
particular, a graph with cycles does not allow for a definition of parents that makes
Equation (1.3) a Bayesian network, so Bayesian networks correspond to directed acyclic
graphs (DAGs). Furthermore, not every joint probability can be assigned a unique
DAG. For example, A → B → C and A ← B ← C are two different DAGs that
correspond to the same conditional independencies. A given conditional independency
structure can thus only be assigned a Markov equivalence class of DAGs that encode the
same dependency structures. Once the structure of the Bayesian model is determined,
the conditional probabilities can be estimated from data, but the greatest challenge
in practice is identifying all conditional independencies in the data. The procedure of
finding the graph of conditional dependencies goes by the name of causal discovery, since
such a graph can, up to Markov equivalence, reveal the causal dependencies in the data.
If there are few variables, all possible graphs can be efficiently ranked by their marginal
likelihood. This is called the score-based approach to causal discovery. However, the
number of possible DAGs scales superexponentially with the number of nodes [218, 245],
so this quickly becomes intractable. Alternatively, conditional independence tests can
be used to remove edges from the complete graph, as is done in the Peter-Clark (PC)
algorithm which will be described in Section 4.2.4. The PC-algorithm is an example of
a constraint-based approach. Both approaches can determine the Markov equivalence
class of graphs that are consistent with the observed joint probability. Bayesian networks
can reveal many of the dependencies in the data in a non-parametric way, while assigning
a causal direction (up to Markov equivalence) to each of the associations. However, this
does come at the cost of assuming that the true causal structure underlying the data
is indeed acyclic. While this assumption is necessary for almost all reductionistic views
of causality, it is wholly unrealistic for GRNs, where feedback loops are common, and
biologically necessary.
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Traditionally, the restriction of causal reasoning to acyclic systems is seen as a technical
limitation—we simply lack the mathematical tools to describe the causal effect of an
intervention, or to discuss counterfactuals, in situations with cycles or symmetric interac-
tions. While there have been advances in the field of causal discovery with cyclic graphs
(see e.g. [83]), I argue that this is not just a technical challenge, but rather indicative
of the limits of causal reasoning itself. For example, intervening in a negative feedback
loop negates the intervention itself. Describing only the short-term behaviour of the
variables in the loop means ’cutting’ the loop and making it a chain, thus not accu-
rately describing the cyclic system. Describing the long-term effects of the intervention
involves negating the intervention, so describes both the effects of your intervention and
its negation, which makes it meaningless. It is in this way that causal questions in a
cyclic system can lead to a kind of liar-paradox—a conundrum that has heralded break-
downs of many other formalisms as well. Furthermore, causal reasoning is fundamentally
based on the principle of ceteris paribus—all other things being equal—which is a state
that a sufficiently complex system will never reach. Still, many complex systems have
descriptions in terms of causal explanations of behaviour. For example, the introduction
of a predator can causally break up a school of fish. However, the causal variables in such
descriptions are part of an emergent, coarse-grained description of the system, in which
the symmetric or cyclic microscopic interactions are abstracted away. Formal descrip-
tions of such higher-order causal variables have recently been developed in e.g. [8, 110].
These approaches emphasise the role of emergent descriptions and variables necessary to
apply causal thinking to complex systems. Alternatively, one can abandon directionality
and causality, as is done in many areas of physics. One example of this is the final class
of statistical models introduced here: the Ising model and its generalisations.

1.5.4 Ising- and other spin models

Which way does the arrow point?
This uncertainty is healthy.

Merlin Sheldrake [237]

1.5.4.a Physical interpretation of the Ising model

The Ising model was originally introduced to explain the behaviour of crystalline magnets,
and describes the behaviour of the magnetic moments of atoms. It does so by assigning
an energy E to each configuration s of the crystal, composed of N individual atoms with
magnetic moments si :

E (s) =
N∑

i=0
hisi +

N∑
i=0

i∑
j=0

Jijsisj (1.4)

which describes the energy of classical atoms in an external magnetic field hi , with
a pairwise interaction term Jij . At equilibrium, each configuration s occurs with a
probability given by its Boltzmann weight:

p(s) = Z−1 exp(−E (s)) (1.5)
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where Z is the normalising factor ∑t exp(−E (t)). Usually, one assumes that the vari-
ables si are binary, the external magnetic field is homogeneous (hi = h), and that the
atoms form a 1- or 2-dimensional lattice where only nearest neighbours interact, setting
Jij = J whenever si and sj are nearest neighbours on the lattice, and Jij = 0 otherwise.
This is the system that has historically been referred to as the Ising model. Deriving
properties of this distribution for a given field strength h and nearest-neighbour coupling
J is known as the forward Ising problem, and has led to great insight into the behaviour
of atoms.

If the fields and interactions are allowed to be inhomogeneous, and the si are real-
valued, then Equation (1.5) with the energy function from Equation (1.4) just describes
a Gaussian distribution with a covariance matrix completely specified by hi and Jij . In
fact, the couplings are just the entries in the inverse covariance matrix (when it is well-
defined). This gives an interpretation of the Ising model as a Gaussian graphical model,
and thus in terms of partial correlations. Due to the inhomogeneity, such models are
also referred to as spin, or spin-glass models.

1.5.4.b The Ising model as maximum entropy inference

That the Ising model shares some structure with statistical models is no coincidence. In
1957, E.T. Jaynes showed that statistical mechanics, and in particular the Ising model,
can be seen as the solution to an inference problem [127]. Consider a system of N
variables X = {X1, X2, ..., XN}, where X takes values in a discrete state space X .
After observing independent and identically distributed (i.i.d. ) samples of the system,
one might want to write down a model for X . Without prior knowledge about the
dynamical laws, the most general solution is to assign each of the possible configurations
a probability, i.e. describe p(X = x) ∀x ∈ X . To be maximally noncommittal with
respect to unknown properties of p, the entropy H(p) = ∑

x∈X p(x) log p(x) should be
maximised, subject to some constraints. What kind of constraints should be enforced?
The function p should certainly be a well-defined distribution, so probabilities should
sum to one. To enforce this, write p(X = a) = p(a), introduce a Lagrange multiplier
λ0, and set the following quantity to zero:

∂

∂p(x)

−∑
y∈X

p(y) log p(y) + λ0

∑
y∈X

p(y)− 1
 = 0 (1.6)

which forces

p(x) = exp(λ0 − 1) =⇒ λ0 = log (|X |) + 1 (1.7)

such that for all x ∈ X

p(x) = 1
|X |

(1.8)

This is just the uniform distribution over all possible states, and reproduces the intuition
of the principle of insufficient reason [65]. If the expectation value µj of each variable
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Xj should also be reproduced, as well as the expectation values σij of the products XiXj
(i.e. the first two moments of X ), additional Lagrange multipliers are introduced:

∂

∂p(x)

−∑
y∈X

p(y) log p(y) + λ0

∑
y∈X

p(y)− 1
+

N∑
i=1

λi

∑
y∈X

p(y)yi − µi


+

N∑
i ,j=1

λij

∑
y∈X

p(y)yiyj − σij

 = 0 (1.9)

where yi is the value of variable Xi in state X = y ∈ X . This has as a general solution:

p(x) = exp
λ0 +

N∑
i

λixi +
N∑
i ,j

λijxixj − 1
 (1.10)

When the Xi are binary variables, finding the λ’s that satisfy each of the constraints
is called the inverse Ising problem, as the distribution exactly describes the equilibrium
dynamics of a glass-like classical Ising model with pairwise interactions λij and varying
magnetic field λi . As mentioned before, when the Xi are continuous, then this is easily
solved by the inverse covariance matrix, which has been applied in the context of gene
regulatory networks [148, 152]. However, discrete Xi are not normally distributed, so
the inverse covariance matrix does not encode the couplings.

Solving this inverse (pairwise) Ising problem has received a lot of attention, a good
review of which is [178]. While the likelihood function of the Ising model is convex in
the coupling parameters, evaluating the gradient involves a number of terms exponential
in the number of variables, so is intractable in practice. One promising technique involves
the use of a class of neural network called restricted Boltzmann machines, which will be
introduced and evaluated in Chapter 2.

1.6 Higher order interactions and synergy

You cannot answer a question that
you cannot ask, and you cannot ask a
question that you have no words for.

Judea Pearl [189]

All definitions of genetic interactions introduced so far have one thing in common: they
describe pairwise interactions only. That is because they are all based on the notion of
a graph of associations, where each edge connects precisely two genes. This constraint
can be relaxed, leading to the notion of a hypergraph:

Definition 3 (Hypergraph). A hypergraph G is a tuple (V , E ) where V is a set of
vertices, and E ⊆ P(V ), where P(V ) is the powerset of V .

A hypergraph can contain edges between any number of nodes. For example, E can
contain the triplet edge (a, b, c) while not containing the pairwise edges (a, b), (a, c),
and (b, c). If edges still encode dependencies in the data, then these hyperedges encode
higher-order dependencies. Higher-order interactions might seem exotic since they can
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no longer be represented by a graph, but are important or even necessary components of
some systems. As a canonical example, consider the XOR logic gate. It has the following
truth table for two input variables A and B, and output C :

A B C
0 0 0
0 1 1
1 0 1
1 1 0

This is one of the six fundamental non-trivial logic gates, and it has the property that
each pair of variables is completely independent, even though the logic gate specifies
a particular dependency of the output on the input. All of its structure is encoded
as a third-order dependency among the unordered triplet (A, B, C). The symmetry of
this interaction is reflected in the logic: the truth table describes an XOR gate for
any partition of the three variables into two inputs and an output. A higher-order
dependency like this is called synergistic, and the XOR gate (and its negation XNOR) is
purely synergistic. Indeed, an Ising model on three variables s = (s1, s2, s3) ∈ {−1, 1}3

with only a third-order interaction E (s) = Js1s2s3 has the property that:

log p(s3 = 1 | s1, s2)
p(s3 = −1 | s1, s2)

= log exp(Js1s2)
exp(−Js1s2)

= 2Js1s2 (1.11)

which indeed describes the behaviour of an XOR gate. Such Ising models with higher-
order interactions arise naturally as a generalisation of Equation (1.10), when moments
beyond the second moment are constrained in the entropy maximisation. Demanding
that the inferred distribution reproduces up to n moments leads to a generalised Ising
model with interactions up to nth order.

The role such higher-order interactions play in biological networks is not yet clear. This
is in part because they are harder to estimate (either mathematically, or in terms of the
required statistical power), but also because pairwise descriptions of biological systems
often work surprisingly well. Investigations into this phenomenon have shown that there
are regimes in terms of the strength and density of couplings in which this pairwise
sufficiency tends to hold [163, 271]. On the other hand, there is evidence that it is
precisely the presence of these higher-order interactions that is responsible for some of
the rich dynamics [21] or bistability [244] in biological networks, and synthetic lethality
experiments in yeast have shown that trigenic interactions form a larger network than
pairwise interactions [142]. Some gene regulation is inherently combinatorial and in-
volves simple logical operations. Examples include the combinatorial nature of BMP
signalling [12, 137] or the pattern formation in eve expression in developing Drosophila
[14]. Reconstruction of GRNs using Boolean networks explicitly involves logical depen-
dencies, and thus implicitly imposes higher-order dependencies. These networks have
been popular since the 1960s [257], but are still in use today [305, 234, 110]. In the field
of information theory, higher-order quantities have been in used in many contexts, and
were already flagged as relevant for GRN reconstruction in [159, 176]. Furthermore, the
synergistic information among variables can identify macroscopic causal quantities and
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descriptions [283]. It should be emphasised that I only consider those statistical depen-
dencies that cannot be decomposed into pairwise dependencies to be higher-order. There
have been claims of higher-order interactions in single-cell gene expression data before
[93], but there it refers to a change in coexpression over (pseudo-)time, which could still
be decomposable into pairwise interactions2, and is not a higher-order interaction in the
sense of this thesis.

It is unclear if a higher-order dependency truly reflects a microscopic logic-like interac-
tion, or if it is an emergent dependency induced by coarse-graining or a specific choice
of variables. In [222], the authors emphasise the difference between higher-order mecha-
nisms, which are beyond-pairwise terms in the data-generating process, and higher-order
behaviour, which are the emergent beyond-pairwise dependencies in a description of the
data. Systems with higher-order behaviour need not have higher-order mechanisms. As
an illustrative example, the authors of [222] discuss a frustrated spin system composed
of three variables that all couple in pairs, but negatively. While all interactions are pair-
wise, the system shows a higher-order dependency (as measured by the total correlation
across the three variables), while containing only pairwise mechanisms. At the same
time, higher-order mechanism and behaviour are related, since especially in biology, each
interaction could be decomposed further, taking you from the realm of biology, through
chemistry, to fundamental physics. Any higher-order dependencies are thus a reflection
of the particular way you choose to decompose your system. If you can justify a par-
ticular decomposition, then the higher-order dependencies among these variables inherit
the justification. Throughout this thesis, I will describe cells in terms of gene expression.
While it is clear that genes are not the only relevant variables that determine cellular
dynamics (alternatives range from metabolic, epigenetic, or even bioelectric causal influ-
ences), they form a natural decomposition in which to describe cellular dynamics. Genes
are a natural way to carve Nature at its joints [194].

However, if higher-order interactions do not directly correspond to a known biological
mechanism, how are they to be validated and interpreted? This is discussed in more
detail in Section 4.1.1, but key is that the biological knowledge extracted from the
interactions should be meaningful, and reproducible. Their interpretation and validation
should thus depend on the analysis that the interactions are used in. It will turn out
that the higher-order interactions will be most useful for cell state identification, in
which case validation amounts to verifying that the found cell states align with observed
cell identities in the literature, but also that they are present throughout biological
replicates. Finally, it should be emphasised that the interactions studied in this thesis
are fundamentally undirected, which gives them no meaningful causal interpretation.
While they will sometimes be compared with the directed acyclic graph that aims to
capture the conditional dependencies, the two are fundamentally different quantities and
should not be conflated.

2Consider, for example, the negative correlation between two negatively coupled genes A and B
as a third gene C gets expressed more over time. If C is sufficiently coupled with positive pairwise
interactions to both A and B, the correlation between A and B could become positive.
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1.7 Aim and outline of this thesis
Indeed the power and majesty of the
nature of the universe at every turn
lacks credence if one’s mind
embraces parts of it only and not the
whole.

Plinius the Elder [206]

Aim In this thesis, I explored the presence, structure, and role of higher-order depen-
dencies in gene expression. The many contexts in which they have been studied have
focused on specific examples, in terms of logical dependencies or synthetic lethality, but
here I took a maximum entropy, purely data-driven approach. I searched for higher-
order interactions in different cell types and quantified their structure, and relationship
to biology, with the aim of answering the question

Does single-cell gene expression data contain higher-order interactions? If
so, how do the interactions reflect biology?

The first of these two questions can be straightforwardly answered by estimating the
interactions on gene expression data and deciding if they are significantly nonzero. The
second question—how to relate the nonzero interactions to biology—is conceptually
more difficult. Fundamentally, interactions describe a conditional dependency in the
expression of different genes. The most obvious way in which genes would influence
each other’s expression levels is by a direct regulatory mechanism. For example, one
would expect a dependency between the expression level of a transcription factor and its
target gene. The genes coding for two proteins that mainly function as a dimer might
also be reasonably expected to show a dependency in their expression levels. Based on
this intuition, I started by asking the question:

Do higher-order interactions correspond to complex gene regulatory mecha-
nisms?

To answer this question, I validated the predicted interactions against databases of
known genetic interactions and annotations. However, there are other situations in
which one would expect to find a dependency in gene expression. Cellular dynamics
are generally attributed to genetic programmes. Taking a more agnostic approach to
the biological mechanism underlying the programme, one could hypothesise that the
dependency among the genes is the result of a certain regulatory programme being
active in at least some of the cells. This programme could be triggered or mediated by
a gene that does not directly regulate or bind to the other genes, but does influence
the expression through some unobserved confounders or other biological mechanisms
(like epigenetic or metabolic molecules). This more agnostic approach leads to the
hypothesis that the dependencies, and by extension the interactions, correspond to cell
identities marked by a combinatorial gene expression pattern, and thus motivates the
second central question of this thesis:

Do higher-order interactions reveal cell states?
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To answer this question, I associated characteristic cell states to higher-order interactions,
and compared these states with known biological cell states and types. This turned out
to be the more fruitful path and led to the main results of this thesis.

Outline In practice, answering these questions required two steps: I first needed to
estimate the interactions, and then validate them against known biology. To estimate the
interactions, two different approaches were explored—in Chapter 2 a machine learning
approach based on restricted Boltzmann machines (RBMs) was used, and in Chapters
3, 4, and 5 I used a model-free estimator based on causal discovery.

In Chapter 2 I used a type of neural network called a restricted Boltzmann machine to
estimate interactions in various settings. To establish a baseline, Section 2.3.1 shows
estimates of interactions in simulations of Ising models where the ground truth was
known. I first reproduced the results on pairwise Ising interactions from [59], and then
moved on to Ising models with third-order interactions. To explore the interactions in
a context where the ground truth was not known, Section 2.3.2 shows a side project
where RBMs were trained on population-level trait data from the UK Biobank. With
the developed intuition in hand, I binarised a developmental dataset of astrocytes, and
calculated interactions among a set of astrogliogenesis genes in Section 2.3.3. There
were various problems with the estimates, which are reflected upon in the Discussion in
Section 2.4, that made it impossible to interpret the inferred interactions.

To address these issues, in Chapter 3 a model-free estimation approach is outlined. It
starts by showing how model-bias arises in Section 3.1.1, and in Section 3.2.1 shows
how the model-free approach is defined and how it evades this problem. Section 3.2.2
introduces the practical aspects involved in the model-free estimation procedure and
Section 3.2.3 introduces different ways to validate the estimates.

Section 3.3 shows a number of different results: Section 3.3.1 repeats a theoretical
result that previously appeared as part of [125] and which explicitly links the MFIs to
information theory, and Sections 3.3.2 and 3.3.3 compare higher-order interactions
and information theoretical quantities in logic gates and other causal structures.

Chapter 4 explores the mechanistic interpretation of MFIs. In Section 4.3.1, I for the
first time calculated MFIs on gene expression data, and explored how stable, reproducible,
and robust the estimates were for different numbers of cells and genes. Various results
regarding the validation against known protein function and annotation are listed in the
other subsections from Section 4.3.

In contrast to the mechanistic interpretation, and more fruitfully, Chapter 5 explores
the cell states implied by up to fifth order interactions. How such states are defined is
introduced in Section 5.2.1, and results in mouse neurons and astrocytes are discussed
in Section 5.3.

Finally, Chapter 6 concludes the thesis and discusses some limitations and possible
improvements to the estimation method.

It should be noted that this thesis is the result of a very diverse and transdisciplinary
research project. While I have tried to be adisciplinary and not separate the chapters
into different disciplinary perspectives, readers from different backgrounds will inevitably
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be drawn to different chapters and sections. For example, as I did not end up using
the RBM estimation to answer any of the central questions in this thesis, Chapter 2
will mostly be interesting to readers specifically interested in the learning and sampling
dynamics of RBMs per se. While Chapter 3 offers an important introduction to MFIs,
readers not interested in their mathematical context or information theory should feel
free to skip Section 3.3.1.
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Inferring interactions with restricted
Boltzmann machines

A[h], la recherche! Du temps perdu.

Marcel Proust [200] (punctuation
mine)
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2.1 Introduction
This chapter concerns the estimation of interactions with restricted Boltzmann machines,
and serves as an introduction to the maximum entropy interactions in genetic data. The
reason that RBMs are an obvious choice for maximum entropy estimation is that they
are closely related to Ising models. They are, in a sense, trainable Ising models. This
similarity is immediately obvious from their definition, and that they can encode the data
as Ising models was already anticipated in e.g. [178], but a precise mapping from RBMs
to Ising models was first introduced in [59]. The results from [59] serve as the starting
point for this chapter. To train the RBMs with the contrastive divergence algorithm,
I used the pytorch implementation from the authors of [59], but I implemented the
persistent contrastive divergence and parallel tempering training schemes myself.

While RBMs are thus closely related to statistical models from physics, they also naturally
arise in a purely statistical context, which is how I will introduce them in this thesis,
to emphasise that their interpretation is not contingent on the physical meaning and
justification of the Ising model.

2.1.1 Boltzmann machines and couplings
The Ising model as it was introduced in the introduction is an example of a more general
class of models: Markov Random Fields. A Markov random field is a set of random
variables V with an associated graph G = (V , E ) such that the following property
holds1:

p(V ) =
∏

C∈C(G)
ϕC(C) (2.1)

where C(G) is a set of cliques, i.e. complete subgraphs, in G . That is, the joint probability
distribution over all variables V factorises into a product of so-called clique potentials
ϕC of the cliques in G . It is immediately clear that the Ising model is a special case:
the cliques are the nearest neighbours on a lattice, and the clique potentials are just the
(unnormalised) marginal Gibbs weights:

P(X ) ∝
∏

(Xi ,Xj )∈C(G)
ϕij(Xi , Xj) (2.2)

where

ϕij = exp (−JXiXj − h(Xi + Xj)) (2.3)

However, the cliques do not in general have to be so small, or regular. For the fully
connected graph, one choice of cliques is all pairs (Xi , Xj) ∈ X × X , which leads to
clique potentials

1This assumes that p(V ) has full support, in which case it follows from the Hammersley-Clifford
theorem. Markov random fields can be defined in a more general setting, but that is beyond the scope
of this thesis.
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ϕij = exp (−JijXiXj − hiXi − hjXj) (2.4)

The Markov random field with these clique potentials is called a spin glass model, but
may also be interpreted as an artificial neural network where neuron Xi updates its state
according to the following activation function [108]:

p(Xi = 1) = (1 + exp(−hi +
∑

j
JijXj)) (2.5)

This neural network, called a Boltzmann machine (BM), can be used to solve both the
forward, and the inverse problem. To solve the forward problem of predicting the dynam-
ics from a certain set of weights, the signals can be propagated through the network,
and the equilibrium dynamics will approximate the joint distribution p(X ). To solve the
inverse problem of inferring the interactions that produce a particular distribution, the
biases hi and weights Jij are changed iteratively in a training procedure. Denoting the
expected value across the data distribution and the model distribution with ⟨ , ⟩data and
⟨ , ⟩BM respectively, the gradient with respect to the weights Jij of the log-likelihood on
observed data Y is〈

∂ log p(X )
∂Jij

〉
data

= −
〈

∂E (X )
∂Jij

〉
data
−
〈

∂ logZ
∂Jij

〉
data

(2.6)

where E (X ) = ∑
ij JijXiXj +hiXi +hjXj , and the normalisation Z = ∑

X∈X exp(−E (X )).

= ⟨XiXj⟩data −
〈

1
Z

∂Z
∂Jij

〉
data

(2.7)

= ⟨XiXj⟩data −
〈

1
Z
∑

X∈X
XiXj exp(−E (X ))

〉
data

(2.8)

= ⟨XiXj⟩data −
〈
⟨XiXj⟩BM

〉
data

(2.9)
= ⟨XiXj⟩data − ⟨XiXj⟩BM (2.10)

and similarly for the biases. By updating the weights and biases according to this training
step, the BM can approximate the data distribution in the dynamics of its nodes. In
fact, given enough data, this training procedure is convex [108]. However, the BM can
only model pairwise interactions, which are in general not sufficient [163, 22]. To allow
higher-order couplings to appear, a new set of hidden nodes h is added to the BM, while
the old variables are now referred to as the visible nodes v .

To get an estimate of ⟨vihj⟩data or ⟨hihj⟩data, the visible nodes are set to a sample from
the training data, and the hidden nodes are sampled until they equilibrate, for which there
is no efficient algorithm [108]. Reaching equilibrium is made difficult by the connections
between the hidden nodes, so one is naturally led to the situation where the graph is
bipartite, and there are no connections among visible nodes or among hidden nodes.
A Boltzmann machine with this bipartite structure is called a restricted Boltzmann
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machine, or RBM. In contrast to fully connected BMs, RBMs can be efficiently trained,
as outlined in Section 2.2.1. Since an RBM only has connections between visible and
hidden nodes, the probability distribution over the states s = (v , h) of a machine with
n visible and m hidden nodes can be written as

p(v , h) = 1
Z

e−E(v ,h) (2.11)

with

E (v , h) = −
n∑
i

m∑
j

(viwijhj + bivi + cjhj) (2.12)

where wij is the weight of the connection between visible node i and hidden node j , and
bi and ci are the biases of the visible and hidden nodes, respectively. The visible layer
forms an interface between the data and the machine given by the marginal probability
distribution over the visible nodes:

p(v) =
∑

h∈Bm
p(v , h) (2.13)

= 1
Z

n∏
i=1

ebi vi
m∏

j=1

(
1 + ecj +vi wij

)
(2.14)

Writing the exponent as a power series reveals that this distribution encodes an infinite
series of interactions between different powers of the visible nodes. However, on binary
variables, vn

i = vi ∀n, so the infinite series of polynomial interactions reduces to all pos-
sible multilinear interactions between the variables, the strength of which is fully encoded
in the weights and biases of the RBM. This gives it the structure of a generalised Ising
model, and in [59] and [24], the authors explicitly show how to extract the interactions
from the network weights. For example, the pairwise interaction between visible nodes
vj1 and vj2 is

Jj1j2 = 1
8
∑

i

(1 + eci +wij1 +wij2 )(1 + eci )
(1 + eci +wij1 )(1 + eci +wij2 ) (2.15)

This means that when the hidden layer is sufficiently large to encode all dependencies
in the data, the RBM is a universal approximator for distributions over binary variables
[84, 169]—it can approximate any data distribution arbitrarily well.

2.1.2 Aim and outline of this chapter
In this chapter, I used Equation (2.15), and the corresponding expression for the 3-point
interaction, to extract the interactions from trained RBMs and thus fit maximum entropy
interactions to the data.
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The results from this chapter provided insight into the estimation of maximum entropy
interactions using RBMs, but ultimately mainly served to justify the model-free approach
in Chapter 3.

This chapter starts by outlining a training procedure for RBMs called contrastive diver-
gence in Section 2.2.1. A refinement of this, called parallel tempering, is introduced
in Section 2.2.2. To be able to validate the trained RBMs against a known ground
truth, Section 2.2.3 introduces a method for simulating Ising models with third-order
interactions. Section 2.2.5 introduces the gene expression data from developing murine
astrocytes.

I trained RBMs on three very different kinds of data: simulated Ising models (results
in Section 2.3.1), epidemiological data from the UK Biobank (Section 2.3.2), and
gene expression data from murine astrocytes (Section 2.3.3). The RBMs were able to
capture the training distributions well, but there were some technical issues which make
the interactions hard to interpret, as discussed in Section 2.4.

2.2 Methods

2.2.1 Training RBMs
When training RBMs, several hyperparameters need to be set. A list of these is reported
in Table 2.1.

Parameter Role
nvis No. of visible nodes, dimensionality of input data
nhid No. of hidden nodes
Epochs No. of times training data should be seen
Batch size No. of training examples to average the gradient over
α Learning rate
kCD Steps in Contrastive Divergence chain
NPT No. of parallel tempering chains (optional)

Table 2.1: Hyperparameters of RBM training.

Maximising the log-likelihood in Equation (2.6) minimises the KL-divergence between the
marginal distribution over the visible nodes and the data distribution. I used stochastic
gradient descent (SGD) to minimise the negative log-likelihood by dividing the full data
set in multiple batches of a fixed batch size, and calculating the gradient on each batch
separately, each time changing the parameters by a step size α, a parameter known as the
learning rate. I trained the machines by iterating over the full data set N times, where
N is referred to as the number of epochs. However, calculating the gradient of the log-
likelihood along the weights and biases requires taking expectation values with respect
to the model distribution, which involves an intractable sum of all possible RBM states.
Instead, I sampled states from the RBMs distribution and approximated the true gradient
with expectation values with respect to the sampled states. Note that both layers in the
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RBM induce a conditional distribution over the other one: p(v |h, θ = {w , b, c}) and
p(h|v , θ), and that within a layer all nodes are conditionally independent. All nodes in a
layer can thus be sampled simultaneously in a process known as Gibbs sampling. In [107],
Hinton showed that a Gibbs sampling procedure known as the Contrastive Divergence
(CD) algorithm can yield an efficient and surprisingly accurate approximation to the
gradient of the likelihood. The CD algorithm starts by setting the visible layer to a state
from the current training batch, and then propagates it back-and-forth through the two
layers kCD times by Gibbs sampling from the conditional distributions, to end up with a
(biased) sample from the model distribution [50]. To monitor training progress, there
are a few metrics that can be calculated as training progresses. The most obvious is the
KL-divergence between the training distribution and the marginal distribution over the
visible nodes of the RBM. However, as shown in Appendix 2.C, this KL-divergence offers
no more information than the log-likelihood of the data given the RBM’s model, so I
focused on the log-likelihood throughout this chapter. The log-likelihood of a particular
batch S can be written as

L(S) =
∑
s∈S

log p(s) =
∑
s∈S

log
∑

h∈Bn
e−E(s,h) − logZ (2.16)

While it is too computationally expensive to calculate the log-likelihood for each training
step, it can be estimated every few epochs using annealed importance sampling (see
[59] for more details). Furthermore, as the log-likelihood gets maximised, the partition
function approaches a constant, which means that the free energy, defined as

F (v) = log
∑

h∈Bn
e−E(v ,h) (2.17)

should also approach a constant, which can be used to monitor training progress. Ad-
ditionally, since RBMs are generative models, samples from their visible layer can be
compared with the training data. To do so, define the magnetisation (the first moment)
of a state v as

m(v) = 1
n

n∑
i=1

vi (2.18)

The nth moment of a set S of observations is then defined as

µn =
〈(

m − ⟨m⟩
)n
〉

(2.19)

= 1
N

N∑
j=1

(m(j) − 1
N

N∑
k=1

(m(k)))n (2.20)

where N = |S|. To monitor and evaluate the RBMs during training, I compared moments
of the training data with moments of generated samples from the RBMs. A probability
distribution uniquely determines its moments, and if the distribution is reasonably well-
behaved, i.e. has a moment-generating function, the moments uniquely determine the
distribution, so a well-trained RBM should generate samples with the same moments as
the training data.
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2.2.2 Parallel tempering
Contrastive divergence training suffers from the fact that the Markov chains converge to
the true distribution more slowly as the network weights grow, making training unstable
[82]. To stabilise training, I explored a technique called parallel tempering. One problem
with contrastive divergence is that the gradients are only calculated closely around train-
ing examples. To get around this, one could increase kCD, but doing so quickly becomes
computationally expensive. Another solution, referred to as persistent contrastive diver-
gence (PCD), is to first initialise the Markov chain with a random state, but afterwards
use the sample that resulted from kCD Gibbs samplings to initialise the next chain. Like
this, the gradients can be estimated in a less restricted part of sample space. However,
since the network weights change at each PCD iteration, the Markov chain is never ac-
tually initialised with a sample from the model distribution. To mitigate this effect, PCD
requires a smaller learning rate [82]. However, PCD still suffers from emphasising areas
of model space where the chain is currently running. Parallel tempering is a technique
designed to explore a larger area of the model space of the RBM. It does so by running
multiple Markov chains at the same time, all running at different temperatures. The
distribution over an RBM

p(v , h|θ) = 1
Z(θ)eE(v ,h|θ) (2.21)

is a Boltzmann weight at unit temperature. Consider a family of K distributions, indexed
by inverse temperatures βk = 1

Tk
, k ∈ [1, ..., K ]:

pk(v , h|θ) = 1
Zk(θ)eβkE(v ,h|θ) (2.22)

Note that β = 0 corresponds to infinite temperature: a uniform distribution. Any
set {βk} with βs between 0 and 1 interpolates between the original RBM distribution
pk=1(v , h|θ) and the uniform distribution pk=0(v , h|θ). Parallel tempering then starts K
parallel Markov chains, all at different temperatures. Only the β = 1 chain still corre-
sponds to the original distribution, while the chains with lower β (higher temperature)
explore the RBM’s state space more uniformly. The question is how to use this infor-
mation to inform the chain running at β = 1. The parallel tempering algorithm lets
the K chains run independently for several steps, and then swaps the state of the two
neighbouring chains running at temperature βk and βk+1 with a probability given by a
metropolis factor:

P(swap) = min
{

1, exp
(

(βk − βk+1) (E (vk , hk |θ)− E (vk+1, hk+1|θ))
)}

(2.23)

where vk , hk are the states from a chain running at temperature βk . Then, like with
PCD, after each iteration the final state for each of the K chains is used as the input
to the next iteration. Parallel tempering is thus the same as running K PCD chains. To
calculate expectation values, only states from the β = 1 chain are used, the difference
with PCD being that this chain is now enriched with states that were sampled from
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more uniform distributions but still had a high probability under the β = 1 distribution.
The only thing left to specify is how to do the state-swapping as the order in which
the chains are compared might change results. Throughout this chapter, I followed the
literature [68] and used the Deterministic Even Odd (DEO) algorithm, first proposing
swaps between all chains at βk and βk+1 for even k , and then starting again at odd k .

2.2.3 Simulating Ising models
I used the c++ program Magneto [296] to simulate the equilibrium dynamics of a
homogeneous Ising model with nearest-neighbour couplings, doubly periodic boundary
conditions (i.e. on a torus), in the {−1, 1} basis. I set the Boltzmann constant kB = 1
throughout this thesis so that the only two physical parameters were the temperature
and the coupling strength. Sampling was done using the metropolis algorithm which
requires an expression for the energy difference that results from a spin-flip. The effect
of a spin flip for the nearest neighbour coupling structure was already implemented in
Magneto, but not for systems with a three-point coupling but without pairwise nearest
neighbour interaction or external fields, so I implemented this myself. The Boolean
variables could be represented as {0, 1} or {−1, 1}, and these two bases should be
carefully distinguished. Consider a system that has only a 3-point interaction in the
{0, 1} basis. Its Hamiltonian, or energy function, can be written as follows:

H =
∑
i ,j,k

Jijk vivjvk

∣∣∣∣
{0,1}

(2.24)

=
∑
⟨ijk⟩

J (3)vivjvk

∣∣∣∣
{0,1}

(2.25)

Where the sum in the second line only includes triplets that lie in a straight connected
line, and the restriction indicates the basis. That is, only couplings of the following type
appear:

&

Relating this to Magneto’s {−1, 1} basis by sending v → v+1
2 , the Hamiltonian be-

comes:

H =
∑
i ,j,k

Jijk

(vi + 1
2

)(vj + 1
2

)(vk + 1
2

)∣∣∣∣
{−1,1}

(2.26)

=
∑
i ,j,k

Jijk

8

(
vivjvk + vivj + vivk + vjvk + vi + vj + vk

)∣∣∣∣
{−1,1}

+ constant (2.27)

Now, consider the change in energy resulting from a spin flip at site n. The full calculation
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Figure 2.1: The Pearson correlation between each of the UK Biobank traits is mostly
robust to binarisation.

2.2.4 UK Biobank traits
The UK Biobank is a data set with phenotypic and genotypic data from over 500,000
individuals [256]. Many of these phenotypes correspond to disease phenotypes that can
be represented as a binary variable indicating the presence or absence of the correspond-
ing diagnosis. Other phenotypes, like blood counts or body weight, have to be binarised
before they can be used as inputs to an RBM. In this section, and Section 2.3.2, the
binarisation of the data and training of the machines has been performed by Ava Kham-
seh, who had access to individual-level data in the UK Biobank. We used data from
400,000 individuals, and selected 62 traits that had been of interest to my colleague
Neil Clark (in unpublished work and private communication). In addition, we added two
traits corresponding to male or female sex, and three traits corresponding to age bins
of [40, 49], [50, 59], and [60, 69] years. Of these 67 traits, 26 were already binary, and
the other 41 traits were binarised around their median value in the cohort. A full list of
traits is printed in Appendix 2.E. The Pearson correlation between each of the traits was
mostly robust to binarisation (see Figure 2.1).

2.2.5 Astrocyte gene expression
2.2.5.a 10X data generation

The Million Cell Data Set (MCD) [4] from 10X Genomics comprises 1,306,127 tran-
scriptomes of cells from the cortex, hippocampus and ventricular zone of two E18.5
mouse brains. The brain tissues were dissociated using 10X Genomics’s own protocol
[1], and 133 barcoded cDNA libraries were created using the 10X Genomics Single Cell
3‘ v2 chemistry kit, aiming to include around 10,000 cells per library. These 133 libraries
were then processed using 17 Chromium chips, each of which can process 8 libraries
in parallel. The libraries were sequenced on an Illumina HiSeq 4000, using paired-end
sequencing, at a moderate read depth of around 18,500 reads per cell. During library
preparation, each RNA molecule got tagged with a unique molecular identifier (UMI), so
there was no ambiguity between reads, fragments, and transcripts, and all reads could
be directly converted to transcripts per million (TPM) without correcting for gene length
or PCR bias. This leads to TPM values for 27,998 genes across 1,306,127 transcrip-
tomes, with a median of 1,870 expressed genes and 5,000 transcripts per cell, keeping
only uniquely mapped reads. Alignment batch correction due to mouse or library, and
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Louvain-clustering were performed by 10X Genomics with their in-house CellRanger
software.

2.2.5.b Removing doublets

The Chromium system is droplet-based and aims to suspend each cell in its own oil
droplet. However, as more cells need to be barcoded, the chip gets loaded with more cells
which increases the probability of two cells ending up in the same droplet, forming a dou-
blet. Since each library in the MCD contained around 10k transcriptomes, the expected
doublet rate was relatively high at 7.6% [2]. Doublets result in transcriptomes that do not
correspond to any cell, so can distort the result of any downstream analysis and should be
removed. I used the Python package Scrublet [302] to identify and remove potential
doublets. I first log-transformed the normalised UMI counts, and only kept overdispersed
genes (using the scanpy function scanpy.pp.highly_variable_genes). To
detect doublets, Scrublet creates artificial doublet transcriptomes by combining tran-
scriptomes from different clusters. These artificial doublets form new clusters, and real
transcriptomes can be given a doublet score by how close they are to a cluster of artificial
doublets. Some simulated doublets separate from the observed transcriptomes and form
neotypic doublet transcriptomes, while others fall within the existing clusters, forming
embedded doublet transcriptomes. I ran the Scrublet algorithm on the full data set,
embedding each transcriptome in the first 30 principal components, based on the top
15% most variable genes. The number of simulated doublets was 0.5 times the total
number of transcriptomes. The number of nearest neighbours K in the KNN-graph was
automatically set to K = round(0.5 × √ncells). The distribution of simulated doublet
scores is shown in Figure 2.2. The two modes of the simulated doublets, corresponding
to the embedded and neotypic doublets, were clearly visible, and the automatically set
threshold at 0.34 separated the two peaks well. At this threshold, the total number of
detected doublets was 53, 048, or 4.1% of all cells. The estimated proportion of de-
tectable doublets was 48.7%, leading to a predicted total doublet rate of 8.3%, slightly
higher than the 7.6% predicted in the documentation of the 10X protocol. That the
histogram of simulated doublet scores was so strongly bimodal should be considered
evidence that the threshold at 0.34 was robust and appropriate. I therefore removed all
cells annotated as doublets from all further analysis.

2.2.5.c Quality control

A UMAP and PCA embedding of all cells is shown in Figure 2.4. I performed a
standard QC on the data: normalising expression data per cell, removing droplets
with fewer than 600 detected genes and removing droplets with more than 12% of
reads mapping to mitochondrial genes (see Figure 2.3) . Batch effects due to mouse
or library were already removed by 10X Genomics. For downstream analysis, highly
variable genes were identified with the Python package Scanpy (using again the
scanpy.pp.highly_variable_genes function).

2.2.5.d Cell type annotation

The R package SingleR was used to annotate the cells according to cell type. It con-
tains a reference data set of 358 annotated mouse samples to compare with. However,
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Figure 2.2: The distribution of simulated doublets (right panel) is strongly bimodal,
indicating successful placement of the doublet-score threshold. This threshold led to a
doublet rate of 8.3% across all 1.3M observed transcriptomes (left panel).

Figure 2.3: QC metrics across all 1.3M cells, with the cut-off line in red. Droplets with
fewer than 600 detected genes or more than 12% of mitochondrial reads were removed.
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Figure 2.4: Embeddings of all 1.3M cells. Left: PCA, right: UMAP. Coloured by
the Louvain cluster identity that 10X Genomics provided. The clusters were indeed
connected in the embeddings, and there is clear structure present in the data.

since these are normalised bulk expression data instead of single-cell samples, it is recom-
mended to add single-cell markers from the literature [13]. I focused on astrocytes, since
10X Genomics claimed that they formed the largest non-neural population in their data
set. Based on results from [267], [43], and [313], I added the following genes as astrocyte
markers: F3, Rorb, Acsbg1, Ntsr2, Plcd4, Gja1, Gjb6, Cbs, Chrdl1, Prodh, Mlc1, Acsl6,
Slc4a4, Gabrg1, Cxcl14, Slco1c1, Vcam1, Ednrb, Scrg1, Bcan, Aldoc, Gfap, Aldh1l1,
Aqp4, Serpinf1, Mfge8. In total, 43,966 cells got annotated as astrocytes (i.e. 3.5% of
all cells), almost all of which were part of cluster 8 of the k=20-means clustering (see
Figure 2.5). This is significantly fewer astrocytes than 10X Genomics’ own analysis,
where they identified 14.4% of all cells as Astrocytes [167], which probably means that
cluster 8 corresponds to one of multiple astrocyte clusters. However, it is clear from
Figure 2.5 that the 43,966 cells formed a relatively homogeneous set. Since there could
be different transcriptionally distinct subtypes or states of astrocytes present in the data,
I used cluster 8 as the training data, regardless of SingleR annotation. In total, this
cluster contained 77,524 cells.

2.2.5.e Gene selection

Inspired by the idea of core genes in a model of omnigenic trait inheritance [38], I chose
to focus on transcription factors as an interesting set of genes potentially mediating
the interactions. Of particular interest were genes relevant to the late developmental
astrocytes that are the focus of this study. The authors of [270] considered the gene
expression profile of E18.5 mice as neural stem cells differentiate into astrocytes, a
process known as astrogliogenesis. Having identified in particular the transcription factors
(TFs) Nfia and Atf3 as playing a role in astrogliogenesis, they suppressed the expression
of these two TFs (by siRNA-mediated depletion of the corresponding transcripts), and
looked for differentially expressed genes. To enrich the set of differentially expressed
genes for physical interactions, they filtered for genes that showed the enhancer activity
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Figure 2.5: Histogram of the cluster identities of all cells that passed QC (left panel),
of the astrocytes (middle panel) and a PCA embedding of the astrocytes (right panel).
Almost all cells that are annotated as astrocytes by SingleR derive from cluster 8 of
the k=20-means clustering provided by 10X Genomics. It can also be seen that almost
all cells in cluster 12 were removed as they are suspected to be doublets by Scrublet,
and that the astrocytes form a relatively homogeneous set of cells.
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Figure 2.6: PCA embeddings of 20,000 randomly selected cells from the same data
set shown in Figure 2.4, using the same clustering. The parameter θ represents the
read count around which the expression values are binarised. Thresholding expression
at increasing values of θ distorts the data, so that setting θ = 1 preserves the most
structure, and was the threshold used throughout this thesis.
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Figure 2.7: Across 4,000 randomly selected genes, only Pyhin1 showed bimodal gene ex-
pression. However, the observed count frequencies are respectively (19995, 1, 1, 2, 0, 1),
which made the bimodality indistinguishable from noise.

marker H3K27ac, and were close to transcription factor binding motifs. The intersection
of differentially expressed genes for Nfia and Atf3 that satisfied this demand comprised
47 genes. Additionally, to only keep genes significantly expressed in the cell population,
only genes that are expressed in more than 1,000 cells, or around 2% of cells, were
included in the final training data. This resulted in 37 genes of interest: Creb1, Sned1,
Nfasc, Atf3, Ggta1, Crb2, Atf2, Jun, Nfia, Fzd9, Hspb1, Cav2, Crtc3, Ampd3, Eef2k,
Timp3, Ddit3, Crtc1, Ctsb, Slc39a14, Smad3, Slc38a3, Xbp1, Gas7, Cacng5, Phactr1,
Pgf, Tgfb3, Ptp4a3, Atf4, Atf1, Clip4, Crem, Aqp4, Smad4, Fth1, Ppp1r3c.

2.2.5.f Binarisation

To train RBMs on gene expression data and extract the interactions, the expression levels
need to be binarised. The data is composed of read counts for every gene, so entries take
values in N0. Binarisation therefore amounts to specifying a map b : N0 → B, where B is
the Boolean domain {0, 1}. There are many ways to implement this map, and different
binarisations could lead to different results. If a gene’s expression is bimodal, then a
natural choice of threshold would be one that separates the peaks of the distribution.
Since most genes’ distribution of expression has a mode at 0 reads, I looked for bimodality
where one peak was at zero, and the second one was larger than 1. For 4,000 randomly
selected genes I calculated the expression distribution across 20,000 randomly selected
cells. I found just one gene—Pyhin1—with such a bimodal expression distribution.
However, looking at the distribution of read counts in figure 2.7, the actual frequencies
are so low that the bimodal signal seems indistinguishable from noise. I concluded that
there is no evidence for bimodal gene expression.

Another obvious choice is thus thresholding at 1, which sends zero counts to the number
0, and every nonzero count to 1. Figure 2.6 shows that data thresholded at higher
values than 1 showed increased distortion compared to the unbinarised data. One could
consider more sophisticated maps, based on e.g. fitting Bernoulli models to scRNA-seq
data as in [149], or scaling by library size, but the authors of [149] and [225] showed that
thresholding at 1 works remarkably well, so throughout this thesis I implemented b as this
threshold. That this simple approach worked well is perhaps not so surprising as scRNA-
seq datasets contain many technical zeros. The technical noise of these experiments
with only moderate read depth is so high, that a nonzero count does not reflect the
transcript’s concentration but rather the fact that the gene was expressed at all [204].
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2.3 Results
This section describes three different contexts in which I trained RBMs and analysed
the interactions. In Section 2.3.1, I simulated Ising models to compare the RBM
interactions with a known ground truth. In Section 2.3.2, I analysed machines that
were trained on various traits from the UK Biobank. The training of the machines, and
the processing of the raw patient-level data was handled by Ava Khamseh, and all further
analysis was done by myself. This data set bears little resemblance to gene expression
data, but serves as an exploratory context in which to train RBMs on real data of clinical
interest. Finally, Section 2.3.3 presents the results on genetic interactions in embryonic
astrocytes.

2.3.1 The RBMs reproduced the interactions in generalised Ising
models

I first used RBMs to estimate interactions where the ground truth is known: a simulated
(generalised) Ising model. I started with the canonical case of homogeneous, pairwise
nearest-neighbour coupling on a square lattice with torus topology, i.e. double periodic
boundary conditions, and then moved on to a model with only triplet interactions on
the same toroidal lattice.

2.3.1.a Pairwise nearest-neighbour interactions

I started by reproducing the results from [59] on an 8×8 lattice with only a homogeneous
nearest neighbour coupling. Using Magneto, I simulated 100k Ising states at T = 1.8,
after discarding the first 1k steps to let the MCMC chain thermalise. The training
parameters are summarised in Table 2.2.

Epochs Batch size LR kCD nvis nhid

8k 200 0.1 1 64 64

Table 2.2: Training parameters for toroidal 8× 8 Ising lattice at T = 1.8.

In Figure 2.8, the 1-, 2-, and 3-point interactions extracted from trained machines are
shown. The 1-point interaction, or linear term, was accurately reproduced, and the 2-
point interactions clearly showed the nearest-neighbour structure. The distribution of
3-point interactions sharply peaked around zero.
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Figure 2.8: Couplings in the RBM’s {0, 1} basis at order 1, 2 and 3, extracted from a
machine trained on 100k states from an Ising model with only nearest-neighbour (NN)
interaction in the {−1, 1} basis, at T = 1.8. At this temperature, the variables couple
with a {0, 1} nearest-neighbour coupling of 1

3.6 , a linear term of 8
3.6 , and no 3-point

coupling, all of which were accurately reproduced by the trained RBMs.

2.3.1.b Variability across machines

While the overall performance of a trained RBM can be quantified in terms of the log-
likelihood of the training data, the uncertainty in the estimates of the interactions is more
difficult to quantify as there is no clear null hypothesis and there are different sources of
variability. The training procedure is stochastic both in the initialisation of the weights,
and in the batches from an instance of stochastic gradient descent. To quantify the
variability as a result of this stochasticity, I trained 20 machines on the T=1.8, 8 × 8
Ising model data. All machines were trained with a learning rate of 0.1, a batch size of
200, for 8k epochs.

Figure 2.9 shows that the log-likelihood increased to a final value of −12.69 ± 0.98,
leading to a KL divergence of 6.80± 0.98, in line with the T = 1.8 machine from [59]
(reproduced in Figure 2.43 of this thesis).

The couplings that are encoded in the RBM are entirely determined by the weights
of the network. The converse is not true: different weight matrices can lead to the
same distribution (consider for example interchanging two hidden nodes and all their
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Figure 2.9: The log-likelihood of all 20 machines increased consistently and similarly
during training.

n-pt ground truth mean std
1-pt 4.44 4.48 0.16
2-pt (NN) 0.28 0.28 0.02
2-pt (non-NN) 0.00 0.00 0.03
3-pt 0.00 0.00 0.03
W - 0.01 1.15
W T W - 4.50 8.89
vbias - 1.46 1.76

Table 2.3: The mean and standard deviation of the interactions and network parameters
across the 20 RBMs. While the weights varied strongly across machines, the interactions
were reproducible and accurate. The 2pt-interactions between nearest neighbours (NN)
and non-nearest neighbours are presented separately.

connected weights). To study the variability across machines further, I compared the
following quantities:

• The weight-matrix W of an RBM

• The bias of the visible nodes

• The matrix W T W

• The encoded 2-point interactions

The three matrices are shown as heatmaps in Figure 2.10, and the variability in the
2-point couplings specifically is shown in Figure 2.11 as a violin plot.

In spite of the variability in the weights across the 20 machines, the RBMs were able to
resolve the nearest neighbour structure and predicted the coupling strength with good
numerical accuracy. Note that the variance in couplings across machines was smaller for
nearest neighbours than it was for non-nearest-neighbours. This is summarised in Table
2.3, which shows the mean and standard deviation across the 20 machines for different
orders of interactions and network parameters.
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Figure 2.10: The weights and couplings encoded in the 20 trained machines. Top: Mean
values across all 20 machines. Bottom: Values from a single machine. As expected,
there was no consistent structure in the network weights W , but as soon as the hidden
layer was ‘summed out’ in W T W , the nearest neighbour structure appeared.

Figure 2.11: All interaction estimates for non-interacting pairs cluster around a value
of zero, while the interacting pairs match the ground truth interaction, here indicated
with a black dashed line. Note that the variance across machines is smallest for the
interacting pairs.

2.3.1.c Triplet nearest-neighbour interactions

To expand on the results from [59], I simulated an Ising model with no linear or pair-
wise interactions, but a homogeneous 3-point interaction among triplets connected in a
straight line on the toroidal lattice.

I generated 100k states from its Boltzmann distribution with J (3) = −1 at temperatures
from 1.5 to 2.5, and trained one machine on each of these data sets using the hyper-
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parameters reported in Table 2.4. A range of values for each of the hyperparameters
was explored, but none yielded sufficient improvement, either in the log-likelihood or the
interactions, to justify the computational cost associated. In these tests, batch sizes
ranged from 100 to 5,000, hidden layer sizes from 36 to 76, values of kCD from 1 to 11,
and learning rates from 0.05 to 0.001. The log-likelihood and free energy of the trained
machines are shown in Figure 2.12, and it can be seen that both the log-likelihood and
the free energy indeed stabilised near the end of training, but that the log-likelihood
decayed throughout training. These results were consistent across the different values
for the hyperparameters.

The mean and standard deviation of the 1-, 2-, and 3-point interactions are shown in
Figure 2.14. It can be seen that within statistics, the linear terms were indeed zero,
though with large variance and a slightly negative bias. Similarly, the non-nearest neigh-
bour 2-point interactions were zero within statistics. The nearest neighbour two-point
interactions incorrectly showed a slightly negative coupling. This coupling was weak,
however, compared to the 3-point couplings among the interacting triplets, which were
accurately reproduced across the range of temperatures. Figure 2.13 shows the mean
value of each kind of interaction during training. It can be seen that the machine started
by fitting the data with linear terms, which then decreased and were replaced by pair-
wise nearest-neighbour interactions, which in turn decayed to be replaced by the correct
3-point interactions.

Epochs Batch size LR kCD nvis nhid

25k 200 0.05 1 64 64

Table 2.4: Training parameters for toroidal 8× 8 Ising lattice with triplet coupling only,
at T = 1.5 up to T = 2.5.

Figure 2.12: The free energy and log-likelihood across all 25k training epochs, for ma-
chines trained on Ising data with triplet interactions at a temperature ranging from 1.5
to 2.5. While the free energy stabilised towards the end of training, the log-likelihood
decayed throughout training.

While the mean value of the 3-point interactions was correct, the precise structure was
often incomplete. The left panel of Figure 2.15 shows that a single machine often missed
some three point interactions. I trained 10 machines with the same hyperparameters on
the T = 2.5 data set, and while most machines had missing 3-point interactions, taking
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Figure 2.13: Couplings extracted from the machines across the first 10k training epochs.
Errors bars are the standard error on the mean across the interactions, but only visible
for the linear term. The machines encode the structure in the data in interactions at
increasingly high order as training progresses.

the mean across these 10 machine recovered the ground truth structure and value. The
mean estimated value of the triplet interaction J (3) was −0.1313(±0.0098, sem), which
includes the ground truth J(3)

3T = −0.133.

Figure 2.14: Couplings extracted from the machines at different temperatures. The
encoded triplet interactions should have a coupling strength given by Jijk = J(3)

3T . Error
bars correspond to standard deviations, and show that the ground truth was accurately
reproduced for 1- and 3-point interactions, but that nearest-neighbours coupled slightly
negatively, even when the ground truth was non-interacting.

Figure 2.15: Slices of the three-point interactions J0ij at T = 2.5 show that while a single
machine often contained false negatives in its 3-point interactions, the mean across all
machines accurately reproduced all triplet interactions. Left: Interactions from a single
machine. Middle: Mean interactions across 10 machines. Right: Ground truth.
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2.3.1.d Conclusion

I was able to reproduce the results from [59], and quantified the training using the
log-likelihood, KL-divergence, and reproducibility across machines. Moreover, I have
shown that RBMs can learn higher-order interactions, though they are prone to false
negatives. This could be mediated by training multiple machines, and looking only at
mean interactions. It is worth noting that the machines could still learn, even with a
decaying log-likelihood. This might indicate that the log-likelihood becomes harder to
estimate as weights increase. Finally, note that the RBM weights had a much larger
spread than the extracted couplings. In fact, there did not seem to be any pattern that
stood out among the weights. This relates to the more general issue of interpretability of
weights in neural networks. Given that there is so much less degeneracy in the couplings,
they could offer a more meaningful insight into the workings of neural networks than a
direct analysis of the network weights.

2.3.2 Interactions in traits from the UK Biobank
2.3.2.a The RBMs trained to criticality and identified two phases

Training was divided in three eras of which the hyperparameters are reported in Table 2.6.
The log-likelihood and free energy are shown in Figure 2.16. The log-likelihood initially
increased, but then slightly decayed while the free energy stabilised. Figure 2.17 shows
the distribution of the magnetisation of the training data, i.e. the mean value across
traits. Comparing this with the magnetisation of 106 samples from the RBM, I noticed
that I was able to reproduce these peaks, but in different ratios. Figure 2.18 shows why
this was the case: the Gibbs sampling never thermalised, and the generated samples
alternated between a phase with high magnetisation, and one with low magnetisation.
Moreover, the autocorrelation of this time series did not decay to zero. It was therefore
not possible to draw i.i.d. samples from the machine to compare its moments with those
in the training data. This is indicative of a system that is at or near a critical point of a
first order phase transition and in that context is called critical slowing down. A further
sign of criticality was found in the distribution of generated states. I ordered all states
by their probability under the RBM’s model, and plotted their rank in this ordered list
against the assigned probability. Figure 2.19 shows that the states followed a power-law
distribution. The system did not have the pure Zipf exponent of 1, and especially in the
tail of low probabilities the power law behaviour disappeared, but for the first 105 states
the power law seemed to have a stable exponent of around 1.9.

Figure 2.20 shows the distribution of sample magnetisation during training, and it can
be seen that the RBM learned the structure and position of these two peaks early on in

Total Era 1 Era 2 Era 3
Epochs Batch size Epochs LR kCD Epochs LR kCD Epochs LR kCD

30000 5000 15000 0.01 10 6400 0.005 15 8600 0.001 20

Table 2.5: Training was separated into three eras.
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Figure 2.16: Training metrics for the UK Biobank machine. Note that the log-likelihood
stopped growing very quickly, but the free energy stabilised only in the last era. (Figures
provided by Ava Khamseh)

Figure 2.17: The histogram of magnetisations for the real UK Biobank data showed
hints of multimodality.

Figure 2.18: Two Gibbs sampling runs on a given trained RBM show that the consecutive
samples were not independent, as confirmed by the autocorrelation on the right.

training, after around 100 epochs, or at 1% of training. To investigate these two phases
further, I calculated the correlation between each trait and the full magnetisation across
106 Gibbs samples. Figure 2.21 shows that the two phases separated the samples into
individuals with a high fat percentage throughout their body, low metabolic rate, that are
female, and another group that are heavier, with less fat, a high metabolic rate, that tend
to be male. Figure 2.22 shows that the traits that correlated strongly with magnetisation
indeed divided the simulated cohort into the two peaks of the distribution, and that basal
metabolic rate did so most cleanly. Indeed, when fixing the basal metabolic rate to 1
and Gibbs sampling from the conditional RBM distribution, the autocorrelation function
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Figure 2.19: The Gibbs samples obeyed power law statistics with an exponent of around
2.0 (mean across 20 machines, only one shown) when ranking states by their probability
under the RBM’s model.

Figure 2.20: A heatmap of the histogram density during training. Note the logarithmic
x-axis. The double peak appeared early in training, after around 100 epochs.

decayed to zero within 200 samples.

In spite of the usual training metrics not being effective, the encoded couplings could still
be meaningful. The linear terms, or 1-point interactions, are shown in Figure 2.23. It can
be seen that most were positive, but more importantly, that they were mostly consistent
across 20 identically trained machines. The 2-point couplings with basal metabolic rate
(BMR) are shown in Figure 2.24. A similar pattern was observed in other couplings:
many couplings were spread around zero, but some showed similar nonzero couplings
across the 20 machines. Training on a data set where all traits were randomly shuffled
to destroy all correlations gave couplings of O(10−3), which could serve as a background
against which many of the couplings are significantly nonzero. The strongest interactions
all seemed to coincide with biological intuition. For instance, high BMR coupled to, and
is epidemiologically associated with, lower fat percentages and higher lean mass. Still,
there were some surprising negatives: BMR did not couple to sex or grip strength. Taking
the mean across the 20 machines, the full two-point coupling matrix is shown in Figure
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Figure 2.21: The correlation across 106 Gibbs samples between magnetisation and each
of the traits. The traits that were negatively correlated with magnetisation were all
female-associated, while high correlation coincided with male-associated traits.

Figure 2.22: Magnetisation histograms of a simulated cohort, separated by different
traits. While the modes seemed to correspond to sex-associated traits, BMR separated
the two peaks most cleanly.
Left: Male (blue) and Female (orange), note the longer tails in each distribution.
Middle: High BMR (blue) and low BMR (orange)
Right: High whole body FF-mass (blue) and low whole body FF-mass (orange).

2.25. The RBMs captured many obvious relationships: the mutually exclusive age and
sex traits coupled strongly, and negatively. The control-traits (skin colour, number of
vehicles, and tea-intake) did not couple to any of the other traits. The different traits
related to blood-counts formed a set that mostly couple among themselves, as did the
fat- and mass-associated traits.

Finally, the 3-point interactions between the traits female, BMR, and any other trait
are shown in Figure 2.26. There were a few traits that showed a clear signal across
the 20 machines, mostly relating to fat-free mass, reflecting a relationship between
sex, metabolic rate and muscle-mass that is more complex than the sum of pairwise
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interactions.

Figure 2.23: Linear term for each trait. Error bars denote standard deviation across the
20 machines.

Figure 2.24: Couplings with BMR for each trait. Error bars denote standard deviation
across the 20 machines.
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Figure 2.25: Two-point coupling matrix across all 67 traits, mean across 20 machines.

Figure 2.26: Three point couplings with BMR and Female.
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2.3.2.b 2-point interactions found a link between Crohn’s/IBD and kidney
stones

In many situations, the strength and sign of the 2-point couplings can be hypothesised to
agree with the strength and sign of the pairwise correlation. However, since correlations
are different from the couplings in various respects, the pairs of traits that do not
follow this trend are of particular interest. Under the assumption that there is a linear
relationship between coupling and correlation, the outlier points—those with a higher or
lower value of coupling than expected—should reveal novel dependencies in the data not
accessible by pairwise correlation. To find these, I fitted a linear model for each trait to
predict the couplings from the correlations and defined outliers by their Cook’s distance.
The Cook’s distance combines the idea of having a large residual and a high influence.
It is defined as

Cj =
∑n

i=0

(
ŷ (j)

i − ŷi

)2

ps2 (2.31)

Where ŷi is the prediction for data point i of the full linear model, and ŷ (j)
i is the pre-

diction for that point if point j had been removed prior to fitting. The total number of
observations is n, p is the number of parameters in the linear model (p = 2 in this case)
and s2 is the mean squared error of the original fit. The outliers can then be defined as
having a Cook’s distance larger than some threshold. An oft-mentioned rule of thumb
is that points should be considered influential if Cj > 4/n.

The data is binary, so an appropriate measure of correlation has to be chosen. I con-
sidered the following: Pearson correlation, Spearman correlation, Covariance, Tetra-
choric correlation, Matthew’s correlation, Sokal-Sneath distance, Sokal-Michener dis-
tance, Hamming distance, and Jaccard distance.

I set the Cj threshold at 4/67 = 0.06, and the correlation vs. coupling plot for Calculus
of kidney and ureter is shown in Figure 2.27. While different measures of correlation led
to different plots and fits, in all but one case, and across thresholds from [0.03, 1.2], the
same two nontrivial outliers were identified. Urolithiasis was always an outlier, which
makes sense considering the fact that it is a superset of Calculus of kidney and ureter.
However, the coupling between Calculus of kidney and ureter and Crohn’s disease and
IBD was not reflected in most correlation measures.

2.3.2.c 2-point couplings removed sex-bias and reveal cancer comorbidities

Figure 2.28 shows outliers in the Pearson correlation vs. 2-point coupling plots for four
traits. Some outliers were not very informative: It is no surprise that Male was positively
associated to prostate cancer, and negatively associated to breast cancer. However, note
that it was much clearer from the couplings than from the correlations that males are
more susceptible to diabetes mellitus. Prostate cancer was negatively correlated with skin
cancer (perhaps because of an age- or survival-related confounder), but was its strongest
positive non-age-related interactor. It has indeed been observed that melanoma is linked
to prostate cancer [187]. Similarly, BMR and breast cancer were negatively correlated
(probably because men tend to have higher BMR but lower incidence of breast cancer),
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Figure 2.27: Outlier plots based on Cook’s distance for ’Calculus of kidney and ureter’
with different distance measures. Some traits—such as Calculus of kidney and ureter,
Crohn’s disease, and IBD—are consistent outliers across various distance measures,
which means that their strong coupling was not reflected by a correlation.

but coupled positively. It has indeed been observed that BMR is positively associated
with risk of breast cancer [136].
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Figure 2.28: The correlation vs. coupling plots for four different traits shows how outliers
affect the regression line. The red line is the fit on all data, the blue line is the fit once
the outliers (red points) have been removed. The Cj threshold was set at 4/67 = 0.06.

2.3.2.d Conclusion

To conclude, I found significant interactions among the 67 traits that showed biological
plausibility. To reproduce the training data, the RBMs had to encode a model with
critical dynamics in the visible layer, hindering the generation of i.i.d. samples. These
critical dynamics were necessary because the training data comprised two modes, most
likely corresponding to the two sexes (although BMR seems to separate the two phases
better). I found instances of pairs of traits that were negatively correlated, but coupled
positively and are indeed positively associated in the literature. This seems to imply that
the learnt interactions were accurately controlling for confounding variables in the data
set.

2.3.3 Interactions in developmental astrocytes
This section describes the interactions encoded by RBMs trained on gene expression
data from late developmental astrocytes. As shown in the previous sections, the log-
likelihood is not necessarily a good training metric, but when training on gene expression
data, there is no ground truth to compare with. As an alternative measure of accuracy
and robustness, I considered different sources of variability in the couplings:

• Machines: Machines that only differ in their weight initialisation and the stochas-
ticity of gradient descent should learn the same couplings, since a Boltzmann
distribution is completely determined by the couplings.

• Cells: Machines that are trained on different, but biologically equivalent, subsets
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Figure 2.29: A comparison of gene-gene correlations in the original and shuffled data
sets shows that the shuffling correctly destroyed all correlations.

of the cells should learn the same couplings if the couplings are representative of
true biological mechanism.

• Genes: Machines that are trained on different subsets of genes should learn the
same couplings between the genes in the intersection.

To be able to address these sources of variability, I trained 20 identical machines on each
of eight different data sets:

1. CL8: The full data set of all 77,524 10X astrocytes (cluster 8 of the k=20-means
clustering), with the 37 highly expressed, astrogliogenesis-associated genes.

2. DS1: A random selection of half of these cells (38,763 cells in total).

3. DS2: The other half.

4. Shuffled: The full data set, but with each gene’s expression shuffled across cells
to destroy all gene-gene correlations (see Figure 2.29).

5. nG5: All cells, but only the first 5 genes.

6. nG15: All cells, but only the first 15 genes.

7. nG25: All cells, but only the first 25 genes.

8. 3pt: This data set is only used in Appendix 2.B. It contains all cells, the 37 genes,
and 5 additional simulated variables. To generate values for these 5 additional
variables, I sampled from an Ising model with three-point couplings (as was done
in Section 2.3.1). The first 3 of these 5 simulated genes couple with a three
point coupling, while the last two do not couple to anything. This should reveal a
machine’s ability to recognise and estimate three-point couplings.

2.3.3.a Training scheme and learning accuracy

I trained 20 machines on each of the data sets. Each machine had nvis = nhid,
and was trained with contrastive divergence according to the scheme in Table 2.6.
The hyperparameters were chosen after a gridsearch on the CL8 data set with kCD ∈
{1, 5, 10}, nhid ∈ {30, 37, 60}, batch size ∈ {5, 20, 50, 100, 200, 500}, and learning rate
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Figure 2.30: The log-likelihood and free energy of RBMs trained on the various gene
expression data sets. As before, the free energy stabilised at the end of training, but the
log-likelihood decayed throughout.

∈ {0.05, 0.01, 0.001}, using the first two moments of the training data as the evaluation
criterion.

Total Era 1 Era 2 Era 3
Epochs Batch size Epochs LR kCD Epochs LR kCD Epochs LR kCD

100k 200 40k 0.01 5 40k 0.005 5 20k 0.001 10

Table 2.6: Training scheme for the machines trained on the gene expression data sets.

For each of the 20 machines, the log-likelihood and the free energy during training are
shown in Figure 2.30. Similar to the machines trained on simulated Ising data with
triplet interactions (Section 2.3.1), the free energy stabilised as training progressed, but
the log-likelihood decayed. Again, this either means the machines did not correctly train,
or that the log-likelihood was not a useful training metric in this case. To evaluate how
well these machine captured the training distribution, Figure 2.31 shows a comparison
between the moments of the training data and the moments of 100k samples from the
RBM (keeping only every 20th sample to eliminate the autocorrelation). Most machines
were able to reproduce up to six moments of the training data.

Finally, while the stable log-likelihood and free energy suggest that the training procedure
reached a stable point, the couplings should also reach a stable value. Figure 2.33
shows that both the 2- and 3-point couplings reached stable values after an initial
period of large changes. Figure 2.34 shows the distribution of these changes across
all couplings during training, which confirms that the changes were strongest at the
beginning, and then stabilised. Note that this was most apparent for the true data
set (CL8), and less apparent for the shuffled data set. Figure 2.35 shows the mean
of the absolute value of the couplings, order by order, and how these changed during
training. The first thing to notice is that throughout training, the shuffled data had
weaker interactions than the original data set. Furthermore, the same relay-race pattern
that was seen in the Ising interactions (cf. Figure 2.13) was present here. In the original
data set the linear terms reached a maximum after around 10k epochs, while the 2-
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Figure 2.31: First six moments of the training data and trained machines from the data
sets with the original, split, and shuffled data. The shaded region and the error bars
cover the moments ± one standard deviation across 1000 bootstrap resamples of the
training data and 1000 samples from the RBM, respectively.
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Figure 2.32: First six moments of the training data and machines from the data sets
with a varying number of genes.

and 3-point interactions were still growing. Then, the linear terms started decreasing in
absolute value, while the 2-point interactions reached a maximum at around 20k epochs.
After this, the 2-point interactions started decreasing, while the 3-point interactions
kept growing until they stabilised at their maximum value. This relay-race between
interactions at different orders was completely absent when training on shuffled data.
There, the orders did start growing at different moments, but none decreased to make
room for others. This indicated that there was structure in the CL8 data set that the
RBMs captured with increasingly complex models. The fact that the 3-point interactions
did not decrease anymore was also an indication that it might be the highest order
of interaction that is commonly present in this data set. This model of increasingly
sophisticated understanding of the structure in the data might explain why this pattern
was absent in the shuffled data, where there was no such structure to learn. It was further
corroborated by the pattern in Figure 2.36, which shows that as training progressed, the
machines reproduced higher moments of the training data.
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Figure 2.33: Values of individual interactions during training. Only shown for interactions
that at the end of training had an absolute value above 0.05.

Figure 2.34: Changes in 2-point interactions during training.

Figure 2.35: The different orders of interactions grew at different rates. Note that the
linear term is divided by 100. In the original data set (CL8), the lower orders grew first,
but got replaced by higher-order interactions later. In the shuffled data, there was no
such relay-race present.
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Figure 2.36: As training progressed, the machines learned increasingly higher-order struc-
ture of the training data. Shaded regions correspond to moments of the training data,
lines to the mean across 20 machines. Error bars throughout denote ± one standard
deviation. RBM moments were estimated on 1k Gibbs samples of the visible layer, ther-
malising the chain between each sample.

2.3.3.b Variability across machines

I first considered variability in couplings across identically trained machines. The 20
machines were trained with identical hyperparameters (see Table 2.6), on identical
data. The only sources of variability were the initial weight configuration (sampled
from N (µ = 0, σ2 = 0.01)) and the stochasticity in batch gradient descent. Since the
machines were trained on the same training distribution, and a Boltzmann distribution
is uniquely determined by its couplings, the machines were expected to encode identical
couplings. Note that the distribution is not uniquely determined by the weights of the
RBM, as previously illustrated in Figure 2.10. Figure 2.37 explicitly shows the distribu-
tion of coupling across the 20 machines, once shown for all interactions with the weak
interactor Creb1, and once with the strong interactor Atf3. While the variation across
machines was significant, there were some couplings with a strong signal. In particular,
the interactions between Atf3 and the genes Sned1, Jun, Ddit3, Gas7 and Hsbp1 showed
a strong positive signal. The interactions between Atf3, Jun and Ddit3 were directly
confirmed by the Pathway Commons database [219] as protein-protein interactions, and
the String database includes at least low-confidence associations for each of the remain-
ing interactions through homologues in other organisms. Still, the figures show that a
single machine cannot indicate a significant interaction, as some couplings varied wildly,
attaining large absolute values in some machines but averaging to around zero (e.g. Atf3
and Aqp4). Therefore, I only considered the mean coupling across the trained machines
as informative.
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Figure 2.37: Two rows of the coupling matrix as violin plots across 20 machines. One
row corresponding to a weakly coupling gene (Creb1), and one to a strongly coupling
gene (Atf3).

2.3.3.c Variability across cells and genes

If the couplings are to be interpreted as reflecting true and direct dependencies between
the genes, then they should be robust to a changing number of cells and genes in
the training data. Figures 2.31 and 2.32 already showed that the RBMs were able
to reproduce up to six moments of the training data, but here the robustness of the
couplings themselves with respect to changes in the training set are investigated. Figure
2.38 shows a comparison of the coupling matrices of machines trained on different data
sets. In line with the conclusion from the previous section, only mean values across
the 20 machines are shown. Visually, the coupling matrices appear stable across the
two disjoint data sets DS1 and DS2, and the data sets that only included a subset of
the genes. In Table 2.7 this similarity is quantified by the normalised Frobenius norm
of the difference, defined for two matrices M and N as ||M−N||

|| 1
2 (M+N)|| , where ||M|| is the

usual Frobenius (or Euclidean) norm of a matrix. The numbers in Table 2.7 confirmed
the similarities in Figure 2.38. Most dissimilar were the coupling matrices of the real
CL8 data and the shuffled data. Next in terms of dissimilarity were DS1 and DS2. The
interactions based on subsets of genes were all more similar to each other than DS1 and
DS2, showing that the couplings are robust to training on these subsets.

Because the interactions seemed robust to training on subsets of genes, I also trained 20
RBMs with identical hyperparameters on a superset of genes—the union of the original
37 and the 100 most highly variable genes that are expressed in at least 2k cells. This
created a new data set with 136 genes in total. This significantly changed the coupling
matrix, and yielded a much worse Frobenius difference with the original data set, as
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Figure 2.38: Mean couplings across 20 machines, for each of 6 data sets. The top row
corresponds to machines trained on different cells, the bottom row to machines trained
on different genes.

shown in the bottom row of Table 2.7. The coupling matrices in Figure 2.39 show that
while some patterns persist, the magnitude of all couplings decreases, and most get lost
in the background noise. I conclude that while the couplings were robust with respect
to the subsets of genes, they are not robust to this larger superset.

Matrices Frobenius difference
C37 − Shuffled 2.0879
DS1 − DS2 0.7426
C37 − DS1 0.5021
C37 − DS2 0.5332
C37 − 1

2(DS1 + DS2) 0.3320

C37 − C5 0.5677
C37 − C15 0.6045
C37 − C25 0.5929
C37 − C136 1.2993

Table 2.7: Normalised Frobenius difference between matrices. The matrix Ci is the mean
coupling matrix when training on i genes. Each difference is restricted to the intersection
of selected genes.

This dependence on the specific genes selected means that there was no way to estimate
the significance and robustness of any particular interaction, unless the RBMs are trained
jointly on a much larger set of genes. It is indicative of a strong omitted variable bias.
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Figure 2.39: Original coupling matrix and the same couplings when training on a superset
of 136 genes. Most structure is lost to background noise.

2.3.3.d Conclusion

I used RBMs to estimate genetic interactions at 1st, 2nd, and 3rd order from single-cell
expression data. The log-likelihood was not a useful training method as it decayed even
when the RBMs were getting better at reproducing the data, so other metrics had to
be used to evaluate performance. The trained machines reproduced up to six moments
of the data, and the interactions were robust to retraining on subsets of genes and
cells. However, the interactions were not robust to retraining on a superset of genes.
Because of this, the approach no longer seemed fruitful and I did not further analyse
the 3-point interactions in this data, but in Appendix 2.B I show that when artificial
3-point interactions are added into the data set, the RBMs were able to reproduce their
structure.

2.3.4 Parallel tempering does not prevent LL decay
On all data sets from this Chapter, except for the pairwise-only Ising models, the log-
likelihood decayed during training. Two possible explanations for this are inaccurate
estimation of the partition function, or inaccurate estimation of the gradients. The
latter would also lead to increasingly bad estimates for the moments and interactions,
but this was not observed, so is already deemed less likely. To eliminate the possibility
that the gradients are not estimated accurately, I investigated the effect of improving
the gradients with a method known as parallel tempering. To calculate the gradients,
the CD algorithm approximates the expectation value over the model distribution by the
mean across Gibbs samples, starting the sampling chain at one of the training examples.
This is not an unbiased exploration of the model distribution, so could be the source of
the errors in the gradient estimation. I retrained machines on the pairwise Ising models
and the gene expression data, using parallel tempering (PT) to estimate the gradients,
to see if it improved training convergence.

I created a new data set of 25k Ising states at T = 1.8, on an 8× 8 toroidal lattice with
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Figure 2.40: The log-likelihood during training, with error bars corresponding to standard
deviations across 10 machines. Both figures show a comparison between contrastive
divergence (CD) training, and PTK , i.e. parallel tempering with K parallel chains. The
top figure shows the log-likelihoods of machines with different training schemes trained
on Ising data, and the bottom figure shows these training metrics from machines trained
on astrocytes across a range of training parameters, using CD, PT1, or PT5 training.

nearest-neighbour coupling only. I then trained ten RBMs using the CD algorithm, and
a collection of RBMs using parallel tempering with K chains that linearly interpolate
between β = 0 and β = 1, for K = 1, 2, 3, 4, 10, training ten machines at each K . Since
I was only interested in the rate of convergence, the machines were trained for just 450
epochs, and with a learning rate of 0.001 so that the weights do not change too much
between updates. To compensate for the small learning rate, a small batch size of 40
was chosen. Comparisons of the log-likelihood are shown in Figure 2.40.

For the Ising model at T = 1.8, PT improved the training. PT1, i.e. PCD, performed
slightly better than CD, but was less stable. Extending this to K = 2 parallel tempering
did not improve the log-likelihood by much, as PT2 only adds an infinite temperature
chain, i.e. uniform noise, to PCD. Starting from PT3, however, the log-likelihood became
more stable, and reached a much higher value than in the CD case. At T = 2.4, (not
shown) the effect of adding PT chains was not very obvious, but PT1 already performed
better than CD.

To see if parallel tempering can also improve the log-likelihood of the machines trained
on gene expression data, I trained machines with learning rates from {0.1, 0.01, 0.001},
hidden layer size from {25, 50, 75, 100}, using PT1 and PT5, with a batch size of 5.
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The bottom of Figure 2.40 shows that across these training parameters, none of the log-
likelihoods stabilised (larger batch sizes also did not improve the stability). Increasing
the accuracy of the gradients therefore did not seem to stabilise the log-likelihood, which
means that it is most likely caused by an error in the estimation of the partition function,
not of the gradients.

2.4 Discussion
Opaque learning systems may get us
to Babylon, but not to Athens.

Judea Pearl [40]

In this chapter, I estimated maximum entropy interactions in various data sets by training
restricted Boltzmann machines. In the simplest setting—a pairwise Ising model on
a toroidal lattice—this was already done in [59], and I was able to reproduce their
results: the machines learned the value and the structure of the pairwise interactions
as the log-likelihood increased. I then added third-order interactions, and while the log-
likelihood decayed during training and any single machine often failed to learn particular
3-point interactions, the mean across 20 trained machines accurately reproduced both
the triplet structure and value of the interactions. Tracking the mean value of each
of the interaction orders allowed some insight into how the RBMs learn: linear terms
grew first, but they could not capture correlation structure and early on in training were
partially replaced by pairwise interactions, which in turn got partially replaced by 3-point
interactions to capture the higher dependencies in the training data.

Similarly, when training on traits from the UK Biobank, I recovered biologically plausible
couplings, even with a decaying log-likelihood. To recover the two modes present in the
data, the RBMs had to encode critical dynamics, which hindered moment estimation
because samples were not i.i.d. . It would be interesting to see if this is a general
phenomenon, so training RBMs on a gene expression data set that contains e.g. multiple
cell types could be an interesting future direction. The encoded distribution showed
hints of power-law behaviour, and in [170] the authors argue that power-law scaling
is a general property of biological systems, and a strong indication of criticality. The
authors of [233] have shown, however, that such power-law scaling does not mean that
the underlying dynamics are critical, but that Zipf-like behaviour arises very naturally in
systems with unobserved variables. Furthermore, a Zipfian power-law is associated to
critical dynamics because it is is indicative of a diverging specific heat. In [251], the
authors show that the specific heat associated to the visible layer of a trained RBM is
not necessarily related to critical dynamics underlying the training data. My results seem
to corroborate [233, 251], as the 67 traits most likely share many unobserved common
causes, and there is no reason to assume that the 67 traits form a meaningful dynamical
system. It has also been observed that very sparse binary data (where 1s are rare) can
be accurately modelled by a critical Ising model [178].

I then trained 20 machines on gene expression data from embryonic mouse astrocytes. As
before, I found that the log-likelihood was unstable, but machines accurately reproduced
up to six moments of the data, and the encoded couplings had biological plausibility.
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There were three main problems with the estimated interactions. First, the fact that the
log-likelihood decayed made evaluating the trained RBMs and measuring out-of-sample
generalisation or overfitting difficult. I tried to stabilise the log-likelihood by changing
to a training scheme that used parallel tempering to estimate the gradients, but while
this worked for pairwise Ising models, it did not stabilise the log-likelihood when training
on gene expression data. This is an indication that the log-likelihood decay was not
the result of inaccurate gradients, but rather a systematic error in the estimation of the
partition function. The instability in the log-likelihood was present for many settings of
the training parameters, but a more systematic grid search across all parameters, or a full
calculation of the log-likelihood could give more insight into this in the future. However,
while inconvenient, this estimation error does not directly affect the training procedure,
and both these options are computationally expensive, so it was not considered crucial
to the current research. As an alternative training metric, I estimated the moments of
the sampling distribution from the RBMs, but this only showed that the RBMs were able
to accurately reproduce all single-variable marginals. It would therefore be of interest to
extend this analysis to cross-moments, i.e. the off-diagonal elements of the co-moments,
to see if the joint distributions could also be reproduced.

The second problem with the interaction estimates from the RBMs is that they do not
come with a level of confidence or uncertainty. There are various possibilities to assign
significance to the interactions, like training multiple machines and fitting a distribution
to each interaction estimate. However, there is no clear null hypothesis. I have tried to
construct null hypotheses by training machines on different kinds of shuffled data, but
none of these could be motivated from first principles. Furthermore, QQ plots of the
resulting p-values led to almost all interactions being significant, a reflection both of a
faulty null and the fact that the interactions are not independent estimates. Because
none of these tests could be justified as yielding meaningful levels of confidence, I have
decided not to include them in this thesis.

The third major problem with these estimates, most visible in the estimates of genetic
interactions from gene expression data, is that they are not robust with respect to
changing the number of variables in the training data. I found the mean across the 20
machines to be reasonably robust with respect to subsets of cells and subsets of genes,
but upon including an additional 100 highly variable genes in the analysis, the estimates
drastically changed. This revealed a strong omitted variable bias—as I included more
genes, the machines restructured the network of dependencies, making it impossible to
decide which interactions to assign biological meaning to.

These last two flaws are related, since perhaps a confidence level could determine which
estimates are most robust. One way to generate statistically sound confidence intervals
is by bootstrap resampling the data, and estimating the interactions in each bootstrap
resample. However, this would mean training an RBM separately on each of the thou-
sands of resamples, and is thus computationally intractable. The omitted-variable bias
could be mitigated by training on many more genes, but this is also computationally
expensive, and practically difficult without a good metric to evaluate training. It is for
this reason that another approach is required, which is the subject of the rest of this
thesis.

One area in which the trained RBMs could still serve a purpose, however, is in data
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generation. Once trained, the RBMs offer a computationally cheap way to generate
samples from the encoded distribution. In particular, by fixing some of the visible nodes to
be in a particular state, the RBM can generate samples from all conditional distributions
in a process known as inpainting. It is not a priori obvious that samples generated in
this way accurately reproduce the conditional distribution, but in Section 2.D I present
a proof based on the do-calculus that under the Gibbs sampling procedure used in this
chapter, the do-operator and the see-operator are the same, and fixing nodes indeed
makes Gibbs samples reproduce the conditional distribution.

2.A Spin flips in the 3-point Ising model
Consider the system with only a 3pt coupling in the {0, 1} basis. To be able to use
Magneto to simulate this system, this interaction should be transformed into the
{−1, 1} basis. Note the following:

H =
∑

<ijk>

J (3)vivjvk

∣∣∣∣
{0,1}

(2.32)

=
∑
i ,j,k

Jijk vivjvk

∣∣∣∣
{0,1}

(2.33)

Where Jijk = 0 if (i , j , k) are not a straight connected triplet, and Jijk = J (3)/6 if they
are.

=
∑
i ,j,k

Jijk

(vi + 1
2

)(vj + 1
2

)(vk + 1
2

)∣∣∣∣
{−1,1}

(2.34)

=
∑
i ,j,k

Jijk

8

(
vivjvk + vivj + vivk + vjvk + vi + vj + vk

)∣∣∣∣
{−1,1}

+ constant (2.35)

Starting from Equation (2.35), the effect of a spin flip at site n is then written, without
contracting anything, as

∆En = Hvn→−vn − H (2.36)

=
∑

i ,j,k ̸=n

Jijk

8

(
vivjvk + vivj + vivk + vjvk + vi + vj + vk

)
(2.37)

+
∑
j,k

Jnjk

8

(
− vnvjvk − vnvj − vnvk + vjvk − vn + vj + vk

)
(2.38)

+
∑
i ,k

Jink

8

(
− vivnvk − vivn + vivk − vnvk + vi − vn + vk

)
(2.39)

+
∑
i ,j

Jijn

8

(
− vivjvn + vivj − vivn − vjvn + vi + vj − vn

)
(2.40)

−
∑
i ,j,k

Jijk

8

(
vivjvk + vivj + vivk + vjvk + vi + vj + vk

)
(2.41)
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• Four nearest neighbour couplings with weight 2 · 3 · J (3)/8

• Four next-to nearest neighbour couplings with weight 3 · J (3)/8

• One linear term with weight 6 · 3 · J (3)/8

Which is how I have implemented the metropolis sampling.

2.B The machines learn 3-point interactions added
to the astrocyte data

The Ising experiments showed that the RBMs can learn the structure of 3-point couplings.
I verified that this ability persists in the context of real biological data by adding 5 artificial
variables to the 37 genes. Of these five variables, three coupled with only a pure triplet
interaction as in Section 2.3.1, and two did not couple at all. Figure 2.41 shows that
the RBMs correctly identified the 3-point interaction. As in Section 2.3.1, the RBMs
included a small spurious 2-point coupling between two of the genes that in reality
couple with a three-point coupling, but the signal was much weaker than the signal for
the 3-point coupling. Figure 2.42 shows the extracted couplings for each machine, a
comparison of the three-point couplings that should be found with the ones that should
not, and the pairwise interactions between the relevant genes.

2.C The KL-divergence does not add information be-
yond the log-likelihood

Before training machines myself, I analysed the machines that are presented in the
paper [59], trained on 8 × 8 lattices, as they were on Eddie on May 8th 2019. The
authors already illustrated that the training was stable and accurate, but I quantified
this accuracy in terms of the KL-divergence between the empirical data distribution
pdata and the distribution that the trained RBMs encoded in their visible layer pRBM.
The KL-divergence can be expressed as follows:

DKL(pdata || pRBM) =
∑

v
pdata(v) log

(
pdata(v)

)
− pdata(v) log

(
pRBM(v)

)
(2.47)

= −Sdata − LLRBM (2.48)

This shows that on a data set of a given entropy, the log-likelihood LLRBM of observing
the data in the RBMs visible layer is indeed a direct measure of how accurately the
data distribution is reproduced, but that to compare accuracy across entropies, i.e.
temperatures, one should subtract the data entropy. The sum over v sums over all
possible states of the visible layer, which is intractable for an 8 × 8 lattice, has to be
approximated. States for which pdata is large will contribute most to the sum and appear
most in the training data. I assumed that these states will appear sufficiently in the
training data for their probability to be reasonably well approximated by n(v)/N , where
n(v) is the number of occurrences of state v , and N = ∑

v n(v) is the total number of
states observed. Using this approximation, and the log-likelihood at the end of training,
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Figure 2.41: Top: The 2-point coupling matrix of the original data, and the data with
simulated three-point couplings. Bottom: Slices of the three-point coupling tensor
show that an artificially added 3-point interaction is accurately reproduced.

the KL-divergence can be calculated for any given machine. Reported in Figure 2.43
is the KL-divergence for the machines from the Ising paper. The shown log-likelihood
is the mean of the 100 last machines (1k epochs). Vertical error bars that show the
standard deviation of the log-likelihood across these 100 machines are shown, but are
too small to be visible.

In Figure 6 of [59], it can be seen that as the temperature increased, the estimated
first moment, the magnetisation, became less accurate, while the second moment, the
susceptibility, became more accurate. The temperature-KL-divergence curve in Figure
2.43 shows that overall, the machines trained best at a temperature of 1.9. This result
does come with the caveat that the data entropy was approximated, which could distort
the results. In particular, if at any point there are no states that appear twice, then
that distribution will have the theoretically maximal entropy, which is indeed achieved
for temperatures above 2.6. Because of this phenomenon,and the fact that the KL-
divergence does not add much insight into the training accuracy beyond what the log-
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Figure 2.42: The 3-point interactions that should be zero, were zero. The 3-point that
should be J (3)/(3T ) = −0.133 is −0.174±0.02, so the triplet slightly overcouples. The
2-point interactions were all smaller than the 3-point interaction amongst the interacting
triplet.

(a) (b) (c)

Figure 2.43: Properties of the training data and trained machines for different temper-
atures.

likelihood provided, I focused on the log-likelihood throughout this chapter.

2.D The see- and do-operator are the same in RBMs

Given a Bayesian network represented by a DAG G = (V , E ), the fundamental problem
in causal inference is to estimate quantities like pG (VA = va | do(VB = vb)) for an arbi-
trary partition of the vertices V = VA∪VB. The do-calculus provides rules and methods
for answering such questions [190]. Intervening on an RBM by fixing some of the visible
nodes to certain values is often done to sample from the conditional distribution—a pro-
cess known as inpainting [81]—but I found no proof that this do-operation is equivalent
to sampling from the conditional distribution. In fact, the standard formulation of an
RBM is not suitable for treatment by the do-calculus, as the network of dependencies
does not form a DAG. However, by exploiting the sequential nature of Gibbs-sampling,
I show the following:

Lemma 1 (Inpainting is conditional sampling). Consider a restricted Boltzmann machine
with visible nodes v and hidden nodes h, where |v | > 0 and |h| > 0. Let p(v) be the
marginal probability distribution over the visible nodes, and v = va ∪ vb an arbitrary
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partition of the visible nodes. Consider the nodes of the RBM as random variables that
evolve under alternating Gibbs sampling of the visible and the hidden layers. Define the
do-operator on a variable X as fixing that variable X = x before generating each Gibbs
sample. Then,

p(va | do(vb)) = p(va | see(vb)) = p(va | vb) (2.49)

That is, inpainting is sampling from the conditional distribution.

Proof. First note that the RBM has to be represented by a DAG. To do this, consider
the nodes as random variables that evolve under Gibbs sampling. The bipartite structure
of the network allows us to unroll the network in time:

v h =⇒ v 0 h0 v 1 h1 v 2 h2 ...

where v i and hi mark the i ’th Gibbs sample of the visible and hidden layer, respectively.
Given the partition v = va ∪ vb, the following should be verified:

p(v 1
a | do(v 0

b )) = p(v 1
a | v 0

b ) (2.50)

The second rule of the do-calculus states [190]:

Rule 2 (Action/observation exchange)

p(y | do(x), do(z), w) = p(y | do(x), z , w) if (Y ⊥⊥ Z | X , W )GXZ
(2.51)

Where GXZ is the graph G with all the arrows into X , and out of Z removed. If
X = W = ∅, then Rule 2 can be directly apply to Equation (2.50) by defining the
following two graphs:

G =

v 0
a

v 0
b

h0

v 1
a

v 1
b

G† = Gv0
b

=

v 0
a

v 0
b

h0

v 1
a

v 1
b

where v could be partitioned because at any given time point the visible nodes are
mutually independent conditional on the hidden layer. The value of v 1

b will be discarded
and set to v 0

b again, but that is irrelevant in the present discussion. Now (v 1
a ⊥⊥ v 0

b )G† ,
which by Rule 2 implies Equation (2.50), and completes the proof.

Example As a very simple example, consider the case where va = v1, vb = v2 and h1
all comprise just a single node. The full distribution is:

PG(v1, v2, h1) = 1
ZG

eh1w11v1+h1w12v2+b1v1+b2v2+c1hi (2.52)
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Denoting by (abc) the situation in which v1 = a, v2 = b, h1 = c , the conditional
distribution after observing v2 = 1 is:

P(v1 = 1|see(v2 = 1)) = PG(v1 = 1, v2 = 1)
PG(v2 = 1) (2.53)

= (110) + (111)
(111) + (110) + (011) + (010) (2.54)

= eb1+b2 + ew11+w12+b1+b2+c1

ew11+w12+b1+b2+c1 + eb1+b2 + ew12+b2+c1 + eb2
(2.55)

= eb1 + ew11+w12+b1+c1

ew11+w12+b1+c1 + eb1 + ew12+c1 + 1 (2.56)

Now consider the intervention do(v2 = 1). It just adds a bias w12 to the hidden layer.
Denoting by (ab) that v1 = a, h1 = b:

PG(v1 = 1|do(v2 = 1)) = PG†(v1 = 1) (2.57)

= 1
ZG†

(
(11) + (10)

)
(2.58)

Writing out this partition function:

ZG† = (11) + (10) + (01) + (00) (2.59)
= ew11+b1+c1+w12 + eb1 + ec1+w12 + 1 (2.60)

So that

P(v1 = 1|do(v2 = 1)) = ew11+b1+c1+w12 + eb1

ew11+b1+c1+w12 + eb1 + ec1+w12 + 1 (2.61)

which indeed coincides with Equation (2.56).
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2.E Full list of UK Biobank traits
0 f05 delirium 34 arm predicted mass (left)
1 n20-n23 urolithiasis 35 reticulocyte percentage
2 n20 calculus of kidney and ureter 36 high light scatter reticulocyte count
3 h60 otitis externa 37 arm fat-free mass (left)
4 g35 multiple sclerosis 38 hip circumference
5 d05 carcinoma in situ of breast 39 trunk predicted mass
6 j45 asthma 40 trunk fat-free mass
7 inflammatory bowel disease 41 arm predicted mass (right)
8 irritable bowel syndrome 42 basal metabolic rate
9 m86-m90 other osteopathies 43 mean corpusc. haemoglobin concentration
10 m05 seropositive rheumatoid arthritis 44 arm fat-free mass (right)
11 rheumatoid arthritis 45 trunk fat percentage
12 k50 crohns disease [regional enteritis] 46 eosinophill count
13 d04 carcinoma in situ of skin 47 body fat percentage
14 depression 48 high light scatter reticulocyte %
15 d80-d89 disorders involving the immune mech. 49 monocyte percentage
16 d86 sarcoidosis 50 hand grip strength (right)
17 k58 irritable bowel syndrome 51 whole body fat-free mass
18 e10-e14 diabetes mellitus 52 haematocrit percentage
19 c61 malignant neoplasm of prostate 53 whole body water mass
20 high cholesterol 54 leg fat mass (right)
21 white blood cell (leukocyte) count 55 leg predicted mass (left)
22 neutrophill count 56 leg fat-free mass (left)
23 standing height 57 leg fat percentage (right)
24 platelet crit 58 hand grip strength (left)
25 lymphocyte count 59 number of vehicles in household
26 monocyte count 60 skin colour
27 platelet count 61 tea intake
28 sitting height 62 Female
29 trunk fat mass 63 Male
30 reticulocyte count 64 Age: 40-50
31 weight 65 Age: 50-60
32 whole body fat mass 66 Age: 60-70
33 weight
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Model-free interactions: Theory and
simulations

The simulacrum is never what hides
the truth—it is truth that hides the
fact that there is none. The
simulacrum is true.

Baudrillard [23]

Hypotheses non fingo.

Isaac Newton [177]
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3.1 Introduction
Learning from data involves three mathematical objects that are often conflated, but
fundamentally different: the quantity one wants to learn about, the estimator used to
do so, and the generated estimate. For example, a quantity of interest could be the
interactions among a set of variables X and an outcome y. This can be modelled with
a linear model Xβ = y where the quantity of interest is identified with β. Estimating
β is usually done with a least-squared estimator as β̂ = (XT X)−1XT y, where the hat
reflects the fact that β̂ is an estimator for the quantity β. The estimate then depends
on what realisation y is used to calculate β̂.

In Chapter 2 of this thesis, the quantity of interest was the set of maximum-entropy
interactions among a collection of variables. The estimator I used was the training
procedure of a restricted Boltzmann machine, and the estimate was encoded in the final
state of the machine. It turned out that this estimator was not very stable: there were no
perfect training metrics, estimates differed upon retraining, were not robust to variable
selection, and including more variables made training intractable. In the second part of
my research, I used a different estimator to estimate the interactions. The estimator
I used was introduced in [24], and I will refer to it as a model-free interaction (MFI).
To justify its use, I will first highlight the problematic role of a model in an estimation
procedure.

3.1.1 Model bias
When a measure becomes a target, it
ceases to be a good measure.

Goodhart’s law

Often, the quantity of interest is a mathematically ambiguous object. For example, ‘the
interaction between gene A and gene B’ does not specify what is actually meant by
‘interaction’. To make this explicit, one could write down a model that describes the
system, and specify which parameter corresponds to the interaction. Consider the linear
model Xβ = y that describes how the scalar outcome y depends on the quantities
X through the parameters β. The estimate of β̂ depends on which quantities are
included in X, the design matrix. Let the ground truth be the simplest case of a
bilinear interaction with Gaussian additive noise: y = x1 + x2 + x1x2 + η, where η ∼
N (0, 0.1). I generated 1,000 samples from this model, sampling x1 and x2 from the
uniform distribution over the interval [−1, 1]. I then fitted five different models for y
to this data with increasingly high powers of x1 in the interaction term: y = Xβ =
β1x1 + β2x2 + β3xn

1 x2 for n = 1, ... , 5, yielding five different estimates for the interaction
parameter β3, shown in Figure 3.1. Only the model that exactly corresponds to the
ground truth yielded an interaction estimate within statistics of the ground truth. Since
the sampling distribution of x1 and x2 was an even function, models that introduced
an interaction with an even power of x1 have interaction estimates centred around 0—
they incorrectly conclude there is no interaction. Models with odd powers of x1 in the
interaction term increasingly overestimate the interaction. This is not a reflection of an
inherent bias of the OLS estimator for parameters of a linear model (OLS is an unbiased
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estimator for these parameters). Rather, it is a reflection of the fact that the model is
misspecified, which results in a model bias in the interaction estimates. The estimate is
still unbiased, but estimates something different from the quantity of interest.

There is another kind of model bias that results from a particular kind of misspecification,
namely omitting a variable in the model. This happens, for example, when it is incorrectly
assumed that a particular variable is irrelevant to the outcome, or if there is no data
available on the value of that particular variable. As an example, consider the case in
which the ground truth is described by y = x1 + x2 + x3 + x1x2− x1x2x3 + η. I generated
1,000 samples from this model, sampling x1, x2 and x3 from the uniform distribution
over the interval [0, 3]. I then fitted two models to the data:

y (1) = β1x1 + β2x2 + β3x3 + β12x1x2 + β123x1x2x3

y (2) = β1x1 + β2x2 + β12x1x2

The estimates for β12 are shown in Figure 3.2. Omitting x3 resulted in an interaction
estimate that disagreed with the ground truth not just in value, but even in sign.

Figure 3.1: Five different estimates of the interaction between x1 and x2. Only the model
that exactly corresponds to the ground truth (the bilinear interaction term x1x2) yielded
an interaction estimate within statistics of the ground truth. The estimates were based
on 1,000 samples from y that were generated by sampling x1 and x2 from the uniform
distribution on [−1, 1]. The estimation was repeated 100 times to get a range of values
for each estimate.

It is rare to know the ground-truth model, so almost any model-based estimate will suffer
from model bias. It is therefore desirable to be able to specify the quantity of interest
directly in terms of the data in a precise way, bypassing the need to introduce a model.
An example of such a model-free quantity is Pearson correlation. It is defined on two
random variables X and Y as ρXY = cov(X ,Y )

σX σY
, where σZ is the standard deviation of a

variable Z . There is an unbiased estimator on a sample of N observations (xi , yi) for
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Figure 3.2: Two different estimates of the interaction between x1 and x2. Omitting x3
from the model makes the interaction estimate incorrect in both value and sign. The
estimates were based on 1,000 samples from y that were generated by sampling xi from
the uniform distribution on [0, 3]. The estimation was repeated 100 times to get a range
of values for each estimate.

this:

ρ̂XY =
∑N

n=1(xi − x)(yi − y)√∑N
n=1(xi − x)2

√∑N
n=1(yi − y)2

(3.1)

where z denotes the sample mean of a variable z . This does not require assumptions
about the functional form of the relationship between X and Y , and is thus a model-free
estimator. A model-free estimate just is what it is: there is no ground truth to compare
it with. This is a desirable property of an estimator because it removes the need to justify
a model, but it comes at the cost of being harder to interpret as it does not correspond
to a model parameter with a certain fixed interpretation. In this chapter, I will study a
model-free definition of interactions that coincides with the Ising interactions explored
in Chapter 2.

3.1.2 Aim and outline of this chapter
This chapter aims to develop a deeper understanding and intuition for model-free in-
teractions, which will then be applied to gene expression data in Chapters 4 and 5.
Section 3.2.1 introduces a definition of MFIs based on how they were introduced in
[24]. Section 3.2.2 contains more details and some new results concerning the practical
estimation procedure. One of the most important advantages of MFIs over the RBM
estimates is that they can be assigned a confidence level as outlined in Section 3.2.3.
Chapter 3.3 contains a purely theoretical result that relates the MFIs to information
theory (Section 3.3.1), and the first calculations of MFIs on logic gates (Section
3.3.2) and on simulated data from various causal dynamics (Section 3.3.3).

Parts of this chapter have previously appeared in a preprint [125] and subsequent publi-
cation [126].
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3.2 Methods

3.2.1 Model-free definition of interaction
The elementary unit of information is
a difference which makes a
difference.

Gregory Bateson [20]

Let us take a step back: What do we mean when we say interaction? An interaction
among n variables describes how the joint state of the n variables influences a particular
outcome beyond the influence of the marginal states. In other words: an interaction
corresponds to a change in the effect of each of the variables on the outcome, determined
by the joint state of the other variables. This definition of interaction was made precise
in [24] (there, these are called the additive interactions), and an equivalent definition
follows here.

The isolated effect, or 1-point interaction, I (Y )
i of a variable Xi ∈ X on an observable Y

is defined as the partial derivative of Y along Xi :

I (Y )
i = ∂Y

∂Xi

∣∣∣∣
X=0

, X = X \ {Xi} (3.2)

where the effect of Xi on Y is isolated by conditioning on all other variables being zero.
This expression is well-defined as the restriction of a derivative is the derivative of the
restriction. A pair of variables Xi and Xj has a 2-point interaction I (Y )

ij when the value
of Xj changes the isolated effect of Xi on Y :

I (Y )
ij = ∂I (Y )

i
∂Xj

∣∣∣∣
X=0

= ∂2Y
∂Xj∂Xi

∣∣∣∣
X=0

, X = X \ {Xi , Xj} (3.3)

A third variable Xk can modulate this interaction through what is called a 3-point inter-
action I (Y )

ijk :

I (Y )
ijk = ∂I (Y )

ij

∂Xk

∣∣∣∣
X=0

= ∂3Y
∂Xk∂Xj∂Xi

∣∣∣∣
X=0

, X = X \ {Xi , Xj , Xk} (3.4)

This process of taking derivatives with respect to an increasing number of variables can
be repeated to define n-point interactions:

Definition 4 (n-point interaction with respect to outcome Y ). Let p be a probability
distribution over a set of random variables X = {Xi | 1 ≤ i ≤ N}, taking values in X .
Let Y be a function Y : X → R, differentiable over X , and let n be a natural number
1 ≤ n ≤ |X |. Then the n-point interaction among the variables {X1, ... , Xn} ⊆ X with
respect to the outcome Y is written as I (Y )

X1...Xn and given by

I (Y )
X1...Xn = ∂nY (X )

∂X1 ... ∂Xn

∣∣∣∣
X=0

(3.5)

where X = X \ {X1, ... Xn}.
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This definition of interaction makes explicit the fact that interactions are defined with
respect to a particular outcome. I follow [24] and define interactions with respect to the
most general outcome: the (log of the) joint distribution p(X ) over all variables X .

Definition 5 (Model-free n-point interaction). A model-free n-point interaction (MFI)
is an n-point interaction among binary random variables with respect to the logarithm
of their joint probability:

I1...n := I (log p(X))
X1...Xn = ∂n log p(X )

∂X1 ... ∂Xn

∣∣∣∣
X=0

(3.6)

where X = X \ {X1, ... Xn}.

In [24], the authors noted that when the variables Xi are restricted to binary values—
i.e. X = {0, 1}|X |—n-point interactions become model-free in the sense that they are
ratios of probabilities that do not involve the functional form of the joint probability
distribution. To see this, note that for any function f : B → R, where B is the set of
Boolean values {0, 1}, the Boolean derivative is just a difference:

∂

∂x f (x) = f (1)− f (0) (3.7)

such that the model-free 1-, 2-, and 3-point interactions can be written as:

Ii = ∂

∂Xi
log p(Xi | X ) (3.8)

= p (Xi = 1 | X = 0)
p (Xi = 0 | X = 0) (3.9)

Iij = ∂2

∂Xi∂Xj
log p(Xi , Xj | X ) (3.10)

= p (Xij = (1, 1) | X = 0)
p (Xij = (1, 0) | X = 0)

p (Xij = (0, 0) | X = 0)
p (Xij = (0, 1) | X = 0) (3.11)

Iijk = ∂3

∂Xi∂Xj∂Xk
log p(Xi , Xj , Xk | X ) (3.12)

= p (Xijk = (1, 1, 1) | X = 0)
p (Xijk = (1, 1, 0) | X = 0)

p (Xijk = (1, 0, 0) | X = 0)
p (Xijk = (1, 0, 1) | X = 0) (3.13)

× p (Xijk = (0, 1, 0) | X = 0)
p (Xijk = (0, 1, 1) | X = 0)

p (Xijk = (0, 0, 1) | X = 0)
p (Xijk = (0, 0, 0) | X = 0) (3.14)

where Xi ...k denotes the tuple (Xi , ... , Xk) and Bayes’ rule was used to replace joint with
conditional probabilities. This definition of interaction has the following properties:

• It is symmetric in the variables: IS = Iπ(S) for any set of variables S, and any
permutation π.

• Conditionally independent variables do not interact: Xi⊥⊥ Xj | X =⇒ Iij = 0.

• If X = ∅, the definition coincides with that of a generalised log-odds ratio, which
has already been considered as an abstract notion of interaction in e.g. [96] and
[19].
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• The interactions are model-free: no knowledge of the functional form of p(X ) is
required, and the probabilities can be directly estimated from i.i.d. samples.

• If the ground truth is a Boltzmann distribution, then these interactions coincide
exactly with the Ising, or maximum entropy, interactions from the previous Chapter
2.

A more thorough investigation of this definition and its relationship to information theory
can be found in Section 3.3.1. For now, I will focus on the more practical issue of its
estimation.

3.2.2 Estimation
Estimating the model-free interactions from Definition 5 on data involves estimating
probabilities p(X ) of certain joint states X occurring. The true probabilities are usually
unknown, but the interactions can be rewritten in terms of expectation values as follows.
Note that all interactions involve factors of the type

p(X = 1, Y = y | Z = 0)
p(X = 0, Y = y | Z = 0) = p(X = 1 | Y = y , Z = 0)

p(X = 0 | Y = y , Z = 0) (3.15)

= p(X = 1 | Y = y , Z = 0)
1− p(X = 1 | Y = y , Z = 0) (3.16)

which can be written as

= E[X | Y = y , Z = 0]
1− E[X | Y = y , Z = 0] (3.17)

since

E[X | Z = z ] =
∑

x∈{0,1}
p(X = x | Z = z) x = p(X = 1 | Z = z) (3.18)

The 2-point interaction, for instance, can thus be written as

Iij = log E (Xi |Xj = 1, X = 0)
E (Xi |Xj = 0, X = 0)

(1− E (Xi |Xj = 0, X = 0))
(1− E (Xi |Xj = 1, X = 0)) (3.19)

An expectation value is still a parameter of the theoretical population, not an empirical
sample statistic, but each expectation value in Equation (3.19) can be estimated from
a sample in an unbiased way with sample means. However, the stringent conditioning
in this estimator can make the number of samples that satisfy the conditioning very
small, which gives the estimates a large variance (revealed upon bootstrap resampling,
see Section 3.2.3). Note that if there is a subset of variables MBXi ⊆ X such that
∀Xk ∈ X \ (MBXi ∪ Xi) : Xi ⊥⊥ Xk | MBXi —in causal language: a set of variables
MBXi that d-separates Xi from the rest—then one only has to condition on MBXi in
Equation (3.19), reducing the variance of the estimator. Such a set MBXi is called a
Markov blanket1 of the node Xi . Since conditioning on fewer variables should reduce

1There has recently been some confusion around the notion of Markov blankets in biology, specifically
with respect to their use in the so-called free energy principle. Throughout this thesis, Markov blanket
refers to the notion of a Pearl blanket in the language of [41].

81



Chapter 3

the variance of the estimator by increasing the number of samples that can be used
for the estimation, one is generally interested in finding the smallest Markov blanket.
The smallest Markov blanket is called the Markov boundary. However, in the absence of
perfect knowledge of all conditional dependencies, the true Markov boundary is unknown,
so throughout this thesis I will write Markov blanket to refer to the smallest blanket I
could find. To further shrink the Markov blanket, note that the order of the indices in
Equation (3.19) and its nth-order generalisation are arbitrary, so an n-point interaction
has n equivalent forms—one using the expectation value of each of the n variables. Since
smaller Markov blankets generally lead to smaller variance, estimating the interaction
using the expectation value of the variable with the smallest Markov blanket will usually
lead to the most precise estimation. However, a smaller Markov blanket is not guaranteed
to lead to smaller variance, as the variance also depends on which states are actually
present in the empirical distribution. Therefore, throughout this thesis, I will estimate
each n-point interaction in n different ways, only reporting the most precise estimate—
unless otherwise stated.

Finding such Markov blankets is hard. In fact, since it requires testing each possible
conditional dependency between the variables, I claim (without proof) it is Rung 2 -hard,
referring to Pearl’s ladder of causality [190]. That is, finding the smallest Markov blanket
is at least as computationally complex as constructing a DAG of conditional dependencies
consistent with the joint probability distribution, if such a graph exists. Finding the true
Markov boundary among all variables is Rung 3 -hard, as it requires knowledge of all
confounders and causal relationships, but this is not necessary to estimate Equation
(3.19).

Markov blankets are more than a computational trick—in theory, only variables that are
in each other’s Markov blanket can share a nonzero interaction. To see this, first note
that the property of being in a variable’s Markov blanket is symmetric:

Lemma 2 (Symmetry of Markov blankets). Let X be a set of variables with joint
distribution p(X ). Let A ∈ X and B ∈ X such that A ̸= B. Denote the minimal Markov
blanket of X by MBX . Then A ∈ MBB ⇐⇒ B ∈ MBA, and we say that A and B are
Markov-connected.

I could not find a proof or reference for this basic fact, so I have included a proof in
section 3.A. This definition of Markov-connectedness allowed me to state and prove the
following (proof included in section 3.A):

Theorem 1 (Only Markov-connected variables interact). A model-free n-point inter-
action I1...n can be nonzero if and only if all variables S = {X1, ... , Xn} are mutually
Markov-connected.

Knowledge of the causal graph thus helps estimation in two ways: it shrinks the variance
of the estimator by relaxing the conditioning, and in addition identifies the interactions
that could be nonzero.

Under imperfect knowledge of the causal graph, a variable might be accidentally excluded
from the Markov blanket, which results in underconditioned probabilities. Appendix 3.A
contains a proof that the error resulting from this omission depends on the pointwise
mutual information (pmi) among the variables:
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Proposition 1 (Underconditioning bias). Let S be a set of random variables with prob-
ability distribution p(S). Let X , Y , and Z be three disjoint subsets of S. Then omitting
Y from the conditioning set results in a bias in the interaction estimate IX determined
by, and linear in, the pointwise mutual information that Y = 0 gives about states of X :

IX |YZ − IX |Z =
 |X |∏

i=1

∂

∂xi

 pmi(X = x , Y = 0 | Z = 0) (3.20)

Proposition 1 implies two positive corollaries for the practical estimation of the inter-
actions. First, since the estimation error involves the difference between pmis, there
are situations in which a variable has nonzero mutual information with the interacting
variables, but omitting it from the conditioning set introduces no bias. In addition,
Proposition 1 shows that excluding variables from the conditioning set for which it is
hard to show dependence in the first place does not introduce a large error.

3.2.3 Estimating uncertainty and assigning significance
One of the main problems with the RBM estimation was that there is no obvious and
computationally tractable way to assign a measure of uncertainty to the estimates.
Using the model-free estimation outlined in this chapter, there is a very natural way
to quantify the variance of the estimator with respect to the sampling distribution:
bootstrap resampling. An interaction is an estimate of a property of the true population
P, based on a sample S from that population. Drawing |S| samples from S with
replacement Nbs times generates Nbs new data sets S(i) that reflect the finite sampling
variability. Each S(i) is called a bootstrap resample, and estimating an interaction on each
of these resampled data sets yields Nbs bootstrap estimates for the interaction. Under
the assumptions that the original data set S is a large enough and unbiased sample from
the true population P, and that the samples in S are independent, the variance of the
estimate across the bootstrap resamples is asymptotically (in the number of resamples
Nbs) consistent with the sampling variance that results from finite sampling from P.

Practically, one chooses Nbs large enough so that the bootstrap statistics stabilise. The
most important property of the interaction estimate is whether it is significantly nonzero.
This is quantified by the size of the 1-sided confidence interval that does not include
zero. Using the so-called percentile bootstrap procedure, this is calculated as follows:
If the point estimate—i.e. the estimate on the original data set S—has sign s, then
the fraction F of bootstrap estimates with sign −s quantifies the certainty with which
that interaction is nonzero. On top of this, one might also be interested in the exact
value of the interaction, in which case the symmetric 95% confidence interval around
the median is more informative. Figure 3.3 shows both the F-value and the size of the
95% confidence interval as a function of the number of bootstrap resamples, for Nbs
up to 2k. It can be seen that the big fluctuations indeed happen for low Nbs , and that
Nbs = 1, 000 suffices to stabilise the uncertainty estimates. In fact, out of 2k randomly
chosen pairs, no interaction lost its significance at F ≤ 0.05 when increasing the number
of resamples from 1k to 2k. One interaction gained significance after this increase, but
the associated F-values were 0.0520 and 0.0495, respectively, so this does not represent
a large instability. I therefore set Nbs = 1, 000 throughout this thesis.
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Note that even when using a Markov blanket to relax the conditioning in Equation (3.19),
estimating the sample means might be impossible if there are no samples available that
satisfy the condition. In this case, the expectation value, and by extension the interaction,
are deemed inestimable. Throughout this thesis, interactions with an inestimable point
estimate are ignored, but it is important to emphasise that this does not mean these
interactions are zero, weak, or insignificant.

Even if an interaction is estimable on S, it might not be estimable on a particular
bootstrap resample S(i). In that case, the bootstrap distribution can look pathological,
and the uncertainty statistics it implies are no longer valid. Figure 3.4 shows four
examples of distributions of bootstrap estimates. It can be seen that the distributions
quickly become multimodal as u, the fraction of undefined bootstrap estimates, increases.
Therefore, throughout this thesis, I will only consider interactions that are perfectly
estimable, i.e. the interaction was estimable on all resampled data sets S(i) (which
corresponds to u = 0 in Figure 3.4). This is the most conservative approach to dealing
with this issue, and less conservative approaches that leave more interactions estimable
are outlined in Section 6.2.

These F-values are a measure of confidence that the interactions are robustly (with
respect to sample variance) nonzero, but they are emphatically not p-values. The null
distribution under which to evaluate the point estimate is unknown as the bootstrap
distribution only describes the variability around the point estimate, not around the
value zero. To construct a null distribution, one could subtract the point estimate from
the bootstrap distribution to get a distribution around zero. However, this is only a valid
approximation to the null distribution under the assumption that the distribution of the
estimator is independent of the population parameters. In Section 6.2.1.a, I explicitly
calculated the asymptotic variance of the estimator which shows that this is not the
case. In other words: the MFI estimator is not an ancillary/pivotal statistic. This means
that the bootstrap distribution cannot be moved to zero to construct a null distribution,
and that assigning p-values to the estimates is therefore not possible. This also makes
multiple testing or false discovery rate correction on the F-values meaningless. For this
reason, I decided to quantify the confidence level that an interaction is nonzero by the
F-value directly.
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Figure 3.3: The F-value and the size of the 95% confidence interval (CI) both stabilised at
around 1,000 bootstrap resamples. Shown here for 20 randomly chosen 2-point interac-
tions in a data set that contained 20,000 neurons and astrocytes from the developmental
scRNA-seq data set that is introduced in Section 4.2.6.

Figure 3.4: Four examples of bootstrap distributions of pairwise MFIs in the same data
set as Figure 3.3. When an interaction was not perfectly estimable—i.e. when some of
the resampled estimates were undefined or diverge—the bootstrap distribution became
pathological or multimodal. From left to right: a perfectly estimable non-significant in-
teraction (between Reln and Dlx2), a perfectly estimable significant interaction (between
Pcdh9 and Rlbp1), a marginally estimable interaction (between Ddt and Ttn), and a
non-estimable interaction (between Fam111a and Vgf ). F is the significance F-value, u
is the fraction of undefined resamples. Dashed red lines denote the 95% CI, and the solid
red line denotes the original point estimate on S. In dashed grey: a normal distribution
of matched mean and variance.
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3.3 Results
Section 3.3.1 shows a theoretical result that explicitly links the MFIs to information
theory through something called Möbius inversions. Then, in Section 3.3.2, I analyti-
cally calculated higher-order interactions in logic gates and show how they are related to
the synergistic logic represented by the gate. I then moved on to more complex causal
dynamics and calculated MFIs on simulated data in Section 3.3.3.

3.3.1 MFIs are Möbius inversions of surprisal

One cannot invent the structure of
an object. The most we can do is to
patiently bring it to the light of day,
with humility—in making it known,
it is discovered.

Alexander Grothendieck [98]

This section explicitly links the MFIs to information theory. To do so, Section 3.3.1.a
first recasts information theory in terms of Möbius inversions. Section 3.3.1.b then
defines MFIs in terms of Möbius inversions and contains a proof that this new definition
is equivalent to Definition 5. Finally, Section 3.3.1.c uses the Möbius inversion formalism
to define quantities dual to mutual information and the MFIs, which both turn out to
be well-defined and useful objects.

3.3.1.a Mutual information as a Möbius inversion

Consider the definition of mutual information, and its higher-order generalisation in terms
of the entropy function H :

• Mutual information:

MI(X , Y ) = H(X )− H(X | Y ) (3.21)
= H(X ) + H(Y )− H(X , Y ) (3.22)

• The generalisation of mutual information that describes higher-order dependen-
cies between variables goes by many names: multiple mutual information, co-
information, or interaction information, and is defined on three variables as follows:

MI(X , Y , Z ) =MI(X , Y )−MI(X , Y | Z ) (3.23)
=H(X ) + H(Y ) + H(Z )
−H(X , Y )− H(X , Z )− H(Y , Z )
+H(X , Y , Z ) (3.24)

I will refer to both these quantities simply as mutual information (MI), and combine
them into one definition in terms of a Möbius inversion, which will be defined below.

Note that each MI-based quantity can be written as a specific sum of marginal entropies
of subsets of the set of variables. There is structure among these subsets: given a finite
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{X , Y } = 1̂

{X} {Y }

∅ = 0̂

{X , Y , Z} = 1̂

{X , Y } {X , Z} {Y , Z}

{X} {Y } {Z}

∅ = 0̂

Figure 3.5: The lattices associated to P({X , Y }) (left) and P({X , Y , Z}) (right), or-
dered by inclusion. An arrow b → a indicates a < b. The ‘top’ and ‘bottom’ elements
are also denoted by 1̂ and 0̂, respectively.

set of variables S, its powerset P(S) can be given a partial ordering as follows:

a ≤ b ⇐⇒ a ⊆ b ∀ a, b ∈ P(S) (3.25)

This poset P = (P(S),⊆) is called a Boolean algebra, and since each pair of sets has
a unique supremum (their union) and infimum (their intersection), it is a lattice. This
lattice structure is visualised for two and three variables in Figure 3.5. In general, the
lattice of an n-variable Boolean algebra forms an n-cube. Moreover, Boolean algebras
are locally finite2, so for any Boolean algebra P one can define the incidence algebra of
functions from nonempty intervals on P to R. Important elements of this algebra are
e.g. the identity element δ(a, b) = δab (the Kronecker delta), and the constant function
ζ(a, b) = 1. Of particular interest is the algebraic inverse of the constant zeta-function:
the Möbius function µP : P × P → R, defined as

µP(x , y) =


1 if x = y
− ∑

z:x≤z<y
µP(x , z) if x < y

0 otherwise
(3.26)

On a powerset ordered by inclusion, the Möbius function takes the simple form µ(x , y) =
(−1)|x |−|y | [254, 224]. This definition allows the mutual information among a set of
variables τ to be written as [25, 86]:

MI(τ) = (−1)|τ |−1 ∑
η≤τ

µP(η, τ)H(η) (3.27)

=
∑
η≤τ

(−1)|η|+1H(η) (3.28)

2A poset P is locally finite if for any two elements a and b, the set [a, b] = {x : a ≤ x ≤ b}, called
a closed interval, is finite.
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Where P is the Boolean algebra with τ = 1̂, and H(η) is the marginal entropy of the set
of variables η. This indeed coincides with Equation (3.22) for τ = {X , Y } and Equation
(3.24) for τ = {X , Y , Z}. Equation (3.27) is a convolution known as a Möbius inversion:

Definition 6 (Möbius inversion over a poset, Rota 1964 [224]). Let P be a locally finite
poset (S,≤). Let µP : P × P → R be the Möbius function from Equation (3.26). Let
g : P → R be a function on P. Then the function

f (y) =
∑
x≤y

µP(x , y)g(x) (3.29)

is called the Möbius inversion of g on P. Furthermore, this equation can be inverted to
yield

f (y) =
∑
x≤y

µP(x , y)g(x) ⇐⇒ g(y) =
∑
x≤y

f (x) (3.30)

The Möbius inversion is a generalisation of the discrete derivative to locally finite posets.
If P = (N,≤), Equation (3.30) is just a discrete version of the fundamental theorem of
calculus [254]. Equation (3.30) also implies that the joint entropy can be expressed as
a sum over mutual information:

H(τ) = (−1)|τ |−1 ∑
η≤τ

MI(η) (3.31)

For example, in the case of three variables:

H(X , Y , Z ) = MI(X , Y , Z ) + MI(X , Y ) + MI(X , Z ) + MI(Y , Z ) + H(X ) + H(Y ) + H(Z )
(3.32)

Instead of starting with entropy, one could also start with a quantity known as surprisal,
or self-information, defined as the negative log-probability of a certain state:

S(X = x) =− log p(X = x) (3.33)

Surprisal plays an important role in information theory, and indeed, the expected surprisal
across all possible realisations X = x is the entropy of the variables X :

EX [S(X = x)] = H(X ) (3.34)

As a shorthand for the marginal surprisal of a realisation X = x , summed over Y , let us
write

log p(x ; Y ) :=
∑

y
log p(x , y) (3.35)

With this, consider the Möbius inversion of the marginal surprisal over the lattice P:

pmi(T = τ) := (−1)|τ | ∑
η≤τ

µP(η, τ) log p(η; τ \ η) (3.36)
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This is a generalised version of the pointwise mutual information, usually defined on just
two variables:

pmi(X = x , Y = y) = log(x , y ; ∅)− log(x ; Y )− log(y ; X ) + log(∅; X , Y ) (3.37)

= log p(x , y)
p(x)p(y) (3.38)

3.3.1.b MFIs as a Möbius inversion

With mutual information defined in terms of Möbius inversions, the same can be done
for the model-free interactions. Consider, again, the negative surprisal of a particular
state. On Boolean variables, a state is just a partition of the variables into two sets: one
where the variables are set to 1, and one where they are set to 0. That means that the
surprisal of observing a particular state of Z variables is fully specified by which variables
X ⊆ Z are set to 1, keeping all other variables Z \ X at 0. This can be written as:

SX ;Z := log p(X = 1, Z \ X = 0) (3.39)

Definition 7 (Interactions as Möbius inversions). Let p be a probability distribution
over a set T of random variables. Let P = (P(τ),⊆), the powerset of a set τ ⊆ T
ordered by inclusion. Then the interaction I(τ ; T ) among variables τ is given by

I(τ ; T ) :=
∑
η≤τ

µP(η, τ)Sη;T (3.40)

=
∑
η≤τ

(−1)|η|−|τ | log p(η = 1, T \ η = 0) (3.41)

For example, when τ contains a single variable X ⊆ T , then

I({X}; T ) = µP({X}, {X})S{X};T + µP(∅, {X})S∅;T (3.42)

= log p(X = 1, T \ X = 0)
p(X = 0, T \ X = 0) (3.43)

Which coincides with the 1-point interaction in Equation (3.9). Similarly, when τ con-
tains two variables τ = {X , Y } ⊆ T , then

I({X , Y }; T ) = µP({X , Y }, {X , Y })S{X ,Y };T + µP({X}, {X , Y })S{X};T (3.44)
+µP({Y }, {X , Y })S{Y };T + µP(∅, {X , Y })S∅;T

= log p(X = 1, Y = 1, T \ {X , Y } = 0)p(X = 0, Y = 0, T \ {X , Y } = 0)
p(X = 1, Y = 0, T \ {X , Y } = 0)p(X = 0, Y = 1, T \ {X , Y } = 0) (3.45)

Which coincides with the 2-point interaction in Equation (3.11). In fact, this pattern
holds in general:
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Theorem 2 (Equivalence of interactions). The interaction I(τ , T ) from Definition 7
is the same as the model-free interaction Iτ from Definition 5. That is, for any set of
variables τ ⊆ T

I(τ , T ) = Iτ (3.46)

Proof. I intend to prove the following:

∑
η≤τ

(−1)|η|−|τ | log p(η = 1, T \ η = 0) = ∂n log p(T )
∂τ1 ... ∂τn

∣∣∣∣
T=0

(3.47)

where τ = {τ1, ... τn}. Both sides of this equation are sums of ± log p(s), where s is
some binary string, so the same strings should appear with the same sign.

First, note that the Boolean algebra of sets ordered by inclusion (as in Figure 3.5), is
equivalent to the poset of binary strings where for any two strings a and b, a ≤ b ⇐⇒
a ∧ b = a. The equivalence follows immediately upon setting each element a ∈ P(S)
to the string where a = 1 and S \ a = 0. This map is one-to-one and monotonic with
respect to the partial order as A ⊆ B ⇐⇒ A ∩ B = A. That means that Definition
7 can be written as a Möbius inversion on the lattice of Boolean strings S = (B|τ |,≤)
(shown for the 3-variable case on the left side of figure 3.6):

I(τ ; T ) =
∑

s≤1̂S

µS(s, 1̂S) log p(τ = s, T \ τ = 0) (3.48)

Note that for any pair (α, τ) where α ⊆ τ , with respective string representations (s, t) ∈
B|τ | × B|τ |, the following holds:

|τ | − |α| =
∑

i
(t ∧ ¬s)i (3.49)

Since τ corresponds to a string of ones, I(τ ; T ) can be written as:

I(τ ; T ) =
∑

s≤1̂S

(−1)
∑

¬s log p(τ = s, T \ τ = 0) (3.50)

To see that this is exactly the Boolean derivative from Definition 5, define a map

e(n)
i ,s : FBn → FBn−1 (3.51)

where FBn is the set of functions from n Boolean variables to R. This map is defined as

e(n)
i ,s : f (X0, ... Xi , ... Xn) 7→ f (X0, ... Xi = s, ... Xn) (3.52)

With this map, the Boolean derivative of a function f (X0, ... , Xn) can be written as

∂

∂Xi
f (X ) = (e(n)

i ,1 − e(n)
i ,0 )f (X ) (3.53)

= f (X1, ... , Xi = 1, ... , Xn)− f (X1, ... , Xi = 0, ... , Xn) (3.54)
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(1 1 1) = 1̂

(1 1 0) (1 0 1) (0 1 1)

(1 0 0) (0 1 0) (0 0 1)

(0 0 0) = 0̂

(1 1 1) = 1̂

(1 1 0) (1 0 1) (0 1 1)

(1 0 0) (0 1 0) (0 0 1)

(0 0 0) = 0̂

Figure 3.6:
Left: The lattice associated to P({X , Y , Z}) ordered by inclusion, as binary strings.
Equivalently: the lattice of binary strings, where for any two strings a and b, a ≤ b ⇐⇒
a ∧ b = a.
Right: Two regions are shaded, corresponding to the decomposition of the 3-point
interaction into two 2-point interactions.

Categorical interactions Taking the definition of interactions as the Möbius inversion
of surprisal seriously, one might ask what happens when instead of using a Boolean
algebra, surprisal is inverted over a different lattice. One example of a different lattice
is shown in Figure 3.7. It corresponds to two variables that can take three values—0,
1, or 2—where states are ordered by a ≤ b ⇐⇒ ∀i : ai ≤ bi . Calculating interactions
on this lattice requires the value of Möbius functions of the type µ(s, 22). It can be
readily verified that most Möbius functions like this are zero, except for µ(22, 22) =
µ(11, 22) = 1, and µ(21, 22) = µ(12, 22) = −1, which gives exactly the terms in
the interactions between two categorical variables changing from 1 → 2, as defined
in [24]. Calculating interactions on different sublattices with 1̂ = (21), (12), or (11)
gives the other categorical interactions. The transitivity property of the interactions, i.e.
I(X : 0→ 2, Y : 0→ 1) = I(X : 0→ 1, Y : 0→ 1) + I(X : 1→ 2, Y : 0→ 1), follows
immediately from the structure of the lattice in Figure 3.7, and the alternating signs of
the Möbius functions on a Boolean algebra.
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(2 2)

(2 1) (1 2)

(2 0) (1 1) (0 2)

(1 0) (0 1)

(0 0)

Figure 3.7: The lattice of two variables that can take three values, ordered by a ≤
b ⇐⇒ ∀i : ai ≤ bi .

3.3.1.c Information and interactions on dual lattices

Lattices have the property that the set with the reverse order is still a lattice. That is,
if L = (S,≤) is a lattice, then Lop = (S,⪯), where ∀a, b ∈ S : a ⪯ b ⇐⇒ a ≥ b,
is also a lattice. This raises the question: what corresponds to mutual information and
interaction on these dual lattices3?

Dual information The quantity dual to mutual information, denoted by MI∗, can
be calculated by first noting that the dual to a Boolean algebra is another Boolean
algebra—so that it is still true that µ(x , y) = (−1)|x |−|y |—and then simply replacing P
by Pop in Equation (3.27):

MI∗(τ) =
∑
η⪯τ

(−1)|η|+1H(η) (3.61)

The dual mutual information of τ = 1̂Pop = ∅ is just MI∗(∅) = MI(1̂P), the mutual
information among all variables. However, the dual mutual information of a singleton
set X is:

MI∗(X ) = MI(1̂P)−MI(1̂P \ X ) (3.62)
= ∆(X ; 1̂P \ X ) (3.63)

where ∆ is known as the conditional, or differential mutual information [87]. It de-
scribes the change in mutual information when leaving out X , and has been used to
describe information structures in genetics [86]. On the Boolean algebra of three vari-
ables {X , Y , Z}, the dual mutual information of X can be written out as:

3Recognising that a poset L = (S,≤L) is a category C with objects S and a morphism f : A → B
iff B ≤L A, reversing the order defines the opposite category Cop, and thus dual objects.
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MI∗(X ) = µ({X}, {X})H(X ) + µ({X , Y }, {X})H(X , Y )+
µ({X , Z}, {X})H(X , Z ) + µ({X , Y , Z}, {X})H(X , Y , Z ) (3.64)

= H(X )− H(X , Y )− H(X , Z ) + H(X , Y , Z ) (3.65)

Since ∆ is the dual of mutual information, it should arguably be called the mutual co-
information, but the term co-information is unfortunately already used to refer to normal
higher-order mutual information.

Outeractions To find the quantity dual to the interactions, start from Equation (3.48)
and construct Sop = (B|τ |,⪯), dual to the lattice of binary strings S = (B|τ |,≤). A dual
interaction of variables τ ⊆ T will be denoted I∗(τ ; T ), and is defined as follows:

I∗(τ ; T ) :=
∑

s⪯1̂Sop

µSop(s, 1̂Sop) log p(τ = s, T \ τ = 0) (3.66)

Again, when τ = 1̂Sop = 0̂S = ∅, this is just (−1)|τ |I(1̂S), but the dual interaction of a
singleton set X is:

I∗(X ; T ) = (−1)|1̂S |−1
(

I(1̂S ; T ) + I(1̂S \ X ; T )
)

(3.67)

For example, on the three variable lattice in Figure 3.6, the dual interaction of X is

I∗(X ; T ) = I(X , Y , Z ; T ) + I(Y , Z ; T ) (3.68)

Writing pijk for p(X = i , Y = j , Z = k | T \ {X , Y , Z} = 0), we see that this is equal
to:

I∗(X ; T ) = log p111p100

p101p110
(3.69)

which is similar to the 2-point interaction IYZ defined in Equation (3.11), but conditioned
on X = 1 instead of 0. Dual interactions should probably be called co-interactions, but to
avoid confusion with the term co-information I will instead refer to the dual interactions
as outeractions. Outeractions are just interactions, conditioned on certain variables
being 1 instead of 0. This makes them no longer equal to the Ising interactions between
Boolean variables, but there are situations in which an interaction is more interesting in
the context with Z = 1 instead of Z = 0, for example if Z is always 1 in all situations
of interest.

Summary

• Mutual information is the Möbius inversion of marginal entropy on the lattice of
subsets ordered by inclusion.

• Pointwise mutual information is the Möbius inversion of marginal surprisal on the
lattice of subsets ordered by inclusion.
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• Differential (or conditional) mutual information is the Möbius inversion of marginal
entropy on the dual lattice.

• Model-free interactions are the Möbius inversion of surprisal on the lattice of
subsets ordered by inclusion.

• Model-free outeractions are the Möbius inversion of surprisal on the dual lattice.

• The outeraction of a variable X is the interaction among its complement, where
X is set to 1 instead of 0.

To summarise these relationships diagrammatically, note that surprisals form a vector
space as follows. Let P(T ) be the powerset of a set of variables T , and let |P(T )| =
2|T | := n. This forms the lattice P = (P(T ),⊆) ordered by inclusion, and a linear
extension4 of P induces a topological ordering on P(T ), indexed by i as P(T ) = ∪n

i=0ti
(that is, the set of ti forms a cover of P(T )). Let S be the set of linear combinations
of surprisals of subsets of T:

S =
{ n∑

i=0
ai log p(ti) | ai ∈ R

}
(3.70)

This set is given a vector space structure over R by the usual scalar multiplication and
addition. Note that the set

B = {log p(t) | t ∈ P(T )} (3.71)

forms a basis for this vector space, since ∑i αi log p(ti) = 0 has no non-trivial solutions5,
and span(B) = S. To define a map from S → R, we only need to specify its action
on B, and extend the definition linearly. That means we can fully define the map
evalT : S → R by specifying:

evalT : log p(R = r) 7→ log p(R = 1, T \ R = 0) (3.72)

Similarly, define the expectation map E : S → R as

E : log p(R = r) 7→
∑

r
p(R = r) log(R = r) (3.73)

which outputs the expected surprise over all realisations R = r . Finally, note that the
Möbius inversion over a poset P is an endomorphism of the set FP of functions over P,
defined as

MP : FP → FP (3.74)
MP : f (y) 7→

∑
x≤y

µ(x , y)f (x) (3.75)

4Interestingly, the existence proof of this linear extension, known as the Szpilrajn extension theorem,
depends on the axiom of choice.

5Only when two variables a and b are independent do we have linear dependencies in B, as then
log p(a, b) = log p(a) + log p(b).
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Together, these three maps make the following squares commute (here shown on indi-
vidual elements):

MI∗(R) = MI(T \ R | R) −H(R) MI(R)

pmi∗(R = r) log p(R = r) pmi(R = r)

I∗(R ; T ) log p(R = 1; T = 0) I(R ; T )

MP

E E

MP

MP

evalT evalT

MPop

MPop

MPop

E

evalT

For the case where T = {X , Y , Z} and R = {X , Y }, this explicitly amounts to:

∑
(x ,y ,z)∈X ×Y×Z p(x ,y ,z) log p(x ,y ,z)
−
∑

(x ,y)∈X ×Y p(x ,y) log p(x ,y)
∑

(x ,y)∈X×Y p(x , y) log p(x , y)
∑

(x ,y)∈X ×Y p(x ,y) log p(x ,y)
−
∑

x∈X p(x) log p(x)
−
∑

y∈Y p(y) log p(y)

log p(x ,y ,z)
p(x ,y) log p(x , y) log p(x ,y)p(∅)

p(x)p(y)

log p(1,1,1)
p(1,1,0) log p(1, 1, 0) log p(1,1,0)p(0,0,0)

p(1,0,0)p(0,1,0)

MP

E E

MP

MP

evalT evalT

MPop

MPop

MPop

E

evalT

3.3.2 Interactions quantify and distinguish synergistic logic
In this section, I will show that a nonzero 3-point interaction IABC on a causal collider
structure A → C ← B can be interpreted as a logic gate. In fact, I will show that the
MFIs are better at distinguishing logic gates than information theoretic quantities.

A positive 3-point interaction implies that the numerator in Equation (3.14) is larger
than the denominator. The sufficient but not necessary assumption that each term in
the numerator is larger than each term in the denominator results in the following truth
table as IABC → +∞:
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A B C
0 0 1
0 1 0
1 0 0
1 1 1

This is the truth table of an XNOR gate. Let pG be the probability of each of the four
states in the truth table for a gate G, and let ϵG be the probability of all other states.
Then the 3-point interaction of an XNOR gate can be written as:

IXNOR
ABC = log p4

XNOR
ϵ4

XNOR
(3.76)

Similarly, from the truth tables of AND and OR gates:

IAND
ABC = log ϵAND p3

AND
ϵ3

ANDpAND
(3.77)

IOR
ABC = log ϵ3

ORpOR

ϵOR p3
OR

(3.78)

In the case of equally noisy gates, i.e. pG = p and ϵG = ϵ, the associated 3-point
interactions can be directly compared. Note that when a gate has a 3-point interaction
I , its logical negation a 3-point interaction −I . This determines the 3-point interactions
of all 23 = 6 possible 2-input logical gates, summarised in Table 3.1. The two gates
with the strongest absolute interactions, XNOR and XOR, are also the only two gates
that are purely synergistic: knowing just one of the two inputs gives you no information
about the output. This relationship to synergy holds for 3-input gates as well. The
3-input gate with the strongest 4-point interaction has the following truth table:

A B C D
0 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1
0 1 1 0
1 0 1 0
1 1 0 0
1 1 1 1

It is a 3-input XOR gate, i.e. D = (A + B + C) mod 2, and is again maximally
synergistic since observing only 2 of the 3 inputs gives zero bits of information on the
output. Setting this maximum 4-point interaction to I , the 3-input OR and AND gates
get 4-point interaction I/4, so the hierarchies of interaction and synergy still match.

As can be seen in Table 3.1, the 3-point interactions separate most 2-input logic gates
by sign or value, leaving only AND ∼ NOR and OR ∼ NAND. Mutual information has
less resolving power. Assuming a uniform distribution over all 4 allowed states from a
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G IG
ABC

XNOR I
XOR −I
AND 1

2 I
OR −1

2 I
NAND −1

2 I
NOR 1

2 I

Table 3.1: The 3-point interactions for all 2-input logic gates at equal noise level are
related through I = 4 log p

ϵ
, and degenerate in AND ∼ NOR and OR ∼ NAND.

G H(A)
=H(B) H(C) H(A, B) H(A,C)

=H(B,C) H(A, B, C)

XNOR 1 1 2 2 2
XOR 1 1 2 2 2
AND 1 log 33/4

4 2 3
2 2

OR 1 log 33/4

4 2 3
2 2

NAND 1 log 33/4

4 2 3
2 2

NOR 1 log 33/4

4 2 3
2 2

Table 3.2: The marginal entropies of variables in a logic gate are degenerate in XOR ∼
XNOR and AND ∼ OR ∼ NAND ∼ NOR.

gate’s truth table, a brief calculation yields:

MIOR(A, B, C) = MIAND(A, B, C) = MINOR(A, B, C) = MINAND(A, B, C) (3.79)

= − log
(

33/4

4

)
− 1 ≈ −0.189

MIXOR(A, B, C) = MIXNOR(A, B, C) = −1 (3.80)

That is, mutual information resolves strictly fewer logical gates by value, and none by
sign. In fact, all entropy-based quantities necessarily inherit the degeneracy summarised
in Table 3.2.

The outeractions I∗G
C = IG

ABC + IG
AB contain the same degeneracy as the 3-point interac-

tions. However, let us use the same sign-convention as differential mutual information
and define a new quantity J∗G

A = IG
ABC − IG

BC . This quantity assigns a different value to
each logic gate G. The symmetric quantity J∗G = J∗G

A J∗G
B J∗G

C , the interaction analogous
to the symmetric deltas from [87], inherits the perfect resolution from J∗G

A . This is
summarised in Table 3.3. The J-outeractions thus uniquely assign a value to each gate,
proportional to the synergy of its logic. The hierarchy is J∗XNOR

A > J∗NOR
A > J∗AND

A ,
mirrored for their logical complement. XNOR is indeed the most synergistic, and NOR
is more synergistic than AND with respect to observing a 0 in one of the inputs: in a
NOR gate, a 0 in the input gives no information on the output, while it completely fixes
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G MIABC IG
ABC I∗G

A J∗G
A J∗G

C J∗G

XNOR −1 I 1
2 I 3

2 I 3
2 I 27

8 I3

XOR −1 −I −1
2 I −3

2 I −3
2 I −27

8 I3

AND −0.189 1
2 I 1

2 I 1
2 I 3

4 I 3
16 I3

OR −0.189 −1
2 I 0 −I −3

4 I −3
4 I3

NAND −0.189 −1
2 I −1

2 I −1
2 I −3

4 I − 3
16 I3

NOR −0.189 1
2 I 0 I 3

4 I 3
4 I3

Table 3.3: While the interactions leave some gates indistinguishable, the J-outeractions
of the input nodes are unique to each gate. As before: I = 4 log p

ϵ
.

the output of an AND gate. Since the interactions are defined in a context of 0s, they
order synergy with respect to observing 0s.

3.3.3 Interactions reflect dynamics beyond causal, correlation,
or information quantities

3.3.3.a Interactions distinguish causal dynamics among triplets

I next investigated more complex causal dynamics than simple logic gates, to see how
different association metrics reflect the underlying causal dynamics. I simulated different
causal dynamics on the various 3-node causal DAGs shown in Figure 3.8. On a given
DAG G, denote the set of nodes without parents, the orphan nodes, by S0. Each
orphan node in S0 got assigned a random value drawn from a Bernoulli distribution, i.e.
P(X = 1) = p and P(X = 0) = 1 − p. Denote the set of children of orphan nodes
as S1. Each node in S1 then got assigned either the product of its parent nodes (for
multiplicative dynamics), or the mean of its parent nodes (for additive dynamics), plus
some zero-mean Gaussian noise with variance σ2. All nodes were then rounded to a 0
or 1. A set S2 was then defined as the set of all children of nodes in S1, and these got
assigned a value using the same dynamics as before. As long as the causal structure is
acyclic, this algorithm terminates on a set of nodes Si that has no children. For example,
the chain graph A → B → C has S0 = {A}, S1 = {B}, S2 = {C}, and S3 = ∅, at
which point the updating terminates and the final sample is composed of the joint state
of all nodes.

Figure 3.8 shows the different association metrics inferred on 100,000 states from each
of the causal dynamics6. The six different dynamics corresponded to 4 different DAGs,
2 different correlation matrices, 4 different partial correlation matrices, and 2 different
mutual information structures, which meant that each of these descriptions was degen-
erate in some of the dynamics. Partial correlations came close to disentangling direct
from indirect effects, but failed to distinguish additive from multiplicative dynamics. I
focused on the sign of the association and its significance, since the precise value depends
on the noise level σ2, but the precise values are listed in Appendix 3.C. The rightmost

6Multiplicative and additive dynamics are the same for colliderless graphs, like chains and forks.
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Table 3.10, I simulated 10k graph configurations using the same procedure as in the
previous section (setting p = σ = 0.7). The corresponding interactions are also listed
in Table 3.10. The Tree and Collider Tree graphs were relatively straightforward, and
reproduced the patterns of the isolated chains and colliders. More interesting was the
confounded chain. It is a chain with a confounding node that leads to two colliders.
Treating the chains and colliders in this DAG as isolated triplets leads to conflicting
interactions, so the intuition about individual triplet motifs does not apply. The triplet
0→ 1→ 2 is a chain, but had a 3-point coupling, and a pairwise coupling only between
nodes 0 and 1. The same was true for the chain 0→ 2→ 3: It had a 3-point interaction
and only one 2-point interaction. Note that the chain 1→ 2→ 3 had no interactions at
all. Note also that while both colliders had a 3-point and a parent coupling, the parent
coupling here was positive, while for isolated colliders it is negative. Simulations of
additive dynamics on these DAGs yielded pairwise interactions only and did not conflict
with intuition on the triplet motifs.

These results lead to the conclusion that the triplet motifs can offer intuition, but larger
DAGs are more complex and lead to patterns in the interactions that cannot be reduced
to those of colliders and chains by themselves.

3.3.3.c Interactions distinguish the dy- and triadic distributions

That the interactions have such resolving power over distributions of binary variables is
perhaps not so surprising in light of the universality of RBMs with respect to this class
of distributions [169, 84]. More surprisingly, their resolving power extends to the case of
categorical variables. In [124], the authors introduce two distributions, the dy- and triadic
distributions, that are indistinguishable by all Shannon-like information measures (in fact,
they are indistinguishable by at least the following: Shannon-, Renyi(2)-, residual-, and
Tsallis entropy, co-information, total correlation, CAEKL mutual information, interac-
tion information, Wyner-, exact-, functional-, and MSS common information, perplexity,
disequilibrium, and the LMRP- and TSE complexity). In this section, I will show that
the MFIs perfectly distinguish these two distributions, and reveal the higher-order nature
of the triadic distribution.

The two distributions are defined on 3 variables, each taking a value in a 4-letter alphabet
{0, 1, 2, 3}. The joint probabilities are summarised in Table 3.11. To construct the distri-
butions, each category is represented as a binary string— (0, 1, 2, 3)→ (00, 01, 10, 11) —
leading to new variables {X0, X1, Y0, Y1, Z0, Z1}. The dyadic distribution is constructed
by linking these new variables with pairwise rules: X0 = Y1, Y0 = Z1, Z0 = X1, while
the triadic distribution is constructed with rules involving triplets: X0 + Y0 + Z0 = 0
mod 2, and X1 = Y1 = Z1. The resulting binary strings are then reinterpreted as cate-
gorical variables to produce Table 3.11. The authors of [124] find that no Shannon-like
measure can distinguish between the two distributions, and they argue that the partial
information decomposition, which is different for the two distributions, is not a natural
information measure since it has to single out one of the variables as an output. To
calculate model-free categorical interactions between the variables, I set the probabilities
of the states in Table 3.11 uniformly to p = (1− (64−8)ϵ)/8, and of the other states to
ϵ (resulting in a normalised uniform distribution over legal states). There are a total of
63 = 216 interactions such that x1 > x0, y1 > y0, z1 > z0. Each of these can be written
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Table 3.4: Tree

genes Interaction F
0 [5, 3] 0.287 0.000
1 [5, 0] -0.001 0.449
2 [3, 0] 0.282 0.000
3 [3, 1] -0.003 0.447
4 [3, 4] -0.148 0.000
5 [0, 1] 0.019 0.042
6 [0, 2] 0.004 0.361
7 [5, 3, 4] -0.001 0.497
8 [3, 0, 1] 0.008 0.342
9 [3, 4, 1] 0.320 0.000
10 [5, 3, 0] 0.009 0.316
11 [5, 3, 1] -0.021 0.188

Table 3.5: Tree

Table 3.6: Collider tree

genes Interaction F
0 [0, 1] -0.159 0.000
1 [0, 2] 0.032 0.001
2 [0, 3] 0.004 0.312
3 [0, 5] 0.017 0.060
4 [3, 4] -0.112 0.000
5 [3, 5] 0.001 0.482
6 [0, 1, 2] -0.027 0.028
7 [0, 1, 3] 0.305 0.000
8 [0, 3, 5] -0.005 0.408
9 [0, 3, 4] -0.002 0.453
10 [3, 4, 5] 0.261 0.000
11 [0, 2, 5] -0.018 0.200

Table 3.7: Collider tree

Table 3.8: Confounded Chain

genes Interaction F
0 [0, 1] 0.145 0.000
1 [0, 2] -0.124 0.000
2 [0, 3] -0.006 0.266
3 [1, 2] -0.002 0.433
4 [2, 3] 0.000 0.515
5 [0, 1, 2] 0.264 0.000
6 [0, 1, 3] 0.001 0.490
7 [0, 2, 3] 0.281 0.000
8 [1, 2, 3] -0.010 0.344

Table 3.9: Confounded Chain

Table 3.10: Multiplicative DAGs and their interactions. F-values are bootstrapped.
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as:

IXYZ (x0 → x1; y0 → y1; z0 → z1) =

log
p
(

X = x1, Y = y1, Z = z1 | X = 0
)

p
(

X = x0, Y = y0, , Z = z0 | X = 0
) p

(
X = x1, Y = y0, Z = z0 | X = 0

)
p
(

X = x0, Y = y1, , Z = z1 | X = 0
)

×
p
(

X = x0, Y = y1, Z = z0 | X = 0
)

p
(

X = x1, Y = y0, , Z = z1 | X = 0
) p

(
X = x0, Y = y0, Z = z1 | X = 0

)
p
(

X = x1, Y = y1, , Z = z0 | X = 0
)
(3.81)

Of particular interest were two quantities: the interaction between the two most ex-
treme states IXYZ (0 → 3; 0 → 3; 0 → 3), and the symmetrised interaction IXYZ =∑

x0,x1,y0,y1,z0,z1 IXYZ (x0 → x1; y0 → y1; z0 → z1), where the sum goes over all values
such that x1 > x0, y1 > y0, z1 > z0, since all possible pairs necessarily sum to zero as
IXYZ (x0 → x1; y0 → y1; z0 → z1) = −IXYZ (x1 → x0; y0 → y1; z0 → z1).

For the dyadic distribution, I found:

IDy
XYZ (0→ 3; 0→ 3; 0→ 3) = log pϵ3

pϵ3 = 0 (3.82)

While for the triadic distribution:

ITri
XYZ (0→ 3; 0→ 3; 0→ 3) = log ϵ4

pϵ3 = log ϵ

p (3.83)

So this particular 3-point interaction is zero for the dyadic, and negative for the triadic
distribution. The sum over all 3-points is (see Appendix 3.B for details):

IDy
XYZ = log 1 = 0 (3.84)

ITri
XYZ = 64 log ϵ

p (3.85)

That is, the symmetrised 3-point interaction is zero for the dyadic distribution, and
strongly negative for the triadic distribution. These two distributions that are indis-
tinguishable in terms of information structure are distinguishable by their model-free
interactions, and these accurately reflect the higher-order nature of the triadic distribu-
tion.

3.4 Discussion
In this chapter, I defined and studied an estimator for model-free interactions (MFIs)
that is used in the next chapters to investigate higher-order dependencies in gene ex-
pression data. I found that MFIs can be seen as a pointwise information quantity, similar
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Dyadic

X Y Z P
0 0 0 1 / 8
0 2 1 1 / 8
1 0 2 1 / 8
1 2 3 1 / 8
2 1 0 1 / 8
2 3 1 1 / 8
3 1 2 1 / 8
3 3 3 1 / 8

Triadic

X Y Z P
0 0 0 1 / 8
1 1 1 1 / 8
0 2 2 1 / 8
1 3 3 1 / 8
2 0 2 1 / 8
3 1 3 1 / 8
2 2 0 1 / 8
3 3 1 1 / 8

Table 3.11: The joint probability of the dy- and triadic distributions (from [124]). All
other states have probability zero.

to pointwise mutual information. On the lattice of subsets of variables, mutual informa-
tion, pointwise mutual information, and MFIs appeared as the Möbius inversion of the
expected, marginal, and joint surprisal, respectively. Furthermore, the dual quantities
that arose had natural interpretations: dual mutual information corresponds to condi-
tional, or differential, mutual information, while dual interactions are interactions in a
context of 1s instead of 0s. Why Möbius inversions capture the structure associated
with higher-order structure is not obvious. Möbius functions, with their recursive def-
initions, seem to capture the mereological7 structure of their underlying poset, and as
such play an important role in combinatorics. In fact, Möbius functions on Boolean al-
gebras generalise the inclusion-exclusion principle that describes the number of elements
in a union of sets. However, the role of Möbius inversions in higher-order information
theory extends beyond Boolean algebras. In [101], the authors show that the lattice of
antichains of subsets—not a Boolean algebra—captures the meronomy of higher-order
information redundancy. As first noted by [300], the Möbius inversion over this lattice re-
capitulates the partial information decomposition that separates the synergistic, unique,
and redundant information among variables.

As MFIs are defined in a completely model-free manner, they do not have a single
intuitive or operational interpretation. I calculated the interactions up to third-order
in different theoretical or simulated distributions to see how the MFIs reflected the
underlying dynamical rules. On logic gates, third-order interactions corresponded to what
is usually called synergy: the extent to which the output is unknown under incomplete
knowledge of the input. Logical synergy can be captured by other higher-order quantities
as well, like total correlation [222] and mutual information (Table 3.3). However, only the
MFIs—in particular a derived quantity based on their dual—could perfectly distinguish
each of the six possible logic gates.

A similar pattern was seen in noisy simulated dynamics of binary variables: only the MFIs
could distinguish all simulated systems. Furthermore, the synergy present in multiplica-
tive dynamics—approximately an AND-gate—was reflected by the presence of a 3-point
interaction. In addition, the famously indistinguishable dy- and triadic distributions were

7Mereology is the study of the relationship between parts and wholes.
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perfectly distinguished by their third-order MFIs which were only present in the triadic
distribution. The dy- and triadic distributions are also distinguishable by their partial
information decomposition, though only under the assumption that one of the variables
is an output [124] while the MFIs are agnostic with respect to the causal direction.

In conclusion, in this chapter I have shown that the MFIs can be estimated by con-
ditioning only on the Markov blanket, and can be assigned a confidence level. I also
investigated their interpretation, and found that MFIs are closely related to information
theory, but are better at disentangling direct from indirect effects and distinguishing logic
and distributions. Finally, I found that only the MFIs accurately reflected higher-order
dependencies in the data-generating process.

3.A Proofs
Proof of Lemma 2. Let X be a set of variables with joint distribution p(X ). Let
A ∈ X and B ∈ X such that A ̸= B. Denote the minimal Markov blanket of X by MBX .
Then A ∈ MBB ⇐⇒ B ∈ MBA, and we say that A and B are Markov-connected.

Proof. Let Y = X \ {A, B}. Then

A ̸∈ MBB =⇒ p(B | A, Y ) = p(B | Y ) (3.86)

Consider

p(A | B, Y ) = p(A, B | Y )
p(B | Y ) (3.87)

= p(B | A, Y )p(A, | Y )
p(B | Y ) (3.88)

= p(A | Y ) (3.89)

which means that B ̸∈ MBA. Since A ̸∈ MBB ⇐⇒ B ̸∈ MBA holds, its negation also
holds, which completes the proof.

Proof of Proposition 1 A model-free n-point interaction I1...n can only be nonzero
when all variables S = {X1, ... , Xn} are mutually Markov-connected.

Proof. Let X be a set of variables with joint distribution p(X ). Let S = {X1, ... , Xn},
and X = X \ S. Consider the definition of an n-point interaction among S:

I1...n =
n∏

i=1

∂

∂Xi
log p(X1, ... , Xn | X ) (3.90)

=
(n−1∏

i=1

∂

∂Xi

)
∂

∂Xn
log p(X1, ... , Xn | X ) (3.91)

=
(n−1∏

i=1

∂

∂Xi

)
log p(Xn = 1 | X1, ... , Xn−1, X )

p(Xn = 0 | X1, ... , Xn−1, X ) (3.92)

=
(n−1∏

i=1

∂

∂Xi

)
log p(Xn = 1 | S \ Xn, X )

p(Xn = 0 | S \ Xn, X ) (3.93)
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Now, if ∃Xj ∈ S \Xn such that Xj ̸∈ MBXn , then then conditioning on Xj is not necessary
as p(Xn | S \ Xn) = p(Xn | S \ {Xn, Xj}), so that

=
(n−1∏

i=1

∂

∂Xi

)
log p(Xn = 1 | S \ {Xj , Xn}, X )

p(Xn = 0 | S \ {Xj , Xn}, X ) (3.94)

=

n−1∏
i=1
i ̸=j

∂

∂Xi


(

∂

∂Xj
log p(Xn = 1 | S \ {Xj , Xn}, X )

p(Xn = 0 | S \ {Xj , Xn}, X )

)
(3.95)

= 0 (3.96)

since the probabilities no longer involve Xj . Since Xj was chosen without loss of generality,
this must hold for all variables in S, which means that if any variable in S is not in the
Markov blanket of Xn, then the interaction IS vanishes:

S \ Xn ̸⊂ MBXn =⇒ IS = 0 (3.97)

Furthermore, the indexing of the variables was arbitrary, so this must hold for any rein-
dexing, which means that

∀Xi ∈ S : S \ Xi ̸⊂ MBXi =⇒ IS = 0 (3.98)

Which means that all variables in S must be Markov-connected for the interaction IS to
be nonzero.

Proof of Proposition 1 Let S be a set of random variables with probability distribution
p(S). Let X , Y , and Z be three disjoint subsets of S. Then omitting Y from the
conditioning set results in a bias determined by, and linear in, the pointwise mutual
information that Y = 0 gives about states of X :

IX |YZ − IX |Z =
 |X |∏

i=1

∂

∂xi

 pmi(X = x , Y = 0 | Z = 0) (3.99)

Proof. The pointwise mutual information (pmi) is defined as

pmi(X = x , Y = y) = log p(X = x , Y = y)
p(X = x)p(Y = y) (3.100)

Note that

p(X = x1 | Y = y , Z = z) = p(X = x1, Y = y | Z = z)
p(Y = y | Z = z) (3.101)

So that

p(X = x1 | Y = y , Z = z) = epmi(X=x1,Y =y |Z=z)p(X = x1 | Z = z) (3.102)
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That is, not conditioning on Y = y results in an error in the estimate of p(X = x1 | Y = y , Z = z)
that is exponential in the Z -conditional pmi of X and Y . However, consider the inter-
action among X :

IX = IX |YZ =
 |X |∏

i=1

∂

∂xi

 log p(X = x | Y = 0, Z = 0) (3.103)

=
 |X |∏

i=1

∂

∂xi

 (log p(X = x | Z = 0) + pmi(X = x , Y = 0 | Z = 0))

(3.104)

= IX |Z +
 |X |∏

i=1

∂

∂xi

 pmi(X = x , Y = 0 | Z = 0) (3.105)

That is, the error in the interaction as a result of not conditioning on the right variables
is linear in the difference between the pmi’s of different states.

3.B Python code to calculate categorical dy- and tri-
adic interactions

Code 3.1: calculate dy- and triadic MFIs
1 dyadicStates = [[’a’, ’a’, ’a’], [’a’, ’c’, ’b’], [’b’, ’a’, ’c’], [’b’, ’c’, ’d’],
2 [’c’, ’b’, ’a’], [’c’, ’d’, ’b’], [’d’, ’b’, ’c’], [’d’, ’d’, ’d’]]
3
4 triadicStates = [[’a’, ’a’, ’a’], [’a’, ’c’, ’c’], [’b’, ’b’, ’b’], [’b’, ’d’, ’d’],
5 [’c’, ’a’, ’c’], [’c’, ’c’, ’a’], [’d’, ’b’, ’d’], [’d’, ’d’, ’b’]]
6
7 stateDict = {0: ’a’, 1: ’b’, 2:’c’, 3: ’d’}
8
9 def catIntSymb(x0, x1, y0, y1, z0, z1, states):

10 prob = lambda x, y, z: ’p’ if [x, y, z] in states else ’e’
11
12 num = prob(x1, y1, z1) + prob(x1, y0, z0) + prob(x0, y1, z0) + prob(x0, y0, z1)
13 denom = prob(x1, y1, z0) + prob(x1, y0, z1) + prob(x0, y1, z1) + prob(x0, y0, z0)
14 return (num, denom)
15
16 numDy = ’’
17 denomDy = ’’
18 numTri = ’’
19 denomTri = ’’
20
21 for x0 in range(4):
22 for x1 in range(x0+1, 4):
23 for y0 in range(4):
24 for y1 in range(y0+1, 4):
25 for z0 in range(4):
26 for z1 in range(z0+1, 4):
27
28 nDy, dDy = catIntSymb(*[stateDict[x] for x in [x0, x1, y0, y1,

z0, z1]], dyadicStates)
29 numDy += nDy
30 denomDy += dDy
31
32 nTri, dTri = catIntSymb(*[stateDict[x] for x in [x0, x1, y0, y1,

z0, z1]], triadicStates)
33 numTri += nTri
34 denomTri += dTri
35
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Higher-order mechanism and
regulation

(causal thinking never yields accurate
descriptions of metabolic
processes—limitations of existing
language)

William S. Burroughs [42]

111



Chapter 4

4.1 Introduction
In this chapter, I investigated to what extent the higher-order dependencies in observa-
tional gene expression data reflect underlying biological mechanism. To do so, I calcu-
lated MFIs on scRNA-seq data sets from mouse brains at different stages of development.
This allowed me to see how different biology reveals itself in different statistical depen-
dencies. As this is the first time that MFIs have been calculated on biological data,
I first investigated how robust the estimates were with respect to changes in the un-
derlying expression data, before validating the MFIs against known biology. Validation
of model-free quantities is a subtle matter, and there is not always a clear separation
between validation and discovery, as I will emphasise in the following sections.

4.1.1 Validation of model-free interactions
Parameters in a model generally have a clear interpretation since models have to be
theoretically justified and usually try to be parsimonious to preserve statistical power.
This interpretation makes validation relatively straightforward: if regression coefficients
of a particular model disagree with known interactions, for example, then the model that
produced them can be refuted. For model-free quantities, interpretation—and by exten-
sion validation—tends to be more difficult. For example, while calculating correlations
is trivial, their interpretation depends on the context in which they were calculated and
can be notoriously misleading [191, 92, 197, 291]. If a measured correlation cannot be
explained, there is nothing to refute but the data. This makes it hard to see how a
model-free quantity could lead to a testable hypothesis, and places the emphasis instead
on interpreting the quantity being estimated. This distinction is crucial, and will guide
the validation of the MFIs in the rest of this thesis.

The model-free interactions are defined with respect to the joint probability of a tran-
scriptional state, so they reflect how different expression patterns have different prob-
abilities. Therefore, a non-zero MFI can be explained at three different levels, each
corresponding to a different cause of the relative likelihoods of the expression patterns.
At the most basic level, biochemical interaction networks can preferentially produce cer-
tain RNA molecules over others, leading to the observed differences in RNA abundance.
For example, a transcription factor A binding to the promoter of a gene B can increase
the production of B-transcripts. In the absence of the effect of other genes and au-
toregulation, and under the common assumption that RNA and protein abundance are
correlated1, more A-transcripts should lead to more A-proteins, which leads to more
B-transcripts. This would manifest itself in a positive 2-point interaction IAB > 0 at the
level of RNA. In this case, the interaction would be directly interpretable in terms of a
biological mechanism, namely a transcription factor binding to its target promoter. At a
higher level of abstraction, the different expression patterns in the data could be caused
by the presence of distinct cell states. For example, a certain stressor in the environment
of some of the cells might trigger the rapid response of n different genes, all of which
increase their rate of transcription within minutes [16]. Even if the response genes do
not interact biochemically with each other, this conditional expression pattern would—by
definition—result in a non-zero n-point MFI. These different cell states would still be

1This is, however, not always the case, as discussed in Section 1.4 and [26, 285]
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the result of biochemical mechanisms [66, 16], but the relative likelihood of expression
patterns would reflect the relative proportions of the different states, rather than the bio-
chemical mechanisms directly. Finally, the different expression patterns could correspond
to cells of different types. When inferring interactions on a data set that contains both
astrocytes and neurons, for example, the relative likelihood of expression patterns could
be dominated by the difference in expression of marker genes for neurons and astrocytes.
Each of these three possibilities lends a different interpretation to the MFIs, and should
be validated differently. Note that they are not disjoint explanations—cell state transi-
tions are driven by biochemical mechanisms, and there is no clear distinction between
cell state and cell type. Most likely, the interactions will reflect a combination of these
three different structures. Still, I will explore these modes of explanation separately, and
start with exploring the mechanistic content of the estimated interactions, which is the
focus of this chapter.

4.1.2 Interactions as biological mechanism
The hypothesis that MFIs reflect biological mechanisms would be supported by finding
that the interactions agree with known biological pathways and preferentially occur be-
tween genes whose proteins have previously been annotated to physically interact. To
investigate this possibility, I compared the network of MFIs with the association networks
from various established gold standard biological sources, as collected in the Pathway
Commons database [219]. These Pathway Commons associations are separated into dif-
ferent categories of association—regulatory, protein binding, phosphorylation, etc.—so
seeing which category the MFIs most closely resemble can help develop a mechanistic
interpretation of the MFIs. Still, validation is not straightforward. These databases of
associations are notoriously incomplete [118, 123, 17], so they are mainly useful to iden-
tify true positives. Moreover, the databases tend to be organism-wide, or even integrate
knowledge across different organisms and throughout developmental stages, whereas I
inferred interactions on only a few cell types from the mouse brain, at only one develop-
mental time point per estimation. The interactions in the database that only occur in
other cell types, tissues or organisms should therefore not result in an MFI, but would
incorrectly show up as false negatives in a naive validation. In addition, databases of
interactions commonly focus only on protein-protein interactions, while the MFIs reflect
dependencies at the transcriptional level. Furthermore, the MFIs are defined (for the pur-
pose of this thesis) in a context of unexpressed genes, whereas gold standard databases
aim to capture the in vivo interactions that occur in a diverse and dynamic transcrip-
tomic context, which might lead to different conclusions. Finally, the construction of
gold standard networks is also known to be biased in different ways. Since genes that
show significant coexpression patterns are more likely to be the subject of a follow-up
study, many databases are biased towards sets of genes that correlate strongly in at least
some tissues [94], and genes that are already known to play a role in important pathways
or disease tend to be overstudied and overrepresented in gold standard networks [228].

An orthogonal measure of mechanistic association is in terms of gene ontology. A
gene ontology is a DAG where the nodes are biological annotations, whose specificity
increases along the orientation of the edges. In a method first described in [112], a
gene gets assigned to nodes in the DAG, and a pair of genes can be assigned their last
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common ancestor’s node. The more specific their last common ancestor’s annotation
is, the more semantically similar the two genes are. Depending on what kind of biology
the nodes in the ontology graph describe, one can assign different kinds of semantics to
the similarity. For example, in the ontology graph where nodes are subcellular locations
and genes get assigned their products’ primary location, semantic similarity quantifies
the colocalisation of gene products. The concept of semantic similarity and different
gene ontologies will be described in more detail in Section 4.2.2. Concordance with
mechanistic ontologies can serve as further evidence that the MFIs reflect mechanisms.

4.1.3 Aim and outline of this chapter
This chapter aims to describe the relationship between biological mechanism and higher-
order dependencies in gene expression data, as revealed through model-free interactions.
To establish a biological ‘ground truth’ Section 4.2.1 introduces the Pathway Com-
mons database as a ‘gold standard’ network, and Section 4.2.2 discusses the various
ways ontologies can be used to quantify biological relationships. Before the MFIs can be
calculated, all Markov blankets have to be estimated, so their definition is recapitulated
in Section 4.2.3. Their estimation requires the quasi-causal graph of conditional depen-
dencies, and two different causal discovery algorithms are introduced: the Peter-Clark
algorithm (Section 4.2.4) and an iterative MCMC procedure (Section 4.2.5). Sec-
tion 4.2.6 introduces and describes the different data sets under consideration: mouse
neurons and astrocytes at two developmental stages.

Before validating the MFIs against biology, I first investigated how much data is needed
to estimate the MFIs in Section 4.3.1, and how robust the estimation procedure is with
respect to changing the cells (Section 4.3.2) and the genes (Section 4.3.3) in the data
set. I then quantified the biological content of the MFIs by first comparing functional
enrichment of the different orders of interactions in Section 4.3.4. Section 4.3.5
shows that the MFIs disentangled direct from indirect effects. Section 4.3.6 compares
the semantic similarity of correlated and interacting genes, and Section 4.3.7 explores
how higher-order interactions relate to combinatorial transcription factor binding. Sec-
tion 4.3.8 validates individual MFIs and coexpression networks against the Pathway
Commons database, Section 4.3.9 associates higher-order interactions to genetic logic
gates, and Section 4.3.10 shows how the MFI networks were modular with respect
to protein function. Finally, Section 4.4 reflects on the results from this chapter, and
motivates the transition to state inference in Chapter 5.

4.2 Methods

4.2.1 Validation against ‘gold standard’ networks
To validate the MFIs against known biological mechanisms, I compared the network
of MFIs with the Pathway Commons database, which aggregates human pathways and
mechanistic relationships across multiple sources, including the Reactome and Kegg
databases [219]. However, these databases are incomplete, not tissue-specific, and con-
flate different kinds of molecular mechanisms. Consequently, these databases mostly
identify true positives, as false positives might be due to the incompleteness of the
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databases, and false negatives due to tissue-specificity, imperfect orthology mapping,
or because the ground truth molecular association does not affect RNA concentrations.
Consequently, I only quantify the performance by the precision of the MFIs relative to
Pathway Commons, and not the recall. Pathway Commons categorises the associations
by mechanism, and I focused on the following categories:

1. A controls the expression of B.

2. A controls a state change of B (e.g. through a post-translational modification of
the protein B).

3. A is in a complex with B.

4. A interacts with B (i.e. both participate in a molecular interaction according to a
particular kind of digital bioinformatics object known as PSI-MI [132]).

5. Miscellaneous: all other annotations.

More details on these categories can be found at https://www.pathwaycommons.
org/pc2/formats. I downloaded version 12 of the Pathway Commons database
from pathwaycommons.org/archives/PC2/v12 (last modified on September
18, 2019), and used gProfiler’s orthology API (g:Orth) to map human genes to
mouse genes. Since MFIs are symmetric, I symmetrised the Pathway Commons database,
making each association bidirectional. A true positive is then defined as an unordered pair
of genes (A, B) that appears as a pair in the symmetrised Pathway Commons database
and also appears together in an MFI.

4.2.2 Validation against gene ontologies
4.2.2.a Ontological enrichment

Annotating genes and their products with their biological function is not straightfor-
ward, as one gene can have many distinct roles, and multiple genes can have similar
roles. Furthermore, descriptions of biological function are not independent but instead
form a hierarchy. For example, the genes that aid with cell cycle progression are a super-
set of those that regulate DNA replication, which are a superset of those that play a role
in ‘mitotic recombination-dependent replication fork processing’ (in mice these are the
genes Brca2 and Rad51). However, the full hierarchy is not necessarily tree-like, as a
particular function can be part of multiple processes higher up in the hierarchy. The Gene
Ontology consortium (GO, [15, 3]) aims to standardise these descriptive terms and their
hierarchy. As of September 2022, there are 43,558 terms included in the GO database,
with 7,483,496 annotations across 1,480,259 gene products, across 5,213 species. These
terms and annotations are distributed across three disjoint graphs, each describing a par-
ticular domain of annotations. The biological process graph (GO:BP) contains 28,140
terms and describes “the larger processes, or ‘biological programs’ accomplished by multi-
ple molecular activities”, i.e. more abstract processes that do not necessarily correspond
to mechanistic pathways. The Molecular Function (GO:MF) graph contains 11,238
terms and describes “activities that occur at the molecular level, such as ‘catalysis’ or
‘transport’”. Finally, the Cellular Component (GO:CC) graph contains 4,180 terms and
describes “The locations relative to cellular structures in which a gene product performs
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a function”, i.e. the terms correspond to locations in the cell, not to gene functions.

A set of genes thus has a corresponding set of associated ontology terms. Given a set S of
genes, terms that appear more often than expected by chance are called enriched. A term
t—seen as the set of all associated genes—has a certain size: the total number of genes
annotated to it, and under the null hypothesis that S is a uniform and independent sample
from the set of all genes G , the size of the intersection S ∩ t follows a hypergeometric
distribution. That is, the intersection size is distributed as

p(|S ∩ t| = k) =

(
|t|
k

)(
|G|−|t|
|S|−k

)
(

|G|
|S|

) (4.1)

Observed intersection sizes can be used to assign a significance to the enrichments, and
an m-fold enrichment corresponds to the situations where

|S ∩ t|
Ep[k] = m (4.2)

where Ep[k] is the expected value of k under the hypergeometric distribution in Equation
(4.1). Using this, sets of genes can be understood through the terms they are enriched
in. To quantify the enrichment of a set of genes, a background set of genes has to be
defined, typically chosen to be the set of genes that could have ended up in the set of
interest, although note that this definition can be ambiguous. Since the genes are chosen
in a data-driven way from the set of all genes, one could argue that the background set
should include all genes for which the gene expression was measured. However, I chose
the more conservative background of only those genes that remained in the final MFI
estimation step (typically a few hundred to a thousand genes in total).

Testing all gene sets for enrichment in all possible terms involves many tests, so the
statistical significance threshold should be accordingly corrected. However, the validity of
both Bonferroni correction and Benjamini-Hochberg false discovery rate analysis depends
on the dependency among the hypothesis tests, so correcting p-values for multiple testing
can be misleading when the terms have a hierarchical structure like in ontology graphs
and pathways. To remedy this, I queried enrichment with the gProfiler API which
applies a pre-computed g:SCS multiple hypothesis correction to each p-value that takes
the hierarchical structure into account. gProfiler can do this for more than just
gene ontologies, so I used g:Profiler’s API [211] to query enrichment in terms
from the following databases: Gene Ontology (molecular function, biological process,
and cellular component), KEGG pathways, Reactome pathways, WikiPathways, Transfac
transcription factor binding site predictions, MirTarBase miRNA targets, CORUM protein
complexes, and Human Phenotype ontology.

4.2.2.b Semantic similarity

Pairs of genes can also be compared in terms of their gene ontology. If two genes are
somehow ‘close’ on the ontology graph, they might be mechanistically related as well. A
concept known as semantic similarity makes intuition precise. Two genes can be called
similar if their annotations share a specific ancestor on an ontology graph. Different
graphs and definitions of specificity lead to different notions of similarity. One of the
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oldest and most common measures of the specificity of a term t—referred to as the
Resnik method [215]—is the surprisal of that annotation, relative to all annotations in
the ontology: St = − log |τ(t)|

N , where τ(t) is the set that includes the term t and all its
descendants, and N is the total number of terms in the ontology. While not necessarily
tree-like, the ontology graphs do form a well-defined hierarchy, so any set of terms will
have a ‘last common ancestor’ term, namely the most informative common ancestor term
(MICA, the common ancestor with the largest surprisal). The Resnik method defines
the semantic similarity sims,t of two terms s and t as the surprisal of their MICA:

sims,t = − log |τ(MICA(s, t))|
N (4.3)

However, a more modern method—Wang’s method [289]—assigns a similarity score
based on not just the MICA, but on all ancestors. To account for the relative distances
to each of the terms, each ancestor gets weighted by a term that depends on the local
topology. Throughout this thesis, I will use Wang’s method to define the semantic
similarity between ontology terms. Since genes often get assigned to multiple terms, the
semantic similarity of two genes is an aggregate of the similarity of their corresponding
terms—typically an average or the maximum. To aggregate the term similarities into
a gene similarity, I use the so-called best-match average (BMA) method: Given two
genes g1 and g2—with associated sets of terms S and T of size m and n, respectively—
construct the m×n matrix M where Mij = sim(Si , Tj). The semantic similarity between
g1 and g2 is then

simBMA(g1, g2) = 1
m + n

 n∑
i=1

max
j

Mij +
m∑

j=1
max

i
Mij

 (4.4)

This essentially matches terms from S and T so that the mutual similarity is maximised,
and then sets the similarity of g1 and g2 to the mean across all these best matched
pairs. In practice, I use the implementation of these similarity scores in the GOSemSim
package [312].

4.2.3 Markov blankets and boundaries
The role of Markov blankets in the estimation of MFIs was introduced and discussed
in Section 3.2.2. This section mainly concerns their practical estimation. If the joint
distribution p(X ) is Markov compatible with a DAG G, the minimal Markov blanket of a
node Xi is composed of the parents, children, and co-parents, or spouses, of Xi . In other
words: the Markov blanket of Xi is composed of all nodes reachable by a single step on G,
or a single step on Gop, or a step on G followed by a step on Gop, where Gop is the graph
G with all arrows reversed. Given the adjacency matrix A corresponding to G, all Markov
blankets are thus encoded in the matrix MB = A+AT +ATA (note that the symmetry
implied by Lemma 2 is immediately obvious in this case: MB = MBT ). Note that if A is
a Markov blanket for B, then A∪ C is also a Markov blanket for B, for any C . That is,
conditioning on more than the minimal Markov blanket might increase the variance of
the estimator, but it does not introduce a bias. To estimate the matrix A, I combined
two causal discovery algorithms: the constraint-based Peter-Clark algorithm (covered in
Section 4.2.4) and a score-based MCMC method (described in Section 4.2.5). It should
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be noted that inferring the causal graph from purely observational data is impossible in
most cases. Therefore, the edges from the adjacency matrix should not be interpreted
as true causal links. To emphasise this, I will refer to the associated graph as a quasi-
causal graph throughout this thesis. This is not a limiting factor in the estimation of
the interactions, as the graph is only used to decide on conditional dependencies. True
causal discovery and regulatory inference generally require a mix of observational and
interventional data, for example using large-scale perturb-seq experiments.

4.2.4 The Peter-Clark algorithm
Finding the graph of dependencies among n variables requires each pair to be tested
so can be done with

(
n
2

)
= n(n − 1)/2 dependency tests. In most cases, this O(n2)

scaling means it is a tractable problem. The scaling becomes much worse for conditional
dependencies. There, for each pair, at worst 2n−2 conditional dependency tests have to be
performed (one for each subset of the remaining nodes). This exponential scaling makes
constructing conditional dependency graphs intractable in most cases. The PC algorithm
mitigates this scaling by doing the dependency tests in a convenient order, iterating over
levels of increasingly stringent conditioning, and eliminating possible dependencies at
each iteration.

4.2.4.a Causal discovery with oracles, skeletons, and colliders

This section describes the structure of the Peter-Clark (PC) algorithm, assuming access
to a CD-oracle: an imaginary source of perfect information on conditional dependence
between any two variables. Replacing this oracle with practical hypothesis tests will be
covered afterwards.

The algorithm starts in the most conservative way, by assuming that all variables are
dependent on each other, i.e. with the fully connected (undirected) conditional depen-
dency (CD) graph G. This is most conservative as it leads to the largest Markov blankets
possible. The algorithm then iterates and eliminates dependencies at increasingly high
levels. At level 0, no conditioning is done, and the CD-oracle is consulted for each pair
{Xi , Xj}. If Xi ⊥⊥ Xj , the edge between Xi and Xj is removed from G. At level 1, only
those pairs that are still connected in G are considered. For each pair {Xi , Xj}, a node
Y that is still adjacent to Xi or Xj in G is chosen. If Xi⊥⊥ Xj | Y , the edge between Xi
and Xj is removed from G. This is repeated for all neighbours of Xi and Xj . Then, at
each higher level ℓ, instead of picking a single node Y , a set Z of ℓ neighbours of Xi or
Xj is chosen. The edge between Xi and Xj is then removed if and only if Xi ⊥⊥ Xj | Z .
This is done for all such subsets. This process terminates when a level ℓmax is reached
such that no node has a degree > ℓmax, at which point there are no more dependencies
tests to do. At this point, G is an undirected graph called a skeleton. Note that this
skeleton does not contain all information on conditional dependence. If the underlying
DAG contains a collider structure X → Y ← Z , then X ⊥⊥ Z | Y would not hold,
while if the underlying structure was a chain X → Y → Z or a fork X ← Y → Z ,
then X ⊥⊥ Z | Y would hold. While the skeleton does not distinguish between these
two scenarios, the conditional dependency structure does, and edges can be oriented
accordingly by consulting the oracle for each potential collider triplet. Sometimes, with
all colliders identified and oriented, more edges can be oriented by requiring that no
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other colliders exist other than the ones found in the previous step, and making sure
that no oriented cycles appear. The PC algorithm terminates when all these have been
oriented.

Even with a perfect dependency oracle, the DAG compatible with the joint distribution is
thus only identifiable up to an equivalence class of completed partially oriented DAGs, or
CPDAGs. Furthermore, the claim that G accurately captures the dependency structure
of joint distribution p(X ) implicitly assumes that the pair (p,G) has the following three
properties:

1. Causal Markov property of the pair (p(X ),G): Each variable Xi ∈ X is indepen-
dent (i.e. the joint probability factorises) of all its non-descendants in G, when
conditioned on its parents in G.

2. Faithfulness property of the pair (p(X ),G): The independencies implied by G are
the only independencies that hold in p(X ).

3. Causal sufficiency property of G: There are no unobserved variables with more
than one descendant in X .

This is the PC algorithm as it was originally introduced. It suffers from a dependence
on the order in which the tests are done since edges are immediately removed upon
discovering an independency. This problem can be solved by removing edges only after
doing all tests at a certain level, at the cost of doing more tests within each level. This
order-independent version is the one used in this thesis and is generally referred to as
the stable PC algorithm.

4.2.4.b Practical dependency tests

Unfortunately, CD-oracles do not exist. Identifying conditional independencies is instead
done with hypothesis tests, and requires a significance threshold at which to reject the
null hypothesis. For most commonly used tests, the null hypothesis is that there is
no dependency. To be conservative, I choose a relatively large significance threshold
p ≤ 0.05 at which to reject the null hypothesis. Note that this is different from the
normal use of statistical tests, in which a smaller α is more conservative. If the null
hypothesis is not rejected, then it is concluded that Xi⊥⊥ Xj | Z , and the edge between
node i and j is removed from the CD-graph G.

For categorical/binary variables, dependency tests can be carried out with only the con-
tingency table of the samples. Traditionally a χ2-statistic is constructed as

X 2 =
N∑

i=1

(Oi − Ei)2

Ei
(4.5)

where the sum goes over all N joint configurations in the contingency table (i.e. {00, 01, 10, 11}
in the case of binary variables). Here Oi is the observed incidence of joint state i , and
Ei is the expected incidence of joint state i , as predicted from the mean of each vari-
able. This statistic follows a χ2-distribution (with 2 degrees of freedom) under the null
hypothesis of independence, and can thus be used to test for dependence. In practice, a
G-test tends to perform better and is the one used by the R-package pcalg [55]. The
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statistic G is constructed as:

G = 2
∑

i
Oi · ln

(
Oi

Ei

)
(4.6)

which follows a χ2-distribution with the same number of degrees of freedom more ro-
bustly in some cases. Note that this statistic is essentially the KL-divergence between
the observed distribution and the distribution expected from the marginals.

4.2.4.c Ambiguity

Consider a potential collider triplet in the skeleton A− B − C . If it is a collider, then A
and C are dependent, conditioned on B and all subsets of neighbours of A and C . In the
baseline (i.e. non-stable) PC algorithm, this triplet is oriented as a collider if B was not
part of the conditioning set that led to the removal of the edge between A and C . This
introduces another source of order dependency. To deal with this, the authors of [209]
propose an algorithm they call conservative PC (CPC) in which the triplet is only oriented
as a collider structure when B is in none of the sets Z ⊆ adj(A) ∪ adj(B) such that
A⊥⊥ C | Z . If B is in all such separating sets, it is identified as a non-collider. Otherwise,
the edge is left as ambiguous. This, however, is too conservative in most cases, and the
authors of [55] propose what is called the majority rule, in which the triplet is oriented
as a collider if B appears in fewer than half of all sets Z that make A⊥⊥ C | Z , and
identified as a non-collider otherwise2. Note that both CPC and the majority rule make
the orientation procedure independent of the node ordering. Throughout this thesis, I
orient edges with the majority rule using the stable PC algorithm as implemented in the
R-package ParallelPC [146] that parallelises the pcalg package [55].

A final source of ambiguity is conflicting directions, e.g. when there is evidence for
A → B ← C as well as B → C ← D. The baseline PC algorithm just overwrites
all edges, which reintroduces an order dependence here. Instead, I marked edges with
conflicting directions as bidirectional, fully preserving order independence.

4.2.5 Optimising the causal graph with MCMC methods
The PC algorithm is an example of a constraint-based method for causal discovery—it
evaluates DAGs by verifying the constraints implied by causal structures. In contrast,
score-based methods assign each DAG a numerical value based on how well it fits the
data. Score-based methods are computationally more expensive but tend to perform
better when tractable. Score-based methods quickly become intractable because the
number of DAGs to be scored grows super-exponentially with the number of nodes. The
number NDAG(n) of labelled3 DAGs with n nodes is listed in the OEIS [245] as entry
A003024 for n < 15, at which point there are around 1.4 ∗ 1036 possible DAGs. In
general, all one can say is that it is bounded as 2(n

2) ≤ NDAG(n) ≤ 3(n
2) (though there is

a recursive formula [218]). Simply scoring each DAG separately is thus impossible, so a
score-based causal discovery algorithm has to be based on an efficient scoring system.

2This introduces a new parameter in the cutoff, and for the purpose of this thesis, setting the cutoff
at a higher fraction would be more conservative, since this leads to more colliders, which increases the
size of the Markov blankets.

3i.e. no node permutation symmetry
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In [85], a new way to enumerate and score DAGs was introduced, based on their topolog-
ical ordering. Each graph can be assigned an ordering π≺ on its nodes by demanding that
each node comes before its parents in the ordering. For example: The collider structure
A → B ← C is compatible with the orderings π≺ = (B, A, C) and π≺′ = (B, C , A).
The relationship between graphs and orderings is not a one-to-one map; a graph can
be compatible with multiple orderings, and an ordering can be compatible with multiple
graphs. This enumeration led to an algorithm called order-MCMC that constructs a
Markov chain over the space of orderings, rather than the space of DAGs. It optimises
the DAG structure with respect to an empirical distribution by scoring each ordering, and
the effect of changing an edge (details in [85]). Scoring an order takes 2n evaluations
of the score function, which is still too slow for large n, but setting a maximum K on
the number of parents a node can have reduces this complexity to n(K+1). To obtain an
estimate for K , the authors of [141] suggest constraint-based methods like the PC algo-
rithm. Note that MCMC sampling based on scoring orders is biased towards DAGs that
appear in many orders. The empty graph, for example, is compatible with every order.
A different MCMC scheme (also described in detail in [141]) called partition-MCMC
scores DAGs differently and no longer suffers from this bias. In this thesis, however, I
will only use order-MCMC, as it forms the basis of the main contribution of [141]: an
algorithm called iterative-MCMC. Note that order-MCMC is efficient because the
limit on the number of parents restricts the search space, but it is also limited in this
sense. To preserve the efficiency but relax the search space, iterative-MCMC starts
with a search space H0—e.g. the terminal state of the PC algorithm—but allows each
node to have up to one extra parent outside this set. It then uses order-MCMC to find
the maximum a posteriori (MAP) DAG G∗ in H0, which is converted to a CPDAG. The
next iteration then starts with the search space H1 = H0 ∪ G∗, where all edges in G∗

are added to the search space. order-MCMC is then used again to find the MAP DAG,
starting from H1. The algorithm terminates when Hi+1 = Hi , i.e. when adding parents
no longer results in a better DAG. If the search space grows too much, the algorithm will
consume too many resources, so the authors suggest imposing a limit on the maximum
number of parents any node can have. As long as the final search space does not include
any nodes that have reached the maximum number of parents, this hyperparameter does
not affect the results. Throughout this thesis, the search space is initialised with the PC
algorithm. The significance threshold α is set to 0.05. The authors of [141] note that
increasing α mostly increases false positives, and does little to the true positive rate, so
α could be decreased if the PC algorithm takes up too many computational resources,
or increased if the iterative-MCMC scheme needs to add too many extra edges.

The final search space contains the MAP DAG, but since a DAG can only be identified
up to its Markov equivalence class, I convert this MAP estimate into its correspond-
ing CPDAG. This MAP CPDAG is not necessarily a DAG—it can contain bidirectional
edges—but it is at least as conservative as the most conservative DAG it is compatible
with. By calculating the Markov blankets as MB = A + AT + ATA, where A is the
adjacency matrix of the MAP CPDAG, one is left with Markov blankets that are at least
as conservative as the most conservative Markov blankets compatible with the CPDAG.
However, the MAP DAG is just one element from the final search space. Even more
conservative, therefore, is to use the union of the complete final search space as the
basis for the Markov blankets. Throughout this thesis, I will use the final search space as
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the basis for the Markov blankets, and thus the MFI estimation. The graph encoded by
the adjacency matrix of this search space will be referred to as the MCMC graph. The
MAP CPDAG will only be used to interpret the directional structure around interacting
genes, as the CPDAG is easier to interpret causally, and sparser. I refer to the graph
that defines the Markov blankets as the quasi-causal graph, as it does not necessarily
reflect the true causal structure, and only aims to capture the conditional dependencies
in the data.

In practice, I use the implementations of order-MCMC and iterative-MCMC from
the R-package BiDAG ([259]). Since the gene expression is binarised, I scored DAGs
using the BiDAG implementation of the Bayesian Dirichlet equivalent (BDe) score [105].

4.2.6 Data sets
I wanted to explore different gene expression data sets. Requirements were that they
contained single-cell gene expression data, preferably generated with similar technology,
on many cells (> 100k to have a similar number of observations as in the RBM esti-
mation from a previous chapter) of different types that could be separated. Since the
data will be binarised, the count matrices should be relatively sparse, so a relatively
low sequencing depth should not pose a problem. I chose two different mouse brain
data sets—one constructed from embryonic mouse brains (Section 4.2.6.a), and one
from adolescent mouse brains (Section 4.2.6.b). These two data sets contained suffi-
cient cells, used the same library generation protocol and sequencing technology (10X
Chromium chips, Illumina sequencing, and CellRanger demultiplexing/alignment), and
both contained neurons as well as glial cells.

4.2.6.a Developmental mouse brain

The developmental data set corresponds to the 10X Genomics MCD gene expression
data set, already introduced in Section 2.2.5.a. In particular, I removed doublets as in
Section 2.2.5.b, and applied the same QC filters as in Section 2.2.5.c. After all cells
and genes were selected, the data was binarised as in Section 2.2.5.f. However, the cells
and genes were annotated and selected using a different method. I used the Louvain-
clustering provided by 10X Genomics, and identified upregulated (with respect to all other
cells) marker genes using the R-function scran::findMarkers. Cluster 7 had top
10 marker genes (all at FDR< 10−10) {Syt6, Gm27032, Slain1, Pbx3, Rgs8, Fgf3,
Nkx2-3, Otor, Six3, Myh7}. All genes in boldface are listed on mousebrain.org/
adolescent/genes.html [313] as markers for CNS-neurons while the other genes
are not markers for any cell type (except for Rgs8 which marks trilaminar cells). Further-
more, when calculating markers against specific other clusters, Dlx2, Dlx5 and Dlx6os1
appeared as top markers, which are known to control GABAergic neuron differentiation
in developing mice [192]. Cluster 10 had top 10 marker genes (all at FDR< 10−6)
{Gm11627, Abhd4, Mpv17, Cldn10, Dhrs1, Thbs3, Aldoc, Prdx6, Gm20515, Chil1}.
All genes in boldface are listed on mousebrain.org/adolescent/genes.html
as markers for astrocytes, while the other genes are not listed as markers for any cell
type. However, Aldoc is a canonical astrocyte (and Purkinje cell) marker, and Chil1 was
found to be associated with astrocytes in [34]. I therefore concluded that cluster 7 is
composed of neurons, and cluster 10 is composed of astrocytes. Note that I annotated
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data set Nc Ne µUMI µb

Devel. neurons 60338 19768 0.11 0.053
Devel. astrocytes 23900 19272 0.17 0.072
Adol. neurons 20174 21094 0.14 0.066
Adol. astrocytes 19377 18702 0.051 0.030

Table 4.1: Summary of the two data sets used in this chapter. Nc : total number of cells.
Ne: total number of genes expressed. µUMI: mean number of UMIs across all genes and
cells. µb: mean expression across all genes and cells after binarisation.

embryonic mouse cells based on marker genes inferred in adolescent mice. Since the mice
were late developmental (E18.5), and since there was a clear cell type signal present,
the markers were deemed appropriate.

4.2.6.b Adolescent mouse brain

In addition to the developmental data set, I studied a data set of adolescent brain
cells. The Mouse Brain Atlas [313] contains 160,796 QC’d type-annotated transcrip-
tomes from various regions of the brain, taken from male and female mice at postna-
tal day 12 to 30 (referred to as P12-P30). I downloaded the expression data for the
astrocytes and CNS-neurons from mousebrain.org/adolescent/loomfiles_
level_L6.html [313] on April 26, 2021. Barcoded cDNA libraries were created us-
ing a 10X Genomics single cell v1 kit. The authors demultiplexed and aligned all cells
using the CellRanger software. Likely doublet transcriptomes were already removed
by the authors [313]. To balance the cell counts of the adolescent astrocytes and neu-
rons, only neurons from mice that were younger than 22 days (P22) were kept, which
resulted in final data sets of 19,377 astrocytes and 20,174 neurons. After identifying the
highly-variable genes, all expression levels were binarised as in Section 2.2.5.f.

4.2.6.c Summary of data sets

Table 4.1 shows several summary statistics of the four data sets. To balance cell counts
between the adolescent and developmental data sets, I subsampled the developmental
cells to a more homogeneous collection by only keeping cells from one of the two mice
(mouse B). The fact that the lncRNA Xist is expressed in these cells indicates that
mouse B was female. This resulted in more than 60k developmental neurons, and over
20k astrocytes. A similar number of genes were expressed in the four data sets, around
20k. Note the difference in the mean expression in terms of UMI counts. The adolescent
astrocytes contained many fewer unique molecules than the other data sets, an effect
that was still visible in the binarised data. This difference is further discussed and explored
in Section 4.4.

4.3 Results
As this chapter contains the first MFI estimates on gene expression data, I started in
Sections 4.3.1, 4.3.2 and 4.3.3 by quantifying how robust the estimates were with respect
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to the underlying data. In Sections 4.3.4 to 4.3.10 I then quantified the mechanistic
content of the MFIs and validated the interactions against known biological functions
and interactions of the gene products. On each data set, I calculated all 1- and 2-
point interactions, but only 3-point interactions among genes that are connected on the
MCMC graph, as calculating all 3-points would require in the order of 109 estimations.
From each of the data sets, I only kept the top N most highly variable genes (before
binarisation), where N will be specified in each case.

Throughout this chapter, the MFIs were compared to coexpression networks based on
Pearson correlation. This was in part useful as a benchmark, to quantify how well
different networks performed on the various metrics under consideration, but more im-
portantly served as an indication of exactly what kind of structure is missed by correlation
networks. The significance threshold for MFIs, based on the finite sample variance in
bootstrap resamples, was set between α = 0.1 and α = 10−4, depending on context and
if large sample sizes were required. Note that any F < 10−3 corresponds to the highest
possible significance when the F-value is based on 1,000 bootstrap resampled data sets,
because then F = 0.001 if exactly one bootstrap resample led to an estimate with a
different sign.

4.3.1 Estimation requires thousands of cells and hundreds of
genes

An n-point interaction can be estimated in n different ways, using the n different Markov
blankets (see Section 3.2.2). An interaction is called estimable if at least one of these
Markov blankets resulted in a well-defined and finite interaction, and for which all Nbs
bootstrap resampled estimates were well-defined and finite. An interaction is called
significant at level α if at least one of its possible estimates was significant at level α,
i.e. had an F-value ≤ α. The fraction of estimable (significant) n-point interactions is
ρe(s) = Ne(s)/

(
Ng
n

)
, where Ng is the number of genes, and Ne(s) is the number of estimable

(significant) interactions. As the total size of the data set increases, ρe is expected
to asymptotically approach 1, whereas ρs should approach some value 0 ≤ ρs ≤ 1,
depending on the density of the network of interactions. Increasing the total number
of genes included in the analysis should increase the mean size of the Markov blankets,
but only up to a point, as genes are not expected to interact with arbitrarily many other
genes. As Markov blankets increase, fewer interactions are estimable, and the ones that
are estimable have increased variance so become less significant.

To see if these intuitions hold in practice, I calculated MFIs at up to third order in
different subsets of neurons from the developmental data set, keeping only the Ng most
highly variable genes. All possible 1- and 2-point interactions were calculated, but
I only calculated the 3-point interactions among triplets that were connected on the
MCMC graph. To get sufficiently large sample sizes across the different estimations, the
significance threshold was set to α = 0.01. Figure 4.1 shows that for a fixed number of
genes, the fraction of estimable 1-, 2-, and 3-point interactions increased sharply with
the number of cells at low cell number. The fractions of significant and estimable 1-
and 2-point interactions both showed signs of plateauing after around 10k cells, but the
fractions of 3-point interactions seem to still benefit from more data. At a fixed number
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of cells, increasing the number of genes Ng led to larger Markov blankets (see Figure
4.1d), which in turn decreased the fraction of estimable and significant interactions. The
mean size of the Markov blankets stabilised after including around 200 genes, at which
point the fraction of estimable interactions that were significant also stabilised for orders
1, 2, and 3. I therefore concluded that at least 200 highly variable genes should be
included for effective estimation. Note that this only quantifies how many interactions
are estimable/significant. Whether individual interactions are robust is quantified in the
next sections.

4.3.2 Robustness to cell selection
If the interactions reflect biology, rather than technical noise in the data, then the inter-
actions should be reproducible across different sets of cells from the same homogeneous
population. To investigate this, I randomly selected two disjoint sets of 20,000 cells
from the developmental neurons and calculated MFIs at orders 1, 2, and 3 in each of the
two data sets. I considered two ways quantifying the reproducibility. Most straightfor-
ward was demanding that the 95% confidence intervals of each interaction, significant
at level α, overlapped in the two data sets. This answered the question if the interaction
strength was reproducible. However, the precise value of the estimate is less important
than the sign of the significant interactions. I therefore also quantified reproducibility
by the fraction of interactions that were significant at level α with the same sign in the
two data sets. In Figure 4.2, the fraction of reproducible MFIs is shown, for significance
thresholds of α = 1 (all interactions), α = 0.05, and α = 10−4 (perfectly significant).
It can be seen that the reproducibility of confidence intervals was independent of the
significance threshold, and worst for 1-point interactions. However, the 1-point interac-
tions had perfectly significant sign reproducibility at all significance thresholds. The sign
of the 2- and 3-point interactions became more reproducible as the estimate became
more significant. This illustrates both that the significant interactions were robust to
cell selection, and that the F-value is a good measure of significance and reproducibility.
All these fractions were estimated on a minimum of 83 interactions (3-point interactions
with F ≤ 10−4), but typically on hundreds to thousands of interactions.

4.3.3 Robustness to gene selection
Omitting dependent variables can introduce an estimation bias and lead to false positives
and false negatives (as was seen previously in Sections 2.3.3.c and 3.1.1). Estimating
the same interactions on a fixed set of cells, but an increasing number of genes, reveals
how individual interactions depend on the selection of genes. Let I (N) be the value
of interaction I when estimated on a total of N genes. To investigate how robust the
estimate of an n-point interaction In is with respect to a change in N , I estimated I (N0)

n in
5,000 neurons from the developmental data set. The number of genes was then increased
to Ng > N0, and a new estimate I (Ng )

n was generated. The fraction of n-point estimates
I (Ng )
n (of which there are

(
N0
n

)
) where the 95% confidence interval (CI) overlaps with the

95% confidence interval of I (N0) quantifies the robustness of the estimates. The fraction
of all interactions (that are estimable in both cases) for which these confidence intervals
overlapped is shown in Figure 4.3a for N0 and Ng ranging from 200 to 700. It can be seen
that the interactions were robust to increasing the number of genes: 1-point interactions
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(a) Fraction of estimable and significant interactions (500 genes)

(b) Fraction of estimable and significant interactions (5k cells)

(c) Fraction of estimable interactions that was significant (5k cells)

(d) Mean size of Markov blanket (5k cells)

Figure 4.1: The fraction of estimable and significant (at α = 0.01) interactions increases
with the number of cells, and decreases with the number of genes. Shown are the
interactions estimated on up to 700 genes in up to 60k developmental neurons.

were the least robust, but more than 93% of the estimable 1-point interactions agreed
in CI when increasing the number of genes from 200 to 700. Under the same increase
in the number of genes, more than 99% of estimable 2-point interactions agreed. The
3-point interactions seemed perfectly robust, but this could be attributed to the fact that
they had a larger variance and were harder to estimate, so there were fewer to compare.
For downstream analysis, the main quantity of interest is the sign of the significant
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Figure 4.2: Reproducibility across two similar data sets (of 20k cells and 500 genes) of
the 95% confidence intervals was high for the 2- and 3-point interactions, while even
perfectly significant 1-point interactions had overlapping confidence intervals in only 83%
of cases. However, all 1-point interactions agreed in sign, while only the significant 2-
and 3-point interactions were reproducible.

interactions. Figure 4.3b shows the fraction of significant (α = 0.1) interactions that
differed in sign when re-estimating the interaction on more genes. Note that a larger
α is more conservative in this case. As N0 increased, a larger fraction of signs agreed
upon increasing Ng . More than 95% of significant 3-point interactions kept their sign
and significance upon increasing the number of genes from 200 to 700. From this, I
concluded that when more than the 200 most highly variable genes were included, the
interactions up to order 3 were robust with respect to gene selection.
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(a) Agreement of the 95% confidence intervals of all estimable interactions.

(b) Agreement of the sign of significant (α = 0.1) interactions.

Figure 4.3: Upon increasing the number of genes from N0 to Ng , agreement in confidence
interval and sign stabilised after including the first few hundred highly variable genes.
When increasing the number of genes from 300 to 700, all significant 1-point interactions,
more than 98% of 2-point interactions, and around 96% of 3-point interactions kept the
same sign.

4.3.4 Functional enrichment in 1- 2- and 3-point interactors
The results of the previous sections suggest that—at least in the developmental neurons—
the MFI estimates were robust as long as a few hundred highly variable genes were
included, and around 20,000 cells were used. Throughout the rest of this chapter, I
therefore analysed the data sets using the top 1,000 most highly variable genes in each,
keeping 19,377 cells from each data set, as this was the size of the smallest data set
(the adolescent astrocytes). The significance threshold for the interactions was set to
α = 0.05.

Each order of interaction reflects a different kind of dependency, so the different orders
could capture different biology. To separate the order of interaction, I selected three
different sets of genes in each data set. The first set was called the 1-point interactors,
and was composed of those genes that had a 1-point interaction, but did not appear
in any significant 2- or 3-point interactions. Across the data sets, there were between
243 and 497 1-point interactors. The second set was called the 2-point interactors, and
was composed of the genes that appeared in at least one significant 2-point interaction,
and in no 3-point interactions (between 129 and 282 genes across the four data sets).
The final set was called the 3-point interactors, and was composed of the genes that
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Figure 4.4: Genes with only 1-point interactions were depleted in both transcription
factors (TFs, circles) and immediate-early genes (IEGs, squares), while the 3-point in-
teractors were enriched in these genes. This held in three out of four data sets. The
2-point interactors showed no clear enrichment in either of the two classes of gene. The
dashed line indicates the p = 0.05 threshold.

appeared in at least one significant 3-point interaction (between 369 and 475 genes
across the four data sets). To make these sets of comparable size across data sets,
the significance threshold was set at α = 0.05 so that all gene sets contained between
129 and 497 genes. Given a reference list of genes, I then calculated enrichment in
transcription factors (TFs) and immediate-early genes (IEGs)—two important classes of
regulatory genes—with respect to a hypergeometric null hypothesis. For the reference
TFs, I used the 1,623 mouse transcription factors from [116]. For the reference IEGs, I
took the union across the references [275, 277, 279], leading to 108 genes. Enrichment
in these two data sets is shown in Figure 4.4. It can be seen that in all data sets—
except for the adolescent astrocytes—the 1-point interactors were depleted in IEGs, and
to a lesser extent also in TFs. This serves as evidence supporting the hypothesis that
non-interacting genes do not primarily regulate other genes. The 2-point interactors
were neither enriched nor depleted in TFs or IEGs, while the 3-point interactors—except
those from adolescent astrocytes—showed enrichment in both classes of genes. That
3-point interactors are enriched in these regulatory genes serves as evidence supporting
the hypothesis that genes that do interact play a regulatory role in the cell.

A more agnostic approach is to query external databases using gProfiler for enrich-
ment in functional gene annotations. I only report here on the 3-point interactors, as
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Developmental Neurons

Source ID Term pg:SCS-value Fold

GO:BP GO:0021537 telencephalon development 0.003 2.1
GO:MF GO:0008134 transcription factor binding 0.017 2.0
GO:BP GO:0060322 head development 3.6e-11 2.0
GO:BP GO:0007420 brain development 3.8e-10 2.0
GO:BP GO:0030900 forebrain development 0.00017 2.0
GO:BP GO:0007409 axonogenesis 0.0056 2.0
GO:BP GO:0032990 cell part morphogenesis 3.1e-05 1.9
GO:BP GO:0032989 cellular component morphogenesis 8e-06 1.9
GO:BP GO:0048858 cell projection morphogenesis 6.5e-05 1.9
TF TF:M00982 1 Factor: KROX; motif: CCCGCCCCCRCCCC; match cla... 2e-06 1.9
GO:BP GO:0007417 central nervous system development 7.1e-11 1.9
GO:BP GO:0120039 plasma membrane bounded cell projection morpho... 0.00028 1.9
GO:BP GO:0048812 neuron projection morphogenesis 0.00056 1.9
GO:BP GO:0061564 axon development 0.016 1.9
TF TF:M05599 1 Factor: WT1; motif: NGCGGGGGGGTSMMCYN; match c... 7.7e-05 1.9

Developmental Astrocytes

Source ID Term pg:SCS-value Fold

GO:BP GO:0031345 negative regulation of cell projection organiz... 2.3e-05 2.7
GO:BP GO:0010977 negative regulation of neuron projection devel... 0.00053 2.7
GO:BP GO:0006260 DNA replication 0.044 2.5
REAC REAC:R-MMU-1640170 Cell Cycle 0.00012 2.3
REAC REAC:R-MMU-69278 Cell Cycle, Mitotic 0.0003 2.3
GO:BP GO:0051493 regulation of cytoskeleton organization 0.015 2.3
GO:BP GO:0031344 regulation of cell projection organization 4.3e-07 2.2
GO:BP GO:0010975 regulation of neuron projection development 4e-05 2.2
GO:BP GO:0051960 regulation of nervous system development 4e-05 2.2
GO:BP GO:0050767 regulation of neurogenesis 0.00037 2.2
GO:BP GO:0120035 regulation of plasma membrane bounded cell pro... 1e-06 2.2
GO:BP GO:0051129 negative regulation of cellular component orga... 0.00027 2.1
GO:BP GO:0061564 axon development 0.0013 2.1
GO:BP GO:0006974 cellular response to DNA damage stimulus 0.047 2.1
GO:BP GO:0007409 axonogenesis 0.012 2.1

Adolescent Neurons

Source ID Term pg:SCS-value Fold

MIRNA MIRNA:mmu-let-7b-5p mmu-let-7b-5p 0.011 2.1
HP HP:0000729 Autistic behavior 0.00066 2.0
HP HP:0002079 Hypoplasia of the corpus callosum 0.024 2.0
MIRNA MIRNA:mmu-miR-340-5p mmu-miR-340-5p 4e-05 1.9
GO:BP GO:0048667 cell morphogenesis involved in neuron differen... 0.0013 1.9
TF TF:M04506 1 Factor: Egr1; motif: NNMCGCCCMCTCAMWN; match c... 0.01 1.9
GO:BP GO:0061564 axon development 0.019 1.9
HP HP:0007367 Atrophy/Degeneration affecting the central ner... 0.021 1.8
HP HP:0002538 Abnormal cerebral cortex morphology 0.04 1.8
HP HP:0001257 Spasticity 0.011 1.8
HP HP:0000486 Strabismus 0.00083 1.8
HP HP:0000549 Abnormal conjugate eye movement 0.00083 1.8
GO:BP GO:0000904 cell morphogenesis involved in differentiation 0.038 1.8
HP HP:0004305 Involuntary movements 0.00078 1.8
TF TF:M03814 1 Factor: BTEB2; motif: GNAGGGGGNGGGSSNN; match ... 0.01 1.8

Adolescent Astrocytes

Source ID Term pg:SCS-value Fold

GO:CC GO:0031975 envelope 0.0029 1.7
GO:CC GO:0031967 organelle envelope 0.0029 1.7
GO:CC GO:0031090 organelle membrane 4.7e-05 1.5
TF TF:M01273 Factor: SP4; motif: SCCCCGCCCCS 0.0019 1.5
TF TF:M05547 1 Factor: ZAC; motif: KGGGCCR; match class: 1 0.0022 1.5
TF TF:M09692 1 Factor: GKLF; motif: WGGGYGKGGCCN; match class: 1 2e-05 1.4
TF TF:M01588 1 Factor: GKLF; motif: GCCMCRCCCNNN; match class: 1 0.00053 1.4
TF TF:M10278 1 Factor: KLF3; motif: NNNNNNGGGCGGGGCNNGN; matc... 0.0011 1.4
TF TF:M01783 1 Factor: SP2; motif: GGGCGGGAC; match class: 1 0.031 1.4
TF TF:M00243 Factor: Egr-1; motif: WTGCGTGGGCGK 0.045 1.3
TF TF:M07395 1 Factor: Sp1; motif: NGGGGCGGGGN; match class: 1 0.0034 1.3
TF TF:M01858 Factor: AP-2beta; motif: GCNNNGGSCNGVGGGN 0.025 1.3
TF TF:M03567 Factor: Sp2; motif: NYSGCCCCGCCCCCY 5.4e-05 1.3
TF TF:M05547 Factor: ZAC; motif: KGGGCCR 2.6e-05 1.3
TF TF:M08867 Factor: AP2; motif: GCCYGSGGSN 1.1e-05 1.3

Table 4.2: The top 15 most strongly enriched terms among the 3-point interactors in
the four data sets. The developmental data sets showed a clear developmental pattern,
while the adolescent astrocytes sets showed a more mature set of terms. The p-value is
g:SCS corrected. Note that the adolescent astrocytes were enriched in a term from the
MIRNA source, which corresponds to the miRTarBase [117] which annotates targets of
micro RNAs: small (∼ 22 nucleotides) single-stranded, noncoding RNA molecules that
negatively regulate target mRNAs.
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(a) Mean association strength (2-point interaction, its significance, or Pearson correlation) of pairs that are
a distance d apart, as a function of d . Correlations (in green) decayed at a constant rate across a range of
d (roughly up to d = 5 or d = 6), while the coupling strengths (in blue) of the MFIs and their significances
(in orange) mostly decayed between d = 1 and d = 2, and stayed roughly constant beyond that. Error bars
are the standard error on the mean.

(b) Even when estimating the quasi-causal graph and the interactions on disjoint data sets from the same ho-
mogeneous population, the difference in causal proximity between correlating and interacting genes remained
clearly visible.

Figure 4.7: The MFIs disentangle direct and indirect effects, as measure by distance on
quasi-causal graphs.
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4.3.6 Significant interactions increase semantic similarity
Genes whose products interact might be implicated in some of the same biological
processes, or colocalise inside the cell. To investigate this, I calculated the semantic
similarity between interacting pairs of genes. In Figure 4.8, the semantic similarity is
shown for pairs that share a significant 2-, or 3-point interaction (at level α = 0.05), or no
interaction beyond first order at all. For comparison, the mean semantic similarity across
all pairs (regardless of interaction) is also shown, as well as the top N correlating pairs,
where N is the total number of pairs with a significant 2-point interaction. Across the
three different ontologies, a significant interaction increased semantic similarity. The 3-
point interactors consistently outperformed the non-interactors in all ontologies, but most
strongly so in the developmental data sets. However, correlating genes were semantically
as similar as genes that shared a 3-point interaction. The 2-point interactors were
indistinguishable from non-interactors in terms of GO:BP similarity but performed well
in the other two ontologies. These 2-point interactors thus seemed to be local, involving
similar molecules, but did not correspond to any particular biological process or pathway.
This pattern was particularly strong in the developmental data sets, less so for the
adolescent neurons, and absent in the adolescent astrocytes, which showed no clear
pattern.

Figure 4.8: Shown are the mean and standard error on the mean of the semantic similar-
ity of gene pairs that were linked together by either significant 2- or 3-point interactions,
no interaction, or a Pearson correlation. In almost all cases, significant 3-point interac-
tions resulted in the most semantic similarity, while pairs that did not interact were as
semantically dissimilar as any two random genes.

4.3.7 3-point interacting colliders are enriched in transcription
factors

After estimating the graph of conditional dependencies, triplets of genes that show a
collider structure A → B ← C can be identified, indicating that the data is best
explained by assuming that the causal effects flow from genes A and C to B. To
see if this causal structure agrees with biology, I calculated enrichment in transcription
factors of parents in such collider triplets (genes A and C), relative to the children
(gene B), since the expression of TFs should be causally upstream of the expression
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of their targets. Note that bidirectional edges can lead to a triplet containing multiple
colliders. TFs are not always only upstream—they can be downstream of other TFs—
but should be so more often than randomly chosen genes. I calculated this relative
enrichment in all collider triplets in the MCMC graph, which is denser than the MAP
CPDAG so contains more colliders. In Figure 4.9, it can be seen that in all data sets, the
upstream parent genes were enriched in transcription factors relative to their downstream
children genes. Moreover, the enrichment increased when considering only colliders with
a significant 3-point interaction. This simultaneously shows three things. First, it shows
that the orientation induced by the quasi-causal graph was consistent with the biology:
transcription factors tend to be upstream—their targets downstream. It further confirms
that MFIs captured regulation by transcription factors, and indicates that the regulatory
relationships among transcription factors and their targets are—at least in part—best
described as a higher-order dependency. Note that this does not imply that the 3-point
MFIs capture causal TF-target binding interactions, since a 3-point interaction could just
as well be a reflection of a more causally distal mechanism. Instead, it supports a model
in which the expression of transcription factors does not independently or additively affect
the concentrations of other RNA molecules, but instead shows combinatorial effects.

Figure 4.9: Shown is the fold enrichment in transcription factors of the parent genes in
a collider triplet, relative to the children genes. A value > 1 indicates that the upstream
parents were more likely to be transcription factors than their downstream children genes.
This enrichment is shown for all 4 data sets, both for all collider triplets and for triplets
that had a significant 3-point interaction (α = 0.05). As a control, I also selected sets
of equal size but of randomly selected genes, and show the mean enrichment and the
standard deviation (not the standard error on the mean) over 1,000 of these random
selections. It can be seen that the parents of collider triplets were already slightly (1.5−2-
fold) enriched in transcription factors, but this effect was stronger (2 − 3-fold) in the
triplets with a significant 3-point interaction. Each bar is annotated with the number of
triplets used in the calculation.
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4.3.8 MFIs replicate different pathways from correlation net-
works.

Using the Pathway Commons database as the ground truth network, Figure 4.10 com-
pares the ability to discover true positives of MFIs, odds ratios (ORs) and correlations.
I selected all N significant (α = 0.05) MFIs and odds ratios and compared these with
the N gene pairs with the strongest Pearson correlation. At a given number of pos-
itives, the correlation network often produced more true positives than the MFIs, but
this differed across the various types of interaction in Pathway Commons. Figure 4.11
shows the ratios of the number of true positives found by the MFIs and those found by
Pearson correlations, separately for each category of association. MFIs performed best
on interactions that regulate expression. MFIs performed worst on complex-forming as-
sociations, but well on the Miscellaneous category that included annotations such as
catalysis-precedes, neighbour-of, consumption-controlled-by, chemical-affects, controls-
transport-of-chemical, controls-production-of, reacts-with, and used-to-produce. Note
that while the MFIs often produced fewer true positives, they always produced differ-
ent true positives, indicating that MFIs and correlations reproduce different parts of the
Pathway Commons database. The MFI’s ability to recognise novel dependencies all but
disappeared when not conditioning on the rest of the genes being absent, reducing the
interactions to odds ratios (ORs). While the ORs performed better than correlations in
most cases, a much larger fraction of their true positives overlapped with those found by
correlations, relative to those found by MFIs. This large overlap cannot be explained by
ORs and correlation networks both finding almost all positives, since the total number of
positives in Pathway Commons is much larger than those found by either method. For
the ‘combined’ category, for example, the total number of ground truth positives ranges
from 3,996 in the adolescent astrocytes to 5,117 in the developmental astrocytes. It was
thus indeed the conditioning on the Markov blanket that differentiated the MFIs from
odds ratios and correlations.

A natural next question is how the true positives that MFIs uniquely identified differ
from the true positives found only by correlation networks. To investigate this, I looked
for GO:BP term enrichment in the genes involved in the true positives found only by
correlations (the green part of the Venn diagrams in Figure 4.10) or only by 2-point
MFIs (the red part of the Venn diagrams in Figure 4.10). Results are shown in Tables
4.3 and 4.4, respectively. In all data sets, except the adolescent astrocytes (that mainly
show transport- and cell-migration-related enrichments), the true interactions that were
only found by correlations were mainly mitotic cell-cycle related genes, whereas the true
interactions found by 2-point MFIs were primarily related to development and regulation
in the developmental data sets, and metabolic interactions in the adolescent data sets.
Interestingly, only the MFIs in the developmental data reproduced cell-type specific in-
teractions enriched in cell projection and synapse organisation (in which both neurons
and astrocytes play a role), and brain and CNS development. Both these data sets also
showed a clear ∼ 3-fold enrichment of the MFI-only interactions in ‘cellular response to
stress’, which supports the finding from Section 4.3.4 that the MFIs reflect regulatory
processes by IEGs. The adolescent data sets, in contrast, had their MFI-only interactions
enriched in metabolism and biosynthesis-related terms.
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Developmental Neurons

ID name pg:SCS-value Fold term size

GO:0060420 regulation of heart growth 0.017 6.3 8
GO:0046620 regulation of organ growth 0.019 5.3 12
GO:0007059 chromosome segregation 1.1e-05 5.0 20
GO:0098813 nuclear chromosome segregation 0.00032 4.9 18
GO:0000819 sister chromatid segregation 0.0017 4.8 17
GO:0000070 mitotic sister chromatid segregation 0.0087 4.7 16
GO:0140014 mitotic nuclear division 0.00035 4.4 23
GO:0140694 non-membrane-bounded organelle assembly 0.035 4.1 20
GO:0014706 striated muscle tissue development 4.1e-07 3.9 40
GO:0044772 mitotic cell cycle phase transition 0.0096 3.9 24
GO:1903047 mitotic cell cycle process 1e-08 3.9 47
GO:0000280 nuclear division 0.00029 3.9 31
GO:0048738 cardiac muscle tissue development 0.041 3.8 23
GO:0048285 organelle fission 0.00014 3.8 33
GO:0007517 muscle organ development 0.01 3.7 27

Developmental Astrocytes

ID name pg:SCS-value Fold term size

GO:0006260 DNA replication 1.3e-08 4.9 20
GO:0006281 DNA repair 3.4e-06 4.4 21
GO:0000819 sister chromatid segregation 0.00034 4.3 18
GO:0000070 mitotic sister chromatid segregation 0.03 4.1 15
GO:0007059 chromosome segregation 3e-06 4.1 25
GO:0098813 nuclear chromosome segregation 0.0011 3.9 21
GO:1901990 regulation of mitotic cell cycle phase transition 0.0045 3.8 20
GO:0051301 cell division 2.5e-07 3.8 34
GO:0044772 mitotic cell cycle phase transition 0.00057 3.7 25
GO:1903047 mitotic cell cycle process 2.9e-12 3.6 54
GO:0006974 cellular response to DNA damage stimulus 4.9e-07 3.6 37
GO:0045786 negative regulation of cell cycle 0.0089 3.6 23
GO:0140014 mitotic nuclear division 0.0015 3.5 26
GO:0000278 mitotic cell cycle 5.6e-15 3.4 70
GO:0045787 positive regulation of cell cycle 0.014 3.3 26

Adolescent Neurons

ID name pg:SCS-value Fold term size

GO:0007051 spindle organization 0.024 3.8 16
GO:0006511 ubiquitin-dependent protein catabolic process 0.0057 3.7 19
GO:0019941 modification-dependent protein catabolic process 0.0057 3.7 19
GO:0000070 mitotic sister chromatid segregation 0.0057 3.7 19
GO:0010498 proteasomal protein catabolic process 0.022 3.6 18
GO:0140014 mitotic nuclear division 0.00028 3.5 25
GO:0043632 modification-dependent macromolecule catabolic... 0.018 3.5 20
GO:0007059 chromosome segregation 0.00023 3.4 27
GO:0000819 sister chromatid segregation 0.015 3.4 22
GO:0051603 proteolysis involved in cellular protein catab... 0.011 3.3 24
GO:0098813 nuclear chromosome segregation 0.011 3.3 24
GO:0051301 cell division 3.3e-09 3.3 48
GO:1903047 mitotic cell cycle process 5.9e-11 3.2 58
GO:0000278 mitotic cell cycle 1.3e-12 3.2 66
GO:0001505 regulation of neurotransmitter levels 0.028 3.2 25

Adolescent Astrocytes

ID name pg:SCS-value Fold term size

GO:0098662 inorganic cation transmembrane transport 0.0028 3.8 29
GO:0098655 cation transmembrane transport 0.0051 3.6 33
GO:0098660 inorganic ion transmembrane transport 0.02 3.5 32
GO:0034220 ion transmembrane transport 0.0037 3.4 39
GO:0030001 metal ion transport 0.03 3.3 36
GO:0016477 cell migration 0.038 2.4 75
GO:0040011 locomotion 0.0033 2.4 93
GO:0006928 movement of cell or subcellular component 0.00018 2.4 110
GO:0010647 positive regulation of cell communication 0.035 2.2 101
GO:0023056 positive regulation of signaling 0.035 2.2 101
GO:0009987 cellular process 0.00013 1.2 729

Table 4.3: Top 15 GO:BP enrichments of the genes in true positives only found by
correlation networks. The p-values are g:SCS corrected.
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Developmental Neurons

ID name pg:SCS-value Fold term size

GO:0099173 postsynapse organization 0.0036 4.4 27
GO:0014706 striated muscle tissue development 0.011 3.5 40
GO:0060537 muscle tissue development 0.011 3.4 44
GO:0061061 muscle structure development 0.0041 3.3 50
GO:0033554 cellular response to stress 0.00066 3.1 67
GO:0120035 regulation of plasma membrane bounded cell pro... 0.029 2.8 64
GO:0050808 synapse organization 0.0055 2.8 73
GO:0048858 cell projection morphogenesis 0.0076 2.8 74
GO:0032990 cell part morphogenesis 0.01 2.7 75
GO:0060322 head development 7.5e-05 2.7 103
GO:0007420 brain development 0.00034 2.7 98
GO:0032989 cellular component morphogenesis 0.015 2.6 81
GO:0007417 central nervous system development 3.2e-06 2.6 123
GO:0034330 cell junction organization 0.015 2.6 86
GO:0000902 cell morphogenesis 0.002 2.5 99

Developmental Astrocytes

ID name pg:SCS-value Fold term size

GO:0032970 regulation of actin filament-based process 0.014 4.2 24
GO:0080135 regulation of cellular response to stress 0.039 3.4 36
GO:0050808 synapse organization 0.046 3.1 44
GO:0120035 regulation of plasma membrane bounded cell pro... 0.0024 3.0 57
GO:0120039 plasma membrane bounded cell projection morpho... 0.0057 3.0 55
GO:0048812 neuron projection morphogenesis 0.0057 3.0 55
GO:0048858 cell projection morphogenesis 0.0057 3.0 55
GO:0051129 negative regulation of cellular component orga... 0.047 3.0 48
GO:0001655 urogenital system development 0.047 3.0 48
GO:0031344 regulation of cell projection organization 0.0037 3.0 58
GO:0033554 cellular response to stress 1e-06 2.9 92
GO:0034330 cell junction organization 0.019 2.9 58
GO:0031175 neuron projection development 1.5e-05 2.9 86
GO:0032989 cellular component morphogenesis 0.0074 2.8 64
GO:0120036 plasma membrane bounded cell projection organi... 1.8e-07 2.8 105

Adolescent Neurons

ID name pg:SCS-value Fold term size

GO:0016071 mRNA metabolic process 0.008 4.0 24
GO:0051254 positive regulation of RNA metabolic process 0.0062 2.3 97
GO:0045935 positive regulation of nucleobase-containing c... 0.012 2.2 108
GO:0016070 RNA metabolic process 2.1e-07 2.1 204
GO:0006366 transcription by RNA polymerase II 0.04 2.0 131
GO:0090304 nucleic acid metabolic process 2.8e-06 1.9 224
GO:0097659 nucleic acid-templated transcription 0.0024 1.9 172
GO:0006351 transcription, DNA-templated 0.0024 1.9 172
GO:0032774 RNA biosynthetic process 0.003 1.9 173
GO:0051173 positive regulation of nitrogen compound metab... 0.0072 1.9 167
GO:0006139 nucleobase-containing compound metabolic process 2.5e-06 1.9 239
GO:0051252 regulation of RNA metabolic process 0.0059 1.9 176
GO:0044271 cellular nitrogen compound biosynthetic process 0.00018 1.9 216
GO:0046483 heterocycle metabolic process 3.5e-06 1.9 251
GO:0018130 heterocycle biosynthetic process 0.0047 1.8 190

Adolescent Astrocytes

ID name pg:SCS-value Fold term size

GO:0051276 chromosome organization 0.01 2.8 50
GO:0045934 negative regulation of nucleobase-containing c... 0.01 2.4 75
GO:1901575 organic substance catabolic process 0.0047 2.2 104
GO:0009056 catabolic process 0.029 2.0 127
GO:0006139 nucleobase-containing compound metabolic process 2.7e-07 1.9 246
GO:0046483 heterocycle metabolic process 2.8e-07 1.9 251
GO:0019219 regulation of nucleobase-containing compound m... 0.0033 1.9 176
GO:0018130 heterocycle biosynthetic process 0.002 1.8 183
GO:1901362 organic cyclic compound biosynthetic process 0.0021 1.8 188
GO:1901360 organic cyclic compound metabolic process 1.4e-07 1.8 268
GO:0006725 cellular aromatic compound metabolic process 3.8e-07 1.8 262
GO:0034654 nucleobase-containing compound biosynthetic pr... 0.0066 1.8 179
GO:0010556 regulation of macromolecule biosynthetic process 0.0057 1.8 183
GO:0019438 aromatic compound biosynthetic process 0.005 1.8 187
GO:0009889 regulation of biosynthetic process 0.0017 1.8 201

Table 4.4: Top 15 GO:BP enrichments of the genes in true positives only found by MFIs.
The p-values are g:SCS corrected.
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Figure 4.10: Venn diagrams of the true positives found by MFIs, log-odds ratios (OR),
and Pearson correlations (Cor). Pairwise MFIs at significance level α = 0.05 reproduced
interactions from the Pathway Commons database that correlation networks did not, even
when correlations generate more true positives. This effect was strongest for association
that were annotated as controlling ‘expression’ in the Pathway Commons database. Log-
odds ratios—i.e. unconditioned MFIs—reproduced mostly interactions that were already
discovered by correlation networks.
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Figure 4.11: A comparison of the true positives (TPs) found by the MFIs and correlations,
with a ratio of 1 dashed in black. In all four data sets, the MFIs performed best on the
‘expression’ category of Pathway Commons associations (ignoring the ‘miscellaneous’
category that combines multiple smaller categories). Among these expression regulation
interactions, the MFIs from the adolescent data set performed as well as or better than
correlation networks. This Figure aggregates the data from Figure 4.10.
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4.3.9 3-point interactions identify genetic logic gates by sign

As shown in Section 3.3.2, all six non-trivial 2-input logic gates have a 3-point interaction.
The gates OR, XOR and NAND have a negative 3-point interaction, while NOR, XNOR
and AND have a positive 3-point interaction (see Table 4.5).

The converse, however, is not true: a 3-point interaction is not necessarily indicative
of a logic gate. To see if there is a relationship between the 3-point interactions in
the expression data and logical rules underlying the regulatory relationships in the gene
expression data, I focused on the 3-point interactions of pure collider triplets (i.e. no
bidirectional edges) since colliders are most easily interpreted as 2-input gates. I selected
only those cells where the genes in the smallest of the three Markov blankets were not
expressed. To identify the underlying logical relationship, I separated these cells by the
4 possible states of the parent nodes S = {(00), (01), (10), (11)}, and calculated the
mean expression µSi of the child node in each of these four partitions. Let the mean
expression of the child node of the collider in these cells be µout. Each collider triplet
was then represented as a binary vector of length 4, where entry i is 1 if µSi ≥ µout,
and 0 otherwise. Using the output column in the truth table of a gate (using the same
ordering of the four input states), each logic gate was likewise represented as a length-
four vector (e.g. XOR can be represented as (0, 1, 1, 0)). With each triplet I associated
the logic gate whose vector representation is closest to it (in terms of the L2-norm of
their distance, which on binary vectors is equivalent to the Hamming distance). Table
4.6 shows that, in almost all cases, the sign of the closest gate agreed with the sign of
the 3-point interaction of the triplet. The only triplets that got the ‘wrong’ sign—i.e.
were closest to a gate with the opposite sign—corresponded to OR or AND gates, which
are the more weakly coupled gates. This is further evidence that 3-point interactions can
indeed be interpreted as logic-like combinatorial regulation, and that such higher-order
regulation is common in developing neurons and astrocytes.

Note that I have only focused on collider triplets here. While it is reassuring that the logic
gate intuition holds for this simple motif, the graph can contain more complex motifs
with higher-order interactions that cannot be interpreted as logic gates but correspond to
a more abstract combinatorial regulation. Finally, note that it is not surprising that the
X(N)OR gates were most easily identified. Not only do these gates have the strongest
3-point coupling, but they are also independent of the underlying graph: the X(N)OR
truth table is invariant under a relabelling of the in- and output nodes.

G IG
ABC

XNOR I
XOR −I
AND 1

2 I
OR −1

2 I
NAND −1

2 I
NOR 1

2 I

Table 4.5: The 3-point interactions for all 2-input logic gates at equal noise level are
related. Repeat of Table 3.1.
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Developmental Adolescent
Neurons Astrocytes Neurons Astrocytes

8/8 (100%) 9/12 (75%) 42/44 (95%) 15/15 (100%)

Table 4.6: Shown is the fraction of collider triplets with a significant (α = 10−4) 3-point
interactions whose sign agrees with the most similar logic gate. The sign is correctly
identified in almost all cases, and for all X(N)OR gates.

4.3.10 Louvain clusters of the interaction graph reveal functional
modules

Based on results from co-expression networks [202], and a general intuition of biological
networks [287], it is likely that the networks of interactions are—to a certain extent—
modular. In a modular network, the full network can be partitioned, perhaps fuzzily,
into subnetworks that perform distinct biological functions, and where each partition,
or module, interacts more strongly with nodes from the same subnetwork than with
other parts of the partition. Section 4.3.4 showed that the 2-point interactions were
not enriched in any gene annotations, but this could be because the network is highly
modular and different modules focus on different tasks. To investigate if the network of
2-point interaction indeed shows modular functionality, I constructed the graph where
each vertex is a gene, and two genes A and B are connected by an edge if and only
if they shared a significant 2-point interaction at level α = 10−4. This graph was
then Louvain-clustered [31] to find the clustering with optimal modularity, using the
community multilevel function from the Python-module igraph [61].

Figure 4.12 shows enrichment in immediate early genes (IEGs), transcription factors
(TFs), and housekeeping genes (HKGs) for each of the clusters separately (showing
only clusters of size larger than 1). It can be seen that there was a particularly strong
enrichment in IEGs. Immediate early genes generate rapid cellular responses to a wide
variety of perturbations, and it has been argued that they compute and communicate
the appropriate response through combinatorial expression patterns [238, 223, 144].

Note that not only were these clusters enriched in IEGs, but they were actually predictive
of IEGs. For example, cluster 36 in the developmental neurons comprised the following
32 genes: Atf3, B630019K06Rik, B930036N10Rik, Baz1a, Btg2, Cbx3, Cdh13, Cited1,
Cnr1, Dusp1, Flrt2, Flrt3, Fos, Hist1h1c, Hist1h2bc, Hist4h4, Hmgb2, Id1, Ier2, Ier3,
Ifitm2, Jun, Klf10, Neat1, Nfkbia, Plk2, Prox1, Ptprz1, Sox9, Spry2, Tob1, Txnip.
The genes that are annotated as being IEGs in the reference list are printed in boldface,
but Flrt3 [182], Id1 [150], Txnip [74], Klf10 [255], Plk2 (Snk) [243], Sox9 [49], and
Spry2 [231] have all been annotated as immediate early response genes in the listed
references. Including these in the reference list made developmental neuron cluster 36
more than 20-fold enriched with a p-value of 0 at machine precision. Querying these
clusters for enrichment in other databases with gProfiler, I found concordant biology.
For example, the same cluster 36 was enriched in the GO:BP terms listed in Table 4.7,
which showed a clear apoptotic response signature. That neuronal apoptosis is regulated
and mediated by IEGs has been suspected for decades [106]. It thus seems that Louvain
cluster 36 of the developmental neurons corresponded to a network of interactions that
trigger an apoptosis response.
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Source ID Term p-value Fold

GO:BP GO:0008608 attachment of spindle microtubules to kinetochore 0.00039 14
GO:BP GO:0006284 base-excision repair 0.0058 14
KEGG KEGG:03030 DNA replication 2.5e-05 14
REAC REAC:R-MMU-69239 Synthesis of DNA 1.5e-05 12
REAC REAC:R-MMU-69306 DNA Replication 1.5e-05 12
REAC REAC:R-MMU-69618 Mitotic Spindle Checkpoint 0.00021 12
GO:BP GO:0006261 DNA-templated DNA replication 0.00021 12
GO:BP GO:0000724 double-strand break repair via homologous reco... 0.0029 12
REAC REAC:R-MMU-141424 Amplification of signal from the kinetochores 0.0029 12
REAC REAC:R-MMU-141444 Amplification of signal from unattached kine... 0.0029 12

Table 4.8: All terms more than 12-fold enriched in cluster 4 of the developmental
astrocytes.

4.4 Discussion
In this chapter, I explored the different ways in which higher-order dependencies among
genes can reveal mechanistic relationships among gene products. I did this by calculating
MFIs in gene expression data from mouse neurons and astrocytes at two different stages
of brain development—embryonic and adolescent—to investigate what kind of biology
they correspond to. Since I focused on RNA-level expression data, I looked in particular at
two classes of genes that are known to play important roles in transcriptional regulation:
transcription factors (TFs) and immediate early genes (IEGs).

Across the four data sets, I found strong evidence that the different orders of interaction
reflect different kinds of biology. The 1-point interactors were depleted in TFs, IEGs,
many regulatory processes, and transcription factor binding sites. The 2-point interac-
tions showed no enrichment or depletion, but the 3-point interactions showed significant
enrichment in both TFs and IEGs. Genes with 3-point interactions were also enriched
in transcription factor binding sites, most strongly so for the TFs Zf5, Foxn4, Kaiso,
Ben, and E2f. Of these, especially E2f stands out, as this binding motif is the main
binding region for the DREAM protein complex which regulates the cell cycle, which is
known to be active in the embryonic [143] and adolescent [313] mouse brain. In Section
5.3.4 of the next chapter, it will be shown that many of the 4- and 5-point interac-
tions are composed of DREAM target genes. Furthermore, Foxn4 is also downstream
of DREAM as it is downstream from the EDM complex which comprises multiple E2F
proteins [44] (shown in Xenopus). Additionally, DREAM-mediated cell cycle regulation
involves the FOX gene Foxm1, which is known to have overlapping binding motifs with
Foxn4 [229, 173]. The other three TFs do not have a clear mechanistic interpretation,
but their targets form a single module in the 2-point interaction graph, so they seem
functionally related.

Even though the interactions were inferred at the level of RNA, they reflected protein
function, as indicated by the fact that TF genes tended to be upstream in 3-point
interacting triplets on the quasi-causal graph, in line with the role of TF proteins in
transcriptional regulation. That the protein function of TFs was reflected well by the
MFIs, in particular the third-order ones, is interesting in light of TF promiscuity. A limited
set of TFs regulates the expression of many more target genes. This expressive power
is most readily explained by some level of combinatorial regulation, i.e. regulation that
takes into account the joint state of multiple regulatory genes, and thus naturally results
in a higher-order dependency in expression data. Furthermore, it has been noted that
genes and their regulatory networks can evolve independently [266], and combinatorial
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regulation would allow the regulatory networks to be highly modifiable and flexible.
An interesting direction for further mechanistic research is thus to specifically calculate
the higher-order MFIs between TFs and their targets which could give insight into the
promiscuous and combinatorial nature of TF binding, both to their target sequences and
to each other as homo- or heterooligomers.

The second class of genes that had a central role in the network of 3-point interactions
were immediate early genes (IEGs). IEGs—being the pathway to the genomic response—
need to respond to a vast number of inputs, model the current cell state and the incoming
signal, and compute an appropriate response. To do so requires computational power
or internal logic. In Chapter 3, and in Section 4.3.9, MFIs were shown to reflect logical
dependencies, so the fact that IEGs played a central role in the interaction graphs,
particularly of higher-order interactions, provided evidence for their computational power.
A better understanding of the computational abilities of IEGs would be very valuable,
not just for medicine, but also for synthetic biology, as it would open up a possibility
for programmable genetic circuits (as was already anticipated and explored in [212]).
Note that the Boolean logic analogy is bound to be imperfect, as gene expression is not
perfectly modelled as binary, and there are cis-regulatory modules that emphatically do
not allow for a description in terms of Boolean logic [268]. Nevertheless, the analogy is
useful in that it provides a framework for thinking about the logic of gene expression,
and has been used to guide research for decades [269, 306].

One possible explanation for the central role of IEGs in the interaction networks was
offered in [280], where it was shown that the dissociation step of the scRNA-seq protocol
triggers the stress response of many immediate early genes. If this is the source of the IEG
MFIs in the studied data sets, then that would on the one hand indicate that the MFIs
indeed represent biochemical interactions, but also hide the cell-type specific biology.
Alternatively, as mentioned in Section 4.1.1, a set of IEGs could have a non-zero MFI
when they are simultaneously—but independently—triggered by a stimulus. Such MFIs
would reflect the stimulated state of the cells rather than direct biochemical interactions.

The 2-point interactors were not enriched in anything as a whole, but the different
Louvain-clusters corresponded to different functional modules, with an IEG module reg-
ulating apoptosis, a housekeeping gene module regulating the metaphase-anaphase tran-
sition, and a module of specific transcription factor targets. Perhaps surprisingly, it was
found that genes interacting in a 2-point interaction were less semantically similar (in
terms of gene-ontology annotation) than genes that were significantly correlated in the
data (see Figure 4.8). This seems to conflict with the finding that the 2-point interac-
tions separate direct from indirect effects much better than correlations (see Figure 4.7).
These two findings imply that semantic similarity is not necessarily a good measure of
direct association, and that even causally distal genes can share a biological annotation
that is reflected in their coexpression.

Together, the validation of 1-, 2-, and 3-point interactions supports a model in which

1. A lack of interactions corresponds to a lack of functional relationships.

2. Higher-order interactions are preferentially present in regulatory functional associ-
ations.
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3. Pairwise interactions are ubiquitous and not biology-specific, but do form a func-
tionally modular network

Throughout this chapter, the conclusions were consistent in three of the four data sets,
but generally weaker or absent in the adolescent astrocytes. This can be explained
by looking more closely at some summary statistics of the data sets. The adolescent
astrocytes had the lowest mean expression out of the four data sets (0.057 vs. 0.059,
0.074, and 0.076), the lowest mean correlation (0.009 vs. 0.012, 0.013, and 0.018),
and the fewest pairs of genes that had a Pearson correlation with an absolute value
stronger than 0.1 (2750 vs. 9638, 13720, and 23671). Consequently, the adolescent
astrocytes had weaker, and less significant, 2- and 3-point interactions. Furthermore,
after selecting the top 1,000 most highly variable genes, the developmental data sets
both contained 11 housekeeping genes, the adolescent neurons 102, and the adolescent
astrocytes 182, using [114] as a reference list of mouse housekeeping genes. Together,
these findings indicate that the data set of adolescent astrocytes contained less dynamic
gene expression, which hindered the inference of biological mechanism.

A possible future direction for further mechanistic validation would be to extend some of
the methodologies from pairwise interactions to 3-point interactions. Semantic similarity
is usually only calculated for pairs, but a triplet of genes can also be assigned a last
common ancestor, so this would be a natural generalisation of the method (although
comparisons between orders would be difficult as the last common ancestor of a triplet
is bounded by the last common ancestor of the most dissimilar of the three pairs).
Similarly, I only validated pairwise interactions against Pathway Commons, but this
could be extended to triplets by collapsing each 3-point interaction into three pairwise
interactions and validating each separately. However, if the triplet interaction was indeed
separable into three pairwise interactions, then it would have been inferred as such, and
thus would not be significant triplet interaction.

Another possible improvement is to extend the enrichment analyses by considering dif-
ferent sets of background genes. I currently used only the 1,000 highly variable genes in
each data set as the background for all enrichment results, but one might argue that each
of the ∼ 20, 000 genes from the original count matrices had a chance of being highly
variable and thus included in the analysis, which would justify using all mouse genes as
a background. Alternatively, one might argue that only those genes that are expressed
in the mouse brain had a chance of being selected, and thus only expressed genes should
be used as a background. This set could be based on the data set being studied, or on
orthogonal mouse brain atlases like those in [147, 143]. These background sets would
be easy to implement and could lead to different conclusions. The background set of
the 1,000 highly variable genes I currently used is the smallest, and should therefore be
the most conservative, as including more genes in the background should lead to more
statistical power.

In Section 4.3.8, it was shown that it was indeed the conditioning on the Markov blanket
that distinguished the MFIs from coexpression networks in their ability to recapitulate
Pathway Commons interactions. Interestingly, the MFIs were different, but not consis-
tently better. This might be because the confirmed interactions from Pathway Commons
are often based on in situ or even in vivo experiments, which do not reproduce the situa-
tion in which the other genes in the Markov blanket are absent. To retrieve more of the
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gold standard interactions, or even just biologically relevant ones, it might be necessary
to condition on a different state of the Markov blanket. This is a direction for future
research, and will be discussed in some more detail in Chapter 6.

Finally, the graph of conditional dependencies is crucial to the estimation. I currently esti-
mate this graph in a purely data-driven way, but one could integrate biological knowledge
into the graph construction procedure by, for example, manually adding known interac-
tions from a ‘gold standard‘ to the PC graph before starting the MCMC optimisation
step. Alternatively, all or part of the Pathway Commons database could be added to
the final graph, making the Markov blankets in part biologically interpretable. Since
adding edges can only increase the variance of the estimates, not the bias, this seems
worth exploring. It would be especially interesting to see if this could improve the MFIs
ability to reproduce interactions from the database that was used to augment the quasi-
causal graph, since that would allow the estimation to be fine-tuned to a particular goal.
However, drawing the quasi-causal graph from multiple sources makes the mathematical
interpretation of the estimated interactions more difficult, so should probably only be
done after extensive validation.

In conclusion, this chapter offered insight into higher-order associations in gene regula-
tion and provided multiple starting points for further research into the mechanisms. The
results suggest that MFIs are a useful tool for studying higher-order interactions in gene
regulation, and that they can be used to infer functional modules in gene regulatory net-
works. However, no strong evidence was found that MFIs recapitulate known pathways
directly and with a precision beyond that of coexpression networks. Moreover, there was
no clear way to interpret or validate the causal or mechanistic content of higher-order
interactions, as they are fundamentally model-free and undirected. Therefore, I shifted
the research direction towards using the MFIs for cell state inference, which will be the
subject of the next chapter.
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Higher-order cell states and types

Everything studied in Biology
represents a system of systems; itself
part of a higher-order system.

François Jacob [122] (translation
mine)
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5.1 Introduction

5.1.1 Interactions as cell type or state
As mentioned in Section 1.3, cell states and types are usually defined by clustering cells
in expression space and then assigning a biological identity to the clusters through their
respective marker-genes: those genes that are differentially (usually more highly) ex-
pressed in the cluster of interest relative to other clusters. While a cluster can have
multiple marker-genes, each gene marks the cluster independently, and possibly redun-
dantly. Such clusterings have historically proven to reveal the various cell types present
in a population, yet they are not compatible with all notions of cell identity. For exam-
ple, cells of many cell types can be in the G2M transition state at the same time, but
cluster with cells of their own type rather than cells in a similar mitotic phase, hiding
the shared cell state. Furthermore, experiments tracing cells through development have
shown that a cell fate decision is reached before cells separate in expression space [294].
This means that a differentiating cell’s state changes before this can be revealed by
clustering methods, and a more precise, ‘pointwise’ notion of cell state is necessary to
describe this process.

In contrast to these expression clustering techniques that focus on differences in mean
expression, a higher-order interaction reflects a pattern in the joint state of a number
of genes, and thus reveals more complex patterns in the genes’ interdependencies. This
could potentially identify subpopulations by their combinatorial (i.e. both present and
absent), joint gene expression patterns. Such combinatorial markers have been shown
to improve classification of clusters in expression space in [67, 72]. Where traditional
cell type annotation characterises clusters of cells by the genes that are differentially
expressed, a 2-point interaction identifies genes that have a non-random joint state—they
are differentially differentially expressed (i.e. the extent to which gene A is differentially
expressed depends on the expression of gene B). In general, an n-point interaction could
thus characterise cells by their differentiallyn expressed genes. In this chapter, I assigned
characteristic sets of cells to up to 5-point interactions and compared the structure found
by the interactions with known biological annotations and clusterings. This represents
a radically different approach to the semantics of cell state, already hinted at in the
introduction in Section 1.3, where cells are identified and distinguished not by their
mean difference in expression, but by a precise and higher-order dependency in their
expression. Moreover, whereas conventionally each cell is categorised by cell type or
state (usually from a collection of preconceived biological identities), here the various
identities are first inferred from the cell population as a whole, and afterwards each state
is assigned to individual cells, allowing each cell to be in multiple states at the same
time. This is a biologically plausible concept, as cells can respond to multiple internal
and external stimuli simultaneously, and coordinate the activity of multiple simultaneous
pathways.

5.1.2 Aim and outline of this chapter
This chapter introduces the notion of characteristic MFI states, which is introduced
in Section 5.2.1. The estimation of the interactions and states are combined into
a Nextflow pipeline called Stator, which is introduced and outlined in Section
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5.2.3. To compare the performance of Stator with clustering based cell type inference
methods, I outlined a different data-driven approach in Section 5.2.4.

The structure of the MFI states is compared with data-driven clustering approaches in
Section 5.3.1, and with expert annotations in Section 5.3.2. That the inferred states
are robust with respect to cell sampling is shown in Section 5.3.3. States inferred on
the neurons and astrocytes from the previous chapter are then discussed in Section
5.3.4, and that their semantics persist throughout a homogeneous population is shown
in Section 5.3.5. In Section 5.3.6, states are inferred from a data set containing
multiple cell types. An alternative method of inferring states from interactions is briefly
introduced and explored in Section 5.3.7. Finally, Section 5.3.8 explores the existence
of beyond fifth-order interactions, before reflecting on the results from this chapter in
Section 5.4.

5.2 Methods

5.2.1 Characteristic states of interactions

The value and significance of an interaction depends on the relative frequency of certain
gene expression patterns present in the cell population. A significant interaction among
n genes indicates that at least some of the joint states of the n genes occur more often in
the population than expected by their marginal expression levels. For example, consider
two genes A and B that are both expressed in 25% of all cells. If the two genes are
independently expressed, then the probability that both are expressed in the same cell
is p(A = 1, B = 1) = 1

4 ×
1
4 = 1

16 , while the probability that neither is expressed is
p(A = 0, B = 0) = 3

4 ×
3
4 = 9

16 , and the probability that only one is expressed is
p(A = 1, B = 0) = p(A = 0, B = 1) = 1

4 ×
3
4 = 3

16 . Since these two genes are
independently expressed, their 2-point interaction is zero:

IAB = log p(A = 1, B = 1)p(A = 0, B = 0)
p(A = 1, B = 0)p(A = 0, B = 1) (5.1)

= log
1
16

9
16

3
16

3
16

= 0 (5.2)

Deviations from this null hypothesis will result in a non-zero interaction, but might still be
expected to occur simply by chance in a finite sample of independently expressed genes.
For example, if the two genes are expressed in 25 out of 100 cells, the expected number
of cells where both are expressed is 6.25. If in reality there are 8 cells with both genes
expressed, this corresponds to a deviation of 8−6.25

6.25 × 100% = 28%. One can associate
a p-value to this deviation by recognising that the number of cells with both genes
expressed, written as Φ{1,1} is expressed binomially as P(Φ{1,1} = k) =

(
100
k

)
1
16

k 15
16

100−k .
Let the p-value associated to the observation of 8 cells with both genes expressed describe
the probability of finding at least 8 cells with both genes expressed, under the assumption
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that the two genes are indeed independently expressed. This probability is given by

p = P(Φ{1,1} ≥ 8) (5.3)

= 1−
7∑

k=0
P(Φ{1,1} = k) (5.4)

= 0.29 (5.5)

which reveals that the observed deviation is not beyond what would be expected from
independently expressed genes, so the null is not rejected.

More generally, in a finite sample of N cells, the observed frequency Φs of a joint state
s = {s1, ... , sn} of n independently expressed genes is binomially distributed as:

P(Φs = k) =
(

N
k

)
πk

s (1− πs)N−k (5.6)

where

πs =
n∏

i=1
(siµi + (1− si)(1− µi)) (5.7)

and µi is the mean expression of gene i across all cells under consideration (i.e. all cells in
the population, or those where the Markov blanket is zero). Equation 5.6 describes the
null hypothesis that the observed cell counts are the result of independently expressed
genes, and gives the expected number of cells under this null: E[Φs ] = πsN . An
observation Φs = ϕs of one of the 2n joint states of n genes can be assigned a p-value:

p = 1−
ϕs−1∑
k=0

P(Φs = k) (5.8)

and a deviation factor1: ∣∣∣∣∣ϕs − πsN
πsN

∣∣∣∣∣ ∈ [0,∞) (5.9)

A non-zero interaction can thus have one or more characteristic states: those states that
significantly and positively deviate from the null hypothesis. Since a non-zero interaction
reflects a higher-order dependency in the data, its characteristic states describe the gene
expression patterns that are (at least partially) responsible for this dependency. The set
of cells that have the n genes in that particular state—ignoring the state of the Markov
blanket—form the associated set of cells. An example of a 4-point interaction and its
characteristic states is shown in Figure 5.21. Throughout the rest of this thesis, I will
use the term ’characteristic state’ both to refer to the expression state of the n genes,
and to the set of cells that are in this state. Note that these cells need not cluster in
expression space: while these cells all share a particular gene expression pattern among
the n genes, the expression of all other genes can be different. This makes it in principle
possible to identify a cell state that does not localise in expression space.

1In the latest version of the method, the log 2-fold enrichment factor relative to the null is used
instead of the deviation factor, and the associated one-sided p-value is corrected with the Benjamini-
Yekutieli procedure.
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5.2.2 Hierarchical clustering and bootstrapped dendrograms
Each characteristic state s can be represented as a binary vector v ∈ BN of length
N , where N is the total number of cells in the data, as follows: let vi = 1 if the ith
cell is in state s, and vi = 0 otherwise. If there are K characteristic states, then the
full data set can be represented as a N × K matrix, where each column represents a
characteristic state, and each row represents a cell. Using this representation, the states
can be hierarchically clustered by calculating the distances between the columns using a
distance measure on BN . Note that this is emphatically not a clustering of cells based
on distances in expression space—it is a clustering of states in ‘cell space’. Clustering
the rows of this N × K matrix would correspond to clustering cells in a K -dimensional
state space, but since this is a more conventional clustering of cells rather than states
it is not the focus of this thesis. If each interaction has a single characteristic state,
clustering the states is the same as clustering the interactions. However, in general a
single interaction can have multiple characteristic states, so I will refer mostly to the
states directly.

A distance measure that assigns a distance d(v , w) to any two states with binary rep-
resentations v and w induces a hierarchy of separation among all states, which can be
summarised in a dendrogram. The dendrogram can be visualised as a tree, where the
leaves are the states, and the height of the branches is the distance between the states.
Higher up the tree, branches contain multiple states, so distances have to be calculated
not directly between states, but between branches. To do so, there are a variety of
methods. For example, one could set the distance d between two branches X and Y
equal to the distance between the two closest states from the branches: d(X , Y ) =
minv∈X ,w∈Y d(v , w), where v and w are binary representations of two different states.
This is called single-linkage clustering. Alternatively, one could use the distance between
the two furthest states from the branches: d(X , Y ) = maxv∈X ,w∈Y d(v , w). This is
called complete-linkage clustering. Throughout this thesis, I used the average distance
between all pairs of states from the branches: d(X , Y ) = 1

|X ||Y |
∑

v∈X ,w∈Y d(v , w). This
is called average-linkage clustering. This hierarchy by itself does not form a clustering,
but it can be used to form a clustering by cutting the dendrogram at a certain height,
and creating a cluster out of each branch that was cut. The height of the cut is a
hyperparameter that can be tuned to obtain a specific number of clusters. I experi-
mented with a variety of different distance measures, and the cut-off response curve
for seven different distances is shown for the developmental neurons in Figure 5.1, and
was similar in the other data sets. I found that the so-called Dice distance (also known
as the Sørensen-Dice coefficient because it does not satisfy the triangle equality and is
therefore only a semimetric) consistently formed dendrograms where the fewest number
of branchings occurred at a distance indistinguishable from 0 or 1, which is a desirable
property because it leads to the most structured dendrogram. The Dice distance between
two binary vectors v and w is defined as

d(v , w) = 2|v ∧ w |
|v |+ |w | (5.10)

where |v | = ∑N
i vi , so is a generalisation of the F1-score. In summary, to go from the

expression data to the states, the following steps are taken:
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Figure 5.1: Increasing the cut-off from 0 to 1 decreased the total number of clusters
at different rates for the different distance measures. The Dice distance and the cosine
similarity behaved similarly, and had the desirable property that the fewest number of
branchings occur at a distance close to 0 or 1. The Yule distance metric had a range
beyond 1, but this is not included as it already distinguishes very few clusters at a
distance of 1.

1. Calculate the interactions.

2. For each significant interaction, calculate the significantly deviating/characteristic
states.

3. Represent each of these characteristic states as a Boolean vector that reflects
which cell is in that state.

4. Construct the hierarchical clustering of these states using the Dice distance.

5. Cut the dendrogram at a certain height.

6. Each resulting cluster represents a final state.

To quantify how robust this hierarchical clustering is, I used two distinct bootstrapping
procedures. Both approaches rely on estimating the finite sample variability by bootstrap
resampling the cells to obtain Nbs different representations of the set of characteristic
states. The first approach is based on cutting the dendrogram to obtain a particular
clustering. The variability of this clustering across bootstrap resamples reflects the
uncertainty associated to the finite sample, and can be quantified with the adjusted
Rand index (ARI), as well as the adjusted mutual information (AMI). While the ARI is
more widely used, one should in general expect unbalanced cluster sizes (since cutting a
dendrogram does not necessarily result in equal cluster sizes), which is better addressed
by the AMI [220]. The ARI takes values in the interval [−1, 1], while the AMI falls in
[0, 1], both zero for random clusterings, and 1 when comparing two equivalent clusterings.

The other approach quantifies the robustness not only of the clustering at a certain
threshold, but of the whole hierarchical structure. This is also done by bootstrap resam-
pling the cells, and leads to Nbs different dendrograms. Each dendrogram of n leaves
contains n − 1 branchings, and thus defines n − 1 clusters. Each of these branchings,
or clusters, can be assigned a significance score based on the fraction of resampled den-
drograms containing exactly that branch/cluster, called the bootstrap probability BP.
However, BP is known to lead to incorrect confidence intervals (some authors call this a
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bias, though this terminology is disputed by [73]), so a slightly different test, called the
approximately unbiased (AU) test, has been suggested in [241]. This test uses bootstrap
resamples of different sizes in a process known as multiscale bootstrap resampling. This
method has been implemented in the R package pvclust by the authors of [260], but I
used a Python implementation from [276] to calculate both BP and AU for the dendro-
grams of hierarchically clustered cell states. Using this method, each individual branch
can be assigned a significance, and sufficiently significant branches can be considered
composite states.

5.2.3 Stator: A Nextflow pipeline to infer MFIs and states from
binary data

Computers are useless, they can only
give you answers.

Pablo Picasso [193]

Going from expression data to the characteristic states in section 5.2.1 involves multiple
steps. The pipeline I developed to achieve this is called Stator, and is written in
Nextflow [70]. Nextflow is a workflow management system that allows for the
development of complex pipelines in a modular fashion. It is written in Groovy, a Java-
based language. Stator is available at github.com/AJnsm/NF_TL_pipeline,
and can be directly pulled and run from the command line, locally or on a HPC cluster
using the SGE scheduler. All dependencies are packaged in various Docker containers,
hosted on hub.docker.com/u/ajnsm, accessible to both Docker and Singularity.
All python scripts run in python 3.6, and the R scripts in R 4.0. Stator takes in a
list of parameters and data sets, calculates MFIs up to seventh order using the final search
space of the MCMC graph as well as the MAP CPDAG, reconstructs the characteristic
states of the significant higher-order interactions, and creates hierarchical clusterings of
robust states. This is summarised in the diagram of Figure 5.2. It should be noted that
the pipeline is currently still under active development, and that the documentation here
provided might become outdated. The most up-to-date documentation can be found on
the author’s Github.

Stator starts by reading in an N×M matrix of single-cell gene expression data from N cells
and M genes (or any other kind of binary observation matrix), and processing it with the
makeTrainingData.py script using the python-package scanpy. This script can
run in two different modes: agnostic, in which case the only preprocessing is binarising
the data, and expression, in which case the data is normalised, log-transformed, and
the top N highly variable genes are used in the analysis, where N can be set by the user.
More information on the parameters and choices to be made can be found in the README
at github.com/AJnsm/NF_TL_pipeline/blob/develop/README.md. Af-
ter the data is prepared, the parallelPCscript.R script estimates the graph of
conditional dependencies using the parallel, stable PC-algorithm, orienting edges using
the majority rule as outlined in section 4.2.4. This PC-graph is then used as an input
for the MCMC optimisation scheme in iterMCMCscript.R. This resulted in two
quasi-causal graphs: the MAP CPDAG and the final MCMC search space. Using either
of these graphs as the basis for the Markov blankets, all M 1-point interactions, and all
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M2 2-point interactions are calculated using the estimateTLcoups.py script. In
addition, all 3-, 4-, and 5-point interactions among mutually Markov-connected genes
(see Lemma 2 and Theorem 1) are calculated by the calcHOIwithinMB.py script.
These within-Markov blanket interactions are used to guide the heuristic search for 6-
and 7-point interactions by calcHOIs 6n7pts.py. Summary figures of all inter-
acting tuples are then constructed (the summary of the triplet (Id2, Id3, Slc1a3) is
shown in Figure 5.3 as an example). Among these higher-order interactors, those that
have a characteristic state that deviates more than a factor of n from the Bernoulli
null, at a significance level beyond θ (where n and θ are set by the user, and to 5
and 0.05 by default, respectively), are called the top deviating states and written to
a file topDeviatingHOIstates.csv. These top deviating states are clustered in
their binary representation (see Section 5.2.2), and used to draw the dendrogram of
characteristic states. Finally Stator outputs three dendrograms of states:

1. The original dendrogram of deviating states, cut at a distance threshold set by the
user.

2. The full, uncut dendrogram annotated with bootstrapped BP and AU values for
each branch.

3. A dendrogram of a separate hierarchical clustering of all significant branches
present in dendrogram 2. This dendrogram is not used for any of the results
in this thesis, but explored in more detail in Section 6.2.2.

The pipeline offers different estimation methods in the utilities.py module: some
use expectation values, and some use the raw probabilities. The advantage of using
expectation values to estimate the MFIs is that you only need to condition on the
Markov blanket of one of the interacting genes, which makes more interactions estimable.
However, in practice this makes the precise value of the interaction no longer symmetric
under permutation of the interacting genes. Estimating interactions using probabilities
explicitly keeps the estimates symmetric.

However, perhaps a more important consideration is the difference in performance. Fig-
ure 5.4 shows the time taken by different estimation methods. It can be seen that the
numba implementation, which uses expectation values, is by far the fastest estimation
method. The speed-up is achieved by using numba’s just-in-time compilation, and ex-
plicitly writing out the expressions for the interactions up to 7th order. There is also a
general function that can calculate the interaction at arbitrary order, but that is more
than 100× slower.

An outline of the Stator workflow in a bash terminal on an SGE scheduler node is
shown below.

Code 5.1: Stator workflow
1 $ module load singularity
2 $ nextflow pull AJnsm/NF_TL_pipeline
3 $ nextflow run AJnsm/NF_TL_pipeline -profile eddie_singularity -params-file params.

json
4
5 N E X T F L O W ˜ version 22.04.3
6 Launching ‘https://github.com/AJnsm/NF_TL_pipeline‘ [fabulous_mahavira] DSL1 -

revision: 6c5acdc435 [develop]
7 [f1/31129d] process > makeData (1) [100%] 1 of 1
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Figure 5.2: The different modules in the Stator pipeline.
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Figure 5.3: An example of a summary of a higher-order interaction, in this case the
3-point interaction among (Id2, Id3, Slc1a3), estimated using the MCMC graph, on
a merged data set of developmental neurons and astrocytes. The top left shows the
local structure of the MAP CPDAG, the top right the hypergraph of MFIs. The middle
row shows the expression of each of the interacting genes in PCA space. The bottom
row contains UpSet plots (see Figure 5.21 for more details on such plots) of both the
conditioned joint state (bottom left) and the unconditioned joint state (middle). Finally,
the bottom right panel shows which cells were in the interaction’s characteristic state,
which is (1, 1, 1) in this case.
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Figure 5.4: Time taken on a single MFI estimation using different estimation methods.
Shown for the 1-point of Id2, the 2-point of Id2 and Etv1, and the 3-point of Id2, Etv1,
and Atp1b1.

8 [8a/e33daf] process > estimatePCgraph (1) [100%] 1 of 1
9 [16/5d6bd5] process > iterMCMCscheme (1) [100%] 1 of 1

10 [64/d4717f] process > estimateCoups_1pts (2) [100%] 2 of 2
11 [ee/3a493f] process > estimateCoups_2pts (2) [100%] 2 of 2
12 [ea/70f990] process > estimateCoups_3pts (1) [100%] 2 of 2
13 [99/32d387] process > estimateCoups_345pts_WithinMB (1) [100%] 1 of 1
14 [4e/38e8e2] process > estimateCoups_6n7pts (1) [100%] 1 of 1
15 [7d/cd582a] process > createHOIsummaries (1) [100%] 1 of 1
16 [da/3899c4] process > identifyStates (1) [100%] 1 of 1

The eddie singularity profile is a custom profile that makes sure the SGE sched-
uler requests the correct resources, and should be applicable to most SGE schedulers.
The params.json file contains both the hyperparameters for the algorithms and the
parameters used to request resources from the scheduler. An example is shown below.

Code 5.2: Stator parameter file (example)
1 {
2 "dataType" : "expression",
3 "rawDataPath" : "/path/to/data/10X_astrocytes_mouseB.csv",
4 "nGenes" : 20,
5 "nCells" : 1000,
6 "fracMito" : 0.12,
7 "fracExpressed": 0.02,
8 "PCalpha" : 0.05,
9 "bsResamps" : 100,

10 "edgeListAlpha": 0.05,
11 "nRandomHOIs" : 10,
12 "minStateDeviation": 5,
13 "stateDevAlpha": 0.05,
14 "dendCutoff" : 0.88,
15 "auThreshold" : 0.4,
16 "bsResamps_HC": 100,
17 "sigHOIthreshold" : 0.05,
18 "userGenes" : "/path/to/userGenes.csv",
19
20 "executor" : "sge",
21 "maxQueueSize" : 25,
22 "cores_makeData": 1,
23 "cores_PC" : 6,
24 "cores_MCMC" : 2,
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25 "cores_1pt" : 4,
26 "cores_2pt" : 12,
27 "cores_3pt" : 8,
28 "cores_HOIs_MB" : 6,
29 "cores_HOIs_6n7" : 6,
30 "cores_HOIs_plots": 6,
31
32 "mem_makeData" : "32G",
33 "mem_PC" : "16G",
34 "mem_MCMC" : "16G",
35 "mem_1pt" : "32G",
36 "mem_2pt" : "64G",
37 "mem_3pt" : "64G",
38 "mem_HOIs_MB" : "64G",
39 "mem_HOIs_6n7" : "16G",
40 "mem_HOIs_plots" : "64G",
41
42 "time_makeData" : "1h",
43 "time_PC" : "1h",
44 "time_MCMC" : "1h",
45 "time_1pt" : "1h",
46 "time_2pt" : "1h",
47 "time_3pt" : "1h",
48 "time_HOIs_MB" : "1h",
49 "time_HOIs_6n7" : "1h",
50 "time_HOIs_plots" : "1h"
51 }

The parameters set in line 2−18 correspond to hyperparameters of the various algorithms
and can affect the results. The parameters below line 18 all correspond to computational
resource requests, so should not affect the results, but might affect the scheduling and
execution time. More information on the parameters is available in the documentation
at github.com/AJnsm/NF_TL_pipeline/blob/develop/README.md and
a vignette with a full walkthrough of the pipeline is available at https://github.
com/AJnsm/NF_TL_pipeline/blob/main/vignette/Vignette.md.

5.2.4 Correcting for double-dipped clusters
When clustering the cells by distance in expression space and then testing for differential
(mean) gene expression between these clusters, the same data is used twice in a process
known as selective inference, or double-dipping. This makes the results of the differen-
tial expression analysis unreliable, and it becomes impossible to statistically justify the
clustering. In [88], the authors introduce a test for a difference in means that corrects
for double-dipping. Given a realisation x of X , where X is a matrix-normally distributed
random variable of n observations of q features as X ∼ Nn×q(µ, In, σ2Iq), one assigns a
p-value to a difference in mean across two clusters C1 and C2 within a partitioning C(x)
as:

PH0

(
||X C1 − X C2|| ≥ ||xC1 − xC2||

∣∣∣∣C1, C2 ∈ C(X )
)

(5.11)

That is,

“Among all realizations of X that result in clusters C1 and C2, what
proportion have a difference in cluster means at least as large as the difference
in cluster means in our observed data set, when in truth µC1 = µC2?” [88].
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(a) p = 4.3 · 10−21 (b) p = 9.8 · 10−6 (c) p = 0.56

Figure 5.5: Data generated from two standard normal distributions (unit variance) a
distance D apart is significantly separable for D = 2.5 and D = 2.0, but not for
D = 1.5. The p-values are corrected for double-dipping using clusterpval. This
illustrates that a difference in means of ∼ 1.5 is typical for clusters in such data, even
when the data is generated from a homogeneous distribution.

To test for a difference in means across clusters, I used the implementation of this test
in the R package clusterpval [88]. I validated the behaviour by generating 5,000
observations from two standard normals (∼ N (0, 1)), shifted to be a distance D apart.
I performed a hierarchical clustering (euclidean distance with average linkage) and cut
the dendrogram so that there were two clusters of similar size. For small D, the p-value
should reflect that there is no statistically sound way to justify separating the population
into two. Figure 5.5 shows that this is indeed the case. Note, however, that this is
an artificial situation in two dimensions. In the rest of this chapter, I clustered in 20
dimensions, so that a 2D visualisation no longer accurately reflected the dispersion of
the data.

5.3 Results
Things do not exist until they begin
to appear.

Commonly attributed to Humberto
Maturana

5.3.1 Higher-order characteristic states find structure beyond
clustering based approaches

In this section, I compared the resolving power of the characteristic states of higher-
order interactions with that of clusters in expression space, correcting the expression
space clustering for double-dipping as outlined in Section 5.2.4.

5.3.1.a Interaction-driven clustering

The characteristic states were generated from all Markov-connected 3-, 4-, and 5-point
interactions significant at F ≤ 0.05. I only kept characteristic states that deviated more
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Developmental Adolescent
Neurons Astrocytes Neurons Astrocytes

62/82 (76%) 76/98 (78%) 45/50 (90%) 9/10 (90%)

Table 5.1: Shown is the fraction of characteristic states that are 1̂ for the developmental
and adolescent data sets.

than a factor of 5 at a significance level beyond p ≤ 0.05 with respect to the Bernoulli
null. In practice, for the cells in these data sets, all states that deviated more than a
factor of 5 were significant at that level. The characteristic states tended to be the
states where all interacting genes were expressed, denoted 1̂. Across the four data sets,
I found between 10 and 98 characteristic states, most of which corresponded to the 1̂
state. A summary of the states is shown in Table 5.1.

5.3.1.b Data-driven clustering

Cells are often clustered in expression space with the Louvain clustering algorithm, but
that optimises for modularity, not total cluster number. As I am primarily interested in
maximising resolving power, I created a standard hierarchical clustering in the first 20
principal components (PCs) of the expression data. The elbow of the explained variance
by the PCs occurs well below 20 PCs in each of the data sets (Figure 5.7). To cut
the dendrogram at a height that maximises the total number of significant clusters,
I ran a series of tests on subsampled data across a range of cutting heights. Using
the first 20 PCs, a random selection of 5,000 cells from the data set was clustered
hierarchically (using a Euclidean distance and average linkage). In each data set I
generated 5 clusterings by cutting the dendrogram at k = 2, 4, 6, 8, or 10, where k is
the total number of clusters. For each of these clusterings, I calculated the significance
of the difference in means using the clusterpval package (see Section 5.2.4), and
only kept clusters that contained at least 2.5% of all cells, and had a significant (at
α = 0.05k(k−1)

2 ) difference with at least one other cluster. I then chose the final number
of clusters by fixing k to the lowest value that had as many significant clusters as the
k = 10 clustering. This way, the number of meaningful, i.e. significant, clusters was
maximised, while minimising the number of cells that cannot be assigned to a significant
cluster. For both developmental data sets, this corresponded to setting k = 6, for the
adolescent neurons to k = 8, and the adolescent astrocytes never yielded more than 1
significant clustering. I chose not to increase beyond k = 10 because the significance
calculations are unreliable when the clusters become too small. Using these values for
k (and setting k = 8 for the adolescent astrocytes to match the neurons), I clustered
all the cells in each data set, and called this clustering the data-driven clustering. This
resulted in respectively (2, 1, 3, 3) clusters for the developmental neurons and astrocytes,
and adolescent neurons and astrocytes, shown in Figure 5.6.

The data-driven approach yielded fewer than three clusters in each data set, while the
interaction-driven approach yielded an order of magnitude more states. Note, however,
that it would be a simplification to say that the interaction-driven approach offered a
higher resolution description, since it is still unclear if the interaction-driven states are
a fine-grained description of the cell types usually found by expression space clustering
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(a) Developmental neurons (b) Developmental astrocytes

(c) Adolescent neurons (d) Adolescent astrocytes

Figure 5.6: Data-driven clustering of the four data sets, embedded in the first two
principal components. If a cell was assigned to a cluster that contains fewer than 2.5%
of cells, or if there was no significant difference in mean with any other cluster, then it
got assigned to cluster 0, here shaded in grey.

Figure 5.7: In all four data sets, the first 10 to 15 principal components (PCs) explain the
most variance, so that including 20 PCs in the clustering should capture most structure.
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(a) Adolescent astrocytes

(b) Adolescent Neurons

Figure 5.8: Expert-driven clustering of the two adolescent data sets. Each colour cor-
responds to a distinct expert annotation, so the actual clustering is finer than the eight
clusters shown in this figure, which just serves to give a broad picture of the embedding
of each subtype.

algorithms, or a new kind of biological state altogether. This will be explored in the next
section by comparing the interaction-driven states with expert annotations.

5.3.2 Combinatorial markers for known cell types

5.3.2.a Expert-driven clustering

The adolescent data used in this thesis was part of the Mouse Brain Atlas [313], and
thus came with cell type annotations. This annotation will be referred to as the expert
annotation throughout this thesis. These annotations were based on a combination of
hierarchical clustering, Louvain clustering, k-nearest neighbour clustering, density-based
algorithms, trained classifiers, and the manual merging and elimination of clusters by
experts. According to this clustering, the neurons had cells from 157 subtypes, and the
astrocytes contained 7 subtypes. Each cell in the two adolescent data sets was annotated
with this subtype, which I called the expert-driven clustering, and a rough overview is
given in Figure 5.8. Inspection by eye showed that the data-driven clusters were all
also found by the expert-driven approach, but the expert-driven approach had a higher
resolution. It was not immediately clear how to interpret the expert-driven approach, as
it finds more structure than can be justified by mean gene expression, while still being
based on mean expression in the sense that the clusters necessarily localise in expression
space. It should, however, be noted that the authors of [313] used a more sophisticated
dimensional reduction technique than taking the first few principal components. Still,
the discrepancy between the 3 significant clusters after correcting for double-dipping and
the 157 clusters found in the expert-driven approach is striking.
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5.3.2.b Interaction-driven states can be cell-type specific

To see if the characteristic states corresponded to the fine-grained description from the
expert-driven clustering, I calculated the overlap in annotation between the two methods.
Let the set of cells in a characteristic state S have an overlap of size Si with cluster Ci ,
such that its specificity σi and sensitivity τi with respect to cluster Ci can be defined as

σi = Si∑
j Sj

(5.12)

τi = Si

| Ci |
(5.13)

Of particular interest were the clusters that the characteristic states are most specific
and sensitive to, so define:

σ = max
i

σi (5.14)

τ = τargmax σi (5.15)

I then calculated τ and σ of all characteristic states in the adolescent data (since the
expert-driven clustering was only available for the adolescent cells).

Adolescent astrocytes Keeping only those characteristic states in the adolescent
astrocytes with a Youden index (sensitivity + specificity −1) above 0.05 for any of the
expert annotated clusters, I found the three characteristic states in Table 5.2. Each of the
three states was more than 90% specific to the ACBG class, which corresponded to the
Bergmann glia of the cerebellum—indeed a subtype of astrocytes. In the Mouse Brain
Atlas, Gdf10 was already annotated as a marker for ACBG, but demanding only Gdf10 to
be expressed resulted in a specificity of just 0.42 and a sensitivity of 0.82. Two of these
three states were derived from 3-point interactions with Hopx and Gria4, and one of two
calcium-dependent genes: Cpne2 or Camk1. Gria4 encodes the protein GluR4, which
is part of the transmembrane AMPA receptor that mediates calcium permeability. The
CPDAG and the MCMC graph are identical in both cases, and locally form colliders on the
calcium genes as Gria4→Cpne2←Hopx and Gria4→Camk1←Hopx. This is consistent
with the two calcium-dependent genes being regulated by the transcription factor Hopx,
and functioning conditional on the presence of GluR4. However, this interpretation is
contingent on the quasi-causal graph reflecting the true causal structure in both these
cases, so should be investigated further by validating the presence of this dependency in
multiple other data sets before any definite conclusions can be reached. Note that both
these states come with a high specificity, but low sensitivity. This suggests that they
might reveal a particular substate of the Bergmann glia where the calcium is available.
Moreover, the set of cells in the two states are not equal—they have an overlap coefficient
(A ∩ B/ min(| A |, | B |)) of 0.51, indicating that they define two partially disjoint
sets of cells. The third characteristic state results from a 4-point interaction with the
Bergmann glia markers Gdf10 and Sept4. The third gene present is Tlcd1 (Calfacilitin),
another calcium channel modulator. Interestingly, the fourth gene in the interaction,
Igfbp2, is absent in the characteristic state. Igfbp2 binds to the calcium regulating IGF
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genes state Expert annot. σ τ

Tlcd1, Sept4, Gdf10, Igfbp2 1, 1, 1, 0 ACBG 0.92 0.58
Cpne2, Gria4, Hopx 1, 1, 1 ACBG 0.92 0.31
Camk1, Gria4, Hopx 1, 1, 1 ACBG 0.90 0.16

Table 5.2: Characteristic states in the Zeisel astrocytes.

proteins, but has also been shown to affect intracellular calcium concentrations in a
human cancer cell line (MCF-7 cells) [236]. All three Bergmann glia-specific states thus
revolve around calcium channel regulation. That regulation of calcium permeability is
crucial to neurogenesis and the development and functioning of Bergmann glia has been
previously established in mice [166, 113].

I next undertook the same analysis using the data-driven clustering of the adolescent
cells. Keeping only those characteristic states with a Youden index above 0.05 for any
of the data-driven clusters, I found the same three characteristic states in Table 5.2 that
are all at least 90% specific to cluster 2. Cluster 2 indeed corresponds to the cluster of
Bergmann glia in the expert annotation, as can be seen by comparing Figures 5.8 and
5.6, and by the fact that the ACBG expert annotation and the data-driven cluster 2 had
an overlap coefficient of 0.99. Data-driven clusterings thus provided no more information
than the expert-driven clustering.

Adolescent neurons The characteristic states in the adolescent neurons with Youden
index above 0.05 with respect to the expert annotation are shown in Table 5.3. Most
of these were specific to the various clusters of glutamatergic neurons of the spinal cord
(those with expert annotation SCGLU[X]), and among the genes that appeared in these
interactions (Penk, Tac1, Sst, Grp, Pthlh, Gad2, Hoxb8), only Gad2 and Hoxb8 were not
neuropeptide genes (though Gad2 only appears as a negative marker). Almost all these
neuropeptide gene interactions were specific to the cluster SCGLU4, and all involved
Penk and Hoxb8. One interaction was specific to SCGLU5 and indeed involved different
neuropeptides. All but one of the SCGLU4 specific interactions involved Sst, which was
surprising considering the fact that mean expression of Sst is used to mark GABAer-
gic neurons in the cortex (see [250] and mousebrain.org/adolescent/genes.
html[313]), though other research has found the corresponding mRNA molecules to be
expressed across all types of neurons [248].

The interactions specific to neuroblasts (expert annotation DGNBL2: granule neurob-
lasts, dentate gyrus) involved Sox11 and Igfbpl1, both canonical markers for that cell
type. The 1̂-state of the genes (Id2, Tcf4, Igfbpl1) was particularly interesting as it
involved both a canonical neuroblast marker and the pair (Id2, Tcf4) which the String
Database annotates as interacting with the highest level of confidence (> 0.90), in part
based on ’Experimental/Biochemical data’ [264]. Finally, one interaction was specific to
inhibitory neurons in the spinal cord (SCINH6), and also involved (neuro)peptides, and
the calcium-signalling gene Calb2 whose protein is known to interact with neuropeptides
and has been used in combination with Npy to mark GABAergic neuronal subtypes in
mice before [153].
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genes state Expert annot. σ τ

Penk, Tac1, Sst, Hoxb8 1, 1, 1, 1 SCGLU4 0.82 0.78
Grp, Pthlh, Hoxb8 1, 1, 1 SCGLU5 0.94 0.70
Penk, Tac1, Sst 1, 1, 1 SCGLU4 0.56 0.80
Penk, Sst, Hoxb8 1, 1, 1 SCGLU4 0.51 0.80
Penk, Tac1, Hoxb8 1, 1, 1 SCGLU4 0.74 0.93
Nppc, Npy, Calb2 1, 1, 1 SCINH6 0.57 0.87
Id2, Tcf4, Igfbpl1 1, 1, 1 DGNBL2 0.66 0.41
Sox11, Tubb2b, Igfbpl1 1, 1, 1 DGNBL2 0.71 0.80
Penk, Sst, Gad2, Hoxb8 1, 1, 0, 1 SCGLU4 0.53 0.80
Tnnt1, Rora, Lhx1os 1, 1, 1 MEINH5 0.48 0.71
Hist1h2bc, Zbtb20, Ddn 1, 1, 1 DGGRC2 0.82 0.30

Table 5.3: Characteristic states in the adolescent neurons.

In conclusion, the characteristic states seemed to reproduce some of the expert-driven
cell types, but not precisely. In the adolescent astrocytes, the characteristic states
were highly specific (σ > 0.9) to the expert annotation of Bergmann glia, but not
very sensitive. This is consistent with the characteristic states corresponding to various
states or subtypes of the Bergmann glia. This is further supported by the fact that
the different states are partially disjoint. In the adolescent neurons, the characteristic
states were often moderately sensitive, but less specific. This is consistent with the
characteristic states representing states that are present throughout different cell types.
An advantage of the characteristic states is that they are associated to a limited set of
genes that can help with the interpretation of the states. For example, the states in the
Bergmann glia all involved regulation of calcium transport, while those in the adolescent
neurons were almost always defined by their neuropeptides. Regardless of their biological
interpretation, that the states are more specific in the astrocytes and more sensitive in
the neurons is to be expected considering the difference in homogeneity between the two
cell types. The expert annotation clusters in the neurons have a median of 57 cells per
cluster (IQR=18− 116 cells), whereas the astrocyte annotations had a median of 2,148
cells (IQR=1124− 3260 cells).

So far, I have considered each characteristic state as a true state in itself. Since some
characteristic states might describe the same biological state, the characteristic states
might contain redundant structure, and need to be clustered to reflect coherent and dis-
tinct biological states. For example, the (Penk, Sst, Hoxb8) characteristic state seemed
to correspond to a similar set of cells as the (Penk, Sst, Gad2, Hoxb8) characteristic
state, since they were both very similarly specific and sensitive to the SCGLU4 cluster.
In fact, adding the Gad2 condition could only decrease the total number of cells in that
state, so the cells in the (Penk, Sst, Hoxb8) state were a superset of the cells in the
(Penk, Sst, Gad2, Hoxb8) state.
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Figure 5.9: The mean Dice distance at which the elbow occurred in the cut-off response
curve was 0.88, here shown in red (dashed). An added benefit of this is that this cut-off
results in a similar number of clusters in three of the four data sets.

5.3.3 A robust clustering of characteristic states

As outlined in Section 5.2.1, the characteristic states were hierarchically clustered using
average linkage and a distance defined by the Dice distance. This was done in each
data set separately, and cutting the dendrogram yielded a clustering of characteristic
states for each data set. The value of this cut-off was set to 0.88 and kept the same
throughout the data sets so that the total number of states could be compared. This
threshold was chosen by finding the elbow in the graph that relates the total number
of found clusters to the cut-off distance. The elbows occurred at a Dice distance of
0.80 in the adolescent data sets, and at 0.95 in the developmental data sets (judged
by eye, summarised in Figure 5.9), leading to a mean distance cut-off of 0.88. In two
further Stator runs on the same data sets, this mean elbow occurred at 0.84 and
0.81, but I kept the threshold at 0.88 for reproducibility, and because a higher threshold
results in fewer states and is thus more conservative. This is, however, an arbitrary and
imprecise way to set the cut-off, so Section 5.3.7 outlines a method that constructs the
states automatically by quantifying how robust each individual cluster is, abolishing the
need for a cut-off to be specified. Another method to automate the choice of cut-off
is to maximise the modularity of the final clustering, which is currently the default in
Stator, and leads to very similar results. In this section, I simply cut the dendrogram
and verified that the resulting clustering was robust.

To verify that the resulting clusters were robust with respect to finite sample variability,
I bootstrap resampled the cells of the whole data set, and reclustered the characteristic
states. Note that I did not recalculate the interactions, as that would conflate the ro-
bustness of the interaction estimation with that of the clustering procedure. I resampled
the data 1,000 times, and for each resample calculated the adjusted Rand index (ARI)
and the adjusted mutual information (AMI), relative to the original clustering (see Sec-
tion 5.2.2). The results are reported in Figure 5.10 and ranged from good (> 0.8) to
excellent (> 0.9). From this, I concluded that the clustering was robust. Therefore, I
refer to a cluster of characteristic states simply as a state.
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Figure 5.10: The AMI and ARI across 1,000 bootstrap resampled clusterings, relative to
the original clustering, ranged from good (> 0.8) to excellent (> 0.9), indicating that
cutting the dendrogram at a height of 0.88 led to clusters that were robust with respect
to the finite sample variance. The adolescent astrocytes were almost always perfectly
robust (AMI=ARI=1.0), but that could be in part attributed to there being many fewer
clusters.

5.3.4 Higher-order states reflect diverse biology
In Figures 5.13 to 5.15 the resulting truncated dendrograms are shown, where each leaf
is annotated with the four genes that appeared most often in interactions in that clus-
ter (where +/- denotes the presence/absence of that gene, and equally often occurring
genes are listed alphabetically), and the embedding of the characteristic states in a PCA
embedding. The developmental neurons and astrocytes resulted in a similar number of
clustered states—15 and 16, respectively—while the adolescent neurons and astrocytes
yielded 23 and 6 clusters, respectively. That the adolescent astrocytes form a much
more homogeneous group of cells than the adolescent neurons was already implied by
the expert annotation of expression space in cells, and is corroborated here by the clus-
tering of characteristic states. Clustering the developmental neurons and astrocytes by
expression resulted in respectively just 2 and 1 significant clusters, but in many more
clustered states. To end up with just 2 states in these data sets, the dendrogram would
have to be cut at a distance beyond 0.99. Furthermore, it was also immediately clear
that these states revealed different structure from expression space clusters, as multiple
states did not localise in the first two principal components. As the states correspond—
ideally—to biologically meaningful cell identities, such delocalised states correspond to
a single identity that is instantiated in different cell types. Therefore, I refer to states
that delocalise in expression space as polysemic states. To see what each of the states
corresponded to, various interesting clusters in the data sets are discussed below in more
detail.

Developmental neurons The data driven clustering separated this data set into two
clusters along the horizontal principal component (PC1 in Figure 5.6). Figure 5.12
shows that most states also separated along this axis, localising to the right/east of
the embedding plane, or the left/west. There were two polysemic exceptions to this:
an Hba/b+ state with Hbb-bs, Hbb-bt, Hba-a1 and Hba-a2 expressed, and a state
with Fos, Junb, and Nr4a1. Neurons with hemoglobin gene expression have previously
been found in mice and humans [28], where the presence of Hba/b transcripts was
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linked to mitochondrial activity. However, this state could also correspond to multiplet
transcriptomes that contain blood cells. Genes from the Jun and Fos families encode
the heterodimer AP-1, whose transcription is induced by neuropeptides and electrical
excitation [239], and neuronal plasticity [174]. AP-1 is generally associated to neural
activity and might be involved in regulating the cell type specificity of activity-induced
gene expression [310]. The third gene, Nr4a1, directly regulates Junb and Fos by binding
to their 3’ UTR [100], and is also activated in response to neuronal activity [310]. The
Junb/Fos/Nr4a1 state thus seemed to correspond to active neurons.

The states that localised in the east of the PCA embedding separated roughly into
Ebf1/Isl1 positive cells, and Gucy1[x]3/Six3 positive cells, both of which also expressed
Foxp1, a marker for medium spiny neurons (MSNs) [198]. Two subtypes of MSNs
are commonly described, D1 and D2 MSNs. Both Ebf1 and Isl1 are markers for D1
MSNs, but Six3 and Gucy1a3 are mostly specific to D2 MSNs [249, 319]. This suggests
that the Ebf1/Isl1+ state corresponded to D1 MSNs, while the Gucy1[x]3/Six3+ state
corresponded to D2 MSNs. Furthermore, Zfp503, which defined the state most closely
related (in terms of Dice distance) to the D1 MSNs, is a necessary transcription factor
for D1 MSN differentiation [319].

The states that localised to the west of the PCA embedding roughly separated into two
categories: one characterised by the expression of the transcription factor Etv1+, and
one by Cenpa/Ube2c/2610318N02RIK/Arhgap11a+ and Vim/Ezr/Mdk/Dbi+ cells.

The genes Etv1, Arl4d and Smoc1 are markers for GABAergic neurons in different parts
of the brain, according to the developmental Mouse Brain Atlas [313]. In the same atlas,
the genes Cenpa, Ube2c and Arhgap11a all mark neuronal intermediate progenitor cells
(nIPCs), most likely because they mark specific points along the cell-cycle. Furthermore,
Vim and Dbi specifically stimulate proliferation of neuronal progenitor cells [52, 9], and
Mdk is likewise involved in cell-cycle control [301].

Recall that the data-driven clustering partitioned the cells along PC1 in Figure 5.6 into
just two clusters, separating MSNs from the rest of the population. The characteristic
states revealed structure beyond this binary classification. The MSNs separated into D1
and D2 medium spiny neurons, while the states in the west of the embedding separated
into a different class of GABAergic neurons, and a cycling, progenitor state. Crucially,
the characteristic states did not just reveal more structure, it revealed delocalised cell
identities that are fundamentally impossible to detect by clustering in expression space.

Developmental astrocytes The data-driven approach yielded no significant clusters
in this data (see Figure 5.6), so clustering in expression space gave no statistically
sound way to conclude that there is any substructure present in this cell population.
In contrast, the characteristic states of the higher-order interactions revealed 15 cell
states, shown in Figure 5.13. Farthest removed from all others, there was an Hba/b+
state present throughout expression space, similar to the one found in the neuronal
population, but here involving Foxj1 (a gene that has been shown to regulate other kinds
of Globin proteins [138]). The authors of [28] also found astrocytes that expressed these
hemoglobin genes, but again, this state could also correspond to blood cell containing
multiplets.
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Beyond that, a range of Cenpa+ states clustered together. The set of genes that ap-
peared in the Cenpa/Pbk/Cdca3/Lockd+ state was more than 12-fold enriched in the
GO:BP terms organelle fission, nuclear division, chromosome segregation, cell division
and nuclear chromosome segregation (all significant with a g:SCS corrected p-value
< 0.022, using the 1k HVGs as a background), and thus indicated a mitotic cell state
around the G2M transition. Note that Lockd, which also appeared in this state, is
a lncRNA that itself has no gene ontology annotation, but is directly downstream of
Cdkn1b [184], another cell-cycle regulation gene (in fact, the official name for Lockd is
lncRNA downstream of Cdkn1b). The Gins2/Fen1/Ung/Rpa2+ state separated from
the Cenpa+ state at a high Dice distance and was more than 42-fold enriched in the
GO:BP terms DNA Replication, Base excision repair, cell cycle DNA replication, DNA
unwinding involved in DNA replication, nuclear DNA replication, and base-excision re-
pair (all significant with a g:SCS corrected p-value < 0.017, using the 1k HVGs as
a background). This state thus seemed to correspond to cells in S-phase. The in-
teractions in the S-phase state involved the genes 2810417H13Rik/Pclaf, Dhfr, Fen1,
Gins2, Gmnn, Hells, Lig1, Mcm5, Mcm6, Pcna, Plk4, Rad51, Rpa2, Rrm2, Smc2,
Top2a, Uhrf1, Ung and those in the G2M states (the three rightmost states in the
dendrogram) involved 2810417H13Rik/Pclaf, Ccnb2, Cdca3, Cdca8, Cdkn3, Cenpa,
Cenpf, Cenph, Gmnn, Knstrn, Lockd, Pbk, Racgap1, Rrm2, Tacc3, Top2a, Ube2c,
Uhrf1. All genes printed in bold have been identified as targets of the p53-DREAM
pathway in [76], which regulates gene expression during the cell-cycle. The DREAM
complex binds to promoters with E2F binding sites, which were already identified in
Chapter 4 as enriched in the set of interacting genes across the four data sets. More-
over, the p53-DREAM target genes preferentially coupled together in MFIs. That is,
the genes that are not known to be p53-DREAM targets coupled mostly together in
the interactions Cenph-2810417H13Rik-Cenpa, Gmnn-Pcna-Lig1, Gmnn-Rrm2-Cenpa,
Hells-Lig1-Gins2, Hells-Rrm2-Gins2, and Cenph-Uhrf1-Cenpa. This, and the fact that
higher-order interactions were enriched in the E2F binding sites, suggested that the dif-
ferences between the cell-cycle states were in part driven by differential p53-DREAM
regulation.

Separated from these cell-cycle related states, two closely related states appeared, in-
volving Neurod2/Neurod6/Auts2/Dcx+ and Bcl11b/Dcx/Meg3/Stmn2+ cell. All of
these genes are canonically involved in neuronal differentiation or maturation, except for
Meg3 (Maternally expressed gene 3), a maternally expressed lncRNA. However, there is
a possible explanation for its involvement, specifically in neuronal differentiation among
a population of astrocytes. Meg3 is flanked on the chromosome by the protein-coding
gene Dlk1 (and the lncRNA Meg8/Rian). Dlk1 is known to be important to neuro-
genesis [258], but it is usually only paternally expressed, whereas Meg3 is maternally
expressed, which makes it unlikely that they are coexpressed simply due to their ge-
nomic proximity. However, it has been shown that Dlk1 is essential to neurogenesis in
a maternally expressed form in niche astrocytes and neural stem cells [80]. There is no
Dlk1 -associated state, but that could be because Dlk1 was only lowly expressed (in 2%
of cells, vs. 18% of cells with Meg3 expression), had no estimable 3-point interactions,
and only two perfectly significant estimable 2-point interactions (with Miat and Fbln2).
However, there was a weak but significant Pearson correlation between Meg3 and Dlk1
(r = 0.18, p = 6 · 10−120). Therefore, the Meg3 expression in this neuronal differ-

171



Chapter 5

Figure 5.11: UpSet plot of the (Arc, Id1, Ier2, Fos) interaction. Plusses indicate the
expected number of cells under the Bernoulli null. The (1, 1, 1, 1)-state was more than
2,000% overrepresented relative to the Bernoulli null. It can also be seen that Arc-
transcripts were found more often in combination with all three other transcripts than
by themselves.

entiation state might reflect the role of maternally expressed Dlk1 in niche astrocytes.
Bringing these observations together, these two states might correspond to a neurogen-
esis state in radial glial cells in a microenvironment of niche astrocytes, explaining why
there was a neurogenesis signature in a cluster that by differential expression only showed
astrocyte markers.

The state defined by the 3 genes from the Id family and Sparcl1 was already observed in
[151], where they were identified as astrocyte progenitor cells (specifically referred to as
APC2). In the dendrogram, it was closely related to a state defined by two interactions:
Arc-Id1-Ier2-Fos and Fos-Dusp1-Ppp1r15a. Both these states involved only immediate-
early genes (except for Ppp1r15a), and in particular Fos which is known to mark a
subtype of astrocytes known as immediate-early astrocytes (ieAstrocytes) [99]. Arc is
usually expressed in neurons rather than astrocytes, but Arc codes for a protein that
can form virus-like capsids responsible for the intracellular transport of mRNA [186].
In particular, neuronal activity stimulates the transport of Arc-transcripts from neurons
into astrocytes [186]. Arc was indeed only lowly expressed in the astrocytes, but the
Arc/Id1/Ier2/Fos+ state was more than 2,000% enriched relative to the Bernoulli null
(see Figure 5.11 for a summary of the different expression patterns). There were two
distinct biological explanations for this observation. First, it could be that Id1, Ier2 and
Fos transcripts were transported along with Arc mRNA inside the Arc-vesicles. The
authors of [186] indeed found that—in a bacterial model—Arc-vesicles could transport
other transcripts as well. Alternatively, the conditional expression pattern could have
been the result of endogenous transcription of IEGs in astrocytes in response to the
presence of Arc containing vesicles.

Adolescent neurons To interpret the characteristic states in the adolescent data sets,
I compared them with the expert annotations. By representing each expert-driven cluster
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Figure
5.14:Hierarchicalclustering

ofadolescentastrocyte
states.

Figure
5.15: Hierarchicalclustering

ofadolescentneuronsstates.
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(a) Adolescent neurons. Neuropeptide genes in bold, neu-
ropeptide signalling genes in italics. (b) Adolescent astrocytes

Figure 5.16: A hierarchical clustering of the higher-order interactions and the expert
annotation. Leaves that were less than a Dice distance of 0.88 removed were grouped
by colour. Only expert annotations that did not end up as a singleton cluster after
cutting the dendrogram at a Dice distance of 0.88 are shown.
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in the same way as the characteristic states (i.e. a binary vector that indicates if a partic-
ular cell has that annotation), I could recluster the characteristic states while including
the expert annotations as additional states. This revealed how characteristic states over-
lapped with the expert-driven annotations. The result of this new clustering is shown
in Figure 5.16. In theory, this reclustering could have changed which interactions ended
up in the same cluster, but in practice proved quite robust (AMI=0.83, ARI=0.78). Of
the 13 singleton states in the clustering of Figure 5.15, only 4 remained singletons in the
new clustering of Figure 5.16, which shows that most singleton states overlapped signifi-
cantly with a particular expert annotation. The leaves of the dendrogram are labelled by
the genes involved, and a gene name is printed in bold when it encodes a neuropeptide,
and in italics when it is a neuropeptide signalling molecule as defined by orthology with
cluster 73: Neuropeptide signalling from the tissue expression map in the Human Protein
Atlas (https://www.proteinatlas.org/humanproteome/tissue) [278].

There were 9 clusters in Figure 5.16 strongly enriched in neuropeptides (shown in bold),
and peptidase inhibitor genes (Serpine2 and Serpinb1b), and each associated to an
expert annotation for glutamatergic, GABAergic/inhibitory, cholinergic, or serotonergic
neurons. When a cluster contained multiple expert annotations (for example the cluster
associating with DEGLU1, DEGLU2, and DEGLU3), they were always of neurons with
identical neurotransmitter identities, consistent with neuropeptides and neurotransmit-
ters being coreleased preferentially in certain combinations. While Gad2, which encodes
a GABA-synthesising protein, appeared in an interaction (Penk, Sst, Gad2, Hoxb8) that
clustered with a glutamatergic annotation, its characteristic state is (1, 1, 0, 1), indi-
cating that Gad2 is indeed only a combinatorial marker for these glutamatergic neurons
in its absence. Note that in 3 clusters (SCGLU4, SCGLU5, and SCGLU7), Hoxb8 ap-
peared in every interaction. Each of these three clusters corresponded to glutamatergic
neurons of the spinal cord, but was defined by completely different neuropeptide genes:
Grp/Pthlh, Penk/Tac1/Sst, and Elfn1 (with the peptidase inhibitor Serpine2). In the
Mouse Brain Atlas—the source of the expert annotations—none of these neuropeptides
appeared as marker genes by differential expression (though the neuropeptide gene Nmu
does appear as a marker for SCGLU5), and neither did Hoxb8. While the expert an-
notation thus found a similar number of states among the glutamatergic neurons, the
characteristic states were able to associate to these particular sets of neuropeptides and
highlight a role for Hoxb8 that was not found by differential expression analysis.

The cluster defined by Igfbpl1/Cd63/Id2/Tcf4/Tubb2b/Tac2/Sox11 (first non-singleton
cluster from the bottom) clustered closely to two neuroblast annotations in the bottom
of Figure 5.16, supporting the canonical role of Sox11 and Igfbpl1 in neuroblasts. Fur-
thermore, that Tac2 identifies a neuroblast subtype was already seen in [109]. More
interesting were the cases in which the states did not closely map to a single expert
annotation. For example, Figure 5.16 shows a polysemic state (in green) defined by
two characteristic states involving Synpr and C1ql2/3 that associated to a cluster of in-
hibitory neurons in the midbrain, as well as to granule neuroblasts in the dentate gyrus.
Looking at its embedding in Figure 5.15 (fourth state from the left), it can indeed be
seen that this state localised in two disjoint regions of expression space. Synpr encodes
a synaptic vesicle membrane protein, C1ql2/3 regulates the number of synapses, Ybx1
is a transcription factor upstream of synapse development and signalling regulation [78].
This state thus corresponded to a cell state that is present in different cell types, which
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is likely involved in the regulation of synapse functioning and development.

Adolescent astrocytes Similarly to the adolescent neurons, I reclustered the charac-
teristic states but included the binary representations of the expert annotations. This
time the reclustering did not change any of the original clusters (AMI=1.0, ARI=1.0).
The states that already had a high Youden index with respect to Bergmann glia indeed
associated closely to that annotation in the dendrogram of Figure 5.16, most strongly
so for the interaction involving the canonical Bergmann glia marker gene Gdf10. In
contrast to the analysis of the Youden index, I found two more clusters of states that as-
sociated to a particular expert annotation, though at a larger Dice distance than was the
case for the Bergmann glia case. The state that associated to the ACMB (Dorsal mid-
brain Myoc-expressing astrocyte-like) annotation included the genes Slc38a1, Gria1 and
Fxyd6, which are linked in Pathway commons as sharing a Reactome catalysis pathway.
Furthermore, Gria1 encodes a glutamate receptor subunit, Fcyd6 encodes a glutamater-
gic synapse protein [29], and Slc38a1 encodes a glutamine (a glutamate precursor)
transporter. Beyond these glutamate-related genes, Nnat is involved in the regulation
of ion channels during development [226], and Antxr1 encodes another transmembrane
protein. This state thus appeared to be related to active glutamatergic synapses. This
is further corroborated by the fact that the strongest marker for the ACMB cluster in
the Mouse Atlas was, after Myoc, the canonical astrocyte marker gene Gfap, whose
promotor is targeted by Glutamate [221].

The ACNT2 (Non-telencephalon astrocytes, fibrous) associated state involved another
gene that codes for the GFAP-interacting protein PLP1, that in turn interacts with the
state-associated protein MBP [303]. Together, the MBP and PLP1 proteins account for
around 80% of the myelin protein content in the central nervous system [303]. Slc6a9
encodes a transporter protein for glycine, which stimulates myelin phagocytosis [48], as
does the protein SCD1 [32]. Finally, Itpkb regulates the metabolism of inositol, a binding
target of PLP1 [309] and one of the main constituents of myelin [247]. Together, these
findings are consistent with the ACNT2 associated state corresponding to the control
and metabolism of myelin. This is further supported by the fact that ACNT2 has the
expert annotation of fibrous astrocytes, which are known to localise around myelated
nerve fibres.

The authors of the expert annotation [313] used just the expression of Gfap—which
canonically marks fibrous astrocytes—to annotate these cells. They only briefly com-
mented on high Slc6a9 levels, but did not link this to myelin phagocytosis, so this specific
character of these cells was missed. That could be because not all ACNT2-annotated
cells were in this state; this state only associated to ACNT2 at a relatively high Dice
distance of around 0.8. This state annotation was thus not equivalent to the ACNT2
annotation and potentially included cells from different regions or types.

5.3.5 Semantics reproduce across data sets
Even though the states were robust to bootstrap resampling the cells before clustering the
interactions, I wanted to verify that similar states would appear from a similar population
even if the interaction estimates are based on completely disjoint sets of cells. That the
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interactions should be robust to this was already shown in Section 4.3.2, but I verified
it here independently for the states.

I randomly sampled two disjoint subsets (DS) of 20,000 developmental neurons—referred
to as DS1 and DS2—and ran the Stator pipeline on each cell population separately,
estimating interactions among the 1,000 most highly variable genes of each data set.
Because the genes in the analyses were different, individual interactions and states could
not be compared directly, so instead I compared the biological semantics of the inferred
states. The states that resulted from cutting the dendrogram at a Dice distance of 0.88
are shown in Figure 5.17. The Six3/Gucy1a3+ D2 MSNs are found in both replicates, as
are the Isl1/Ebf1+ D1 MSNs. Furthermore, both replicates showed cycling states that
separated into a G1S-phase state (marked by Ccnd2 and Cdca3, respectively), and one
Cenpa+ that in DS1 seemed to correspond to a G2M state since both Cenpa, Cdc20,
and Ccnb1 specifically regulate the G2M phase in humans [297]. In DS2, the Cenpa+
state was not clearly a G2M state as it involved the genes Cdca3 and Cdca8, which
have been implicated in the G1S as well as the G2M transitions [203, 27, 62], though
especially Cdca8 is canonically associated with mitosis, which suggests this state in DS2
might also correspond to the G2M transition.

More alarming were the states that appeared in only one of the replicates. For example,
DS1 contained the Hba/b state seen before, but this state was absent in DS2. Similarly,
DS2 contained a neuronal differentiation state (involving Neurod2 and Neurod6, denoted
Neurodx, and the neuron differentiation gene Lmo1 [290]) and the neuronal activity state
marked by the AP-1 genes Fos/Jun+. However, recall that a particular expression pattern
of interacting genes was required to deviate more than 500% from the Bernoulli null to
be considered a characteristic state. Upon closer inspection, this arbitrary threshold
explained the difference in the found states. For example, while DS2 did not contain
the Neurodx state, it did contain the 3-point interaction among Neurod2, Neurod6 and
the neuron differentiation gene Id2 [103] with a characteristic (1, 1, 1) state. However,
this state was ∼ 450% overrepresented, so is not shown as a state in the dendrogram.
Similarly, while DS2 did not have the state with the four Globin genes, it had all three
3-point interactions between Hbb-bs, Hbb-bt, Hba-a2, and Hba-a1 with the (1, 1, 1)
states > 100% overrepresented. Finally, the active neuron state marked by Fos/Jun+
in DS2 is not found in DS1, but DS1 did contain a 3-point interaction among Cyr61,
Egr1, and Fos—Egr1 also being a marker for neuronal activity [71]—with a > 200%
overrepresented (1, 1, 1) state. The apparent irreproducibility of some of the states could
thus be attributed by the stringent requirement of 500% overrepresentation. Therefore,
I concluded that the semantics of the states were reproducible across the two replicates.

However, the concordance goes further than the states shown here. Setting the threshold
for significantly deviating states at > 500% overrepresentation potentially hides more
nuanced cell states. Because the states suggested that part of the population consisted
of MSNs, I wanted to see if more of the lineage of this cell type was present in the
population. MSNs and neurons from the olfactory bulb share a common precursor in the
lateral ganglionic eminence (pLGE). The pLGE lineage splits into precursors of neurons
in the olfactory bulb (OB potential), and cells with striatal potential, i.e. MSN precursors
[240]. The MSN precursors then further differentiate into the D1 and D2 subtypes. The
authors of [240] were able to identify two further subtypes of D1 MSNs in humans,
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marked by expression (Figure 4d and 4i of [240]) of the genes Tac1, Ebf1, Isl1, Zfp503,
Zfp521, Cntnap2, referred to as Pdyn MSN precursors; and the genes Tshz1, Foxp2,
Pbx3, Erbb4, referred to as Tshz1 MSN precursors (all genes are mapped by human-
mouse orthology). Furthermore, the authors of [240] further associated the genes Chd7,
Dlx5, Id2, Pax6, Dlx2, Arl4d to the OB potential lineage, and the genes Meis2, Tle4,
Foxp1, Zfp503, Zfhx3/4, Id4, Bcl11b to the striatal potential lineage. Figure 5.18 shows
that both datasets contained states corresponding to each of the points along the pLGE
lineage (ignoring D2 MSNs as those were already found in the dendrogram). It can be
seen that the different lineages did not sharply localise in the PCA embedding, but rather
showed a slight bias towards a region, though the dispersion pattern was similar across
the two data sets. In both data sets (the left and the right column in Figure 5.18), the
OB potential states all fell on the western blob of the PCA embedding, while the striatal
potential spread out slightly east of centre (I used PCA embeddings for reproducibility,
but the same structure was visible in tSNE or UMAP embeddings). The Tshz1 MSNs
tended to fall in the south-west and the Pdyn MSNs on the eastern blob. This meant
that the purely data-driven approach that only found two significant clusters largely
conflated the OB neuron progenitors with the Tshz1 MSN precursors, and thus did not
properly separate the MSNs from the other neurons. This also led me to conclude that
this cluster of cells can be annotated as pLGE cells, not just CNS neurons as I did in
Section 4.2.6.a. Finally, note that more than half of the interactions that defined the
OB potential states involved the transcription factor Tcf4. This gene was not mentioned
in [240] as a marker for the OB potential, but seemed to play a central role in the OB
fate decision as it was part of the conditional expression pattern in this cell identity.

5.3.6 States can be inferred on data containing multiple cell
types

5.3.6.a Polysemic states in neurons and astrocytes

Since the interactions could identify states not localised in expression space, one might
ask whether the cells need to be separated by cell type, via data-driven clustering or
otherwise, before the Stator analysis is run. This was indeed no longer a requirement,
so I ran Stator on a merged data set that contained 10k of the developmental neurons
and 10k of the developmental astrocytes. Cutting the resulting dendrogram again at a
Dice distance of 0.88 led to a total of 40 states, the largest number of states so far. The
full dendrogram split the states into two at a high Dice distance, but these two sides
of the tree did not exactly correspond to separating the neurons from the astrocytes,
with various polysemic states being present in both branches. Figure 5.19 shows five
polysemic states highlighted, out of the 40 states in total. The left blob in the shown
PCA embedding corresponded to the developmental neurons, and the right blob to the
astrocytes. Immediately recognizable were the Globin+ state and the Neurod2/6 neuron
differentiation state, present throughout both cell types.

The leftmost highlighted state was composed of three characteristic states, all based on
a negative interaction among Fgf12/Pls3/Etv1. ETV1 is known to interact with FGF
proteins in particular during eye development [91, 299]. The triplet state (1, 1, 1) was
present in both cell types, but the triplet interaction was modified in a 4-point interaction
with Aldoc. Aldoc is a canonical astrocyte marker, and here indeed unambiguously
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Figure 5.18: Four phases of the pLGE lineage all manifested as characteristic states of higher-
order interactions, and showed similar localisation in DS1 (left PC embeddings) and DS2
(right embeddings). The overrepresentation relative to the Bernoulli null in the full data set is
reported in parentheses, and each characteristic state that constitutes the full state is printed
in a different colour. These characteristic states involved the marker genes from [240], and
here indeed reproducibly localised in the same region, showing that even these fine-grained
semantics—sometimes less than 500% overrepresented—were reproducible across data sets.

181



Chapter 5

identified the astrocytes. Since the triplet interaction without Aldoc was negative and the
4-point interaction was positive, the presence of Aldoc lessened the absolute strength of
the triplet interaction. The state thus appeared to correspond to an FGF-Etv1 interaction
that is strongest in neurons.

The fourth highlighted state consisted again of G2M cell-cycle transition genes, namely
Cenpa, Pbk, and Top2a, but also the S- and G2-phase associated gene 2810417H13Rik/Pclaf
[155]. This state is discussed separately in Section 5.3.6.b. The last highlighted state
centred around the genes Fut9 and Rxrg. I could not find a biological interpretation for
this state, though RXRG is known to physically bind to the protein LHFPL6 which is
encoded by the Lhfp gene also expressed in the state (as reported by Pathway Commons,
based on Supplementary Table 2 from [242]). This state was further marked by the ab-
sence of Ebf1 expression, which could be considered surprising because Ebf1 expression
is known to be crucial to brain development [90].

Whereas most states were composed of just one or a few interactions (median 1, IQR 1-
3), one state was composed of 175 interactions, i.e. 60% of all interactions with deviating
states. Its highly dispersed embedding and the eight most commonly appearing genes
are shown in Figure 5.20. All eight genes (except for Mmd2) were listed in Table 1 of
[35] as core identity genes of neural stem cells (NSCs) and astrocytes in the hippocampal
subgranular zone (SGZ). In fact, the top 4 occuring genes were expressed in at least 80%
of SGZ NSCs and astrocytes in [35]. An NSC/astrocyte signature is typical of radial
glia cells (RGCs), so this state might correspond to a general class of RGCs, especially
because the markers for the SGZ—which develops in mice around postnatal day 7—
are unlikely to be useful in embryonic data. However, the large number of interactions
and genes that constitute this state make a full interpretation difficult, and cutting the
dendrogram at a lower Dice distance might reveal more nuanced structure within this
state.

5.3.6.b Combinatorial markers for the cell-cycle

One interaction in particular stood out because it had 5 states that passed the 500%
overrepresentation threshold: The 4-point interaction among Top2a, Pbk, Cenpa, and
2810417H13Rik/Pclaf. It is also noteworthy that the STRING database links all these
genes together with high confidence (> 0.7), based in part of direct experimental verifi-
cation, which means that this set of four genes is enriched in interactions with a p-value
of 5.4 · 10−7 relative to the STRING database’s null hypothesis based on a random set
of proteins of the same size and degree distribution drawn from the full mouse genome
(for four genes, this amounts to zero expected interactions, so the enrichment factor is
undefined). The 1̂-state was the most deviating state at over 15,000% deviation, but it
occurred about as often as the four states where 3/4 genes were expressed, all of which
passed the threshold of a significant > 500% deviation. A summary of the various states
is shown in the UpSet plot in Figure 5.21, and an embedding of the 5 characteristic
states is shown in Figure 5.22.

The authors of [230] have annotated a population of mouse brain cells from a variety of
public data sets by cell cycle phase. An embedding of these cells and their annotation
in the UCSC Cell Browser [252] is shown in Figure 5.23. It can be seen that Pclaf was
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Figure 5.20: A state composed of 175 interactions, with the eight most commonly
occurring genes listed. These eight genes suggest these might be radial glia cells, but
the large number of interactions that constitute this state makes interpretation difficult.

primarily expressed in the S-phase, and decays afterwards, Pbk and Top2a were expressed
in the early- to mid-G2M cluster, whereas Cenpa sharply marked the late stages of the
G2M annotation. Note that these genes mostly marked the phases by the presence
of their transcripts, not the absence, but it can still be seen that the absence of only
Cenpa corresponded to the S-phase, and the absence of only Top2a to either late G2M
transition or the mitotic exit. This interaction therefore seems to be the result of cells
being at various stages of the cell-cycle throughout the population, marking the different
phases by the different combinations of genes expressed.

5.3.7 Assigning bootstrap significance to branches
Up until this point, I defined cell states as collections of characteristic states that looked
’similar enough’, i.e. clustered by Dice distance. This had multiple drawbacks. First, the
choice of threshold can strongly affect which and how many states are inferred. Setting
the threshold lower than 0.88 can lead to many more states, but is less conservative as
the different states might then correspond to identical biology. At the same time, a high
threshold conflates many characteristic states, potentially destroying a lot of information
and structure in the data. This was already seen in the previous section where a state
consisting of 60% of all interactions emerged. Finally, the states were robust in terms of
the AMI and ARI of bootstrapped reclusterings, but these quantities only describe how
robust the clustering is on average, and say nothing about the robustness of individual
states. To overcome these challenges, I switched to quantifying the robustness of the
clustering by assigning bootstrap confidence values (the BP and AU score, see Section
5.2.2) to the individual branchings.

Figure 5.24 shows one of the stable branches that resulted from running Stator on
the merged data set of developmental neurons and astrocytes, where stable was defined
as having an AU value larger than 0.95 (and significant values are marked in green).
The full branch is indicated with the letter A, and was robust with AU=0.97 (with a
BP of 0.94). Branch A contained many Six/Sp9/Foxp1/Gucy1a3+ states, all markers
for MSNs or the striatal potential. This set of states thus seemed to correspond, again,
to the striatal branch of the pLGE lineage. In particular, the Gucy1[x]3 genes and Sp9
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Figure 5.21: This UpSet plot shows the frequency of the various expression patterns
associated to the 4-point interaction Top2a/Pbk/Cenpa/2810417H13Rik(Pclaf). The
frequency of each of the 24 = 16 states that appear in a 4-point interaction is shown,
as well as the % deviation from the Bernoulli null. The frequency is shown in blue if
the state is part of the numerator, in red if it is part of the denominator. The black
bars indicate the marginal expression level of each of the four genes. The (1, 1, 1, 1)
state deviates the most, but all three states where one of the genes is not expressed
also pass the > 500% deviation threshold and are deemed characteristic states of this
4-point interactions.

Figure 5.22: The five polysemic states, present in both neurons and astrocytes, associ-
ated to the interaction Top2a/Pbk/Cenpa/2810417H13Rik(Pclaf).

(a) UCSC clustering (b) Pclaf expression (c) Pbk expression (d) Top2a expression (e) Cenpa expression

Figure 5.23: The cell-cycle annotation in the UCSC Cell browser showed that expression
of the four interacting genes marked distinct phases of the cell cycle (here shown for
embryonic mouse, but results were similar for adult mice).
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mark D2 MSN progenitors. Note, however, that the branches of the state dendrogram
do not need to correspond to branches of the developmental lineage.

First a singlet (the leftmost state) split off from the rest of the states, but it did not do
so robustly (AU= 0.81 < 0.95). Therefore, the set of cells that it identifies cannot be
seen as different from cells in the other states. More interesting was the robust split into
the branches labelled B and C. Branch C was a Cited2/Sp9/Dlx6os1+ cluster. Dlx6os1,
a lncRNA antisense to Dlx6, has been shown to regulate GABAergic fate decision of
progenitor cells in the ganglionic eminences [36] which is in line with the pLGE MSN
lineage. Branch C itself had two robust (unlabelled) sub-branches—one with Ccnd2–
and one that includes a Ccnd2+ state—that therefore appeared to correspond to two
distinct points along the cell cycle.

Branch B was a more diverse branch than branch C and split into three robust branches
labelled D, E, and F. Branch D was a Six3/Smyd3+ branch, and although it is not
obvious why Smyd3 appeared in these interactions, the fact that it showed up in an
RNA-based investigation is not surprising as it encodes a chromatin methylating protein
that is part of the RNA polymerase II complex [102], and is thus directly involved in
the process of transcription. Branch D itself had two (unlabelled) robust branches with
Adora2a+/– respectively. Adora2a forms a heterodimer with the dopamine 2 receptor,
encoded by the canonical D2 MSN marker gene Drd2 [45].

Branch F mainly centred around the gene Rasgef1b, that plays a role in GTPase mediated
signal transduction. It appeared together with A930011G23Rik, but these two genes are
less than 50kb apart on chromosome 5, so might be conditionally expressed simply due
to their proximity. This branch also featured Gucy1a3, a gene that encodes part of the
soluble guanylyl cyclase enzyme which converts GTP to cGMP and hence also plays
a role in GTP/GDP signal transduction [53]. Finally, the role of Calb1 here was not
directly clear, though it is known to bind directly to the GTP regulator Ranbp9 [154].

Branch E contained a robust branch around the Zfhx3 gene, which is enriched in the
striatal potential lineage [240]. The transcription factor Sp9 directly binds to the pro-
moter and a putative enhancer of Six3 [308], in particular during D2 MSN development
[249], but although both genes appeared in this branch, they did not appear in the same
interaction.

Similar analysis of other bootstrap robust branches revealed that the full dendrogram
first split into three distinct branches: Neurons, Astrocytes, and a range of polysemic
states, after which the neurons robustly separated into the D1 and D2 MSNs. I did
not find evidence for the various D1 subtypes found in Section 5.3.5, but this could be
explained by the fact this data set included only half (10k) of the neurons in the data
sets from Section 5.3.5. However, there were many robust sub-branches that were hard
to interpret. How to extract the hierarchy of meaningful states is an open problem, and
briefly addressed in Section 6.2.

5.3.8 No evidence for interactions beyond fifth-order
There are two reasons to expect to find significant interactions only up to a certain order.
Biologically, a true 6- or 7-point interaction that cannot be decomposed would correspond
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to highly complex regulation that requires the coordination of many molecules. That
cells are able to coordinate such an interaction using the inherently stochastic process of
transcription in a noisy environment can be considered unlikely in the absence of direct
evidence. However, even if there are true dependencies at such high orders, the number
of cells that go into each part of the estimation will become smaller and smaller, hiding
all dependencies beyond a certain order in sampling noise. Nonetheless, the existence
of 6- and 7- point interactions cannot be excluded. However, calculating all 6- and
7-point interactions, or even only the Markov-connected ones, would take prohibitively
long because there are simply too many to calculate. Therefore, I used two different
approaches outlined below.

Random tuples In each of the four data sets, I calculated 6- and 7-point interactions
between randomly chosen 6- and 7-tuples. For each of these, I calculated the interaction
using the Markov blanket of the first gene. Of these in total 4k interaction estimations,
each one involved states that were not present in any of the cells, which means that
none of these interactions were estimable.

Targeted search Alternatively, one might hypothesise that the presence of an es-
timable and significant 5-point interactions might increase the probability of further
higher-order interactions within the shared Markov blanket of the interacting genes. In
each data set, for each significant 5-point interaction already found, I calculated 6-
and 7-point interactions between 6- and 7-tuples of fully Markov connected genes that
include the 5 interacting genes. The results are shown in Table 5.4. It can be seen
that the only interaction that was perfectly estimable and significant at α = 0.05 is a
6-point interaction in the adolescent neurons. This was the 6-point interaction among
the already interacting pentuplet Slu7, Trim35, Ube2n, Lmbrd1, Vsnl1, and the gene
Plp1, with a point estimate of −2.54, a 95% confidence interval (−4.80,−0.35), and
an F-value of 0.013. Looking at Figure 5.16, the 5-point interaction was already closely
related to other interactions that involved Plp1, so this 6-point interaction did not add
much new information. Across the 4 data sets, no 7-point interaction was perfectly
estimable, and even among the interactions that could not be perfectly estimated, the
smallest F-value reached was 0.20. I thus concluded that there is no evidence for beyond
fifth-order interactions in these four data sets.

5.4 Discussion
In this chapter, I associated characteristic states to the higher-order interactions from
various data sets, and investigated their biological meaning. To do this, I created a
publicly accessible Nextflow pipeline called Stator that estimates all 1- and 2-point
interactions, and all 3-, 4-, and 5-point interactions among Markov-connected tuples of
genes. Sufficiently deviating states among the higher-order interactions were deemed
characteristic states, and upon being clustered proved to reflect biological cell states.

This process is fundamentally different from assigning cell identity by annotating clusters
in expression space, which has the disadvantage that it can only justify clusters by
a difference in mean expression. Furthermore, usually the same cells that led to the
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Developmental Adolescent
6-points Neurons Astrocytes Neurons Astrocytes

Total 10 16 26 2
Estimable 2 9 9 2
Perfectly est. 0 2 2 1
Sig. α = 0.1 0 1 2 1
Sig. α = 0.05 0 0 1 0

7-points
Total 8 13 21 0
Estimable 0 1 3 0
Perfectly est. 0 0 0 0
Sig. α = 0.1 0 0 0 0

Table 5.4: Shown is the fraction of 6- and 7-point interactions (among genes with at
least one 5-point interaction) that were estimable and significant. An interaction is
estimable if its point estimate is estimable, and it is perfectly estimable if all bootstrap
resamples were estimable.

clustering are used in the differential gene expression analysis. This process is called
selective inference and is known to lead to false conclusions. Since the interactions and
their characteristic states are defined without making reference to distances in expression
space, they do not suffer from selective inference bias.

The inferred states indeed revealed structure beyond what can be accounted for by clus-
tering cells in expression space, and revealed different cell identities from the expert
annotation, where that was available. Furthermore, the states were robust to bootstrap
resampling the cells before clustering, and even to estimating the interaction on a com-
pletely disjoint set of cells from the same population. Some states did not localise in
expression space, and were thus by definition invisible to clustering cells in expression
space. I called such states polysemic states, as they comprise a consistent higher-order
gene expression pattern across multiple cell identities.

In a population of developmental neurons, annotated as a single cluster by 10X Genomics,
further clustering by expression could split this cluster in two, but the characteristic
states identified many more states. In particular, the states revealed that the cells were
not just CNS neurons, as a differential gene expression analysis suggested, but in fact
corresponded to a population of progenitor cells originating from the lateral ganglionic
eminence. The states corresponded to various branches from this lineage, like those with
an olfactory bulb fate, and those with a striatal fate, which separated into progenitors
of D1 and D2 medium spiny neurons (MSNs). It was surprising that these two cell
types emerged so clearly, since the two genes that canonically define these states Drd1
and Drd2, were expressed very lowly or not at all. However, this is known to be the
case in developing MSNs, where the regulatory markers are present before Drd1/2 are
expressed [319]. I further found two subtypes of D1 medium spiny neurons: Pdyn MSNs,
and Tshz1 MSNs. The Pdyn subtype is also marked by the Tac1 gene, which is how
this subtype was found by [240] in humans. A Tac3 -marked D1 MSN subtype was found
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in Rhesus monkeys in [104], and [320] found that Tac2 -expressing MSNs played a role
in a rodent model of cocaine addiction. Recently, similar subtypes have been described
in postnatal mice in a data-driven [313] and targeted [307] investigation of Tshz1+
cells. The authors of [253] describe a data-driven Tac1+/Penk+ D2 MSN subtype in
mice, but as this is a D2 subtype it seems to correspond to a different type from that
of [240]. I therefore believe that this is the first time the Pdyn and Tshz1 D1 MSN
subtypes have been found in embryonic mice in a purely data-driven way. Furthermore,
the Pdyn subtype was identified by the genes from the genetic programme underlying
the differentiation as listed in [240], not by Pydn directly.

Beyond these two cell subtypes, I found states corresponding to distinct phases of the
mitotic cell-cycle, p53/DREAM-regulation, myelin metabolism, Arc-capsid transport,
Dlk1 -imprinting, and neuropeptide signalling. The cell-cycle states were often polysemic
and present in multiple cell identities. The Dlk1 -imprinting state seemed to correspond
to a neurogenesis state among niche astrocytes or radial glial cells. However, these
neurogenic niches only become active and generate neurons in adulthood (at which point
they are the main source of neurogenesis), whereas the data only comprised embryonic
cells. It is known, however, that late-embryonic radial glial cells already generate the
neural stem cells (NSCs) that are responsible for adult neurogenesis [164, 157]. Since the
cells were indeed from late-embryonic (E18.5) mice, the found state likely corresponded
to NSCs derived from radial glia cells. Note that no evidence of neurogenesis was
found in the differential expression analysis for the whole population, which only showed
an astrocytic marker signal. That neurogenic radial glial cells share many features—
including markers genes—with astrocytes is a well-known fact that has led to confusion
about cell identities before [180]. If this state indeed corresponds to a precursor of
adult neurogenesis, that would imply that the Dlk1 imprinting already happens before
adult neurogenesis starts. While the authors of [80] found no maternally expressed Dlk1
at E14.5, that the maternal allele becomes active around birth could be possible and
investigated in future research.

Multiple data sets also showed further polysemic states corresponding to the expression
of Globin genes and neuronal activity. The Globin genes expressing state could be the
result of doublet transcriptomes that include a blood cell, but if that were the case, one
would expect the cells in that state to separate from the neurons and astrocytes and
colocalise with similar doublets in expression space. Since this is not seen and the cells
in the Globin state are present throughout expression space, it most likely corresponds
to a cell state that both the neurons and astrocytes could enter. Such neurons and
astrocytes have indeed been found in both mice and humans [28].

The discovery of these polysemic states suggested that the cells did not need to be
separated by type before inferring the interaction and states. I ran the same analysis
on a data set containing both neurons and astrocytes, and found a very similar set of
states, with the polysemic states now present throughout both cell types. While the
statistical power within each cell types decreased due to a smaller number of cells of
each type, the added heterogeneity in fact helps with the estimation of the interactions,
as a more diverse set of gene expression patterns become available. This suggests that
estimating the interactions and states on an even more diverse set of cells—perhaps even
an organism-wide data set—might also prove tractable and interesting.
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Throughout this section, the validation of the states has gone in one direction: I have
annotated the states by comparing the interacting genes with descriptions from the liter-
ature. An obvious next step, and even stronger validation, would be to turn this around
and come up with a testable hypothesis about an inferred cell state, and validate this
in my data. For example, the DREAM-complex binds not only to E2F binding domains,
but also to CHR sites. Verifying that the genes involved in the DREAM-regulated states
contain such sites would provide further validation of such regulatory states. Alterna-
tively, a particular interaction could lead to predictions about the cells in its characteristic
state, which could then be validated in independent data sets. For example, I found the
gene Hoxb8 to be involved in many of the glutamatergic neuropeptide signalling states,
which could be verified in other such data sets. I also found that the olfactory bulb
potential lineage in the developmental neurons contained multiple interactions involving
Tcf4. Verifying that Tcf4 plays a role in the OB fate decision in other data sets as well
would amount to a strong validation of both the states and the interactions, and provide
new biological insight into that lineage. While I could find no direct evidence for this yet,
Tcf4 does plays a role in the OB lineage of oligodendrocytes progenitor cells [317], and
in neuronal maturation and differentiation in the hippocampus and anterior commissure
of the embryonic mouse brain [165], both of which are functionally and anatomically
related to the olfactory bulb.

Finally, all results in this chapter were based on interactions at up to fifth-order, as I
found no evidence for 6- or 7-point interactions. However, this absence of evidence is
not evidence for absence, because almost all 6- and 7-point interactions were inestimable
(see Table 5.4), rather than zero. This might be because the sample sizes were simply
too low, in which case such beyond fifth-order interactions could perhaps be found
when estimating interactions on transcriptomic data sets containing more cells, which
nowadays are commonly available. Alternatively, since the heterogeneity required to
make an n-point interaction estimable increases exponentially with n, the transcriptome
might simply be too homogeneous to estimate the interactions, regardless of sample
size. This second option could pose a tougher challenge to overcome, but conditioning
on different states of the Markov blanket might improve the relevant statistical power.
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Discussion

Controlled or not controlled?
The same dice shows two faces.
Not controlled or controlled,
Both are a grievous error.

Wumen [214]
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6.1 Limitations & further remarks
In this thesis, I constructed networks of interactions among genes based solely on mea-
surements of RNA concentrations—a mono-omic approach. Such RNA measurements
are inherently noisy, and do not reflect the full state of the cell. To properly understand
the dynamics of genes and their products, a more integrated multi-omic approach might
be better suited and provide a more holistic view on the inner workings of the cell. New
single-cell technologies are being developed at a dizzying pace, and over the course of
the last four years—the time it took to finish this PhD—new dual-omic technologies
have emerged that combine simultaneous measurements of RNA molecules and chro-
matin accessibility. A data set of simultaneous measurements of a cell’s transcriptome
(scRNA-seq), proteome (single cell proteomics like CyTOF [272]), and chromatin ac-
cessibility (scATAC-seq [145, 227]) would provide a full view of the central dogma, and
its dynamical extension in Figure 1.1, in action. While such multi-omic data sets would
probably trigger the development of completely new analysis techniques, they could also
be integrated into a single data set and analysed with the Stator pipeline introduced
in this thesis. Genome-wide single-cell proteomics in particular is challenging due to the
importance of a protein’s three-dimensional structure, but since proteins are particularly
stable and abundant in cells they might provide a less noisy measurement of cell state.
As new technologies emerged, yesterday’s innovations became easier, cheaper, and more
readily available. When I started this research, the 10X Genomics million cell data set
was the largest data set of single-cell RNA-seq available, but many more have since
become publicly available. These are all inherently interesting to study using the ‘big
data’ approaches taken in this thesis, but one of the surprising results of this thesis was
that a few thousand cells sufficed to give a deep and novel view into a cell population’s
structure.

Another surprising result was that binarising expression data did not seem to hide much
of the biology. In the binarised data, I found biological structure that had not been
found on unbinarised data before. This has been previously observed in other studies,
and is usually attributed to the fact that scRNA-seq measurements are so noisy that it
is accurately represented as binary data. As very deep sequencing becomes cheaper and
more commonplace, it is not obvious that this will still be the case. At the very least,
binarising around 0 and 1 transcript counts will not be sophisticated enough any more,
so new approaches will have to be explored.

A limiting factor in this research was computational efficiency. Running Stator on
1,000 genes across 20,000 cells took around 5 days on the Eddie cluster, but ran in parallel
on multiple cores so took around 2,500 CPU hours (as reported by the Nextflow
pipeline manager). As further speed-ups are implemented (like the one discussed in
Section 6.2.1.a), this might become more efficient, but scaling it up to a genome-wide
analysis, i.e. an order of magnitude more genes, might prove prohibitively complex. The
actual complexity of the full estimation also depends on the biology of the cells under
study, as more complex biological systems might have larger Markov blankets. However,
even in biological systems like the adolescent astrocytes studied in this thesis, that
superficially seem to only contain ‘simple’ biology (as measured by sparse correlations
and many housekeeping genes), I found interesting structure hidden in the characteristic
states.
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Finally, current RNA-seq methods are limited in the sense that they are destructive: the
cells have to be destroyed to be sequenced. This makes it impossible to see the expression
dynamics directly, which can distort the results and conclusions. For example, I found
immediate early genes to be strongly represented among the higher-order interactions,
but it is not clear if they would have been active in non-dissociated cells. Time-series
data on genome-wide expression in single cells would truly reveal the dynamics and offer
incredible insight into the cell’s inner workings, but require new analysis techniques.

6.2 Future work
This research project raised at least as many questions as it answered, and provided
multiple starting points for future projects. On a practical level, there are some obvious
improvements and extensions to the methods used and introduced in this thesis. For
example, many of the validation methods in Chapter 4 were currently only explored for
pairwise networks, but might be extended to higher-order methods. In particular semantic
similarity can be readily generalised to quantify the similarity between triplets of genes.
Other notions of semantics might also be explored, like the phenotypic semantics in [112].
In addition, there are many graph-theoretical quantities that have a natural generalisation
to hypergraphs, which could offer more insight into the structure of the interactions as a
whole, rather than analysing the orders separately. For example, it would be interesting
to compare a gene’s function with quantities like node centrality and betweenness. The
modularity of the full graph could also be explored more deeply, as well as other global
quantities like the Laplacian spectrum and the algebraic connectivity. All these methods
have provided insight into the structure of pairwise biological networks, and it would be
valuable to calculate these here as well.

While the current method is completely data-driven, there are numerous ways to integrate
biological knowledge into the estimation procedure that might make the results more
accurate, meaningful, or relevant. For example, while I used causal discovery techniques
to construct the Markov blankets, one might consider adding causal edges between
genes whose proteins are known to interact, making the quasi-causal graph biologically
more accurate. In addition, I only conditioned on all genes in the Markov blanket being
unexpressed. This made the connection to Ising models and information theory most
straightforward, but did not necessarily correspond to the most biologically plausible
situation, and probably failed to extract all regulatory information. Conditioning on
certain genes in the Markov blanket being expressed rather than unexpressed might reveal
completely new interactions that are only present in a particular cellular context. Note
that such interactions naturally arose in Chapter 3, where they were called outeractions.
This approach is already being explored, and all relevant functionality is part of the
Stator utilities package.

One can wonder about other questions the higher-order states could address. One
particularly appealing idea is to construct a ‘state atlas’ across a whole organism, similarly
to how that is currently done for cell types. Running the pipeline on all tissues from an
organism—either separately or on one combined data set—could provide a very wide and
deep view on the cellular dynamics across tissues. However, since states are dynamic
and relate to a cell’s environment, one might have to create such a state atlas from
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organisms across a wide range of experimental and physical conditions. It is unclear how
large the state space of cells is—it might even be unbounded—so a state atlas would
be a very interesting but ambitious project.

Finally, one could also move beyond cell states, to other biological identities. For exam-
ple, if Stator runs on epidemiological data, then the resulting states describe coherent
‘states’ within the cohort, i.e. groups of people that share a group-identity through
a non-random combination of traits or comorbidities. Alternatively, states inferred on
mutational data from different cancer cell lines would reveal ‘mutational’ states that re-
veal which mutations preferentially come together, and which cancers share such states.
More different still, one could expect a wide variety of species, types, and states within
a population of single-celled organisms. In fact, even species are often not well-defined
in such contexts, as horizontal gene transfer blurs the line between individual genomic
identities. An RNA-based approach might offer new insight here, assigning identities
based on transient transcriptional states based on a reference ‘genome’ that included
all genes present in a population without making reference to any particular species’
genome.

6.2.1 Tricks to improve statistics
The method as it is described in this thesis is still under development and there are
numerous ways in which it can be improved or extended. A number of these extensions
are already implemented and briefly described here.

6.2.1.a Constructing the asymptotic MFI-distribution

The MFIs are in essence conditional log-odds ratios. Odds ratios are generally assigned
confidence intervals using various bootstrapping methods [217], but log-odds ratios can
be analysed using the so-called delta method for error propagation to construct the
asymptotic distribution of a statistic [6]. The delta method relates the variance of a
statistic to the variance of some function of that statistic. In particular, if the original
statistic is normally distributed, then the transformed statistic is also normally distributed,
with a variance determined by the Jacobian of the transformation. In practice, this means
that an n-point MFI has a standard error given by

SE(I1...n) =
√√√√ 2n∑

i=1

1
ni

(6.1)

where ni is the number of cells in the ith state. I have briefly motivated this method in
Appendix 6.A, where I also showed that Equation (6.1) accurately describes the variance
of the estimator and thus that the variance depends only on the probabilities of the
different states. Using this asymptotic approximation for the F-value eliminates the
need for bootstrap resampling, and could thus significantly speed up the estimation
procedure.

6.2.1.b Dealing with divergent interactions

So far, I only considered interactions that were perfectly estimable, which means that
the point estimate and all bootstrap resamples were well-defined. This need not be the
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Figure 6.1: The histogram of the fraction of diverging resamples (here shown for 3-point
MFI estimations in the developmental astrocytes) has multiple peaks. The peaks at a
fraction of e−n corresponds to the situation in which the smallest bin was of size n and
all were omitted from the bootstrap resampled data set. When there are two states
with only one cell—one in the numerator and one in the denominator—then either has
to be omitted to make the estimate diverge, but not both (then the interaction would
be undefined). The probability of this happening is 2e−1(1− e−1), which explains peak
at 2(e−1 − e−2). The long tail of this peak might be the result of it overlapping with
the peak (not shown) that corresponds to one state with just one cell, and one states
with two cells, that has probability 3e−1 − 5e−2 + 2e−3 ≈ 0.53. The small peak at
2(e−2 − e−4) corresponds to the situation where the two smallest bins are both of size
2.

case. Upon resampling with replacement, as is done in bootstrap resampling, it could
happen that the cells needed to make the interaction estimable are omitted. In fact, the
probability that any particular cell does not end up in a resampled data set is (1− 1

N )N ,
where N is the total size of the resampled dataset, which for large N tends to 1/e:
limN→∞(1− 1

N )N = 1
e . If any of the probabilities in an interaction were estimated from

a single cell, then any bootstrap resample will result in an undefined interaction with
a probability that tends to e−1. Looking at the histogram of undefined resamples in
Figure 6.1, we indeed see a peak around this fraction, as well as peaks that correspond
to the various other situations that can lead to divergent estimates. If such divergent
estimations can be dealt with, more interactions might become estimable.

One option is to make the estimator a map to the extended reals R = R∪ {−∞, +∞}
by recognising that limϵ→0 log(ϵ) = −∞ and limϵ→0 log(ϵ−1) = +∞. As long as the
original estimate did not diverge, estimates with divergent resampled estimates might
still be informative. In fact, a 95% confidence interval could still be finite as long as fewer
than 2.5% of bootstrap resamples diverge. Moreover, even infinite confidence intervals
that stretch from a finite value to ±∞ can be informative and reveal an interaction to be
significantly positive or negative. By assigning the value +∞ to any bootstrap resample
where only probabilities in the numerator are inestimable, and the value −∞ when
only probabilities in the denominator are inestimable, significance levels and confidence
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intervals can be calculated as before.

This technique only works as long as the initial estimate on the non-resampled data was
well-defined and finite. If the original estimate already diverges, then all resamples will
as well, and the confidence interval or significance cannot be properly estimated. One
solution is to note that adding one cell to an empty bin might make the interaction
estimable. If the added cell ends up in the numerator, then the resulting estimate forms
an upper bound on the true estimate, and if the added cell is used in the denominator
the estimate forms a lower bound. This allows even interactions that always diverge to
be bounded. However, whether the confidence intervals associated to this bound are
consistent with those of the true interactions is unclear, so further research on this is
necessary before this method can be used to put bounds on interactions.

Both these methods of dealing with divergences are implemented in the Stator pipeline
but not used in this thesis.

6.2.1.c Duplicating the data and compensating for decreased variance

Since it is only the relative proportions of the various cell states that determine the value
of an interaction, the data can be freely duplicated without changing the value of the
interaction. Since the variance of an estimator depends on the number of samples, the
variance of the interaction estimate should be compensated by the square root of the
duplication factor. The advantage of this is that the smallest bin size gets duplicated
as well, decreasing the probability that any bootstrap resample leads to a divergent
estimate. If the smallest bin is of size a, then the probability of not including it in
a resample is e−a (asymptotically). That means that the probability of at least one
divergent bootstrap resample after m resamples is

P(at least one divergent resample) = 1−
(
1− e−a

)m
(6.2)

Fixing m to 1000 resamples, it takes a minimum bin size of 10 to have a less than 5%
chance of getting undefined resamples. At a minimum bin size of 15, this probability
has become 0.03%. It thus does not seem necessary to duplicate more than 15 times.

Note, however, that this should be equivalent to constructing the asymptotic variance as
is done in Section 6.2.1.a. In contract to constructing the asymptotic distribution, dupli-
cating the data incurs a significant computational cost (linear scaling in the duplication
factor) in the estimation procedure, so probably offers no clear benefit.

6.2.2 Automatically identifying the hierarchy of robust states
The dendrogram of characteristic states with the bootstrap significance values shows
which branches are robust, and contains a hierarchy of states beyond those which would
result from a simple distance cut-off (as was used to analyse a small dendrogram in
Section 5.3.7). To automate this and extract the relevant biology, I identified states
according to the following two rules:

1. Every robust branch is a state.
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2. When Tree B is a significant branch and leaf A ∪ Tree B is also a significant
branch, then this results in the states {A, B, A ∪ B }.

Note that Rule 1 implies that a single characteristic state can appear in multiple states
if it is part of a robust hierarchy. Rule 2 says that if a singleton state gets robustly
added to a robust tree (possible a singleton itself), then the singleton itself is also an
independent state.

The states that result from these rules should give a full view on the robust states and
substates present among the characteristic states of the higher-order interactions, but
there are a number of issues with these rules. For example, if multiple states involve
mostly the same gene expression pattern, then they tend to form a very robust branch
and hierarchy. However, having these few genes result in many states might lead to
redundant states. Furthermore, the branchings at very high Dice distance might be
robust, but conflate different biological states. Nonetheless, these rules lead to at worst
a redundant set of states that require further manual inspection.

I applied the two rules to the dendrogram of characteristic states from interactions in
the merged data set of developmental neurons and astrocytes (the one used in Section
5.3.6). Cutting the dendrogram at a Dice distance of 0.88 led to 235 states, but the
rules above reduced this to 185. To reveal the hierarchy implicit in these states, it makes
sense to cluster this new set of states just like the previous one. However, this time it is
desirable to emphasise the subset-superset relationship, which the Dice distance is not
ideally suited for. Some first experiments showed that the largest states—those that
includes dozens to hundreds of characteristic states—end up clustering together at low
Dice-distance, rather than clearly being a superset of some of the more specialised states.
A difference distance metric should therefore be found, which is planned future work. If
a good distance metric can be found, then the resulting dendrogram and set of states
would offer a clearer view of the robust structure present in the states, and reveal their
implicit hierarchy.

6.3 Concluding remarks
In this thesis, I investigated the role maximum entropy, or Ising-like interactions in
gene expression data, with an emphasis on higher-order interactions. Most current
descriptions of interaction networks contain pairwise interactions only, leaving the role
of higher-order dependencies in gene regulation mostly unexplored. To a certain extent,
the current status quo is understandable, since higher-order interactions contradict many
of our intuitions about the communication and control of complex systems in general, and
gene regulation in particular. We generally think of interactions as directional, identifying
a source and a target of the interaction. This direction then immediately elicits causal
language—A activates B, C represses D—which shapes our thinking. In contrast, the
interactions studied in this thesis are symmetric, and therefore do not always allow for
a causal interpretation. Moreover, higher-order interactions cannot be easily interpreted
as directional or causal at all, so are even harder to describe within the usual language
of molecular biology. What language can be used to describe the regulatory effect of a
triplet of genes that does not reduce it to three pairwise relationships? Still, omitting
higher-order dependencies from your understanding of nature potentially hides much of
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the structure, and leads to underestimating the complexity of communication and control
in a system. To estimate these higher-order interactions, I took two approaches: one
relying on machine learning, and one on causal discovery. Both of these are active fields
of research, so the challenges and results of this thesis were in part biological, and in
part methodological.

I first trained restricted Boltzmann machines on various kinds of data: from simulated
Ising models, to epidemiological data, to gene expression data from mouse brains. From
these machines, I extracted the interactions from the model encoded in the network
weights. While restricted Boltzmann machines are a particularly ‘shallow’ kind of neural
network, I quickly ran into the kinds of problems often cited in the (deep) learning
literature: interpretation, explanation, and error quantification is not easy. Interpreting
and explaining the results was difficult because it is not a priori clear what the encoded
interactions represented, and error quantification was hard because there was no natural
way to obtain a measure of uncertainty for each of the estimates. This is a very general
property of opaque learning systems, and one that—especially in the life sciences—has
hindered their widespread adoption.

Diametrically opposed to opaque learning systems are model-free quantities that specify
an estimator purely in terms of the data, bypassing the need to construct a model.
However, this is still a philosophically slippery concept. Learning something from a
truly model-free quantity would amount to inductive knowledge which, following Popper
[196] and Deutsch [69], does not exist (interestingly, a special case of this is the fact that
biological evolution is Darwinian and not Lamarckian). Therefore, while an individual
estimator can be model-free, its interpretation cannot and draws from centuries of work
on other models. Some examples of implicit assumptions present throughout this thesis
are:

• The central dogma of molecular biology holds.

• Genes are a meaningful abstraction.

• Causality is a meaningful abstraction.

• The scRNA-seq protocol accurately reflects in vivo gene expression.

• There is functional human-mouse orthology.

• etc.

These are deep and complex assumptions, and more part of biological folklore than
of any precise analysis. Nonetheless, I set out to extract knowledge about molecular
mechanisms, protein interactions, cell types, and developmental lineages just by ’look-
ing’ at observational gene expression data and estimating model-free interactions among
genes. In contrast to the machine learning approach, this estimator came with a natural
way to quantify uncertainty in the estimates, and was interpretable directly in terms
of properties of the data. One of the main features of the model-free estimator was
that the interactions were conditioned on all other genes being unexpressed. This sepa-
rated direct from indirect effects, which was corroborated by the independently inferred
causal structure, but did not lead to stronger agreement with gold-standard networks of
protein interactions relative to unconditioned correlation networks. This was somewhat
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surprising, but might be because a background of only unexpressed genes is biologically
unrealistic. Follow-up research where the background can vary will hopefully reveal more
biological interactions.

Still, the network of interactions showed important structure. In particular the higher-
order interactions were present among genes with regulatory roles like transcription fac-
tors and immediate early genes. While their biochemistry is relatively well-understood,
how their interactions form a complex system with regulatory and representational power
is largely unknown. This thesis showed that higher-order dependencies are common,
widespread, and relevant to their biological functioning, which supports the hypothesis
that these genes perform logical and representational roles. A more thorough exploration
of these classes of genes, and an atlas of their combinatorial regulatory rules, could be
a very valuable asset to biologists. I am particularly excited about the possibility that
the biochemistry of the central dogma is universal, i.e. has perhaps unbounded repre-
sentational power, can be programmed, and instantiated on different substrates. This
would have many practical implications for fields like synthetic biology, but also offer
new theoretical insight into life itself and the source of its diversity and richness.

Beyond the mechanistic interpretation of the higher-order interactions, I used the depen-
dencies they revealed to find structure in the population they described. This proved to
be even more fruitful than the direct mechanistic interpretation. I found many biologi-
cally plausible states at a resolution beyond that which could be justified by clustering
in expression space, as is currently commonly done. Interestingly, the states often im-
plied the activity of certain biochemical pathways, like cell-cycle progression, myelin
metabolism, or cell differentiation, so even though direct validation against protein-
protein interactions did not yield new insights, the mechanistic function of the genes
helped identify a cell type’s semantics. In the interest of clarity, I separated the mecha-
nistic research from the cell state research, but I often found myself going back and forth
between these interpretations, stuck in a kind of Hegelian dialectics of gene regulation.
In the end, the two interpretations synthesised a dual view on one concept: higher-order
conditional dependencies in the data. Indeed, gene regulation is fundamentally imple-
mented by biochemical mechanisms, but we understand cell states and types likewise
in terms of gene expression profiles that ultimately have a biochemical cause. The two
hypotheses—interactions-as-mechanism and interactions-as-states—should thus not be
seen as separate and competing possibilities, but rather as two imperfect interpretations
that support each other.

A large part of this thesis can be considered stamp collection or, more favourably, atlas
construction. As outlined in the introductory chapter, this is of vital importance, and
conducive to deeper insight into a structure as complex as biology. My hope is that this
thesis provided a new page in our infinite atlas of life, one on which molecular biology
is viewed through a cybernetic lens, and our intuitions about causality and networks are
challenged.

Finally, I would like to reflect on the transdisciplinary nature of this research. We set
out to capture a piece of molecular biology in a model from physics, but developed
and encountered new ideas in maths, information theory, machine learning, and systems
biology. It has been a fulfilling challenge to transgress into these new areas, and learn
from the many people I had the pleasure of working with.
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6.A The delta method accurately predicts the confi-
dence intervals of genetic MFIs

In this appendix, I will briefly derive the asymptotic variance of MFIs, and show that
this accurately predicts the bootstrapped variance of MFIs calculated on a data set of
developmental neurons and astrocytes.

Suppose the statistic T , estimated on n samples, is asymptotically distributed normally
around θ, with variance σ2. That is, T has a standard error σ√

n , and as n → ∞ its
(cumulative) distribution converges to that of a normal distribution, written as

√
n(T − θ) −−−→

n→∞
N (0, σ2) (6.3)

Consider a differentiable transformation g of the statistic T . A Taylor approximation
around θ up to first order gives

g(T ) = g(θ) + g ′(θ)(T − θ) +O(|T − θ|2) (6.4)
Rearranging and multiplying by√n yields

√
n (g(T )− g(θ)) = g ′(θ)

√
n (T − θ) (6.5)

Since T was asymptotically normal around θ, g(T ) is asymptotically normal around
g(θ) with a variance given by g ′(θ)2Var(T ). A similar analysis for a function g of a
vector-valued statistic T with covariance matrix Σ gives the generalisation in terms of
the gradient of g .

Var (g(T)) = (∇g(T))TΣ(∇g(T)) (6.6)

Consider an n-point MFI, or nth order log-odds ratio, as a transformation of a mul-
tivariate statistic T = (a1, ... , am, b1, ... , bm), where 2m = 2n, and T is the list of
probabilities of the different entries in a contingency table associated with a sample of
joint observations:

I1...n = g(T) = log a1 ... am

b1 ... bm
(6.7)

=
m∑

i=1
log(ai)− log(bi) (6.8)

The gradient of g is

∇g(T)T =
( 1

a1
, ... , 1

am
, −1

b1
, ... , −1

bm

)
(6.9)

The entries in a contingency table are distributed multinomially with a 2m× 2m covari-
ance matrix Σ, given by

Σ = n−1


a1(1− a1) −a1a2 ... −a1bm
−a2a1 a2(1− a2)

... ... . . .
−bma1 −bma2 bm(1− bm)

 (6.10)
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It can then be easily verified that, by Equation (6.6), the variance of an MFI is propor-
tional to the inverse harmonic mean of the probabilities and given by:

Var
(

log a1 ... am

b1 ... bm

)
= n−1

( m∑
i=1

1
ai

+ 1
bi

)
(6.11)

The univariate case of Equation (6.7) reduces to the sample logit, defined as logit(p) =
log p

(1−p) . Set a1 = P(X = 1) = p and b1 = P(X = 0) = 1 − p, then Equation

(6.11) indeed retrieves the standard error on the sample logit of
(√

np(1− p)
)−1

. More
interestingly, the standard error SE(I1...n) on an n-point MFI estimated on N samples is
given by

SE(I1...n) =
√√√√ 1

N

2n∑
i=1

1
pi

=
√√√√ 2n∑

i=1

1
ni

(6.12)

where pi denotes the probability of the ith state, and ni the ith entry from the contin-
gency table. For example, a 2-point interaction has a standard error given by

SE(IX1,X2) =
[

1
N

(
1

p(X1 = 1, X2 = 1 | X = 0) + 1
p(X1 = 0, X2 = 1 | X = 0)

+ 1
p(X1 = 1, X2 = 0 | X = 0) + 1

p(X1 = 0, X2 = 0 | X = 0)

)]1/2

(6.13)

=
√

1
n11

+ 1
n01

+ 1
n10

+ 1
n00

(6.14)

where nab denotes the number of samples with X1 = a and X2 = b, conditioned on their
Markov blanket being 0.

From the standard error SE(I), a symmetric 95% confidence interval can be constructed
as Î±1.96×SE(I), where Î is the point estimate for the interaction. From the asymptotic
variance σ2, the F-value of an interaction I can be calculated by evaluating the cumulative
distribution function of a normal distribution N (̂I , σ2) at zero. Whether the asymptotic
F-values and the standard errors accurately reflect the uncertainty on finite samples
depends on how quickly the transformed distribution converges to a normal distribution.
To investigate this, I sampled 10,000 random pairs of genes, 1,322 of which corresponded
to estimable 2-point interactions in the data set used in Figure 3.3. For each of these,
I estimated the F-value with the asymptotic method outlined above (Fas), as well as on
1,000 bootstrap resamples (Fbs). Figure 6.2 shows a comparison of these two methods.
It can be seen that the two estimates for the F-value are strongly correlated, and that the
differences are symmetrically distributed around 0, with a maximum absolute difference
of 0.075. Moreover, the difference tends to be smaller for small F-values. Of the 343
interactions that had Fbs < 0.05, just ten had Fas > 0.05, and none had Fas > 0.07.
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Figure 6.2: Calculating the F-value on bootstrap resamples or using the asymptotic
approximation leads to mostly the same conclusions. The difference between the boot-
strapped F-value and the asymptotic F-value is smaller for small F-values. From the
1,322 sampled and estimable interactions, only 5 had a difference |Fbs − Fas | > 0.06,
the largest discrepancy being Fbs − Fas = 0.158− 0.083 = 0.075.
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And every science, when we
understand it not as an instrument
of power and domination but as an
adventure in knowledge pursued by
our species across the ages, is
nothing but this harmony, more or
less vast, more or less rich from one
epoch to another, which unfurls over
the course of generations and
centuries, by the delicate
counterpoint of all the themes
appearing in turn, as if summoned
from the void.

Alexander Grothendieck [98, 121]
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