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Abstract 

Understanding 3D genome structure is crucial to learn how chromatin folds 

and how genes are regulated through the spatial organization of regulatory 

elements. Various technologies have been developed to investigate genome 

architecture. These technologies include ligation-based 3C Methodologies 

such as Hi-C and Micro-C, ligation-based pull-down methods like Proximity 

Ligation-Assisted ChIP-seq (PLAC Seq) and Paired-end tag sequencing 

(ChIA PET), and ligation-free methods like Split-Pool Recognition of 

Interactions by Tag Extension (SPRITE) and Genome Architecture Mapping 

(GAM). Although these technologies have provided great insight into 

chromatin organization, a systematic evaluation of these technologies is 

lacking. Among these technologies, Hi-C has been one of the most widely 

used methods to map genome-wide chromatin interactions for over a decade. 

To understand how the choice of experimental parameters determines the 

ability to detect and quantify the features of chromosome folding, we have first 

systematically evaluated two critical parameters in the Hi-C protocol: cross-

linking and digestion of chromatin. We found that different protocols capture 

distinct 3D genome features with different efficiencies depending on the cell 

type (Chapter 2). Use of the updated Hi-C protocol with new parameters, 

which we call Hi-C 3.0, was subsequently evaluated and found to provide the 

best loop detection compared to all previous Hi-C protocols as well as better 

compartment quantification compared to Micro-C (Chapter 3). Finally, to 

understand how the aforementioned technologies (Hi-C, Micro-C, PLAC-Seq, 

ChIA-PET, SPRITE, GAM) that measure 3D organization could provide a 
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comprehensive understanding of the genome structure, we have performed a 

comparison of these technologies. We found that each of these methods 

captures different aspects of the chromatin folding (Chapter 4). Collectively, 

these studies suggest that improving the 3D methodologies and integrative 

analyses of these methods will reveal unprecedented details of the genome 

structure and function.   
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Chapter I: Introduction 

3D genome structure  

Assembly of the ~3.3 billion nucleotides of the human genome was one 

of the greatest achievements of the last century, which unexpectedly raised 

many more questions than answers about how the genome works (Lander et 

al. 2001). Genomic studies have shown that 98.5% of the human genome 

does not encode for protein-coding genes, also referred to as non-coding 

regions (Schuler et al. 1996; Kellis et al. 2014). These noncoding regions are 

thought to help regulate the activity of the remaining 1.5% of the human 

genome that encodes protein-coding genes and contributes to the stability of 

the genome (Heintzman and Ren 2009). The Encyclopedia of DNA Elements 

(ENCODE) project was able to map 80% of the human genome to identify 

functional regulatory elements, such as enhancers (Consortium, Moore, et al. 

2020; Consortium, Snyder, et al. 2020). While these regulatory elements can 

be located relatively far (>100 kb away) from their targets on the linear 

genome, they can be spatially organized in three-dimensional (3D) space to 

localize in close proximity to their targets (Maurano et al. 2012; Dekker et al. 

2017; Dekker, Marti-Renom, and Mirny 2013; Dixon et al. 2018). GWAS 

studies have identified hundreds of distant gene targets that play a role in 

diseases (Dixon et al. 2018; Maurano et al. 2012; Boltsis et al. 2021; Lupianez 

et al. 2015). For example, in Amyotrophic lateral sclerosis the SYNGAP1 

gene promoter interacts with a distal promoter that is 411kb away (Maurano et 

al. 2012).  Similarly, a Breast cancer-related tumor suppressor gene TACC2 is 
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interacting with a promoter that is 411 kb away (Maurano et al. science.2012). 

Therefore, to understand the principles of gene regulation in normal and 

disease states, it is critical to uncover 3D genome organization at high 

resolution.  

There has been tremendous progress in developing technologies to 

determine 3D genome organization at different resolutions and scales, 

recently reviewed in Goel et al. (Goel and Hansen 2021).  All of these 

technologies were pioneered by chromosome conformation capture (3C) 

based methods, which have evolved from detecting pairwise spatial 

interactions (3C) to capturing all possible spatial interactions occurring in the 

genome at high resolution (Hi-C). 3C-based methods were derived from the 

fundamental 3C experiment developed in 2002 (Dekker et al. 2002) which 

identifies pairwise genomic interactions with Polymerase Chain Reaction 

(PCR). Later, more high-throughput methods were developed to capture 

interactions of a known region with unknown multiple loci, named Circular 

Chromosome Conformation Capture (4C) (Göndör, Rougier, and Ohlsson 

2008; Zhao et al. 2006) and to capture interactions among multiple selected 

loci, called 5C (Dostie et al. 2006; van Berkum and Dekker 2009). Finally, the 

development of Hi-C enabled the efficient capture of genome-wide high-

frequency spatial interactions at unprecedented resolution (Lieberman-Aiden 

et al. 2009) and provided important insights into genome organization and 

function. Below, I will introduce key technologies that detect various features 

of the genomic interactions with a particular focus on Hi-C.  
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● Hi-C 

Hi-C is the most commonly used 3C-based method that identifies 

genome-wide contacts in an unbiased manner (Lieberman-Aiden et al. 2009) 

(Figure 1.1 a). The Hi-C protocol proceeds as follows: DNA-protein 

interactions are crosslinked in intact nuclei, followed by digestion of the 

crosslinked chromatin with restriction enzymes, such as HindIII or DpnII, 

which create 5’ overhangs that are subsequently filled with biotinylated 

deoxyribonucleotides (Lieberman-Aiden et al. 2009; Rao et al. 2014; 

Belaghzal, Dekker, and Gibcus 2017; Gibcus and Dekker 2013a; Belton et al. 

2012). Next, chromatin fragments are re-ligated such that only chromatin in 

close proximity forms a ligation product and is sonicated to give rise to 

fragments of interacting chromatin elements. These fragments are enriched 

using the biotin pulldown and identified by paired-end sequencing. The 

sequencing reads of these chimeric fragments are then aligned to the 

reference genome to identify interacting pairs generated by proximity ligation.  

Analysis:  Sequencing reads from the Hi-C experiment are aligned to the 

reference genome using bwa-mem with flag-SP or bowtie2 (Lajoie, Dekker, 

and Kaplan 2015; Pal, Forcato, and Ferrari 2019; Ay and Noble 2015). Hi-C 

reads can be parsed and pre-processed using Pairtools or SAMtools 

(Danecek et al. 2021) (https://github.com/open2c/pairtools). The chimeric 

reads that map to the same restriction fragment from both sides and any PCR 

duplicates are removed (Lieberman-Aiden et al. 2009; Lajoie, Dekker, and 

Kaplan 2015). Depending on the preference, low-quality reads can be filtered 

from each side of the mapped chimeric read. After filtering as required, reads 



 7 

are binned into multiple resolutions to create matrices of all possible 

interactions for the whole genome. The interaction matrix of the whole 

genome needs tremendous space and memory to visualize, necessitating the 

development of 2D data storage solutions that enable efficient compression 

and access. Cool files are HDF5 containers developed to store contact 

matrices (Abdennur and Mirny 2020) and .hic files are compressed binary files 

that store contact matrices (Rao et al. 2014; Robinson et al. 2018). Multi-

resolution cooler files can be created using cooler and .hic files can be 

created using juicertools. The matrices of Hi-C maps have inherent biases 

such as mappability, visibility in the genome, restriction site density,..etc  

(Imakaev et al. 2012; Yaffe and Tanay 2011).These biases can be corrected 

in a stepwise manner using a method called ICE (Iterative Correction and 

Eigenvector Decomposition) (Imakaev et al. 2012). This genome balancing 

technique corrects biases by assuming every bin in the genome should have 

an equal representation in the genome. Balancing provides an equal 

coverage profile and grants unbiased comparisons within and between Hi-C 

contact maps. The final Hi-C contact matrix, which includes both intra- and 

inter-chromosomal interactions, is used to reveal key structures that are 

observed in the genome such as nuclear compartments, loop domains or 

Topologically Associated Domains (TADs) and loops, as well as to gain 

insights into genome structure in various experimental settings discussed in 

the results section (Gibcus and Dekker 2013a; Schmitt, Hu, and Ren 2016; 

Lieberman-Aiden et al. 2009)  
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Detection and quantification of the chromatin structures in 3D 

● Compartments 

Studies using the Hi-C approach have shown that the 3D genome is 

organized into several layers (Lieberman-Aiden et al. 2009; Gibcus and 

Dekker 2013b; Dekker, Marti-Renom, and Mirny 2013) (Figure 1.2). One layer 

can be visualized in 2D heatmaps as a checkerboard pattern which is called 

compartments (Figure 1.2 a). Compartments, several megabases in size,  are 

the largest structures that are detected by Hi-C that occur within and between 

chromosomes(Lieberman-Aiden et al. 2009). Compartments are identified as 

active A and inactive B compartments showing the segregation between 

euchromatin and heterochromatin, respectively. To define compartments from 

Hi-C data, Eigenvector Decomposition, which is a dimensionality reduction 

method, is used to explain the patterns and the variation of the interaction 

matrix. Eigenvector Decomposition is applied to the interaction matrix and 

generally, the eigenvector with the highest variations aligns with 

compartment-like structures. To determine A and B compartments, a 

correlation of the first eigenvector with gene coverage or GC content is used 

(Lajoie, Dekker, and Kaplan 2015). Gene dense or GC-rich regions correlate 

with positive values (A compartment)  of the first eigenvector and the gene 

poor and GC poor regions correlate with negative values (B compartment) of 

the eigenvector. It is crucial to balance the interaction matrix and normalize it 

with its expected to remove the distance dependence effect before the 

Eigenvector decomposition. Finally, a one-dimensional track that represents 
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chromatin compartments was detected from the interaction matrix.  

The mechanism that causes segregation between A (euchromatin) and 

B (heterochromatin) compartments is not fully understood. Recently, phase 

separation has been proposed to mediate such segregation (Strom et al. 

2017; Erdel and Rippe 2018). Heterochromatin protein 1 alpha (HP1a), which 

is a key protein involved in the formation of constitutive heterochromatin 

together with its binding partner H3K9me2/3, has been shown to form liquid-

like droplets in Drosophila and mammalian cells (Erdel et al. 2020; Larson et 

al. 2017). However, there are conflicting studies about the nature of the 

heterochromatin assembly being mediated by polymer-polymer or liquid-liquid 

phase separation (Erdel et al. 2020; Hildebrand and Dekker 2020). Another 

study using a combination of Hi-C, microscopy, and polymer simulations in 

inverted nuclei of rods in nocturnal mammals have suggested that 

heterochromatic regions have an attraction to interact with each other and this 

attraction drives the heterochromatin and euchromatin formation that is crucial 

for phase separation (Falk et al. 2019). This system have provided great 

insights into the segregation of compartments  because inverted nuclei have 

euchromatin at the nuclear periphery and heterochromatin in the nuclear 

interior unlike other mammalian cells, which have euchromatin in the nuclear 

interior and heterochromatin at the nuclear periphery. Despite these 

observations, direct experimental evidence supporting a link between 

chromatin segregation and phase separation is lacking (McSwiggen, Hansen, 

et al. 2019; McSwiggen, Mir, et al. 2019). It will be important to clarify these 

debates and determine the relationship between  Hi-C compartmentalization 
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and phase transition.  

High coverage Hi-C experiments with deeper sequencing revealed that 

compartments can further be divided into subcompartments, which have 

shown to correlate with specific chromatin landscape. In one study, 

subcompartments that divide A compartment into A1 and A2 and the B 

compartment into B1, B2, and B3 have been identified in a human 

lymphoblastoid (GM12878) cell line (Rao et al. 2014). Subcompartments of 

A1 and A2 positively correlate with gene dense regions and active histone 

marks such as H3K36me3, H3K79me2, H3K27ac and H3K4me. However 

overall A1 has stronger correlations than A2. Subcompartments of B1 

correlate with H3K27me3, B2 correlate with Lamin A/C and NADs and finally 

B3 correlates with Lamin A/C but not NADs. In another study, 

subcompartments that divide the B compartment into B0, B1, and B2 were 

identified in the human colorectal carcinoma cell line (HCT116). B0, B1 and 

B2 subcompartments have been shown to have a positive correlation with 

constitutive repressive chromatin marks such as H3K9me3, HP1a and HP1b 

(Spracklin et al. 2021). B2 has enrichment for H3K9me3, Hp1 a and HP1b but 

depletion of H3K27me3, whereas B1 has enrichment for H3K9me2 and 

H3K27me3. B0 has enrichment for H3K9me2 but lower than the B1 and 

enriched for H2A.Z (Spracklin et al. 2021). Conversely, A1 and A2 are 

depleted at the nuclear lamina and at the nucleolus associated domains 

(NADs) (Rao et al. 2014). A2 does not have well-defined compartments and 

has lower transcriptional activity compared to A1. Subcompartments might 

differ in different cell types. Active A compartments show faster replication 
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timing compared to inactive B subcompartments (Ryba et al. 2010). Taken 

together, these results suggest that compartments can be segregated into 

cell-type specific subcompartments harboring distinct chromatin features. 

● Topologically Associating Domains 

Topologically Associating Domains (TADs) are identified as domains 

that have high interaction frequency within square-like blocks along with the 

diagonal and low interaction frequency between blocks (Nora et al. 2012; 

Lieberman-Aiden et al. 2009; Sexton et al. 2012; Crane et al. 2015). TADs are 

generally smaller than compartments and are sub-megabase-sized domains.  

Identification of TAD boundaries is not straightforward because the majority of 

the time these domains have hierarchical structures lying on top of each other 

(Figure 1.2 b). Due to the hierarchy of the TADs there is no clear separation of 

TAD boundaries. To identify TAD boundaries, methods called directionality 

index or insulation score are commonly calculated (Dixon et al. 2012; Nora et 

al. 2012; Crane et al. 2015). To calculate the directionality index, average 

upstream and downstream interactions are determined for a given bin with a 

given window size. Then, the difference between them is transformed into chi-

squared statistics with the values being called directionality index and the 

Hidden Markov Model is used to connect the boundaries with each other. To 

calculate the insulation score, the average interaction of squares in a sliding 

window along the Hi-C interaction matrix diagonal is determined and the local 

minimas of the insulation scores are taken to identify TAD boundaries. 

Insulation score is calculated for bin in the genome. The distribution of 
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genome-wide insulation scores is bimodal where weak and strong boundaries 

exist; weak boundaries being hardly detectable and strong boundaries 

showing sharp transitions between TADs. TADs have been proposed to form 

as a consequence of a dynamic loop extrusion mechanism (Dekker 2014; 

Mirny, Imakaev, and Abdennur 2019; Fudenberg et al. 2017; Fudenberg et al. 

2016). In this model, cis-acting loop extruding factors like cohesin pulls the 

chromatin to form a loop-like structure. As the pulling continues the loop gets 

larger until it stalls by boundary elements, such as CTCF, which has footprints 

at the TAD boundaries. Two scenarios explain how does TADs form as a 

result of loop extrusion. First, loop extrusion brings genomic regions together 

to create loops, adding interactions in the neighboring regions as identified by 

TADs. CTCF blocks mixing between regions during the loop extrusion which 

creates insulation between TADs (Wutz et al. 2017; Nora et al. 2017; Zuin et 

al. 2014). Second, since loop extrusion is not a stable structure, the continued 

movement of the chromatin creates TADs (Hansen et al. 2018). This dynamic 

movement creates TAD-like structures rather than a strong dot.    

TADs bring enhancers and their targets in close physical proximity, 

thus contributing to gene regulation (Maurano et al. 2012; Lupianez et al. 

2015; Gong et al. 2021; Tang et al. 2015; Bonev and Cavalli 2016). The 

organization of TADs has also been shown to be important during 

development (Bonev et al. 2017; Pekowska et al. 2018). Mapping human and 

mouse distal regulatory elements showed that many of these elements, which 

include early developmental enhancers, locate hundreds of kilobases away 

from their targets (Rada-Iglesias et al. 2011). Despite being separated by long 
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distance in a linear genome these regulatory elements have been shown to 

be located in physical proximity to their targets, and reside at the same TAD 

(Symmons et al. 2014; Consortium, Moore, et al. 2020; Heintzman and Ren 

2009; Schoenfelder and Fraser 2019). Importantly, disruption of TAD 

boundaries in mouse limb tissue and fibroblasts collected from patients with 

limb malformations resulted in misarranged interactions and aberrant rewiring 

of gene regulation (Lupianez et al. 2015). These results show the functional 

significance of TADs in regulating gene expression.   

● Chromatin Loops 

Chromatin loops are the finest detectable structures using Hi-C. Loop 

anchors can be enriched for certain architectural proteins, promoters, and 

enhancer marks, and they may provide insights into the expression levels of 

nearby genes (Rao et al. 2014; Nora et al. 2017; Tang et al. 2015; Ramirez et 

al. 2018). Loops are observed as contacts between two regions with high 

interaction probability compared to their neighboring regions and they look like 

dots in the Hi-C interaction map (Figure 1.2 c). The most common loop 

identification method is called HICCUPs (Rao et al. 2014). This tool first 

normalizes the iced Hi-C matrix to its global expected and detects pixels that 

have high interaction frequency. For each of these regions, the local 

background is calculated by comparing the high-intensity interacting pixel with 

its neighboring pixels, upper left, upper right, lower left, lower right, and the 

stripes between these corners. The interactions of the mid pixel which is a 

loop candidate are normalized to its donut-like background. If it is statistically 
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stronger than its background, it is considered as a loop. HICCUPs is 

considered too strict compared to other loop callers.  Alternative ways of 

calling loops include techniques that use only global background which is the 

expected interaction frequency for a given distance. Some methods filter 

contacts using both global expected and local backgrounds and some tools 

use image analysis to detect dot-like structures in the Hi-C interaction 

heatmap (Roayaei Ardakany et al. 2020; Ay, Bailey, and Noble 2014).  

SMC family proteins cohesin and condensin are identified as loop 

extruding factors (Fudenberg et al. 2017; Fudenberg et al. 2016; Ganji et al. 

2018; Bauer et al. 2021). During interphase, cohesin has been shown to serve 

as a loop extruder. The Cohesin complex has two SMC  proteins, SMC1 and 

SMC2, and two other proteins SCC1( also known as RAD21) and SCC3 

(known as STAG1/SA1 and STAG2/SA2 in mammalian cells) (Nasmyth and 

Haering 2009). Degradation of the cohesin subunit RAD21 using the Auxin 

Inducible degron system caused a complete loss of loops (Rao et al. 2017). In 

addition, depletion of the cohesin loading factor NIPBL resulted in a complete 

loss of loops and TADs (Schwarzer et al. 2017). Other factors may also 

contribute to loop formation by regulating cohesin. For example, WAPL has 

shown to be essential for releasing cohesin from DNA in interphase cells, 

which results in less compact chromatin (Busslinger et al. 2017; Tedeschi et 

al. 2013). Additionally PDS5A and PDS5B have been shown to contribute 

chromatin compaction and cohesin localization (Wutz et al. 2017). 

CTCF, a highly conserved zinc finger protein, has been shown to block 
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cohesin-dependent loop extrusion thereby mediating loop anchors at TAD 

boundaries (Nora et al. 2017). Depletion of CTCF results in reduced loops but 

has little effect on the global gene expression (Nora et al. 2017; Tedeschi et 

al. 2013). Proteins that co-occupy regions on chromatin with CTCF have also 

been shown to contribute to loop formation. For example, YY1, which 

occupies promoter and enhancer regions, mediates promoter-enhancer 

looping interactions (Weintraub et al. 2017). ZNF143 has also been shown to 

mediate CTCF-bound promoter-enhancer loops (Wen et al. 2018; Zhou et al. 

2021).   

CTCF is considered to mark looping interactions between active 

enhancers and promoters independently of cohesin enrichment. (Kubo et al. 

2021; Hyle et al. 2019; Braccioli and de Wit 2019).  On the other hand, not all 

loops contain CTCF, suggesting the existence of CTCF-independent loops 

(Valton et al. 2021) . A subset of loops was identified with enrichment for 

active promoter (H3K4me3) and active enhancer (H3K27ac) signal. We found 

that these loops are smaller and weaker compared to CTCF loops (Akgol 

Oksuz et al. 2021).  

Micro-C:  a variation of the Hi-C protocol that improves resolution of 

small scale structures 

Micro-C is a variation of the Hi-C protocol developed to improve 

resolution and signal to noise ratio (Hsieh et al. 2015; Hsieh et al. 2016; 

Krietenstein et al. 2020). It was initially applied in yeast but then adapted for 

other cell types including mammalian cells. The general workflow of Micro-C 
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consists of similar steps to Hi-C. In brief, cultured cells are cross-linked with 

Formaldehyde (FA) and then chromatin is digested with MNase for 

fragmentation and with an exonuclease to remove free DNA. Chromatin 

fragments are then biotinylated and subjected to proximity ligation. Finally, the 

crosslinking is reversed and the nucleosome level DNA fragments are 

enriched and identified by paired-end sequencing. The Micro-C protocol was 

further improved by cross-linking the chromatin with additional cross-linkers 

such as disuccinimidyl glutarate (DSG) or ethylene glycol bis(succinimidyl 

succinate) (EGS), in addition to FA (Hsieh et al. 2016). These modifications 

improved signal to noise ratio of the interaction maps including centromere-

centromere interactions (Hsieh et al. 2016). Optimization of the Micro-C 

protocol for mammalian cells (Human embryonic stem cells(H1-hESC) and 

Human Foreskin Fibroblasts clone 6, provided genome-wide interaction maps 

at nucleosomal level resolution and allowed identification of number of loops 

that have not been detected by the conventional Hi-C protocols. Micro-C has 

identified 18478 and 22966 more loops than Hi-C in H1-hESC and HFFc6, 

respectively (Krietenstein et al. 2020). 

Analysis: The analysis pipeline of Micro-C is identical to Hi-C.  Please see 

the Hi-C analysis above for details.  

Parameter selection for 3C-based experiments  

The Hi-C protocol has evolved over the years to improve the 

identification of genomic interactions at high resolution (Lieberman-Aiden et 

al. 2009; Belton et al. 2012; Rao et al. 2014; Belaghzal, Dekker, and Gibcus 
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2017). Performing in situ Hi-C over diluted Hi-C was one of the most important 

improvements over the years (Rao et al. 2014). Fragmentation and 

crosslinking reagent selection were the two main parameters that have been 

modified for protocol optimization.  

● Fragmentation with restriction enzymes 

To fragment chromatin, the initial protocols have used restriction 

enzymes such as HindIII, which produces relatively large fragments of several 

kb (6) (Lieberman-Aiden et al. 2009). Later, 4 nucleotide cutters such as DpnII 

or MboI, which produce smaller fragments than 2 kb, have been used for 

capturing genomic interactions at around 2 kilobase resolution (Rao et al. 

2014). These restriction enzymes have also been used in combination, which 

led to further improvements in the detection of small-scale structures such as 

loops. Using MNase instead of restriction enzymes in the Micro-C protocol led 

to fragmentation of chromatin at nucleosomal level and generation of the 

highest resolution maps in the detection of small-scale loop structures. These 

results have shown that chromatin fragmentation is an important determinant 

of the resolution of chromatin interaction maps.  

● Cross-linking 

To cross-link chromatin, the initial protocols have used formaldehyde 

reagent. However, recent studies have shown an improved signal-to-noise 

ratio using additional crosslinkers (DSG and EGS) that contain a longer 

spacer between reactive groups  in various protocols measuring genomic 

contacts, such as Micro-C,  ChIA-PET, and SPRITE (Hsieh et al. 2016; 
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Fullwood et al. 2009; Quinodoz et al. 2018). Thus, the selection of 

crosslinking chemistry is key in the detection of chromatin interactions. 

Other methods that are used to measure 3D structure 

Compartments, TADs and loops can be detected by other methods that 

measure 3D genome folding such as ligation-based ChIA-PET and PLAC-

Seq, ligation-free SPRITE and GAM (Fullwood et al. 2009; Fang et al. 2016; 

Quinodoz et al. 2018; Beagrie et al. 2017). These methods range from 

predicting interactions between targeted regions (ChIA-PET and PLAC-Seq) 

to more unbiased detection of genome-wide contacts (SPRITE, and GAM). 

Below, I will introduce the experimental setup and analysis of these protocols. 

● Chromatin Interaction Analysis using Paired-End Tag sequencing 

(ChIA-PET) 

ChIA-PET is a method that enables the study of chromatin interactions 

bound by a specific protein (Fullwood et al. 2009). It incorporates chromatin 

immunoprecipitation (ChIP), proximity ligation, and high-throughput 

sequencing. The protocol starts by cross-linking the chromatin with FA 

followed by fragmenting chromatin by sonication. The crosslinked protein-

DNA fragments are then enriched by ChIP using an antibody against the 

protein of interest, and subjected to proximity ligation. The resulting connected 

fragments can be identified by Paired-End Tag (PET) sequencing. ChIA-PET 

reads are then mapped to reference genomes to identify the interactions 

between genomic regions (Fullwood et al. 2010; Fullwood et al. 2009).    
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Analysis: For the quality check, DNA linkers that have unreadable barcodes 

were filtered and PETs are sorted such that the data have chimeric and non-

chimeric PETs (Li et al. 2010). Then the chimeric PETs are aligned to the 

reference genome using a package called Batman, which uses Burrows-

Wheeler-transform-based technique with one mismatch allowance (Li and 

Durbin 2009). PETs that are mapped in 1bp distance are merged and 

assigned to the same PET. Self-ligated PETs show the putative binding sites, 

which are also defined as self-circled ligations. The inter-ligated PETs provide 

information about the two different DNA fragments which also can be 

classified as intra-chromosomal inter-ligation PETs, inter-chromosomal inter-

ligation PETs and different orientation ligation PETs. Different orientations 

show the wrong orientation of PETs and are removed from the data. PET 

distribution is used to decide on a cutoff to filter the self-ligated PETs. To test 

if the ligation products occur more frequently than a random event, a model 

that assumes intra-chromosomal inter-ligated PETs have an equal probability 

of interaction with any DNA fragments is used. This model is used to set an 

expected interaction frequency which is then used for comparison with the 

observed interaction frequency and to determine whether the difference is 

significant. Non-specific mappings such as translocations are flagged. The 

interaction frequency matrix is calculated using the number of interactions that 

occur within and among intra-chromosomal inter-ligation and inter-

chromosomal inter-ligation products. Interactions between inter-ligated PETs 

are also confirmed with a model that predicts equal interaction probability 

between ligation products (Fullwood et al. 2010).  



 20 

● Proximity ligation-assisted ChIP-seq (PLAC-Seq)   

Similar to ChIA-PET, PLAC-Seq is used to detect and quantify 

chromatin contacts of genomic regions bound by specific proteins or histone 

marks, such as H3K4me3, H3K27ac or RNA Pol II (Fang et al. 2016). The 

immunoprecipitation step differs between PLAC-Seq and ChIA-PET; in PLAC-

Seq immunoprecipitation is done after the proximity ligation however in ChIA-

PET the immunoprecipitation was done before the proximity ligation.  PLAC-

Seq incorporates in situ Hi-C and ChIP protocols with high-throughput 

sequencing. The beginning of the protocol is similar to the Hi-C, where 

chromatin is fragmented with restriction enzymes and the overhangs are filled 

with biotin. After proximity ligation and sonication, the fragments are 

immunoprecipitated using antibodies targeting specific histone marks or 

proteins. The DNA is purified and biotin enriched regions are selected for 

paired-end sequencing.  

Analysis: PLAC-Seq reads, unlike ChIA-PET, can be directly mapped to the 

reference genome without data pre-processing (Fang et al. 2016). Each of the 

paired-ends in PLAC-Seq data is mapped separately to the reference genome 

with bwa-mem in single-end mode using default settings. Then both mapped 

ends are paired together and MQAL>10 is used for quality filtering. Since 

MboI is used for digestion, reads mapped > 500bp apart of the restriction site 

are removed and PCR duplicates are removed using MarkDuplicates in 

Picard tools. Finally, the interaction matrix is created using both short-range 

and long-range chromatin interactions.  
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● Split-Pool Recognition of Interactions by Tag Extension (SPRITE) 

SPRITE is a proximity ligation-independent method that can detect 

genome-wide chromatin interactions (Quinodoz et al. 2018). In addition to 

pairwise interactions, SPRITE can capture multiple interacting regions at the 

same time. Its principle relies on combinatorial barcoding with a split and pool 

approach. The protocol starts with crosslinking the DNA followed by splitting 

the crosslinked material into a 96-well plate and tagging each well with a 

unique barcode. The material is then combined and split again into a new 96-

well plate to receive a new unique barcode. This splitting, pooling and 

barcoding process is repeated multiple times to uniquely tag each cluster of 

interacting molecules. In this case, all interacting fragments that are 

crosslinked to each other are expected to have the same barcodes.  

ChIA-Drop is similar to the SPRITE method that captures multi-way contacts 

(Zheng et al. 2019). Chromatin is crosslinked and fragmented and then 

samples are loaded to a microfluidics device. Mixed chromatin is divided into 

gel-bead-in-emulsion (GEM) droplets containing unique DNA oligonucleotides 

and reagents for amplification and barcoding. Samples are pooled together 

and sequenced. Finally, barcodes are used to assign the identical GEM. 

ChIA-Drop data has only been generated in Drosophila to date and hence 

was not used in these studies (Zheng et al. 2019). By extracting pairwise 

interactions from SPRITE, one can compare the contact profile to Hi-C. 

Analysis:  The initial analysis in SPRITE focuses on only pairwise 

interactions. Bowtie 2 with default parameters is used to map the paired-end 
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sequences with local alignment mode with 2 bp mismatch allowance. 

Samtools is used to create bam files (Danecek et al. 2021). MAPQ score > 10 

and MAPQ>30 thresholds are used for low-quality read filtering. 

RepeatMasker is used to filter PCR duplicates. Multi-mapped reads were 

removed except the regions generated by the ComputerGenomeMask 

program in the GATK with a 35 nucleotide mask. Barcode sequences are 

used to define SPRITE clusters. To create the 2D interaction matrix, multi-way 

interactions are converted to pairwise interactions as follows: within each 

cluster all possible pairwise interactions are created. The scale of interactions 

will be quadrically based on the number of reads, n. n reads that will have n-1 

contacts. So each pairwise contact is normalized by n(n-1)/2 to ensure equal 

representation of contacts for small and large clusters. Finally, SPRITE 

interaction maps are normalized by Hi-Corrector (Li et al. 2015). Additionally, 

contacts are normalized to an expected number of contacts which are 

calculated by mixing human and mouse samples and determining the number 

of inter-species contacts. The final interaction matrix in SPRITE is comparable 

to other genome-wide methods such as Hi-C and Micro-C.  

To analyze multiway contacts detected in SPRITE and ChIA-Drop, a 

newly developed method called MATCHA is used (Zhang and Ma 2020). 

MATCHA assumes non-overlapping genomic bins as nodes and multi-way 

chromatin contacts as hyperedges. Pairwise data generated from multi-way 

contacts pass through the Mix-n-Match autoencoder to generate hypergraphs 

(Wang, Herranz, and van de Weijer 2020). The pairwise contact data is used 

as an input to create higher-order contacts using distance weights for intra-
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chromosomal interactions.   

To specifically investigate the inter-chromosomal interactions, a Mix-n-

Match approach is used so that the reconstruction of the interactions is made 

by mixing the encoder and decoder in a random manner. The encoder is 

created from a specific genomic bin located in a specific chromosome 

considering the number of bins of this chromosome and the interaction of this 

chromosome with another chromosome. n encoder and n decoder are both 

trained, where each encoder takes a vector and converts it to a hidden vector. 

The decoder is created using the same input size but the other way around. 

The interactions between chromosomes are paired randomly to determine the 

comparable Decoder for each chromosome.  

● Genome architecture mapping (GAM) 

Genome architecture mapping (GAM), which is a ligation independent 

method based on cryosectioning, measures genomic distances in the nucleus 

at a genome-wide scale (Beagrie et al. 2017). In this method, individual nuclei 

are cryosectioned with laser microdissection in multiple orientations and each 

slice is uniquely barcoded. Then the DNA fragments in each slice are 

extracted, amplified, and sequenced. Since the slices are ultrathin, the 

fragments identified in the same slice are considered to be in close distance. 

Identification of colocalized regions in multiple nuclei provides information 

about the position and distance between these regions. A distance matrix can 

be created using information from aggregated nuclear slices.  

Analysis:  Distance information from GAM nuclei slices is converted to the 
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distance matrix. Sequencing reads were mapped to the reference genome 

using Bowtie 2 with default parameters (Langmead and Salzberg 2012). PCR 

duplicates and low-quality mapped reads were removed from the data. 

FASTQC is used to measure the per base read quality and dinucleotide 

repeats( https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) . Next, 

the genome was split into 10kb to 1Mb windows, and the read coverage is 

calculated for each window and each nuclear profile separately. A negative 

binomial distribution is used to generate a threshold to determine the 

sequencing noise of each experiment. Nuclei that have mapped reads that 

are lower than the expected sequencing noise were excluded from the 

analysis. The number of nuclei is important in determining the resolution of 

the experiment. For example, 408 nuclei are sufficient to create an interaction 

map of 30kb resolution. Finally, the interaction frequency is determined by the 

number of interaction profiles in each nucleus divided by the total number of 

nuclear profiles. 

Methods that are used to measure features of the genome 

Gene activity, chromatin domains, and replication timing can be 

measured by various methods. Below, I will introduce the experimental setup 

and analysis of the commonly used methods that determine gene activity 

(TSA-seq), chromatin domains (DamID-seq), and replication timing (Repli-

Seq) (Chen et al. 2018; Wang et al. 1999; Wu, Olson, and Yao 2016; Marchal 

et al. 2018; Marchal, Sima, and Gilbert 2019). 
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● Tyramide Signal Amplification Sequencing 

Tyramide Signal Amplification Sequencing (TSA-Seq) maps genome-

wide chromosomal distances from compartments such as nuclear speckles or 

Lamina to the nuclear periphery, which is used as a predictor for gene 

expression levels. TSA is a immunohistochemistry method developed by 

Wang et al. in 1999 to generate tyramide free-radicals using horseradish 

peroxidase (HRP) (Wang et al. 1999). Diffusion of these free-radicals results 

in covalent bonds with neighboring macromolecules. TSA-Seq uses TSA  to 

estimate genome-wide cytological distances (Chen et al. 2018). The TSA 

reaction is followed by reversed FA cross-linking, isolating DNA, and pulling 

down biotinylated DNA for high-throughput sequencing. In this chapter, I 

focused on TSA-Seq data targeting the proteins below: Nuclear Speckle 

protein (SON), Nuclear Lamina protein (LMNB1), Nucleolar protein (NIFK), 

Centromere protein (CENB1) and RNA Polymerase I subunit E (POLR1E) 

(https://data.4dnucleome.org/). 

Analysis: Genome-wide cytological distances measured by TSA-Seq can be 

generated as follows. Single-end sequenced reads are mapped to their 

reference genome using Bowtie 2 with default parameters excluding 

chromosome Y (Langmead and Salzberg 2012). SAMtools is used to remove 

PCR duplicates (Danecek et al. 2021). Mapped reads are normalized such 

that reads in 20 kb window size are normalized to the total number of reads in 

that sample and then divided by their corresponding input which is similarly 

normalized. The log2 of the fold-change track is used for further analysis.  
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● DNA adenine methyltransferase identification sequencing 

DNA adenine methyltransferase identification (DamID-Seq) is used to 

detect genome-wide protein-DNA interactions as an alternative to ChIP-Seq 

experiments (Vogel, Peric-Hupkes, and van Steensel 2007; Wu, Olson, and 

Yao 2016). Escherichia coli DNA methyltransferase (Dam) protein is fused to 

a chromatin-binding protein of interest in cells to make preferential 

methylation of nearby adenines. Since the methylation of adenines does not 

occur naturally, it is used to tag DNA proximal to the protein of interest, which 

can then be specifically amplified by PCR. Recent DamID protocols, DamID-

Seq incorporate high-throughput sequencing to obtain genome-wide 

information.  

Analysis: DamID-Seq data was mapped exactly like the TSA-Seq data 

mentioned above.  

● Replication Timing Sequencing 

Replication Timing Sequencing (Repli-Seq) was developed to measure 

the replication timing of different regions on the genome (Marchal et al. 2018). 

Newly synthesized DNA strands are labeled by 5-bromo-2-deoxyuridine 

(BrdU) which is incorporated into the replicated DNA in place of thymidine. 

Labeled cells are sorted based on DNA content into G1, S1, S2, S3, S4, and 

G2. BrdU labeled DNA strands are extracted using anti-BrdU monoclonal 

antibodies and the isolated BrdU fractions are sequenced. Mapping the 

sequences of BrdU-labeled nascent DNA replication strands on the genome 

enables inferences about DNA replication timing.  
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Analysis:  Data analysis begins with quality checks and mapping the data to 

the reference genome. Then the ratio of early replication timing to late 

replication timing is calculated. The coverage of the log 2 ratio is smoothed 

and used for visualization and downstream analysis.  

Integration of Hi-C, Micro-C, ChIA-PET, PLAC-Seq, SPRITE, GAM, TSA-

Seq, DamID-Seq and Repli-Seq 

Structures detected in 3D methods highly correlate with signals 

detected from TSA-Seq (gene activity), DamID-Seq (chromatin domains) and 

Repli-Seq (replication timing) (Boninsegna et al. 2022; Vouzas and Gilbert 

2021; Wang et al. 2021; Marchal, Sima, and Gilbert 2019; Zheng et al. 2018). 

Strong signal of TSA-Seq speckle association is an indication of active 

euchromatic region and lower signal of TSA-Seq is an indicator of 

heterochromatin, which is reversed in TSA-Seq LaminB1 and most DamID 

experiments. Repli-Seq signals also show that the active regions have faster 

replication than the inactive heterochromatic regions. TSA-Seq, DamID and 

Repli-Seq correlate with the compartmentalization signal detected in 3D 

experiments. EigenVector Decomposition is used to detect the compartment 

signal in 3D experiments so that the positive values of the first eigenvector 

corresponds to active euchromatin and negative values correspond to inactive 

heterochromatic regions.  

Measuring the reproducibility of 3D data 

Reproducibility of an experiment is one of the most important measures 

that show the data is real and of good quality. Below, I briefly explain the main 
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methods developed to measure the 3D data reproducibility: Pearson 

correlation, HiCRep, GenomeDISCO, Hi-C-Spector and QuASAR-Rep (Yang 

et al. 2017; Ursu et al. 2018; Yan et al. 2017; Yardimci et al. 2019; Sauria and 

Taylor 2017). 

Pearson correlation is the first approach used to measure the correlation 

between two Hi-C contact matrices generated using different enzymes 

(Lieberman-Aiden et al. 2009).  

HiCRep uses the stratum adjusted correlation coefficient (SCC) to quantify 

the similarity between two matrices (Yang et al. 2017). HiCRep starts with 

smoothing the data matrix and takes the distance-dependence effect into 

account using weighted Pearson correlations.  

GenomeDISCO starts with smoothing the contact maps using random walks, 

which are then converted to networks (Ursu et al. 2018). Nodes represent the 

genomic loci and the edges represent the interaction frequency between two 

loci. The smoothed maps are compared. Noise and distance decay are 

considered for each contact map and systematic simulations are used to 

quantify the methods.   

Hi-C Spector starts with calculating the Laplacian matrix of each dataset 

followed by calculation and comparison of the eigenvector decompositions of 

these matrices (Yan et al. 2017).  

QuASAR-Rep assesses the reproducibility considering multiple resolutions of 

transformed matrices (Sauria and Taylor 2017). Matrix transformation is done 

using local correlations of matrices weighted by the contact frequency of each 
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matrix.   

HiCRep and GenomeDISCO quantify chromosome-scale 

reproducibility while the other described methods measure genome-wide 

correlations. Although these methods have been commonly used, they do not 

perform similarly. To compare the performance of these methods controlling 

noise and sparsity, one study has used real and simulated datasets such as 

Pseudo replicates, biological replicates, and non-replicates (Yardimci et al. 

2019). Hi-C Spector was found to be the strongest and the Pearson 

correlation to be the weakest measure for Hi-C data reproducibility. Although 

Hi-C Spector performs the best finding high reproducibility between replicates 

and classification of noisy datasets, HiCRep, GenomeDISCO and QuASAR-

Rep have a powerful performance separating pseudo replicates, biological 

replicates, and non-replicates. Hi-C Spector produces the strongest results 

seperating i) the simulated data sets with different noise injection levels, ii) 

biological replicates, pseudo replicates and non-replicate, iii) all 

aforementioned replicates with different coverage levels, iv) reproducibility in 

different cell types.  

Structure detection in 3D data 

● Compartment detection 

Compartments are the largest structures detected in 3D genome 

organization. To identify these compartments Eigenvector decomposition is 

used but for subcompartment identification unsupervised clustering algorithms 

like Hidden Markov Model and k-means clustering are generally used. 
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Eigenvector decomposition has been used on the correlation matrix of Hi-C to 

define A and B compartments (Lieberman-Aiden et al. 2009). The correlation 

matrix is computed with Pearson correlation between ith  row and jth column 

of a matrix M. The matrix is normalized to its expected  (obs/exp) values to 

remove the distance-decay effect before performing the eigenvector 

decomposition. To compute A and B compartments, an automated method 

called Cooltools (https://github.com/open2c/cooltools) is used.  Cooltools 

reads multi-resolution matrix and uses eigenvector decomposition on obs/exp, 

which is a strong method to identify compartments in a matrix with a low ( a 

few million) number of interactions.  

Detailed investigation of compartments using a Hidden Markov Model 

has revealed subcompartments  (Rao et al. 2014). Using a high resolution 

deep (~4.9 billion contacts) Hi-C data an inter-chromosomal matrix was 

constructed with odd chromosomes being in the rows and even chromosomes 

being in the columns. Z-score was applied to the odd chromosomes of this 

matrix after filtering rows and columns that had low coverage. Z-scored matrix 

is used for unsupervised Gaussian hidden Markov model clustering algorithm 

(GaussianHMM). The z-score was independently applied to even 

chromosomes and GaussianHMM clustering was applied to this matrix as 

well. Finally, the authors found that each cluster in the even chromosomes 

preferentially interacts with one cluster of odd chromosomes. They identified 5 

clusters/subcompartments (A1, A2, B1, B2 and B3) that have preferential 

interactions. Identification of these clusters was determined by correlating 

them with A and B compartments.    
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Another approach to identify subcompartments is Subcompartment 

iNference, which uses Imputed Probabilistic ExpRessions (SNIPER) based on 

de-noising autoencoder and a multilayer perceptron classifier using around 

500 million interactions (Xiong and Ma 2019). SNIPER creates a similar inter-

chromosomal interaction matrix as the aforementioned study as an input for 

an autoencoder, which outputs a dense inter-chromosomal contact matrix and 

features of the sparse matrix as latent variables in low-dimensional (Rao et al. 

2014). Latent variables lower the dimensionality of the inter-chromosomal 

matrix and inputs 5 subcompartment categories into the classifier that are 

identified based on GM12878. The training was done for both odd and even 

numbered chromosomes. Multi-layer perceptron network is used to predict 

subcompartment annotations. Since SNIPER was trained using a 

lymphoblastoid cell line (GM12878), the prediction may not hold true for very 

different cell types.  

Another study identified subcompartments by using 9 eigenvectors that 

have the most variation (Spracklin et al. 2021). These eigenvectors highly 

correlate with signal tracks from speckles, replication timing, GC content, 

Lamin B1 and Protect Seq. This subcompartment prediction approach does 

not require deep datasets and shows a great correlation with genome 

function.   

● TAD detection 

TADs form as a consequence of loop extrusion mechanisms and look 

like rectangles in the chromatin interaction map with enhanced interactions 
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within a TAD and depleted interactions between TADs.  Unlike compartments, 

TADs have a hierarchical structure, which makes TAD identification more 

difficult than the compartments. These embedded TAD structures led to the 

development of over thirty methods to identify TAD-like structures.  These 

methods are based on multiple features, which include averaging interaction 

frequency of the Hi-C heatmap across the diagonal with a given sliding 

window, calculating average upstream and downstream interactions of a 

given bin and transforming these interactions into chi-squared statistics, graph 

theory-based methods (Nora et al. 2012; Dixon et al. 2012; Norton et al. 

2018). Arrowhead algorithm that uses the global expected to find the TAD 

boundaries, and graph theory-based algorithms to find TADs and subTADs 

(Rao et al. 2014).   

Multiple tools have been developed to calculate insulation score and 

directionality index. Cooltools is used to calculate insulation score and FAN-C 

is used to find both insulation score and directionality index (Kruse, Hug, and 

Vaquerizas 2020). Juicer is used to compute TADs using the arrowhead 

algorithm and 3DNetMod is a method developed to define TADs and 

subTADs using a graph based algorithm (Robinson et al. 2018; Norton et al. 

2018). Over thirty tools developed for TADs comparison using Hi-C and Hi-C-

like datasets have been compared in a comprehensive study (Liu et al. 2022). 

These methods showed differences in the number of detected TADs, TAD 

size, detection of subTADs, and the detection of the same TADs.  Some 

methods use histone modifications to identify TAD boundaries.  
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● Loop Detection 

Chromatin loops are the finest structures detected using 3D methods 

and look like a dot in the interaction heatmap. Detection of these dots requires 

a correction for global and local backgrounds. A variety of methods have been 

developed to detect dot-like structures. Some methods focused on detecting 

enriched interactions regardless of their shape using the global background. 

HICCUPS, SIP, Mustache and Pikachu are some of the methods that are 

used to detect chromatin loops correcting for local and global background 

(Rao et al. 2014; Rowley et al. 2020; Roayaei Ardakany et al. 2020; Salameh 

et al. 2020). HICCUPS detects the chromatin loops by first normalizing the 

observed matrix by the global expected to identify potential enrichments and 

then each of these enrichments were compared to their neighbor pixels to 

show the local enrichment and dot-like structures.  Cooltools uses the same 

strategy to identify loops. Cooltools is written in python and easier to 

implement compared to HICCUPS which is written in Java and has many 

dependencies. 

SIP uses image processing algorithms to identify chromatin loops (Rowley et 

al. 2020). Images are adjusted and corrected using gaussian blur, contrast 

enhancement, White Top-Hat and minimum-maximum filters to pass the initial 

screening. Then loop candidates are filtered based on their enrichment and 

position in the genome. SIP detects more loops than HICCUPS with lower 

false positive rate.  

Peakachu uses supervised Machine Learning algorithms to find 
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chromatin loops (Salameh et al. 2020). Peakachu is constructed using 

positive and negative training sets. The positive set is created using loop-like 

enrichments extracted from ChIA-PET/HiChIP, Capture Hi-C and HiFISH and 

the negative set is created using random interactions that have similar 

genomic distance as loops and interactions extracted from longer distances. 

Hyperparameter search is used to find the best random forest model that 

segregates positive and negative loop sets. Peakachu has advantages over 

other methods by detecting loops in high resolution and with low sequencing 

depth.   

The Mustache algorithm uses a 2D Gaussian approach to convolve an 

interaction map and produce a scale-space image representation (Roayaei 

Ardakany et al. 2020). Then it subtracts the images from each other to find the 

local maximum enrichment in each image and compared to its local 

background. Mustache provides reproducible results  compared to HICCUPS 

and SIP and is able to call loops in 1kb resolution.  

In addition to these methods, Fit-HiC and HiC-DC detect any 

enrichment in the interaction map regardless of the local background (Ay, 

Bailey, and Noble 2014; Carty et al. 2017). Both Fit-HiC and HiC-DC use 

statistical models based on the global background to identify enriched pixels 

in 3C-based methods. The advantages of Fit-HiC and HiC-DC is that they 

provide a more global approach for structure identification regardless of the 

shape of the structures. They can detect stripe-like structures that are 

observed in interaction maps and occur as a consequence of cohesin stalling. 
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Such stripe-like structures show high interaction frequency in an adjoining 

genomic interval with a great amount of cohesin loading. Juicebox is one of 

the methods that can be used to identify stripes (Robinson et al. 2018).  

Understanding 3D genome organization is crucial to unveil complicated 

relationships between genes and their distal enhancers, DNA folding patterns 

and relationships between different regions of the chromatin. Hi-C 3.0 was 

updated to increase the potential of capturing multi-layer structures in 3D. But 

many other methods are still available to unveil information about 3D 

structures that are not captured by Hi-C. Every method that measures the 3D 

genome captures some aspects of chromatin organization. Such methods 

include Micro-C, PLAC Seq, ChIA PET, SPRITE and GAM. Analyzing these 

methods together and combining information extracted from these methods 

give a global view of the chromatin organization.  This study showed the basic 

differences between 3D methods and how method selection is crucial in 

understanding biological problems. 
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Figure 1.1: Hi-C Protocol 

a. An illustration of the steps in Hi-C 2.0 Protocol 

 

Figure 1.2: Multi-layer chromatin folding 

a. Interaction maps of a Hi-C experiment showing compartments, TADs 

and chromatin loops. 

b. Observed formation of compartments, TADs and loops in the nucleus 
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Chapter II: Systematic evaluation of chromosome 
conformation capture assays 

Preface 

This research chapter is published work in Nature Methods by  

Betul Akgol Oksuz, Liyan Yang, Sameer Abraham, Sergey V. Venev, Nils 

Krietenstein,Krishna Mohan Parsi, Hakan Ozadam, Marlies E. Oomen, Ankita 

Nand, Hui Mao, Ryan M. J. Genga, Rene Maehr, Oliver J. Rando, Leonid A. 

Mirny, Johan H. Gibcus and Job Dekker. The publication is entitled 

“Systematic evaluation of chromosome conformation capture assays”. PMID: 

34480151  PMCID: PMC8446342  DOI: 10.1038/s41592-021-01248-7 

Summary 

Chromosome conformation capture (3C) assays are used to map chromatin 

interactions genome-wide. Chromatin interaction maps provide insights into 

the spatial organization of chromosomes and the mechanisms by which they 

fold. A number of 3C protocols such as Hi-C and Micro-C are now widely used 

and these differ in key experimental parameters including cross-linking 

chemistry and chromatin fragmentation strategy. To understand how the 

choice of experimental protocol determines the ability to detect and quantify 

aspects of chromosome folding, we have performed a systematic evaluation 

of experimental parameters of 3C-based protocols. We identified optimal 

protocol variants for either loop detection (fine fragmentation and use of 

combinations of formaldehyde and disuccinimidyl glutarate or Ethylene glycol 

bis(succinimidylsuccinate) cross-linking) or compartment detection (large 
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fragments). We used this information to develop a greatly improved Hi-C 

protocol  that can detect both loops and compartments relatively effectively. In 

addition to providing benchmarked protocols, this work produced ultra-deep 

chromatin interaction maps using Micro-C, conventional Hi-C and improved 

Hi-C for key cell lines used by the 4D Nucleome project. 

Introduction 

Chromosome conformation capture (3C)-based assays (Dekker et al. 

2002) have become widely used to generate genome-wide chromatin 

interaction maps (Denker and de Laat 2016). Analysis of chromatin interaction 

maps has led to the detection of several features of the folded genome. Such 

features include precise looping interactions (0.1-1 Mb scale) between pairs of 

specific sites that appear as local dots in interaction maps. Many of such dots 

represent loops formed by cohesin-mediated loop extrusion that is stalled at 

convergent CTCF sites (Rao et al. 2014; Kagey et al. 2010; Fudenberg et al. 

2016). Loop extrusion will also produce other features in interaction maps 

including stripe-like patterns anchored at specific sites that block loop 

extrusion, and the effective depletion of interaction across such blocking sites 

leading to domain boundaries (insulation). At the Mb scale interaction maps of 

many organisms including mammals display checkerboard patterns that 

represent the spatial compartmentalization of two main types of chromatin: 

active and open A-type chromatin domains and inactive and more closed B-

type chromatin domains (Lieberman-Aiden et al. 2009).  

There have been significant improvements to the 3C assay since its 
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development to reduce signal-to-noise ratio. Several parameters have been 

tested to improve Hi-C, including performing crosslinking, digestion, and 

ligation in intact nuclei as well as modifications on the crosslinking chemistry 

and fragmentation strategies (Rao et al. 2014; Nagano et al. 2015). 

Crosslinking and fragmentation parameters have been shown to be critical for 

3C-based protocols.  Formaldehyde (FA) is the most commonly used 

crosslinking reagent in 3C-based assays. Efficiency of FA crosslinking has 

been improved over the years by various optimizations  focusing on FA 

concentration, crosslinking time, serum presence in the cell media before 

crosslinking, freshness of the FA before crosslinking and the way FA is added 

to the cells (Naumova et al. 2012; Naumova et al. 2013; Belton et al. 2012; 

Golloshi, Sanders, and McCord 2018). In addition to FA, using extra 

crosslinking reagents also improved the crosslinking efficiency. For example, 

additional usage of homobifunctional N-hydroxysuccinimide (NHS) ester 

crosslinking reagent (EGS) improved protein-DNA crosslinking in a ChIA-PET 

assay, which is a 3C-based technique that measures chromatin interactions of 

regions bound by a specific protein (Fullwood et al. 2009). Using EGS and 

another NHS esther crosslinker, disuccinimidyl glutarate (DSG), also led to an 

improvement of short and long-range signal at nucleosome-free regions in 

Micro-C assay, which is a derivation of Hi-C that uses micrococcal nuclease 

(MNase) to fragment chromatin (Hsieh et al. 2016; Krietenstein et al. 2020). 

To fragment chromatin various restriction enzymes, MNase and DNase have 

been tested (Krietenstein et al. 2020; Ramani et al. 2016). For example, to 

increase the resolution of Hi-C, chromatin is digested into smaller fragments 
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using 4-base cutters such as MboI and DpnII instead of 6-base cutters  EcoRI 

NcoI, HindIII (Rao et al. 2014; Belaghzal, Dekker, and Gibcus 2017; Belton et 

al. 2012; Lieberman-Aiden et al. 2009). These modifications have significantly 

improved the resolution and signal-to-noise ratio in Hi-C experiments. In spite 

of these improvements, most conformation capture techniques still cross-link 

chromatin as developed in the original 3C protocol, i.e. with 1% formaldehyde 

and uses several commonly used restriction enzymes to fragment chromatin 

(Dekker et al. 2002).  

Specific features of genome folding, such as compartments TADs and 

loops result from different mechanisms and exist at different length scales 

(Ganji et al. 2018; Nora et al. 2012; Dixon et al. 2012; Lieberman-Aiden et al. 

2009; Mirny, Imakaev, and Abdennur 2019). The current Hi-C protocol is 

limited in detecting all of these structures at high resolution. Evidences 

suggest that optimization of experimental parameters such as crosslinking 

chemistry and fragmentation, may improve detection of specific features of 

genomic structures (Krietenstein et al. 2020; Rao et al. 2014; Dixon et al. 

2015; Naumova et al. 2013; Gibcus et al. 2018; Abramo et al. 2019; Golloshi, 

Sanders, and McCord 2018). Thus, we reasoned that it might be possible to 

optimize a single protocol that can capture genomic interaction at all scales, 

which would improve our understanding of genome structure and function.  

It is critical to ascertain how key parameters of these 3C-based 

methods quantitatively influence the detection of chromatin interaction 

frequencies and the detection of different chromosome folding features that 
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range from local looping between small cis elements to global 

compartmentalization of Mb-sized domains. Here we systematically assessed 

how different cross-linking and fragmentation methods yield quantitatively 

different chromatin interaction maps.   

Results 

We set out to explore how two key parameters of 3C-based protocols, 

cross-linking and chromatin fragmentation, determine the ability to 

quantitatively detect chromatin compartment domains and loops. We selected 

three cross-linking chemistries widely used to cross-link chromatin: 1) 1% 

formaldehyde (FA) , conventional for most 3C-based protocols, 2) 1% FA 

followed by an incubation with 3 mM disuccinimidyl glutarate (FA+DSG 

protocol), and 3) 1% FA followed by an incubation with 3 mM Ethylene glycol 

bis(succinimidylsuccinate) (FA+EGS protocol) (Figure 2.1 a). We selected 4 

different nucleases for chromatin fragmentation: MNase, DdeI, DpnII and 

HindIII, which fragment chromatin in sizes ranging from single nucleosomes to 

multiple kilobases. Combined, the 3 cross-linking and 4 fragmentation 

strategies yield a matrix of 12 distinct 3C-based protocols (Figure 2.1 b). To 

determine how performance of these protocols varies for different states of 

chromatin we applied this matrix of protocols to multiple cell types and cell 

cycle stages. We analyzed 4 different cell types: pluripotent H1-hESCs (12 

Protocols), differentiated endoderm (DE) cells derived from H1-hESCs (12 

protocols), fully differentiated Human Foreskin Fibroblasts (HFF (12 

Protocols), and a clonal derivate HFFc6) and HeLa S3 (9 Protocols) cells. 
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Furthermore, we analyzed two cell cycle stages: G1 (9 Protocols) and mitotic 

(9 Protocols) HeLa S3 cells (Figure 1). Each interaction library was then 

sequenced each on a single lane of a HiSeq4000 instrument, producing ~150-

200 million uniquely mapping read pairs for each experiment (Table 1). 

We first assessed the size range of the chromatin fragments produced 

after digestion by the twelve protocols for HFF cells (see Methods). Digestion 

with HindIII resulted in 5-20 kb DNA fragments; DpnII and DdeI produced 

fragments of 0.5-5kb; and MNase digested up to the level of 

mononucleosomes (~150 bp) (Figure 2.2 a). For protocols using MNase we 

included a size selection step and therefore all interactions in those datasets 

involve pairs of nucleosome-sized fragments. Different cross-linking 

chemistries did not affect the size ranges produced by the different nucleases 

much, though DSG cross-linking lowered digestion efficiency slightly (Figure 

2.2 b).  

● All tested 3C-based protocols can differentiate between cell states 

We first assessed similarity between the 63 datasets by global and 

pairwise correlations using HiCRep and hierarchical clustering (Figure 2.2 c) 

(Abdennur and Mirny 2020; Imakaev et al. 2012). We found that the datasets 

are highly correlated and cluster primarily by cell type and state and then by 

cell type similarity, as for example H1-ESC and ESC derived DE cells cluster 

together; and the most distinct cluster is formed by mitotic HeLa cells. 

Although data from all protocols is highly correlated, MNase protocols show 

slightly lower correlations with Hi-C experiments (Figure 2.2 d-g). 
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● Extra cross-linking yields more intra-chromosomal interactions in 

all cell states 

Given that chromosomes occupy individual territories, intra-

chromosomal (cis) interactions are more frequent than inter-chromosomal 

(trans) interactions (Yang et al. 2017). The ratio of the number of interactions 

found in cis and trans is commonly used as an indicator of Hi-C library quality 

given that inter-chromosomal interactions are a mixture of true chromatin 

interactions and interactions that are the result of random ligations (see 

below) (Yang et al. 2017; Yardimci et al. 2019). For all enzymes and cell 

types, we found that the addition of DSG or EGS to FA cross-linking 

decreased the percentage of trans interactions (Figure 2.3 a (HFF) ; Fig.2.4 a 

(H1-hESC, DE, Hela S3)).  

With respect to intra-chromosomal interactions, we noticed two distinct 

patterns. First, digestion into smaller fragments resulted in a relative increase 

in short range interactions. MNase digestion resulted in a higher number of 

interactions between loci separated by less than 10 kb, whereas digestion 

with either DdeI, DpnII or HindIII resulted in a relatively larger number of 

interactions between loci separated by more than 10 kb (Figure 2.3 a,b (HFF), 

Figure 2.4 a,b (DE, H1-hESC, HelaS3)). Second, P(s) plots showed that the 

addition of either DSG or EGS resulted in a steeper decay in interaction 

frequency as a function of genomic distance for all fragmentation protocols. 

Moreover, for a given chromatin fragmentation level, additional cross-linking 

with DSG or EGS reduced the percentage of trans interactions, as shown for 

HFF and all other cell types and cell stages studied (Figure 2.3 c, d and 
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Figure 2.4 c). Addition of DSG or EGS could have reduced fragment mobility 

and formation of spurious ligations, resulting in a steeper slope of the P(s). 

We note a difference in slopes for data obtained with different cell types and 

cell cycle stages, which could reflect state-dependent differences in chromatin 

compaction. 

Random ligation events between uncrosslinked, freely diffusing 

fragments lead to noise in 3C-based experiments. Such noise will mostly be 

seen in trans interactions, or very long range cis interactions where true signal 

is low. To estimate the rate of random ligations, we compared trans 

interaction frequencies for each protocol to interactions between mitochondrial 

and nuclear genomes, as these interactions can only result from random 

ligations ( Figure 2.4 d). We could not use this noise metric for experiments 

using MNase because MNase completely degrades the mitochondrial 

genome. Interestingly we observed that random ligations between genomic 

and mitochondrial DNA were the lowest when chromatin was fragmented with 

HindIII, and generally higher when chromatin was fragmented in smaller 

segments with DpnII or DdeI. Additional DSG or EGS cross-linking reduced 

random ligation in experiments using DpnII or DdeI, but did not further reduce 

random ligations when HindIII was used.  

Reduced noise in experiments using HindIII or in experiments using 

DpnII with additional cross-linkers is readily visible in chromatin interaction 

maps: for these protocols we observed a general decrease in trans contacts, 

while uncovering a stronger inter-chromosomal compartmental pattern (Figure 
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2.3 e). We conclude that noise as a result of random ligation can be reduced 

by either using 6 bp-cutters (HindIII) or, when using more frequent cutters 

(DpnII, DdeI), by using additional DSG or EGS cross-linking. The reduced 

noise improves trans compartment detection and possibly long range cis 

interactions. 

● Quantitative detection of compartmentalization is enhanced by 

long fragments and extra cross-linkers 

Visual inspection of interaction matrices (binned at 100 kb resolution) 

suggested that the contrast between the domains that make up the A and B 

compartments can vary between protocols. For instance, for HFF cells cross-

linked with only FA, interaction matrices obtained with MNase digestion 

displayed a relatively weak compartment pattern, whereas those obtained 

with HindIII digestion showed much stronger patterns (Fig 2.5 a).  

To investigate compartmentalization and determine the positions of A and B 

compartments, we used eigenvector decomposition (Lieberman-Aiden et al. 

2009; Lajoie, Dekker, and Kaplan 2015) for all cell states except for mitotic 

cells that do not display compartmentalized chromosomes (Schmitt, Hu, and 

Ren 2016). Correlation between compartment profiles of all experiments 

showed that the greatest difference in profiles can be attributed to cell type ( 

Figure 2.6 a). Within each cell type, positions of compartment domains 

obtained with different protocols were highly similar (Spearman correlation 

>0.8; Figure 2.6 a).  
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Compartment strength analysis using saddle plots revealed three 

important trends (Lajoie, Dekker, and Kaplan 2015; Naumova et al. 2013; 

Nora et al. 2017). To generate saddle plots the contact matrix of Hi-C or 

Micro-C was sorted based on the eigenvector values from lowest to highest (B 

to A). Sorted maps were then corrected for their expected contact 

frequencies. The strongest B-B contacts are located in the upper left corner 

and the strongest A-A contacts are located in the lower right corner. The 

upper right and lower left are B-A and A-B, respectively. The 20% of the 

strongest A-A and B-B interactions were normalized to the strongest 20% of 

A-B and B-A interactions to generate a single value for compartment strength.   

First, protocols that generate larger fragments (e.g. using HindIII; Figure 2.5 b, 

c) and protocols that include additional DSG or EGS cross-linking produced 

quantitatively stronger compartment patterns (Figure 2.5 c; Figure 2.6 b-e) for 

all 4 cell types. Second, different cell types differed in compartment strength: 

HFF cells displayed the strongest compartment pattern, while H1-hESCs 

displayed weak compartments regardless of the protocol used. This could be 

related to differences in chromatin state and/or cell cycle distribution between 

the cell types. Third, compartment strength was much stronger in cis than in 

trans. Furthermore, some protocols, including the conventional Hi-C protocol 

(cross-linked with FA and digestion with DpnII) and MNase-based protocols 

(Micro-C, regardless of cross-linking protocol) did not detect enrichment of B-

B interactions in trans ( Figure 2.6 ). Such preferred B-B interactions were 

detected only when Hi-C was performed with HindIII ( Figure 2.6 d, e)). 

Additionally, trans preferential A-A interactions were more frequent than trans 
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preferential B-B interactions for all protocols and cell types. In summary, 

compartment strength was stronger in both cis and trans, when protocols 

produce larger fragments or employ additional cross-linking. 

● Chromatin loops are better detected in experiments with finer 

fragmentation and additional DSG cross-linking 

Of all structural Hi-C features, the detection of loops depends the most 

on sequencing depth. We applied 1) conventional Hi-C using FA and DpnII 

digestion (FA-DpnII); 2) Hi-C using DSG in addition to FA cross-linking and 

DpnII digestion (FA+DSG-DpnII); and 3) the standard Micro-C protocol 

(FA+DSG-MNase) to two cell types, H1-hESC and HFFc6, and sequenced 

the resulting libraries to a depth of 2.4-3.9 billion valid interactions (two 

biological replicates combined). HFFc6 cells are a subclone of HFF cells and 

are used by the 4D Nucleome Consortium (Dekker et al. 2017). Interaction 

maps of data obtained from these “deep” datasets showed quantitative 

differences in interactions for both H1-hESC and HFFc6 ( Figure 2.7 a,b). As 

compared to conventional Hi-C (FA-DpnII), the use of additional cross-linking 

with DSG and finer fragmentation produced contact maps with more contrast 

and more pronounced focal enrichment of specific looping contacts. We used 

a reimplementation of the HICCUPS approach to identify looping interactions 

that appear as dots (Rao et al. 2014; Krietenstein et al. 2020) (see Methods).  

First, we compared the number of loops detected in individual and 

merged biological replicates for the deeply sequenced protocols. We 

observed that 1) the number of loops detected with protocols that cross-link 
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chromatin with only FA was more sensitive to sequencing depth compared to 

the number of loops detected with protocols that cross-linked with FA+DSG; 

2) loops were more consistent between replicates for datasets obtained with 

protocols that cross-link chromatin with FA+DSG compared to those detected 

in FA-only crosslinked replicates ( Figure 2.7 c, d). We used the lists of loops 

that were detected in merged replicates for our analyses. In H1-hESCs we 

detected 3,951 loops with the FA-DpnII protocol, 12,396 loops with the 

FA+DSG-DpnII protocol, and 22,507 loops with the FA+DSG-MNase protocol 

( Figure 2.9 a). For HFFc6 these numbers were 13,867, 22,934 and 36,988 

respectively (Figure 2.8 a). To investigate the properties of detected loops, we 

compared loops that were called in individual or multiple protocols (Figure 2.8 

a). While a large fraction of loops was detected by all three protocols, we 

found that the protocols with additional cross-linking (FA+DSG-DpnII) and 

finer fragmentation (FA+DSG-MNase) detected a large set of additional loops 

(Figure 2.8 a). 

When we aggregated interaction data for the various subsets of loops 

detected with one or multiple protocols, we observed a focal increase in 

interaction frequency for all subsets of loops for all datasets; even for data 

obtained with protocols where that subset of loops was not detected as 

significantly enriched (Figure 2.8 b for HFFc6, Figure 2.9 b for H1-ESC). For 

instance, loops only detected with the FA+DSG-MNase protocol were also 

visible in aggregated data obtained with the FA-DpnII protocol. Quantifying 

the strength of the different subsets of loops detected by one or multiple 

protocols, we found that loops detected by all three protocols were the 
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strongest, while loops detected only by the FA+DSG-MNase protocol were 

relatively weak.  

We then defined a consensus set of loops that were detected in all 

three deep datasets and then used this set to analyze the data obtained with 

the matrix of 12 protocols described in Figure 2.1 that differ in cross-linking 

and fragmentation strategies. We observed a gradual increase in average 

loop strength with decreasing fragment size and after addition of DSG or EGS 

( Figure 2.9 d, e).  

To explore this in another way, we quantified the strengths of each loop 

in the sets of consensus and union loops and found that the majority of loops 

were strengthened by additional DSG crosslinking (Figure 2.8 c left panel). 

Further, loop strengths increased by digestion with MNase as compared to 

DpnII (Figure 2.8 c, middle). Loops were strongest when both additional 

cross-linkers were used and chromatin was fragmented with MNase (Figure 

2.8 c, right plot). A similar trend is also observed in H1-hESC cells ( Figure. 

2.9 c). 

We conclude that the use of additional cross-linkers and enzymes that 

fragment chromatin in smaller fragments independently contribute to the loop 

strength and the number of loops that are detectable. 

A looping interaction is defined by a pair of frequently interacting loci, anchors. 

When each anchor is involved in only 1 looping interaction, the number 

anchors will be twice the number of loops. In contrast, when anchors engage 

in multiple looping interactions with other anchors, the number of anchors will 
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be smaller than twofold the number of loops (Fudenberg et al. 2016). To 

examine the relationship between loops, we compared the number of anchors 

as a function of the number of loops detected in deep sequenced datasets for 

HFFc6 cells (Figure 2.10 a). We found that this relation is proportional for the 

FA-DpnII experiment with a ratio of two, but disproportionate for experiments 

with improved loop detection (FA-DSG-DpnII and FA-DSG-MNase). This 

suggests that many of the newly identified loops involved anchors that were 

also detected with FA-DpnII (Figure 2.10 a, Figure 2.11 a). In other words, 

many of additionally detected loops are arranged along stripes emanating 

from the same anchors.  

To further investigate this we directly determined the number of loops that a 

given anchor is engaged in as detected by different protocols and then 

calculated the difference between them. For each anchor, we subtracted the 

number of loops detected by the FA-DpnII protocol from the number of loops 

detected using the FA+DSG-DpnII or the FA-DSG-MNase protocol. We found 

that using extra cross-linkers as well as finer fragmentation increased the 

number of detectable loops for most anchors (Figure 2.10 b, c, Figure 2.11 b, 

c). We conclude that protocols that use additional cross-linkers and finer 

fragmentation detect more loops in two ways: first, more loops are detected 

per anchor, and second, additional looping anchors are detected. 

We split loop anchors into two categories: 1) anchors detected with more than 

1 protocol and 2) anchors detected with only 1 protocol. We observed that 

anchors detected with at least 2 protocols were engaged in multiple loops 
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(loop “valency” >1). In contrast, anchors that were detected with only 1 

protocol mostly had a loop valency of 1 ( Figure 2.11 d, e). Interestingly, for 

H1-ESCs the majority of additional loops detected with FA-DSG-MNase 

protocol (62%) involve two anchors not detected with other protocols. In 

comparison for HFFc6 this was only 21% indicating that most new loops 

shared at least one anchor with loops detected with other protocols. 

We investigated factor binding (CTCF and cohesin (SMC1), YY1 and RNA 

polII) and chromatin state (H3K4Me3, H3K27Ac) at the two categories of loop 

anchors. We used publicly available datasets (Dekker et al. 2017; Janssens et 

al. 2018) and new data generated using a variety of techniques (Cut&Run, 

Cut&Tag, ChIP Seq and ATAC-Seq for this analysis (Zhang et al. 2020; 

Skene and Henikoff 2017; Kaya-Okur et al. 2019; Buenrostro et al. 2015). An 

example region is shown in Figure 2.10 d. Some loop anchors were detected 

with all protocols and in the example shown these correspond to sites bound 

by CTCF and cohesin (cyan squares). Other loop anchors were only detected 

with the FA-DSG-MNase protocol (black squares). In this example these do 

not correspond to sites bound by CTCF and cohesin, but were enriched in 

H3K27Ac and H3K4Me3. Possibly, the ability of different protocols to detect 

various loop anchors is related to factor binding and chromatin state. To 

investigate this genome-wide we aggregated CTCF, SMC1, YY1, RNA PolII 

binding data and histone modification data (H3K4me3 and H3K27ac) at loop 

anchors detected with all protocols or with only FA-DSG-MNase (Figure 2.10 

e). Interestingly, in HFFc6 cells we found that FA+DSG-MNase-specific loop 

anchors were less enriched for CTCF and SMC1 but more enriched for 
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H3K4me3 and H3K27ac compared to the loop anchors that were detected by 

all three protocols which were more enriched for CTCF and SMC1 but less 

enriched for H3K4me3 and H3K27ac (Figure 2.10 e, Figure 2.11 f).  

Next, we examined the predicted cis regulatory elements that are 

located at shared loop anchors across the three deep datasets and at loop 

anchors detected only with the FA+DSG-MNase protocol. We used candidate 

cis-Regulatory element (cCREs) predictions (predictions were made for H1-

hESC and HFFc6) from ENCODE which uses DNase hypersensitive regions, 

CTCF, H3K4me3 and H3K27ac ChIP seq data for predicting and annotating 

cCREs with and without CTCF binding sites (Buenrostro et al. 2013). We 

found that the majority of the shared anchors had cCREs but only a small part 

of these cCREs were predicted promoter or enhancer elements without CTCF 

site (5.2% for HFFc6, 9.8% for H1-ESC; Figure 2.10 f, Figure 2.11 g). In 

contrast, around half of the FA-DSG-MNase-specific anchors had predicted 

cCREs and for this subset the number of predicted promoter or enhancer 

elements without CTCF site is higher compared to loop anchors detected with 

all protocols (21% for HFFc6, 30% for H1-ESC; Figure 2.10 f, Figure 2.11 g). 

FA+DSG-DpnII-specific loop anchors show similar enrichments as FA-DSG-

MNase-specific anchors. 

Finally, we compared the chromatin organization at CTCF-enriched 

loop anchors with respect to the orientation of the CTCF binding motif. 

Remarkably, using Cut&Tag or Cut&Run data we found an asymmetric 

distribution of signal for all factors (Figure 2.10 g), including CTCF (Cut&Tag 
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data). Both CTCF and cohesin signals are skewed towards the inside of the 

loop. We noted that the Cut&Tag data was generated with an antibody 

against the N-terminus of CTCF (Figure 2.10 g). We also analyzed Cut&Run 

data that was generated with an antibody directed against the C-terminus of 

CTCF ( Figure 2.11 h) and observed signal enrichment skewed at CTCF sites 

towards the outside of the loop. These observations are consistent with the 

orientation of CTCF binding to its motif and interactions between the N-

terminus of CTCF with cohesin on the inside of the loop (Consortium, Moore, 

et al. 2020). The stronger enrichment of H3K4me3 and H3K27ac on the inside 

of the loop is intriguing, but the mechanism of this asymmetry is unknown.  

● Insulation quantification is robust to experimental variations 

Next we investigated chromatin insulation, i.e. the reduced interaction 

probability across domain boundaries (Li et al. 2020; Hou et al. 2012; Dixon et 

al. 2012). Loop anchors often form domain boundaries as they represent sites 

at which cohesin-mediated loop extrusion is blocked. We used the previously 

described insulation metric that quantifies the frequency of interactions across 

any genomic locus within a set window size (Nora et al. 2012). We quantified 

insulation for each 10 kb bin by aggregating interactions across each bin over 

a 200 kb window. Local minima in this metric represent positions of insulation, 

i.e. domain boundaries). The local depth of the minimum is a measure for the 

strength of the boundary. By identifying local minima in the insulation profiles 

we obtained a set of boundary positions genome-wide. 

First, we compared the boundary strength as detected with the deep 
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datasets obtained with the FA-DpnII, FA+DSG-DpnII and FA+DSG-MNase 

protocols in HFFc6. We observed that the distribution of the boundary 

strengths was bimodal: for each dataset we identify a relatively large set of 

very weak boundaries, and a smaller set of strong boundaries ( Figure 2.12 

a). Insulation at the weak boundaries was very small, and possibly noise ( 

Figure 2.12 d). Focussing on the strong boundaries, we aggregated insulation 

profiles at 1) loop anchors detected with each of the three deep datasets ( 

Figure 2.12 b (left)), 2) strong boundaries ( Figure 2.12 b (middle)) and 3) loop 

anchors that are at strong boundaries ( Figure 2.12 b (right)). We found that 

insulation at these elements was very similar for each of the three deep 

datasets, indicating that the different protocols performed comparably in 

quantitative detection of strong insulation sites. In general, insulation at strong 

boundaries was stronger than at loop anchors, possibly because of our 

stringent threshold for boundary detection. 

Second, we investigated whether insulation strength depends on sequencing 

depth. We compared two biological replicates, one with ~150 M interactions 

(matrix data, Figure 2.12 c (left)) and the other with 2.5 billion interactions 

(deep data, Figure 2.12 a) for data obtained with the FA-DpnII, FA+DSG-

DpnII and FA+DSG-MNase protocols. Deeper sequencing reduced the 

relative number of weak boundaries, suggesting these were due to noise ( 

Figure 2.12 a, c (left)). The majority (>85%) of strong boundaries are detected 

in both deep data and the less deeply sequenced data obtained with the 

matrix of 12 protocols, and the insulation scores of these shared strong 

boundaries were highly correlated across all datasets (r >0.80) ( Figure 2.12 c 
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(right)).  

Third, we investigated the number and the strength of the boundaries 

detected using data obtained with the matrix of 12 protocols for HFF, H1-

hESC, DE cells and the 9 protocols for HelaS3. Insulation strength at 

boundaries detected with each protocol was very similar ( Figure 2.12 d 

(right)). We observed the same results for H1-hESC ( Figure 2.12 e-h). 

We found a positive correlation between boundary strength and the number of 

protocols that detected that boundary ( Figure 2.12 i, j). Focusing on the set of 

boundaries that were detected by at least half of the protocols we then 

investigated how insulation varied for data obtained with the matrix of 12 

protocols. We found that insulation strength was very similar for data obtained 

with all protocols ( Figure 2.12 k). Similarly, we detected only minor variations 

in insulation when insulation was aggregated at the set of loop anchors 

detected by all three deep datasets using data obtained with the matrix of 12 

protocols. In summary insulation detection and quantification was robust to 

variations in protocol ( Figure 2.12 l). 

Discussion 

We present a systematic evaluation of experimental parameters of 3C-

based protocols that determine the ability to detect and quantify aspects of 

chromosome folding. Fragmentation level and cross-linking chemistry 

determined the ability to detect chromatin loops or compartmentalization in 

different ways. Loop detection was improved when chromatin was cross-

linked with additional (DSG) cross-linking and cut into small fragments (Figure 
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2.13 a,b for HFFc6 and Figure 2.13 d,e for H1-hESC). Loops detected with 

such protocols were more enriched for cis elements like enhancers and 

promoters as compared to sets of loops detected with conventional Hi-C. 

However, this comes at a cost of a reduced ability to quantitatively detect 

compartmentalization in cis and in trans (Figure 2.13 c for HFFc6 and Figure 

2.13 f for H1-hESC). Quantification of compartmentalization improved with 

longer fragments such as those produced with DpnII in conventional Hi-C. 

Compartment strength improved further with additional cross-linkers or when 

chromatin was digested in even longer fragments, e.g. using HindIII (Figure 

2.13 g for 12 protocols performed in HFF ).  

Fragmentation level and cross-linking chemistry determine assay 

performance by affecting the level of noise due to random ligation events in 

datasets (Yang et al. 2017). We find that smaller fragments result in more 

random ligation events. Possibly the number of cross-links per fragment is low 

for small fragments, leading to a higher mobility and increased random 

ligations during the assay. Random ligation events diminish when additional 

cross-linking is used or when chromatin is fragmented into larger fragments. 

This results in a decrease in inter-chromosomal interactions and steeper P(s) 

plots. Improved signal-to-noise ratios allowed better detection of loops, 

compartments, and more bona fide inter-chromosomal interactions.  

Detection of compartmentalization strength is improved when protocols 

are used that produce relatively long fragments and include additional cross-

linking. Possibly, compartmental interactions are more difficult to capture than 
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looping interactions that are closely held together by cohesin complexes. 

Recently, we found that interfaces between compartment domains appear 

relatively unmixed (Tavares-Cadete et al. 2020). Longer fragments or extra 

cross-linkers may be required to more efficiently capture contacts across 

these interfaces. Interestingly, cell-type-specific differences in strength of 

compartmentalization are only observed with some protocols. Conventional 

Hi-C (FA+DpnII) suggests that compartmentalization strength is quite similar 

in H1-ESCs, Hela S3, DE cells, and HFF. However, when Hi-C is performed 

with additional cross-linkers and/or with restriction enzymes that produce 

longer fragments, HFF and Hela S3 have stronger compartmentalization, 

while compartmentalization strength for H1-ESCs and DE are unaffected. This 

suggests that quantitative differences in cell type-specific chromosome 

organization can be missed or underestimated depending on the 3C-based 

protocol. 

Hi-C protocols with additional cross-linkers allowed detection of many 

thousands more loops than conventional Hi-C (FA+DpnII), while also 

detecting strong compartmentalization. Depending on the objective of their 

study, investigators may choose different protocols: Micro-C for loop 

detection, or Hi-C for detection of compartmentalization. In contrast to 

restriction enzyme digestion, MNase digestion requires optimization of 

conditions, which may not always be possible when cell numbers are low, or 

samples are rare. Micro-C is not applicable for organisms without 

nucleosomes.  
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The very deeply sequenced Hi-C, Micro-C and Hi-C 3.0 datasets we 

produced for H1-ESCs and HFFc6 cells will be useful resources for the 

chromosome folding community given that these cell lines are widely used for 

method benchmarking and analysis by the 4D nucleome project (Dekker et al. 

2017). Further, the comprehensive collection of chromatin interaction data 

generated with the matrix of twelve 3C-based protocol variants for each cell 

line can also be a valuable resource for benchmarking computational methods 

for data analysis given their different cross-linking distances and chemistry, 

fragment lengths and noise levels.  
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Figure 2.1: Outline of the experimental design.  

a. Experimental design for conformation capture on cells with the 

indicated chromatin states (left), using various cross-linking chemistries 

(middle) and digestion methods (right).  

b. Representation of interaction maps generated by combinations of 

experimental conditions depicted in panel a. 
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Figure 2.2: DNA fragmentation and hierarchical clustering of distance 

corrected correlation (HiCRep) 

a,b. Cumulative distribution of the lengths of fragmented DNA obtained  

from fragment analyzer data in HFF cells stratified for different  cross-

linkers (a) and restriction enzymes (b). Gray lines indicate all datasets, 

colored lines indicate data obtained with the indicated nuclease/cross-

linkers. 

c-g. Hierarchical clustering of HiCRep correlations for: all protocols  

comparing cell states (c), synchronized Hela S3 G1 cells (dark green)  

and non-synchronized Hela  

S3 cells (light green) (d), synchronized Hela S3 mitotic cells (e), H1-

hESC and H1-hESC derived DE cells (f), 12 protocols applied to HFF 

cells (g). One color key is indicated for all of the heatmaps.  

h.        Genome coverage of data generated using MNase, DdeI, DpnII and  

HindIII. The read density was normalized to reads per million, 

separated by the coverage in A  

and B compartments (Methods). 
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Figure 2.3: Distance dependent interaction frequency and the number of 

inter-chromosomal interactions change across protocols that use 

various enzyme and cross-linker combinations.  

Figures a, b and c created using 12 protocols that are performed in HFF cells. 

a. The number of valid pairs in each of the 12 protocols categorized by 

genomic distance.  

b. Distance dependent contact probability as detected by the set of 12 

protocols split by used nucleases. Gray lines indicate all datasets, 

colored lines indicate data obtained with the indicated nuclease. 

c. The relationship between the percentage of trans interactions and the 

average slope of the distance dependent contact probability separated 

by cross-linker and enzyme combinations. Oval lines group datasets 

obtained with the same nuclease. 

d. The relationship between percentage of trans interactions and average 

slope of the distance dependent contact probability separated by cell 
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type. Only experiments in which chromatin cross-linked with FA, 

FA+DSG or FA+EGS and digested with DpnII are shown.  

e. Interaction map (log transformed) of chromosome 17 with 

chromosomes 17, 18, 19 and 20 for FA or FA+DSG cross-linking and 

DpnII digestion, in H1-hESC and HFF. Total trans interactions for FA-

DpnII protocols in H1-hESC: 47.7%, HFF: 42.5% and for FA+DSG-

DpnII protocols in H1-hESC: 25% and HFF: 17.3%.  
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Figure 2.4:  Distance dependent interaction frequency and the number of 

inter-chromosomal interactions change across protocols that use 

various enzyme and cross-linker combinations 

a.  The number of valid pairs in each of the 12 protocols applied to  

H1-hESC, DE, Hela S3-NS, Hela S3-G1 and Hela S3-M cells 

partitioned by genomic distances. 

b. Distance dependent contact probability of 12 protocols ordered as in  

(a), partitioned by fragmenting nucleases used (gray lines indicate all 

datasets, colored lines indicate datasets generated with the nucleases 

indicated for each plot).  

c. The relationship between the trans percent and the average slope of  

the distance dependent contact probability for the 12 protocols ordered 

as in Figure 2.4  

d. Quantification of protocol introduced noise as defined by  

inter-mitochondrial interactions (chrM with chr1-22), normalized by 

intra-mitochondrial (chrM with  

chrM) interactions. 
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Figure 2.5: Cross-linking the chromatin with DSG or EGS and digesting 

it with HindIII strengthen compartment signals.  

a. Interaction maps (log transformed) for HFF cells obtained with 

protocols where the chromatin is cross-linked with FA only and 

digested with MNase, DdeI, DpnII and HindIII, respectively. Values of 

the first eigenvector for all genomic regions are displayed below the 

figure.  

b. Saddle plots of the genome-wide interaction maps of the data shown in 

Figure 2.5 a . A-A and B-B compartment signals in cis get stronger with 

increasing fragment size. 

c. Quantification of the compartment strength using saddle plots of cis 

and trans interactions for 12 protocols applied to HFF cells, 9 protocols 
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to Hela S3 NS, 12 protocols to DE, 12 protocols to H1-hESC. Y-axis 

represents the quantification for the strongest 20% of B-B and x-axis 

represents the quantification of the strongest 20% of A-A interactions 

divided by the sum of corresponding A-B interactions.  

 

 

Figure 2.6: Compartment identity is robust for protocol variation but the 

strength of the compartments differs between protocols 

a. Hierarchical clustering of Spearman correlations of Eigenvectors (E1)  

for 63 protocols. Clustering shows strong correlations between 

compartments from data obtained with varying protocols applied to the 
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same cell types and weaker correlations for data obtained with the 

same protocols applied to different cell types.  

b-e. A-A and B-B compartment strength of saddle plots for fixation versus  

enzyme stratified by cell state: DE (b), H1-hESC (c), Hela S3-NS (d), 

HFF (e). For each cell type, saddle plot quantification was done for cis 

and trans reads separately. 
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Figure 2.7: Chromatin loops are more consistent between replicates that 

are cross-link the chromatin with FA+DSG 

a. Interaction heatmaps (log transformed) of experiments for H1-ESC  

cells obtained from the following cross-linker-enzyme combinations  

(from left to right): FA-DpnII, FA+DSG-DpnII and FA+DSG-MNase. 

b. Interaction heatmaps (log transformed) of experiments for HFFc6 cells  

obtained from the following cross-linker-enzyme combinations (from left 

to right): FA-DpnII, FA+DSG-DpnII and FA+DSG-MNase. 

c. Upset plots of loops detected with different replicates for H1-hESC  

show: 1) total number of loops  detected in Replicate 1, Replicate 2 

and merged replicates on the right side (gray bars), 2) number of loops 

detected in the one, two or three experiments shown in black bars. 

Loops found with only one or multiple experiments are highlighted and 

connected with black dots. Here Upset plots investigate the 

consistency of loops between each of the replicates and combined 

replicates for FA-DpnII, FA+DSG-DpnII and FA+DSG-MNase in H1-

hESC.  

d. Upset plots (as explained in Figure 2.7 c) of loops detected with  

different replicates for HFFc6 cells. 
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Figure 2.8: Chromatin loops are better detected in experiments with fine 

fragmentation and DSG cross-linking  

a. Upset plot of loops detected in protocols performed using HFFc6 

shows the 1) total number of loops detected in FA-DpnII, FA+DSG-

DpnII and FA+DSG-MNase on the right side (gray bars), 2) number of 

loops detected in one, two or three of these protocols shown in black 

bars. Loops found with only one or multiple protocols are highlighted 

and connected with black dots. 

b. The pileups of the loops in HFFc6 for every set of loops shown in 

Figure 2.8 a. Numbers in each pileup represent the signal enrichment 

at the loop compared to local background. See methods for 

quantification of loop strength. 
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c. Scatter plots for the relative strengths of individual loops between pairs 

of protocols for HFFc6 cells. The pairs are (from left to right): FA-DpnII 

v/s FA+DSG-DpnII (different crosslinking with the same enzyme), 

FA+DSG-DpnII v/s FA+DSG-MNase (different enzymes with same 

crosslinking) and FA-DpnII v/s FA+DSG-MNase (different enzymes and 

different crosslinking). Loop strengths were calculated the same as in 

panel b but for individual looping interactions. Scatter plots display two 

sets of looping interactions - the union of all locations from the three 

protocols (red squares) and interaction of all locations from the three 

protocols (blue circles). The color scale represents the density of loop 

interactions present at those strengths.  
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Figure 2.9: Chromatin loops are better detected in experiments with fine 

fragmentation and DSG cross-linking 

a. Upset plot of loops detected in protocols performed in H1-hESC  

showing 1) total number of loops detected in FA-DpnII, FA+DSG-DpnII  

and FA+DSG-MNase (gray bars on the right), 2) number of loops 

detected in one, two or three of these protocols shown as black bars. 

The combinations highlighted with connected black dots.  
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b. Pileups of the loops detected in all combinations for H1-hESC  

protocols shown in Figure 2.9 a. Quantification of the loop strength was  

done taking an observed/expected interaction matrix (50x50 kb) around 

the loop and then normalizing the loop intensity to its local background 

(see methods).  

d. Scatter plots with relative strengths of individual loops between pairs of  

protocols for H1-hESC; from left to right: FA-DpnII v/s FA+DSG-DpnII 

(different cross-linking with the same enzyme), FA+DSG-DpnII v/s 

FA+DSG-MNase (different enzymes with same cross-linking) and FA-

DpnII v/s FA+DSG-MNase (different enzymes and different cross-

linking). Loop strengths were calculated as in panel b but for individual 

looping interactions. Scatter plots were drawn for two sets of looping 

interactions (1) the union of all locations from the three protocols (red 

squares) and (2) interaction of all locations from the three protocols 

(blue circles). Color scale represents the density of looping 

interactions.  

 d,e. Quantification of aggregated loop strengths from the matrix of 12  

protocols described in Fig 2.1 a for H1-hESC cells (d), and HFFc6 cell  

(e). Pileups represent looping interactions detected across all three 

deep protocols (FA-DpnII, FA+DSG-DpnII and FA+DSG-MNase) in 

each cell type. 
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Figure 2.10: Characterization of interactions and chromatin features of 

loop anchors detected with different protocols.  

a. The number of loops detected in HFFc6 (x-axis) plotted against the  

number of loop anchors (y-axis). For y=2x depicts the expected  

           relationship when each anchor is engaged in only 1 loop. 

b,c.  The number of FA-DpnII loops subtracted from the number of  

FA+DSG-DpnII (b)  or FA+DSG-MNase (c) loops detected at the same  
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anchors; the union list of the plotted protocols was used.  

d. Interaction maps (linear scale) for 3 protocols applied to HFFc6 cells  

and CUT$Run/CUT&Tag data for CTCF, SMC1, H3K4me3 and  

H3K27ac. Cyan squares highlight the loop anchors detected with all  

three protocols. Black squares indicate loop anchors detected with 

FA+DSG-MNase only.  

e. CTCF, SMC1, H3K4me3 and H3K27ac enrichments at loop anchors  

detected by all protocols (union) or FA+DSG-MNase alone in HFFc6. 

Open chromatin regions within anchor coordinates were used to center 

average enrichments. 

f. Candidate Cis Regulatory elements (cCREs) detected in common and  

FA+DSG-MNase specific loop anchors from Figure 5e (top) and 

stratified percentage of Promoter-Enhancer cCREs without CTCF 

enrichment (bottom). 

g. Enrichment of CTCF, SMC1, H3K4me3 and H3K27ac separated  

between the left (Anchor1) and right (Anchor 2) anchor for loop 

anchors detected in HFFc6 using FA-DpnII, FA+DSG-DpnII or 

FA+DSG-MNase. 
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Figure 2.11: Characterization of interactions and chromatin features of 

loop anchors detected with different protocols.   

a. The number of loops detected in H1-hESC (x-axis) plotted against the  

number of loop anchors (y-axis). y=2x line shows the expected  

relationship between loops and loop anchors when each anchor is 

engaged in only 1 loop. 

b,c. In H1-hESC, the number of FA-DpnII loops subtracted from the 

number of FA+DSG-DpnII loops (b) or the number of FA+DSG-MNase 

loops (c) detected at the same anchors. The union of loop calls from 

both of the plotted protocols was used here.  

d. Histograms of valencies of loop anchors detected in H1-hESC. Each  

panel represents loop anchors found in the given protocol (from left to 

right, FA-DpnII, FA+DSG-DpnII, FA+DSG-MNase). For each protocol, 

the anchors were further stratified into three categories. The leftmost 

panel (FA-DpnII) is used as a guiding example. The categories are: 

anchors detected by 1 protocol (FA-DpnII), anchors detected in 2 

protocols (FA-DpnII and either FA+DSG-DpnII or FA+DSG-

MNase) and anchors detected in all 3 protocols (FA-DpnII and 

FA+DSG-DpnII and FA+DSG-MNase ). 

e. The same plots as shown in Figure 2.11 d but generated using HFFc6  

cells.  

f. The comparison of CTCF, H3K4me3, H3K27ac, YY1 and PolII  

enrichments at loop anchors centered at open chromatin regions. Open  

chromatin regions (as quantified by ATAC Seq) that are located within  

the anchor coordinates are used to center the average  

enrichments. Anchors detected by all protocols and  
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FA+DSG-MNase-specific anchors in H1-hESC.  

g. Top row: candidate Cis Regulatory elements (cCREs) in 

common (left) and FA+DSG-MNase specific loop anchors (right), as 

specified in Figure 2.11 f detected in H1-hESC. Bottom row: the 

percentage of these cCREs for Promoter-Enhancer elements without 

CTCF enrichment. 

 h. The enrichment of CTCF, H3K4me3, H3K27ac, YY1 and PolII in left  

(Anchor1) and right (Anchor 2) anchors centered by CTCF sites. Loop 

anchors present in FA-DpnII, FA+DSG-DpnII or FA+DSG-MNase 

applied to H1-hESC. 
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Figure 2.12: Insulation boundaries show modest differences across 

experimental variations 

a. Boundary strength distribution (log scale) for HFFc6 deep data 

(~2.5 B valid pairs) from FA-DpnII (top) , FA+DSG-DpnII (middle) and 
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FA+DSG-MNase (bottom). Boundaries are classified as weak (blue) or 

strong (red) based on boundary strength (see methods). 

b. Pileups in FA-DpnII (top row), FA+DSG-DpnII (middle row) and 

FA+DSG-MNase (bottom row) for aggregate insulation scores at loop 

anchors (left), strong insulation boundaries (middle) and loop anchors 

colocalizing with strong insulation boundaries (right) as detected in 

deeply sequenced libraries: FA-DpnII (red), FA+DSG-DpnII (blue) and 

FA+DSG-MNase (green). 

 c. The effect of sequencing depth on boundary strength. Left panel shows  

the boundary strength distribution of matrix data (Fig. 2.1a, ~150 M 

valid pairs) for FA-DpnII (top) , FA+DSG-DpnII (middle) and FA+DSG-

MNase (bottom) applied to HFFc6 cells. An excess of weak boundaries 

is observed when comparing to the equivalent deeply sequenced 

library as shown in Figure 2.12 a. Focusing on the strong boundaries, 

the right panel shows a strong correlation between deep and matrix 

data for FA-DpnII, FA+DSG-DpnII and FA+DSG-MNase.  

d. Aggregate insulation profile of the boundaries obtained from matrix  

data for HFFc6 stratified by cross-linkers and nucleases. Boundaries 

further separated based on their insulation strength as weak and strong 

insulation.  

e-h. H1-hESC data displayed like Figure 2.12 a-d. 

i. Distributions of the number of boundaries (y-axis) stratified by the  

number of protocols in which  a given boundary was detected (x-axis). 

The number of protocols varies between 1  

to 12  (Figure 2.1 a). 

j. Insulation strength of the boundaries stratified in the same manner as  

Figure 2.12 i. 
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k. Mean insulation strength from boundaries detected in at least half of  

the protocols for various cross-linkers and enzyme combinations of H1- 

hESC, DE, HFF and Hela S3-NS (see methods). 

l. Mean insulation strength of loop anchors that are detected in all  

three deep protocols (FA-DpnII, FA+DSG-DpnII and FA+DSG-MNase)  

for both HFFc6 and H1-hESC, averaged for 12 protocols of H1-hESC 

and HFF. 

 

 



 82 

Figure 2.13 : Loop detectability and strength increase when the 

chromatin is digested with two restriction enzymes while preserving 

strong compartment signal.  

a. The number of loops detected within 100kb intervals (loop size) starting 

at 70kb in HFFc6. Bin intervals: 70-170 kb, 170-270 kb, 270-

370,......,970-1070 kb.  

b. Loop strength of 1,000 loops sampled from 100 kb intervals (Figure 

2.13 a) in HFFc6. When less than 1,000 loops were available, loop 

strengths for available loops were used.  

c. A-A (x-axis) and B-B (y-axis) compartment strengths in cis and trans 

derived from saddle plot analysis of HFFc6.  

d.f.  Figure 2.13 a-c generated for H1-hESC. 

g.  Compartment strength obtained from the matrix of 12 protocols applied  

to HFF (x-axis)  

compared to loop enrichment for the set of 10,000 loops sampled from 

the deep data using    interaction data obtained from the same matrix 

of 12 protocols (y-axis). 

 

Table 1 : The list of 3D methods used in Chapter II, Matrix Data 

Experiment_name Experiment
_type Short_experiment_name 

Biol
ogic
al_r
ep 

Tec
hnic
al_r
ep 

Cell_Type Cell_cycle_stage Enzyme Crosslinker 
total_non_dupl
icated_valid_p
airs 

number_of_cis
_valid_apirs cis_ratio !Sample_description = 

Experiment 4DN accession 

U54-END-DSG-DdeI-
20161031-R1-T1 Hi-C END-FA+DSG-DdeI 1 1 

H1-Derived 
Endoderm(D
E) 

Non-Synchronized DdeI FA+DSG 205924091 134138539 65.1397990
1 4DNEXGQTF6GX 

U54-END-DSG-DpnII-
20190711-R2-T1 Hi-C END-FA+DSG-DpnII 1 1 

H1-Derived 
Endoderm(D
E) 

Non-Synchronized DpnII FA+DSG 210572905 151943203 72.1570531
6 4DNEXLSE8I9F 

U54-END-DSG-HindIII-
20161206-R1-T1 Hi-C END-FA+DSG-HindIII 1 1 

H1-Derived 
Endoderm(D
E) 

Non-Synchronized HindIII FA+DSG 229896147 164696856 71.6396765 4DNEXML4UEI5 
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U54-END-DSG-MNase-
20170508-R1-T1 Micro-C END-FA+DSG-Mnase 1 1 

H1-Derived 
Endoderm(D
E) 

Non-Synchronized MNase FA+DSG 189326455 154461467 81.5847246
5 4DNEXYOKS2Q9 

U54-END-EGS-DdeI-
20161219-R1-T1 Hi-C END-FA+EGS-DdeI 1 1 

H1-Derived 
Endoderm(D
E) 

Non-Synchronized DdeI FA+EGS 163609737 130469461 79.7443131
4 4DNEXW481RNF 

U54-END-EGS-DpnII-
20170119-R2-T1 Hi-C END-FA+EGS-DpnII 1 1 

H1-Derived 
Endoderm(D
E) 

Non-Synchronized DpnII FA+EGS 186302452 151497006 81.3177735
3 4DNEXZX5SXU3 

U54-END-EGS-HindIII-
20161219-R1-T1 Hi-C END-FA+EGS-HindIII 1 1 

H1-Derived 
Endoderm(D
E) 

Non-Synchronized HindIII FA+EGS 174413205 137515283 78.8445364
6 4DNEXYNR65K2 

U54-END-EGS-MNase-
20170508-R1-T1 Micro-C END-FA+EGS-Mnase 1 1 

H1-Derived 
Endoderm(D
E) 

Non-Synchronized MNase FA+EGS 179727994 146231786 81.3628321 4DNEXBNTOKDI 

U54-END-FA-DdeI-
20161118-R1-T1 Hi-C END-FA-DdeI 1 1 

H1-Derived 
Endoderm(D
E) 

Non-Synchronized DdeI FA 186429934 107921572 57.8885427
3 4DNEX9DK757I 

U54-END-FA-DpnII-
20170119-R2-T1 Hi-C END-FA-DpnII 1 1 

H1-Derived 
Endoderm(D
E) 

Non-Synchronized DpnII FA 178823010 103638144 57.9557093
9 4DNEX281COZ4 

U54-END-FA-HindIII-
20160311-R1-T1 Hi-C END-FA-HindIII 1 1 

H1-Derived 
Endoderm(D
E) 

Non-Synchronized HindIII FA 211056400 137365408 65.0846920
5 4DNEXGQDKD1Y 

U54-END-FA-MNase-
20170508-R1-T1 Micro-C END-FA-Mnase 1 1 

H1-Derived 
Endoderm(D
E) 

Non-Synchronized MNase FA 138646531 94018758 67.8118358
4 4DNEXVCM43FD 

U54-ESC-DSG-DdeI-
20161014-R1-T1 Hi-C H1-hESC-FA+DSG-DdeI 1 1 

Human 
Embryonic 
Stem Cells 
(H1-hESC) 

Non-Synchronized DdeI FA+DSG 159048920 111063786 69.82995295 4DNEXGYGE5BH 

U54-ESC-DSG-DpnII-
20160722-R1-T1 Hi-C H1-hESC-FA+DSG-DpnII 1 1 

Human 
Embryonic 
Stem Cells 
(H1-hESC) 

Non-Synchronized DpnII FA+DSG 152477256 114504941 75.09640717 4DNEXPENVNQD 

U54-ESC-DSG-HindIII-
20161206-R1-T1 Hi-C H1-hESC-FA+DSG-

HindIII 1 1 
Human 
Embryonic 
Stem Cells 
(H1-hESC) 

Non-Synchronized HindIII FA+DSG 240405140 165348847 68.77924781 4DNEXSZZEHXT 

U54-ESC-DSG-MNase-
20170508-R2-T1 Micro-C H1-hESC-FA+DSG-

Mnase 1 1 

Human 
Embryonic 
Stem Cells 
(H1-hESC) 

Non-Synchronized MNase FA+DSG 191222360 174297800 91.14927773 4DNEX8M8ALDF 

U54-ESC-EGS-DdeI-
20161118-R1-T1 Hi-C H1-hESC-FA+EGS-DdeI 1 1 

Human 
Embryonic 
Stem Cells 
(H1-hESC) 

Non-Synchronized DdeI FA+EGS 219023043 157259639 71.80049955 4DNEXYTD5A9M 

U54-ESC-EGS-DpnII-
20170119-R2-T1 Hi-C H1-hESC-FA+EGS-DpnII 1 1 

Human 
Embryonic 
Stem Cells 
(H1-hESC) 

Non-Synchronized DpnII FA+EGS 171785294 123692616 72.00419379 4DNEXW32FN59 

U54-ESC-EGS-HindIII-
20161206-R1-T1 Hi-C H1-hESC-FA+EGS-

HindIII 1 1 

Human 
Embryonic 
Stem Cells 
(H1-hESC) 

Non-Synchronized HindIII FA+EGS 227891397 166889610 73.23207993 4DNEX83C4KR6 

U54-ESC-EGS-MNase-
20170508-R1-T1 Micro-C H1-hESC-FA+EGS-

Mnase 1 1 

Human 
Embryonic 
Stem Cells 
(H1-hESC) 

Non-Synchronized MNase FA+EGS 210749954 196351305 93.16789934 4DNEX4O48PL9 

U54-ESC-FA-DdeI-20190711-
R2-T1 Hi-C H1-hESC-FA-DdeI 1 1 

Human 
Embryonic 
Stem Cells 
(H1-hESC) 

Non-Synchronized DdeI FA 178046987 113002759 63.46794231 4DNEXRAUHVDK 

U54-ESC-FA-DpnII-20170119-
R2-T1 Hi-C H1-hESC-FA-DpnII 1 1 

Human 
Embryonic 
Stem Cells 
(H1-hESC) 

Non-Synchronized DpnII FA 179273461 93706733 52.27027608 4DNEXSUMVBKJ 

U54-ESC-FA-HindIII-
20160311-R1-T1 Hi-C H1-hESC-FA-HindIII 1 1 

Human 
Embryonic 
Stem Cells 
(H1-hESC) 

Non-Synchronized HindIII FA 184165420 129344818 70.23295579 4DNEXP6V97PN 

U54-ESC-FA-MNase-
Micro-C H1-hESC-FA-Mnase 1 1 Human 

Embryonic 
Non-Synchronized MNase FA 144239839 106636709 73.9301359 4DNEXB5YWPOO 
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20170508-R1-T1 Stem Cells 
(H1-hESC) 

U54-HFF-plate-DSG-DdeI-
20160812-R1-T1 Hi-C HFF-FA+DSG-DdeI 1 1 

Human 
Foreskin 
Fibroblast(HFF
) 

Non-Synchronized DdeI FA+DSG 214335421 167274633 78.04339209 4DNEX4A7XMOY 

U54-HFF-plate-DSG-DpnII-
20170119-R2-T1 Hi-C HFF-FA+DSG-DpnII 1 1 

Human 
Foreskin 
Fibroblast(HFF
) 

Non-Synchronized DpnII FA+DSG 181557851 150141539 82.69625256 4DNEX982NDRF 

U54-HFF-plate-DSG-HindIII-
20160226-R1-T1 Hi-C HFF-FA+DSG-HindIII 1 1 

Human 
Foreskin 
Fibroblast(HFF
) 

Non-Synchronized HindIII FA+DSG 143226547 127420770 88.96449204 4DNEXP44ZRAL 

U54-HFF-plate-DSG-MNase-
20190509-R2-T1 Micro-C HFF-FA+DSG-Mnase 1 1 

Human 
Foreskin 
Fibroblast(HFF
) 

Non-Synchronized MNase FA+DSG 191818051 173678959 90.54359488 4DNEXPBOFI77 

U54-HFF-plate-EGS-DdeI-
20161031-R1-T1 Hi-C HFF-FA+EGS-DdeI 1 1 

Human 
Foreskin 
Fibroblast(HFF
) 

Non-Synchronized DdeI FA+EGS 207979631 150711489 72.46454293 4DNEXFU1OR7Q 

U54-HFF-plate-EGS-DpnII-
20160902-R1-T1 Hi-C HFF-FA+EGS-DpnII 1 1 

Human 
Foreskin 
Fibroblast(HFF
) 

Non-Synchronized DpnII FA+EGS 204078240 158303618 77.57006234 4DNEXDX613HH 

U54-HFF-plate-EGS-HindIII-
20190718-R2-T1 Hi-C HFF-FA+EGS-HindIII 1 1 

Human 
Foreskin 
Fibroblast(HFF
) 

Non-Synchronized HindIII FA+EGS 209839776 183636276 87.51261534 4DNEXOEZYCRL 

U54-HFF-plate-EGS-MNase-
20190509-R2-T1 Micro-C HFF-FA+EGS-Mnase 1 1 

Human 
Foreskin 
Fibroblast(HFF
) 

Non-Synchronized MNase FA+EGS 185701606 177114562 95.37589136 4DNEXSRJNTWI 

U54-HFF-plate-FA-DdeI-
20170119-R2-T1 Hi-C HFF-FA-DdeI 1 1 

Human 
Foreskin 
Fibroblast(HFF
) 

Non-Synchronized DdeI FA 157229847 110693012 70.40203505 4DNEXXEAFS42 

U54-HFF-plate-FA-DpnII-
20180904-R1-T1 Hi-C HFF-FA-DpnII 1 1 

Human 
Foreskin 
Fibroblast(HFF
) 

Non-Synchronized DpnII FA 180559079 103803806 57.49021682 4DNEXL1W2O7X 

U54-HFF-plate-FA-HindIIII-
20160226-R2-T1 Hi-C HFF-FA-HindIII 1 1 

Human 
Foreskin 
Fibroblast(HFF
) 

Non-Synchronized HindIII FA 202269739 174118277 86.08221767 4DNEXQ6NUVKG 

U54-HFF-plate-FA-MNase-
20190509-R2-T1 Micro-C HFF-FA-Mnase 1 1 

Human 
Foreskin 
Fibroblast(HFF
) 

Non-Synchronized MNase FA 155081327 102025719 65.78852591 4DNEXA2GHZRV 

U54-HelaS3-NS-DSG-DpnII-
20180709-R1-T1 Hi-C HelaS3-NS-FA+DSG-

DpnII 1 1 Hela S3 Non-Synchronized DpnII FA+DSG 152488378 134193834 88.00266339 4DNEXNEX6XA5 

U54-HelaS3-NS-DSG-HindIII-
20180730-R1-T1 Hi-C HelaS3-NS-FA+DSG-

HindIII 1 1 Hela S3 Non-Synchronized HindIII FA+DSG 220380646 199140824 90.36221084 4DNEX21BBVGH 

U54-HelaS3-NS-DSG-MNase-
08072018-R1-T1 Micro-C HelaS3-NS-FA+DSG-

MNase 1 1 Hela S3 Non-Synchronized MNase FA+DSG 232516616 219712667 94.49331871 4DNEXDCH6ZSC 

U54-HelaS3-NS-EGS-DpnII-
20180709-R1-T1 Hi-C HelaS3-NS-FA+EGS-

DpnII 1 1 Hela S3 Non-Synchronized DpnII FA+EGS 124247392 101150749 81.41076233 4DNEX4QN19KR 

U54-HelaS3-NS-EGS-HindIII-
20180730-R1-T1 Hi-C HelaS3-NS-FA+EGS-

HindIII 1 1 Hela S3 Non-Synchronized HindIII FA+EGS 212106796 186751411 88.04593465 4DNEXPQPFGFI 

U54-HelaS3-NS-EGS-MNase-
08072018-R1-T1 Micro-C HelaS3-NS-FA+EGS-

MNase 1 1 Hela S3 Non-Synchronized MNase FA+EGS 222343091 204124873 91.80625855 4DNEXDGA81X4 

U54-HelaS3-NS-FA-DpnII-
20180709-R1-T1 Hi-C HelaS3-NS-FA-DpnII 1 1 Hela S3 Non-Synchronized DpnII FA 160722183 103742779 64.54789069 4DNEXQZN872V 

U54-HelaS3-NS-FA-HindIII-
20180730-R1-T1 Hi-C HelaS3-NS-FA-HindIII 1 1 Hela S3 Non-Synchronized HindIII FA 207604208 175183648 84.38347647 4DNEXJLC7L9V 

U54-HelaS3-NS-FA-MNase-
08072018-R1-T1 Micro-C HelaS3-NS-FA-MNase 1 1 Hela S3 Non-Synchronized MNase FA 76650152 50355346 65.69503737 4DNEXAL2NDFQ 
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U54-HelaS3-G1-DSG-DpnII-
20180709-R1-T1 Hi-C HelaS3-G1-FA+DSG-

DpnII 1 1 Hela S3 Synchronized-G1 DpnII FA+DSG 137615088 120438296 87.51823492 4DNEXQGIFW97 

U54-HelaS3-G1-DSG-HindIII-
20180730-R1-T1 Hi-C HelaS3-G1-FA+DSG-

HindIII 1 1 Hela S3 Synchronized-G1 HindIII FA+DSG 224808021 201397983 89.58665358 4DNEX5PGT9DS 

U54-HelaS3-G1-DSG-MNase-
08072018-R1-T1 Micro-C HelaS3-G1-FA+DSG-

MNase 1 1 Hela S3 Synchronized-G1 MNase FA+DSG 238609768 217832255 91.29226218 4DNEX9TYL3XW 

U54-HelaS3-G1-EGS-DpnII-
20180709-R1-T1 Hi-C HelaS3-G1-FA+EGS-

DpnII 1 1 Hela S3 Synchronized-G1 DpnII FA+EGS 150034641 122376379 81.56541595 4DNEXHEVORF1 

U54-HelaS3-G1-EGS-HindIII-
20180730-R1-T1 Hi-C HelaS3-G1-FA+EGS-

HindIII 1 1 Hela S3 Synchronized-G1 HindIII FA+EGS 219847694 192790542 87.69277425 4DNEXDN6IM45 

U54-HelaS3-G1-EGS-MNase-
08072018-R1-T1 Micro-C HelaS3-G1-FA+EGS-

MNase 1 1 Hela S3 Synchronized-G1 MNase FA+EGS 233861989 209045642 89.38846492 4DNEX3Q5WM53 

U54-HelaS3-G1-FA-DpnII-
20180709-R1-T1 Hi-C HelaS3-G1-FA-DpnII 1 1 Hela S3 Synchronized-G1 DpnII FA 127692395 86554611 67.78368516 4DNEXMF677YU 

U54-HelaS3-G1-FA-HindIII-
20180730- 

 

R1-T1 

Hi-C HelaS3-G1-FA-HindIII 1 1 Hela S3 Synchronized-G1 HindIII FA 226779995 193431514 85.29478713 4DNEX8V59T74 

U54-HelaS3-G1-FA-MNase-
08072018-R1-T1 Micro-C HelaS3-G1-FA-Mnase 1 1 Hela S3 Synchronized-G1 MNase FA 79643500 37612874 47.22654579 4DNEXD4NIABB 

U54-HelaS3-M-DSG-DpnII-
20180709-R1-T1 Hi-C HelaS3-M-FA+DSG-DpnII 1 1 Hela S3 Synchronized-

Mitosis DpnII FA+DSG 125076028 115102454 92.02599078 4DNEX6RNZ4I9 

U54-HelaS3-M-DSG-HindIII-
20180730-R1-T1 Hi-C HelaS3-M-FA+DSG-

HindIII 1 1 Hela S3 Synchronized-
Mitosis HindIII FA+DSG 216873203 209261829 96.49040366 4DNEXVH3GE23 

U54-HelaS3-M-DSG-MNase-
08072018-R1-T1 Micro-C HelaS3-M-FA+DSG-

MNase 1 1 Hela S3 Synchronized-
Mitosis MNase FA+DSG 250327507 233434833 93.25177077 4DNEXXV9HQZQ 

U54-HelaS3-M-EGS-DpnII-
20180709-R1-T1 Hi-C HelaS3-M-FA+EGS-DpnII 1 1 Hela S3 Synchronized-

Mitosis DpnII FA+EGS 112195020 90585992 80.73976189 4DNEXW59M74B 

U54-HelaS3-M-EGS-HindIII-
20180730-R1-T1 Hi-C HelaS3-M-FA+EGS-

HindIII 1 1 Hela S3 Synchronized-
Mitosis HindIII FA+EGS 214538340 203691547 94.94412374 4DNEX286UZDL 

U54-HelaS3-M-EGS-MNase-
08072018-R1-T1 Micro-C HelaS3-M-FA+EGS-

MNase 1 1 Hela S3 Synchronized-
Mitosis MNase FA+EGS 235502044 219350822 93.14179116 4DNEXWBODDF1 

U54-HelaS3-M-FA-DpnII-
20180709-R1-T1 Hi-C HelaS3-M-FA-DpnII 1 1 Hela S3 Synchronized-

Mitosis DpnII FA 109633817 75578240 68.93697772 4DNEXNVLEW4T 

U54-HelaS3-M-FA-HindIII-
20180730-R1-T1 Hi-C HelaS3-M-FA-HindIII 1 1 Hela S3 Synchronized-

Mitosis HindIII FA 202441463 189675265 93.69388177 4DNEXR3L8DZL 

U54-HelaS3-M-FA-MNase-
08072018-R1-T1 Micro-C HelaS3-M-FA-MNase 1 1 Hela S3 Synchronized-

Mitosis MNase FA 177300242 52080538 29.37420582 4DNEXSQB9QVT 

 

Table 2 : The list of 3D methods used in Chapter II, Deep Data 

 

U54-ESC4DN-DSG-DpnII-20190530-
R1-T1 Hi-C H1-hESC-FA+DSG-DpnII 1 1 

Human Embryonic Stem 
Cells (H1-hESC) Non-Synchronized DpnII FA+DSG 1719156895 1384796845 80.55092872 4DNEXNQBY5YS 

U54-ESC4DN-DSG-DpnII-20190530-
R2-T1 Hi-C H1-hESC-FA+DSG-DpnII 2 1 

Human Embryonic Stem 
Cells (H1-hESC) Non-Synchronized DpnII FA+DSG 1677562310 1350603279 80.50987263 4DNEXUBKKN5P 

U54-ESC4DN-FA-DpnII-2017524-R1-
T1 Hi-C H1-hESC-FA-DpnII 1 1 

Human Embryonic Stem 
Cells (H1-hESC) Non-Synchronized DpnII FA 1362318048 660952512 48.51675517 4DNEXENKINA2 
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U54-ESC4DN-FA-DpnII-2017524-R1-
T2 Hi-C H1-hESC-FA-DpnII 2 1 

Human Embryonic Stem 
Cells (H1-hESC) Non-Synchronized DpnII FA 1246833143 597363946 47.91049623 4DNEXZJZ5EBZ 

U54-ESC4DN-FA-DSG-MNase-R1-T1 Micro-C 
H1-hESC-FA+DSG-
MNase 1 1 

Human Embryonic Stem 
Cells (H1-hESC) Non-Synchronized MNase FA+DSG 499643562 449673411 89.99884021 4DNEXQMEU2O4 

U54-ESC4DN-FA-DSG-MNase-R1-T2 Micro-C 
H1-hESC-FA+DSG-
MNase 1 2 

Human Embryonic Stem 
Cells (H1-hESC) Non-Synchronized MNase FA+DSG 205146303 176530863 86.05120366 4DNEX24VTARO 

U54-ESC4DN-FA-DSG-MNase-R1-T3 Micro-C 
H1-hESC-FA+DSG-
MNase 1 3 

Human Embryonic Stem 
Cells (H1-hESC) Non-Synchronized MNase FA+DSG 299729273 248779306 83.00133768 4DNEX9JAVMKE 

U54-ESC4DN-FA-DSG-MNase-R1-T4 Micro-C 
H1-hESC-FA+DSG-
MNase 1 4 

Human Embryonic Stem 
Cells (H1-hESC) Non-Synchronized MNase FA+DSG 473301507 385885358 81.53055765 4DNEXWHALJ1K 

U54-ESC4DN-FA-DSG-MNase-R2-T1 Micro-C 
H1-hESC-FA+DSG-
MNase 2 1 

Human Embryonic Stem 
Cells (H1-hESC) Non-Synchronized MNase FA+DSG 226763614 188421398 83.09154836 4DNEXQQM6EMK 

U54-ESC4DN-FA-DSG-MNase-R2-T2 Micro-C 
H1-hESC-FA+DSG-
MNase 2 2 

Human Embryonic Stem 
Cells (H1-hESC) Non-Synchronized MNase FA+DSG 220396074 182809153 82.94573931 4DNEXACM6M51 

U54-ESC4DN-FA-DSG-MNase-R2-T3 Micro-C 
H1-hESC-FA+DSG-
MNase 2 3 

Human Embryonic Stem 
Cells (H1-hESC) Non-Synchronized MNase FA+DSG 435493545 386194490 88.67972773 4DNEX2WPDBN7 

U54-ESC4DN-FA-DSG-MNase-R2-T4 Micro-C 
H1-hESC-FA+DSG-
MNase 2 4 

Human Embryonic Stem 
Cells (H1-hESC) Non-Synchronized MNase FA+DSG 449531807 398203541 88.58183888 4DNEXCL5AQ32 

U54-ESC4DN-FA-DSG-MNase-R2-T5 Micro-C 
H1-hESC-FA+DSG-
MNase 2 5 

Human Embryonic Stem 
Cells (H1-hESC) Non-Synchronized MNase FA+DSG 421247032 377494216 89.61350166 4DNEXJPSM64Q 

U54-HFFc6-DSG-DdeI-20180319-R1-
T1 Hi-C HFFc6-FA+DSG-DdeI 1 1 

Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized DdeI FA+DSG 1381215653 1260258773 91.24272305 4DNEX95OQ954 

U54-HFFc6-DSG-DdeI-20181023-R2-
T1 Hi-C HFFc6-FA+DSG-DdeI 2 1 

Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized DdeI FA+DSG 1353058162 1248663160 92.28451482 4DNEX2SUQP87 

U54-HFFc6-DSG-DdeI-DpnII-
20190711-R1-T1 Hi-C 

HFFc6-FA+DSG-DdeI-
DpnII 1 1 

Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized DdeI-DpnII FA+DSG 1715480034 1539578927 89.74624574 4DNEXDL7KBH2 

U54-HFFc6-DSG-DdeI-DpnII-
20191219-R3-T1 Hi-C 

HFFc6-FA+DSG-DdeI-
DpnII 2 1 

Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized DdeI-DpnII FA+DSG 1563512452 1390580534 88.9395241 4DNEXSFVDRQD 

U54-HFFc6-DSG-DpnII-20180319-
R1-T1 Hi-C HFFc6-FA+DSG-DpnII 1 1 

Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized DpnII FA+DSG 1340569555 1190949842 88.83909362 4DNEXBO6JSO9 

U54-HFFc6-DSG-DpnII-20190102-
R2-T1 Hi-C HFFc6-FA+DSG-DpnII 2 1 

Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized DpnII FA+DSG 1496036040 1355447143 90.60257285 4DNEXQBYXQKH 

U54-HFFc6-p17-FA-DpnII-20170327 Hi-C HFFc6-FA-DpnII 1 1 
Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized DpnII FA 1549715647 1041819394 67.22648739 4DNEX7POCO84 

U54-HFFc6-p22-FA-DpnII-20170327 Hi-C HFFc6-FA-DpnII 2 1 
Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized DpnII FA 1468505740 1050752790 71.55251501 4DNEXRAEERUF 

U54-HFFc64DN-FA-DSG-MNase-R1-
T1 Micro-C HFFc6-FA+DSG-MNase 1 1 

Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized MNase FA+DSG 502076577 468995532 93.41115549 4DNEXC1TYVLD 

U54-HFFc64DN-FA-DSG-MNase-R1-
T2 Micro-C HFFc6-FA+DSG-MNase 1 2 

Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized MNase FA+DSG 523271269 488273007 93.31164081 4DNEX1MDLILR 

U54-HFFc64DN-FA-DSG-MNase-R1-
T3 Micro-C HFFc6-FA+DSG-MNase 1 3 

Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized MNase FA+DSG 498218862 468920452 94.11936957 4DNEXRJYVOZJ 

U54-HFFc64DN-FA-DSG-MNase-R1-
T4 Micro-C HFFc6-FA+DSG-MNase 1 4 

Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized MNase FA+DSG 514269682 483369664 93.99147586 4DNEXONC5BJ1 

U54-HFFc64DN-FA-DSG-MNase-R1-
T5 Micro-C HFFc6-FA+DSG-MNase 1 5 

Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized MNase FA+DSG 504813661 470582890 93.21912744 4DNEX9TF73VI 

U54-HFFc64DN-FA-DSG-MNase-R1-
T6 Micro-C HFFc6-FA+DSG-MNase 1 6 

Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized MNase FA+DSG 518371787 487007507 93.94946238 4DNEX5F27GL2 

U54-HFFc64DN-FA-DSG-MNase-R2-
T1 Micro-C HFFc6-FA+DSG-MNase 2 1 

Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized MNase FA+DSG 189730532 180050178 94.89784069 4DNEX3W33RA7 

U54-HFFc64DN-FA-DSG-MNase-R2-
T2 Micro-C HFFc6-FA+DSG-MNase 2 2 

Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized MNase FA+DSG 179019084 169939401 94.92809214 4DNEX2RPZBFM 

U54-HFFc64DN-FA-DSG-MNase-R2-
T3 Micro-C HFFc6-FA+DSG-MNase 2 3 

Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized MNase FA+DSG 172219324 162093947 94.1206499 4DNEX5X6Y4QY 
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U54-HFFc64DN-FA-DSG-MNase-R2-
T4 Micro-C HFFc6-FA+DSG-MNase 2 4 

Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized MNase FA+DSG 136819555 128058436 93.59658859 4DNEXF6J2UBH 

U54-HFFc64DN-FA-DSG-MNase-R2-
T5 Micro-C HFFc6-FA+DSG-MNase 2 5 

Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized MNase FA+DSG 438117029 411984245 94.03520469 4DNEXNCO8M9N 

U54-HFFc64DN-FA-DSG-MNase-R2-
T6 Micro-C HFFc6-FA+DSG-MNase 2 6 

Human Foreskin 
Fibroblast clone 6 (HFFc6) Non-Synchronized MNase FA+DSG 397291449 376088185 94.66304547 4DNEXXXWOYOB 

 

Table 3: The list of 1D methods used in Chapter II 

Experiment_name Experiment_type Biological_rep Technical_rep Total_number_of
_reads 

Uniquely_map
ped_reads Cell_Type !Sample_description = Experiment 

4DN accession 

HFF1_CTCF_1_2020JUL28_PE40_chip Cut&Tag 1 1 56207456 52976144 Human Foreskin Fibroblast clone 6 (HFFc6) 4DNEXHYA4NOW 

HFF1_CTCF_2_2020JUL28_PE40_chip Cut&Tag 2 1 64136278 61681502 Human Foreskin Fibroblast clone 6 (HFFc6) 4DNEXAG8IFJU 

HFF1_Smc1_1_2020JUL28_PE40_chip Cut&Tag 1 1 61033294 57812682 Human Foreskin Fibroblast clone 6 (HFFc6) 4DNEXLAHVC6T 

HFF1_Smc1_2_2020JUL28_PE40_chip Cut&Tag 2 1 39619704 37139568 Human Foreskin Fibroblast clone 6 (HFFc6) 4DNEXMHZPZVI 

CTCF-H1-hESC-R1 Cut&Run 1 1 23607294 21556708 Human Emryonic Stem Cells (H1-hESC) 4DNEXIHB6H1I 

CTCF-H1-hESC-R2 Cut&Run 2 1 21375302 19466596 Human Emryonic Stem Cells (H1-hESC) 4DNEXCZB2WY3 

CTCF-H1-hESC-R3 Cut&Run 3 1 12400636 11489860 Human Emryonic Stem Cells (H1-hESC) 4DNEXJ5UFKWU 

CTCF-H1-hESC-R4 Cut&Run 4 1 10062780 9406374 Human Emryonic Stem Cells (H1-hESC) 4DNEXR1FX8LV 

CTCF-H1-hESC-R5 Cut&Run 5 1 19640118 17947694 Human Emryonic Stem Cells (H1-hESC) 4DNEX65LZI8G 

CTCF-H1-hESC-R6 Cut&Run 6 1 17746118 15911678 Human Emryonic Stem Cells (H1-hESC) 4DNEXUS23EIB 

H3K4me3 - H1-hESC-R1 Cut&Run 1 1 23925878 18164810 Human Emryonic Stem Cells (H1-hESC) 4DNEX3V6Q5XT 

H3K4me3 - H1-hESC-R2 Cut&Run 2 1 16194056 13465432 Human Emryonic Stem Cells (H1-hESC) 4DNEXNYV5G5T 

H3K4me3 - H1-hESC-R3 Cut&Run 3 1 11783986 10413744 Human Emryonic Stem Cells (H1-hESC) 4DNEXU6CZ816 

H3K4me3 - H1-hESC-R4 Cut&Run 4 1 27026796 22450414 Human Emryonic Stem Cells (H1-hESC) 4DNEX8N5MVDM 

H3K4me3 - H1-hESC-R5 Cut&Run 5 1 28823924 23427374 Human Emryonic Stem Cells (H1-hESC) 4DNEXEVVM5HF 

H3K27ac - H1-hESC-R1 Cut&Run 1 1 38834218 34785352 Human Emryonic Stem Cells (H1-hESC) 4DNEXSPSRIYS 

H3K27ac - H1-hESC-R2 Cut&Run 2 1 33571412 30143014 Human Emryonic Stem Cells (H1-hESC) 4DNEXAX88165 

H3K27ac - H1-hESC-R3 Cut&Run 3 1 48609358 44808318 Human Emryonic Stem Cells (H1-hESC) 4DNEXVYA898L 

H3K27ac - H1-hESC-R4 Cut&Run 4 1 24897206 22186198 Human Emryonic Stem Cells (H1-hESC) 4DNEX81NIWVM 

H3K27ac - H1-hESC-R5 Cut&Run 5 1 26258098 22660174 Human Emryonic Stem Cells (H1-hESC) 4DNEX5EQJ2P2 

H3K4me3 - HFFc6-R1 Cut&Run 1 1 18958168 16936068 Human Foreskin Fibroblast clone 6 (HFFc6) 4DNEX67Q84RB 

H3K4me3 - HFFc6-R2 Cut&Run 2 1 15898068 14331352 Human Foreskin Fibroblast clone 6 (HFFc6) 4DNEXRL2LUNJ 

H3K4me3 - HFFc6-R3 Cut&Run 3 1 21000500 18703244 Human Foreskin Fibroblast clone 6 (HFFc6) 4DNEXQ8TTJJ5 

H3K4me3 - HFFc6-R4 Cut&Run 4 1 17015302 14894516 Human Foreskin Fibroblast clone 6 (HFFc6) 4DNEX62TLS34 
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H3K27ac - HFFc6-R1 Cut&Run 1 1 18551090 13098528 Human Foreskin Fibroblast clone 6 (HFFc6) 4DNEXEYS34V6 

H3K27ac - HFFc6-R2 Cut&Run 2 1 16743986 12338000 Human Foreskin Fibroblast clone 6 (HFFc6) 4DNEX4PTP92V 

H3K27ac - HFFc6-R3 Cut&Run 3 1 14007368 12512660 Human Foreskin Fibroblast clone 6 (HFFc6) 4DNEXC666QIV 

H3K27ac - HFFc6-R4 Cut&Run 4 1 16002260 14142742 Human Foreskin Fibroblast clone 6 (HFFc6) 4DNEXTSVULI3 

H1-hESC-R1 ATAC-Seq 1 1 133703774 132816798 Human Emryonic Stem Cells (H1-hESC) 4DNEXKMOP6RJ 

H1-hESC-R2 ATAC-Seq 2 1 138530478 137501566 Human Emryonic Stem Cells (H1-hESC) 4DNEX9J9YFK3 

U54-HFFc6-NS-AT-R1 ATAC-Seq 1 1,2,3,4 702534390 681091376 Human Foreskin Fibroblast clone 6 (HFFc6) 4DNEXF6RQQ27, 4DNEXQUCGLW9, 
4DNEXJGIUGRH, 4DNEXBYHX8E4 

U54-HFFc6-NS-AT-R2 ATAC-Seq 2 1,2,3,4 708825898 692621990 Human Foreskin Fibroblast clone 6 (HFFc6) 4DNEX97A5KCP, 4DNEX6C42Q5B, 
4DNEXN7N1U82, 4DNEXMHGYBOJ 

 

Table 4: Experimental Protocols used in Chapter IV 

 

Methods Target Required sequencing depth Pros Cons 

Hi-C Genome-wide ~2 Billions Stong compartments Limited resolution 

Micro-C Genome-wide ~2 Billions Strong loop detection Weak compartmes 

SPRITE Genome-wide ~2 Billions Multi-contacts,  

Stong compartments 

Limited resolution 

GAM Genome-wide ~1.1 Billions Real genomic distance Limited resolution 

ChIA-PET CTCF/PolII ~500 Millions Strong loops Weak compartmes 

PLAC-Seq H3K4me3 ~500 Millions Strong loops Weak compartmes 
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Chapter III:  An improved Hi-C Protocol 

Preface 

The chapter III has unpublished data as well as data published in two papers.   

The protocol of Hi-C 3.0 is published by  Denis L. Lafontaine, Liyan Yang, Job 

Dekker, and  Johan H. Gibcus. The protocol is entitled as : Hi- C 3.0: 

Improved Protocol for Genome- Wide Chromosome Conformation Capture. 

PMID: 34286910  PMCID: PMC8362010  DOI: 10.1002/cpz1.198 

Some of the analysis of Hi-C 3.0 is published by  

Betul Akgol Oksuz, Liyan Yang, Sameer Abraham, Sergey V. Venev, Nils 

Krietenstein,Krishna Mohan Parsi, Hakan Ozadam, Marlies E. Oomen, Ankita 

Nand, Hui Mao, Ryan M. J. Genga, Rene Maehr, Oliver J. Rando, Leonid A. 

Mirny, Johan H. Gibcus and Job Dekker. The publication is entitled 

“Systematic evaluation of chromosome conformation capture assays”. PMID: 

34480151  PMCID: PMC8446342  DOI: 10.1038/s41592-021-01248-7 

Summary 

Chromatin conformation capture (3C)-based methods have greatly improved 

detecting genome-wide interactions at different scales partly determined by 

the fragmentation level of the genome. Micro-C, with nucleosome level 

fragmentation, has the greatest resolution to detect small-scale structures 

such as looping interactions compared to methods that measure chromatin 

contacts genome-wide. However, it has a weak performance detecting large-

scale structures, like compartmental domains. It has been a challenge to 
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develop one protocol that best detects both small and large-scale structures. 

Here, we developed Hi-C 3.0, an updated version of Hi-C, which improves the 

detection of genomic interactions at all scales. Hi-C 3.0 uses two crosslinking 

agents and two restriction enzymes, which allow capturing more genomic 

interactions at higher resolution compared to existing Hi-C protocols. Hi-C 3.0 

eliminates the need of using separate protocols to identify both small and 

large genomic structures and provides a quantitative comparison of genomic 

interactions across multiple scales in normal and perturbed conditions.   

Introduction  

Hi-C is the most widely used method for measuring three-dimensional 

(3D) genomic interactions at genome-wide level.  Genomic interactions in 3D 

play a crucial role in gene regulation and function (Lupianez et al. 2015; Melo 

et al. 2020; Nora et al. 2012; Uhler and Shivashankar 2017; Valton et al. 

2021; Zheng and Xie 2019; Zuin et al. 2014). In brief, the Hi-C protocol relies 

on cross-linking, fragmenting and ligation of chromatin in spatial proximity. 

After digestion, fragments are labeled with biotin, which is then used to pull-

down the ligation products to enrich them for identification by high-throughput 

sequencing. In the Hi-C protocol, crosslinking the chromatin and fragmenting 

it by restriction enzyme are the two critical steps that determine the chromatin 

contacts. Chapter II has shown how additional crosslinking to FA greatly 

improves the detection and quantification of all genomic structures and how 

fragmentation level determines the detectability of these structures over short 

and long distances. In this chapter, I will focus on combining different 
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restriction enzymes that would affect the detection of genome structures.  

Historically, many different restriction enzymes have been used in Hi-C 

protocol, which contributed to the generation of genomic interaction maps at 

different resolutions (Lieberman-Aiden et al. 2009; Rao et al. 2014; Belaghzal, 

Dekker, and Gibcus 2017). Fragment length and sequencing depth have been 

shown to be critical in determining the resolution of a Hi-C experiment (Rao et 

al. 2014). Initial Hi-C experiments used 6 base pair cutters such as HindIII and 

Ncol to fragment the chromatin (Lieberman-Aiden et al. 2009). Later, Rao et 

al. improved the Hi-C protocol two ways; by ligating the chromatin in intact 

nuclei, i.e. in situ, and by digesting the chromatin with a 4-base pair (4-bp) 

cutter instead of 6. This study improved the resolution of Hi-C by increased 

fragmentation frequency and deeper sequencing. Consistently,  in chapter II, 

we showed that fragmenting the genome into smaller pieces either by using 

MNase fragmentation or 4-bp cutters improves the detection of small-scale 

structures, such as chromatin loops. Insights from the literature and chapter II 

led us to develop a new Hi-C protocol called Hi-C 3.0, which combines two 

frequently cutting restriction enzymes: DdeI (CTNAG) and DpnII (GATC) to 

produce short fragments that are on average ~1.5kb in size and two 

crosslinking agents: disuccinimidyl glutarate (DSG) and formaldehyde to 

capture frequently interacting genomic regions (Lafontaine et al. 2021). Hi-C 

3.0 showed improved detection of genomic interactions at small scales (loops, 

Topologically Associating Domains (TADs)) while maintaining the detection 

and quantification of large-scale structures (compartments) (Akgol Oksuz et 

al. 2021).  
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Results 

To test the performance of Hi-C 3.0 we compared it to previously 

developed Hi-C protocols and Micro-C by quantifying the detectability of both 

small and large scale structures. All compared protocols used cross-linking 

with FA and DSG.  Compared protocols’ chromatin is digested with MNase, 

DdeI, DpnII or both DdeI and DpnII. We compared the interaction frequency 

as a function of distance, detectability, and strength of small and large scale 

structures, inter-chromosomal interactions, and the importance of sequencing 

depth in the detection of small and large scale structures. We found that 

compared to other Hi-C protocols, the finer fragments in Hi-C 3.0 led to a 

stronger detection of small-scale structures such as chromatin loops. 

Although Micro-C is superior at detecting loops, Hi-C 3.0 provides a more 

powerful detection of large-scale structures like compartments.  

● Fragment size in Hi-C 3.0 

We compared the fragment size distribution of Hi-C 3.0, performed 

using both DdeI and DpnII, to Hi-C performed with either DdeI or DpnII.  Using 

two restriction enzymes to digest the chromatin produces finer fragmentation 

compared to the use of one enzyme at a time. Therefore, Hi-C 3.0 has the 

finest fragmentation compared to all other Hi-C experiments. Smaller 

fragments increase the complexity and the resolution of the experiments by 

increasing the probability of capturing possible pairwise interactions.  

Before sequencing, we used a fragment analyzer to examine the fragment 

size distribution of a Hi-C 3.0 library, digested with DdeI (CTNAG) and DpnII 
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(GATC. We observed that two-enzyme digestion resulted in smaller fragment 

sizes and more uniform fragmentation compared to one enzyme digestion 

(Figure 3.1a). Fragmenting the genome uniformly is important for getting 

contact information from all regions in the genome.  

Because Hi-C 3.0 uses two crosslinkers, we wanted to confirm that 

using extra crosslinkers does not influence fragment size distributions. 

Indeed, we did not observe significant differences in the fragment size 

distributions with additional crosslinkers (Figure 3.1a). As expected, in silico 

digested chromatin gave smaller fragment sizes compared to the 

experimentally digested chromatin, confirming that the digestion efficiency is 

not 100 % (Figure 3.1b upper panel, dotted lines). The median fragment size 

for experiments that digest the chromatin with DdeI is smaller than 

experiments that digest the chromatin with DpnII. Expectedly, experiments 

that digested chromatin with both DdeI and DpnII have the smallest fragments 

(Figure 3.1b lower panel). We observed similar fragment lengths with and 

without additional cross-linkers. These results confirm that using the two 

restriction enzymes generated the desired small fragments and that the extra 

cross-linkers does not affect the nature of the experiment.  

Next, we performed paired-end sequencing and tested the relationship 

between fragment size and the distribution of sequenced reads located in the 

corresponding fragment. We sampled 1M reads and quantified the number of 

reads associated with a given fragment. We did not observe a correlation 

between the number of reads and their corresponding fragment size which 
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indicates that there is no bias toward specific fragment length in these 

experiments (Figure 3.1c).   

● Short distance contact probability in Hi-C 3.0 

To investigate the performance of Hi-C 3.0 in detecting short-range 

genomic interactions, we first compared it to existing Hi-C and Micro-C 

protocols. These protocols have been used to generate contact maps at 

different resolutions, where Hi-C is biased in detection towards large (e.g. 

compartments) and Micro-C is biased towards fine (e.g. chromatin loops) 

structures, respectively (Akgol Oksuz et al. 2021; Krietenstein et al. 2020). 

Comparison of contact maps generated from existing Hi-C protocols (Hi-C 

2.5, two crosslinkers and one enzyme), Hi-C 3.0 and Micro-C protocols at 100 

kb binned (long) or 2 kb (short) binned resolutions showed that Hi-C 3.0 

performs similar to the existing Hi-C protocols at long-distance and to Micro-C 

at short-distance. (Figure 3.2a and Figure 3.2b). Distance corrected HicREP 

correlation showed that Micro-C highly correlates with all existing Hi-C 

protocols. Yet, it correlates best with Hi-C 3.0 for all chromosomes (Figure 

3.2c). These results indicate that Hi-C 3.0 has improved detection of short-

range contacts without compromising the detection of long-range interactions.  

Due to chromatin nature and chromosome territories, 3C-based 

methods detect more interactions in cis and fewer interactions in trans. High 

percent trans interactions is an indication of random ligation. To further 

support the performance of the Hi-C 3.0 protocol, we investigated the cis 

percent of each library as a function of genomic distance. We observed that 
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almost 50% of Micro-C reads are located in the first 1kb region and only ~20% 

of the reads are > 40kb. Overall, the existing Hi-C experiments have fewer 

reads in 1kb distance compared to Micro-C. Reads < 1kb are mostly products 

of artifacts such as dangling ends and self circles in Hi-C experiments. Hi-C 

3.0 has more reads in the first 1kb compared to other Hi-C experiments and 

more reads > 40kb compared to Micro-C (Figure 3.2d). We found that Hi-C 

3.0  improved the distance-dependent contact probability (Figure 3.2e).  

Compared to data obtained by single DdeI or DpnII digests, the number of 

contacts increased for loci separated by less than 10 kb, making the results 

from this protocol more similar to results obtained with protocols using MNase 

digestion. Yet, longer distance contacts resembled data obtained with 

protocols using single restriction enzymes more than data obtained with 

protocols using MNase. These results supported the improved performance of 

the Hi-C protocol in the detection of short-range contacts without a loss in the 

detection of the long-range contacts. (Figure 3.2e).  

● Compartment quantification in Hi-C 3.0 

To identify the compartments in Hi-C 3.0 and Micro-C, we used 

eigenvector decomposition, which is a dimensionality reduction method that 

can segregate euchromatic (A) and heterochromatic (B) compartments. The 

first eigenvector which generally detects the compartment signal, showed a 

high correlation between Micro-C and Hi-C (Figure 3.3.a). To quantify the 

strength of compartments detected by these protocols, we used saddle plots 

(Methods). Consistent with previous studies (chapter II), all Hi-C protocols 
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showed an overall stronger compartment signal in both cis and trans 

compared to Micro-C (Figure 3.3.b) (Akgol Oksuz et al. 2021). Among the Hi-

C protocols, which showed similar compartment strength in cis, Hi-C 3.0 

showed a modest reduction in the compartment signal in trans (Figure 3.3.c).  

To determine if the compartment strength is affected by the genomic distance, 

we quantified compartment strength detected in Hi-C 3.0 and Micro-C at 

genomic distances between 6 Mb and 250 Mb. At all tested genomic 

distances, Hi-C 3.0 showed stronger compartmentalization compared to 

Micro-C (Figure 3.3.d left for A-A and middle panel for B-B). 

Next, we tested the strength of the interactions between non-

preferential A and B compartments which might indicate the noise level of an 

experiment. To compare the noise levels for genomic interactions between 

Micro-C and Hi-C  protocols, we quantified interaction between A (active) and 

B (inactive) compartments. Hi-C showed a weaker signal for non-specific A-B 

interactions compared to Micro-C. As an additional analysis for noise, we 

compared the interaction frequency between genomic and mitochondrial DNA 

of all three Hi-C experiments and found that Hi-C 3.0 has a similar 

mitochondrial signal as other Hi-C protocols (Figure 3.3.e). These results 

suggest that Hi-C 3.0 does not lead to increased random ligations and noise 

levels compared to other Hi-C protocols and provides a better signal-to-noise 

ratio compared to Micro-C. 

● Insulation strength in Hi-C 3.0 

In chapter II, we showed that the position of TADs boundaries and their 
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strength don’t differ between 3C-based protocols. Here, we tested if the TAD 

boundaries change in Hi-C 3.0 compared to other Hi-C protocols and Micro-C. 

We use the insulation score to quantify the TAD boundaries. The insulation 

score is calculated as follows: the average interaction frequency is calculated 

for a given window size moving on the diagonal of the interaction map. The 

depth of a local minimum displays the strength of the TAD boundary. We 

observed that insulation scores in 10kb bins with 50 kb sliding window size 

are highly correlated between Micro-C and Hi-C experiments (Figure 3.4 a). 

However, the correlation between Hi-C 3.0 and Micro-C is higher than 

between Hi-C 3.0 and other Hi-C protocols, suggesting that the finer 

fragmented Hi-C experiment becomes more similar to Micro-C.  The pileup of 

the insulation scores, centered on TAD boundaries, showed that Micro-C has 

the strongest insulation strength followed by Hi-C 3.0 (Figure 3.4 b).  

● Loop detection in Hi-C 3.0 

We investigated the detection and strength of loops in Micro-C and Hi-

C protocols. We used Cooltools that adopted the approach and parameters 

from HICCUPS to identify chromatin loops 

(https://github.com/open2c/cooltools) (Rao et al. 2014). Cooltools is a multi-

functional python package developed to analyze interaction matrices and 

quantify all the structures detected in these interaction matrices. HICCUPS 

uses global and local donut-like filtering for loop detection. Fragmentation 

level determines the detectability and the strength of chromatin loops hence 

Hi-C 3.0 uses two restriction enzymes to shorten the fragment size. Next, we 
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investigated how the finer fragmentation of Hi-C 3.0 changes the detectability 

and the strength of chromatin loops. We observed that the number of 

detected loops greatly increased in Hi-C 3.0 compared to all other Hi-C 

experiments. Hi-C 3.0 detects 28,921 loops, Hi-C performed with DdeI detects 

22,219 loops and Hi-C performed with DpnII detects 22,312 loops. Hi-C 3.0 

detects more loops for all genomic distances compared to other Hi-C methods 

and the strength of these loops is higher in Hi-C 3.0 (Figure 3.5 a, left). 

Although Hi-C 3.0 improved the detection of loops compared to other Hi-C 

protocols, Micro-C detects the highest number of  loops which is 36,989.  

To examine the performance of methods detecting loops in different genomic 

distances, we investigated the number and the strength of the loops 

separated by specific genomic distances. In smaller distances, Micro-C 

detects almost two-fold loops compared to Hi-C experiments but this number 

decreases as the genomic separation between loops increases (Figure 3.5 a, 

left). Micro-C has the strongest loop strength for all genomic distances (Figure 

3.5 a, right).   

Next, we investigated the effect of sequencing depth on loop detection. 

We combined the Hi-C data obtained with either DdeI or DpnII digestion, 

which resulted in  ~4.8B valid pairs. The Hi-C 3.0 dataset consisted of ~2.8 B 

valid pairs. We observed that the combined datasets detected 26,919 loops 

whereas Hi-C 3.0 detected 28,921 loops. Even though the combined DdeI 

and DpnII data sets had an almost twofold amount of reads, our analysis 

found more loops in the Hi-C 3.0 data set. This result indicates that for loop 
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detection, fragmentation is more important than sequencing depth. Finer 

fragmentation is the key for improving the loop detection here. Loop size 

distribution of Micro-C and Hi-C protocols showed that as expected the finer 

fragmentation in Micro-C led to the detection of smaller loops (Figure 3.5 b).  

Additionally, we observed that the majority of the loops that are detected in Hi-

C 3.0 are also detected by  Micro-C (Figure 3.5 c). Loops that are detected by 

both Hi-C 3.0 and Micro-C are the strongest. The enrichment of the loops that 

are detected by only Hi-C 3.0 or only Micro-C are weaker (Figure 3.5 d).  

Furthermore, we investigated the features of the loops by checking the 

underlying mechanisms of loops detected in Hi-C 3.0 and Micro-C. DNA 

looping can be ascribed to promoter-enhancer (P-E) interactions, enrichment 

for active promoters, active enhancers, CTCF, and cohesin. Krietenstein et al. 

have shown that Micro-C detects more promoter-enhancer (P-E) loops 

compared to Hi-C (Krietenstein et al. 2020). We examined the enrichment of 

CTCF, SMC1, H3K4me3, and H3K27ac at Hi-C 3.0 specific loop anchors, 

Micro-C specific loop anchors and loop anchors that are shared between 

these two protocols. We observed that common loop anchors are more 

enriched for CTCF and cohesin (SMC1) and less enriched for active promoter 

mark H3K4me3 and enhancer mark H3K27ac. On the other hand protocol-

specific loops (Hi-C 3.0 specific and Micro-C specific) are less enriched for 

CTCF and SMC1 and more enriched for H3K4me3 and H3K27ac (Figure 3.5 

e). Using cis-regulatory elements that are predicted by SCREEN (Consortium, 

Moore, et al. 2020), we investigated the proportion of promoter-enhancer 
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loops and CTCF loops in Hi-C 3.0 and Micro-C. Examining these cis-

regulatory elements enriched at loop anchors showed that CTCF-

independent, loops which are the protocol-specific loops, were more likely to 

be promoter enhancer loops. Since promoter-enhancer loops are closer in the 

spatial distance, they are better detected with protocols that have smaller 

fragments. Micro-C and Hi-C 3.0, both with shorter average fragment length 

than conventional Hi-C,  were better  at detecting P-E loops.  

Interchromosomal interactions 

In interphase, chromosomes mostly occupy their own volume in the 

nucleus without intermingling. Due to the nature of these chromosome 

territories, proximity ligation detects more interactions within chromosomes 

(cis) and fewer interactions between chromosomes (trans). We tested if 

varying Hi-C protocols and Micro-C differ in detecting inter-chromosomal 

interactions. Compartmental domains detected in both cis and trans. We 

tested if detection of compartment differs between cis and trans.  We 

computed the number and the strength of A and B compartments in cis and 

trans for various protocols and h1-hESC and HFFc6 cells.  First, we counted 

the number of A and B compartments detected in cis and trans. In H1-hESC 

we compared the number of A and B compartments detected in each 

chromosome using all Hi-C protocols and Micro-C and found that smaller 

chromosomes consistently have more A compartments than B.  in both cis 

and trans, Micro-C identifies more A compartments in bigger chromosomes 

compared to Hi-C (Figure 3.6a).  Second, in HFFc6 cells, Hi-C identifies more 
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B compartments than Micro-C and consistently Micro-C identifies more A 

compartments than Hi-C (Figure 3.6b). Third,  in H1-hESC, more A 

compartments can be found on smaller chromosomes whereas in HFFc6, 

more A compartments were detected on larger chromosomes. H1-hESC and 

HFFc6 are different in detecting A and B compartments (Figure 3.6 c, d-f).  

In chapter II, we showed that standard Hi-C protocol and Micro-C have a 

weak performance detecting trans contacts. Detection of trans contacts was 

improved in Hi-C after the addition of extra DSG crosslinkers. Overall, we 

observed stronger trans interactions for all Hi-C experiments compared to 

Micro-C.   

To follow up, we investigated if the interactions between specific 

individual chromosomes differed between Hi-C and Micro-C. We quantified 

the average compartment strength for A-A, B-B and A-B interactions in trans 

for both Hi-C and Micro-C. First, we observed that in trans, A compartments 

were stronger than B compartments. As expected, small chromosomes were 

interacting more than the big chromosomes. Second, Micro-C captures 

stronger A-A interactions between all pairwise chromosomes compared to Hi-

C. A-B interactions were slightly higher in Micro-C compared to Hi-C. 

However, Hi-C protocols capture stronger B-B interactions across all pairwise 

chromosomes. Third, H1-hESC and HFFc6 have different strengths of A-A, B-

B, and A-B interactions.   

In summary, we did not find a relationship between the number of A 

and B compartments and the strength of these compartments detected by 
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different methods.  

Sequencing depth and genome structure detection in 3C-based methods 

The resolution of Hi-C or Micro-C experiments depends on two 

parameters, fragment size, and sequencing depth. Since we already 

discussed the effect of the fragment size in the results section, here we tested 

the effect of sequencing depth on feature detection.  We tested how 

compartment strength and loop detection changed at various sequencing 

depths. We down sampled and compared deep datasets derived from H1-

hESC and HFFc6  from a minimum of 200 Million reads to a maximum of 2 

Billion reads. We then quantified and compared compartments and loops from 

these 10 experiments. First, we found that compartment identifications were 

comparable for all read depths (Spearman correlation > 0.9) ( Figure 3.7 a, b, 

c, d). Second, we observed that the compartment strength (for A and B) is 

similar for all read depths ( Figure 3.7 c, d). Third, more loops were detected 

as the number of reads increased ( Figure 3.7 g, h). Loop detection did not 

improve after a certain read depth in conventional Hi-C , which suggests that 

for conventional Hi-C, saturation was reached at a lower read depth than Hi-C 

3.0 and Micro-C. Importantly, at all read-depths, the number of loops detected 

increased with finer fragmentation and additional cross-linking. To summarize, 

a  higher sequencing depth significantly improved the detection and 

quantification of chromatin loops without affecting the detection and the 

quantification of chromatin compartments.  
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Discussion 

In chapter II, we have shown that different protocols could be used to 

detect small and large-scale structures in 3C-based methods. Here, we tested 

the effect of double digestion with DdeI and DpnII after cross-linking with 

FA+DSG (FA+DSG-DdeI+DpnII, referred to as “Hi-C 3.0”) (Lafontaine et al. 

2021). We observed that using two enzymes shortened the fragment size 

compared to individual enzyme digestion. We found that the Hi-C 3.0 protocol 

affected the distance-dependent contact probability. Compared with data 

obtained by single DdeI or DpnII digests, in the data obtained with the Hi-C 

3.0 protocol increased contacts for loci separated by less than 10 kb, making 

the results from this protocol more similar to results obtained with protocols 

using MNase digestion. However, longer distance contacts more closely 

resembled data obtained with protocols using single restriction enzymes than 

data obtained with protocols using MNase. Combined, this protocol improved 

the short-range signal without loss of the long-range signal. 

Loop strength increased in Hi-C 3.0 compared with data obtained with 

protocols that use a single restriction enzyme. We found ~6,000 more looping 

interactions than with either single DpnII or single DdeI digestion. 

Furthermore, the average enrichment of contacts at these looping interactions 

was also higher for data obtained with the double digestion protocol. 

Nonetheless, the MNase library remained superior in detecting loops, both in 

number and in contact strength. Importantly, when we investigated 

compartmental interactions we found that smaller restriction fragments did not 

result in a loss of quantitative detection of preferential compartmental 
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interactions. In summary, the FA+DSG-DdeI+DpnII double-digest protocol 

allowed for the efficient detection of both loops and compartments in a single 

protocol. 

Hi-C 3.0, as a single protocol, can be used to understand the genome-

wide contacts in a cost-efficient way. Additionally, using specific protocols to 

detect chromatin structures at specific length scales brings additional variation 

comparing different samples. Using one protocol to understand genome 

structures simplifies the interpretation of the experiments.  

Figure 3.1: An illustration of the step in Hi-C 3.0 protocol 
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Figure 3.2: Hi-C that uses two enzymes for digesting the chromatin 

shortens the fragment size 

a. Fragment size distributions from Fragment Analyzer for specified  

protocols. 

b. Cumulative distributions of fragmented DNA in HFF cells 

stratified for cross-linking agents (top row) or restriction enzymes 

(bottom row). Dashed lines in each of the panels represent expected 

fragment size distribution from in silico digestion of hg38 for enzymes 

indicated. Gray lines represent all data from all other enzymes 

(columns).  

c. Shows the expected fragment sizes and y-axis represents the 

number of reads  that are assigned to these specific fragments. Panel 

shows the graphs for libraries that are deeply sequenced.The color 

indicates the local density of fragments.  
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Figure 3.3: Loop detectability and strength increase when the chromatin 

is digested with two restriction enzymes while preserving strong 

compartment signal.  

a. Interaction maps (log transformed) of Micro-C, Hi-C- 3.0, Hi-C 2.5 DdeI, 

Hi-C 2.5 DpnII. Chromosome 2, 35mb-65mb, 50kb bins  
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b. Interaction maps (log transformed) of Micro-C, Hi-C 3.0, Hi-C 2.5 DdeI, 

Hi-C 2.5 DpnII. Chromosome 2, 42mb-42.6mb, 2kb bins  

c. HicREP correlation of Micro-C with Hi-C 2.5 DdeI, Hi-C 2.5 DpnII and 

Hi-C 3.0 for all chromosomes. 

d. Graph shows the cis percent for Micro-C, Hi-C 3.0, Hi-C 2.5 DdeI, Hi-C 

2.5 DpnII calculated for different genomic distances. ~40% of cis 

interactions are between 0-1kb in Micro-C experiments.  

e. P(s) plot showing distance dependent contact probability of interactions 

detected with 4 protocols applied to HFFc6 cells. Dashed lines show 

the percentage of trans interactions for each dataset left), Derivative of 

the P(s) plots (right) shown in panel e.  
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Figure 3.4: Compartments are stronger in Hi-C experiments compared to 

Micro-C 

a. Spearman correlation of the first eigenvectors called using Eigenvector 

decompositions on matrices generated from Micro-C, Hi-C 3.0, Hi-C 

2.5 DdeI, Hi-C 2.5 DpnII. The first eigenvector represents the 

compartment signal.  

b. Saddle plots of the genome-wide interaction maps of the data shown in 

Figure 3.3 a . A-A (bottom right corner) and B-B (upper left corner)  

compartment signals are stronger in Hi-C experiments compared to 

Micro-C.  

c. Quantification of the compartment strength using saddle plots of cis 

and trans interactions A-A (x-axis) and B-B (y-axis).  

d. Quantification of the A-A compartment strength using saddle plots of 

cis for Hi-C 3.0 and Micro-C calculated for multiple genomic distances 

(left). Quantification of the B-B compartment strength using saddle 

plots of cis for Hi-C 3.0 and Micro-C calculated for multiple genomic 

distances (middle). Quantification of the A-B compartment strength 

using saddle plots of cis for Hi-C 3.0 and Micro-C calculated for 

multiple genomic distances (right). 

e. Quantification of protocol introduced noise as defined by inter-

mitochondrial interactions (chrM with chr1-22), normalized by intra-

mitochondrial (chrM with chrM) interactions for three Hi-C variants. 
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Figure 3.5: Micro-C has the strongest TAD boundaries 

a. Pearson correlation of genome wide insulation scores calculated for  

Micro-C, Hi-C 3.0, Hi-C 2.5 DdeI, Hi-C 2.5 DpnII. 

b. The insulation score of TAD boundaries for all four protocols mentioned  

in Figure 3.4 a. Mean insulation score of all four protocols set as a 

threshold to define the TAD boundaries. 
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Figure 3.6: Characterization of interactions and chromatin features of 

loop anchors detected with Hi-C 3.0 and Micro-C.  

a. The number of loops detected within 100kb intervals (loop size) starting 

at 70kb detected using Micro-C, Hi-C 3.0, Hi-C 2.5 with DdeI, Hi-C 2.5 

with DpnII (left). Bin intervals: 70-170 kb, 170-270 kb, 270-

370,......,970-1070 kb. Loop strength of 1,000 loops sampled from 100 

kb intervals. When less than 1,000 loops were available, loop strengths 

for available loops were used (right).  

b. Loop size distribution (genomic separation of anchors that create the 

chromatin loop) of loops detected in Micro-C, Hi-C 3.0, Hi-C 2.5 DdeI, 

Hi-C 2.5 DpnII. 

c. Venn diagram shows the overlap between the number of loops 

detected with Hi-C 3.0 and Micro-C. 
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d. Loop pileups of 3 loop lists described in Figure 3.6 c. Common loops 

that are detected in both Hi-C 3.0 and Micro-C are stronger than the 

protocol specific loops that are detected in only Hi-C 3.0 or only Micro-

C.  

e. Comparison of CTCF, SMC1, H3K4me3 and H3K27ac enrichments at 

loop anchors centered at open chromatin regions. Open chromatin 

regions (ATAC Seq) located within the anchor coordinates were used 

to center the average enrichments. Anchors were separated into sets 

detected by Hi-C 3.0, Micro-C or both. 

f. Percentage of cCREs and promoter-enhancer elements located at loop 

anchors specific to Hi-C 3.0, Micro-C or shared between them.  
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Figure 3.7: Detection of trans contacts vary between protocols and cell 

types 

a-c. The number of A and B compartments in cis; Hi-C 2.5 compared to  

Micro-C for H1-hESC (a) and HFFc6 (b), Hi-C 2.5 comparing cell types;  

H1-hESC and HFFc6 (c) 

d-f. The number of A and B compartments in trans Hi-C 2.5 compared to   
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Micro-C for H1-hESC (a) and HFFc6 (e), Hi-C 2.5 comparing cell types; 

H1-hESC and HFFc6 (f) 

g. Average inter-chromosomal interactions quantified in A-A, B-B 

and A-B  compartments in Hi-C 2.5  and Micro-C in H1-hESC 

h.  Average inter-chromosomal interactions quantified in A-A, B-B 

and A-B  compartments in Hi-C 2.5, Hi-C 3.0 and Micro-C in HFFc6 

 

 

 

 

Figure 3.8: Compartmentalization is read depth independent; however, 

detection of chromatin loops is dependent on the read depth. 
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a. Spearman correlation of the eigenvectors for different sequencing  

depths in H1-hESC. Each point represents one sampled experiment.  

X-axis shows the sequencing depth (200M reads-2B reads) and y- axis 

shows the correlation of the eigenvectors for each depth with the 

eigenvector of the experiment with 2 Billion reads. The right plot shows 

the.  

b. Zoomed correlations of H1-hESC from Figure 3.8 a 

c. Compartment strength of A compartment for experiments with different  

read depths quantified in cis and trans for H1-hESC (left).  

Compartment strength of B compartment for experiments with different  

read depths quantified in cis and trans for H1-hESC (right).  

d-f Analysis that is shown in a-c repeated for experiments performed in  

HFFc6 cells 

g.         # of loops detected in experiments with different read depths in  

H1-hESC. 

h. # of loops detected in experiments with different read depths in HFFc6. 
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Chapter IV: Comparison of methods that measure genome 
folding 

Preface 

Chapter IV has unpublished data. The manuscript of this chapter is in 

preparation with 4DN Joint analysis group members.  

Summary 

For over a decade, a variety of methods have been developed to study 

genome organization. Each of these methods captures some information 

about the genome, ranging from locus-specific to genome-wide chromatin 

interaction profiles. However, none of them gives the entire picture of the 

chromosome folding in the finest possible resolution at all scales. To better 

understand the complete picture of chromosome folding, data gathered with 

these methods should be analyzed in a comparative and integrative manner. 

Here, we performed an integrative analysis of ligation-based and ligation-free 

methods (Hi-C, Micro-C, SPRITE, GAM, PLAC-Seq, ChIA-PET) measuring 

chromosome folding at local and genome-wide scales in commonly used 

cellular model systems: H1-hESC and HFFc6. These analyses revealed 

details of the genome folding that were not detected by individual protocols.  

Introduction  

Unveiling 3D genome organization is crucial to understanding gene 

expression and the relationship between regulatory elements and their targets 

(Boltsis et al. 2021; Busslinger et al. 2017; Creyghton et al. 2010; Engreitz, 
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Ollikainen, and Guttman 2016; Kubo et al. 2021; Rada-Iglesias et al. 2011; 

Uhler and Shivashankar 2017; van Steensel and Furlong 2019; Zheng and 

Xie 2019). 3C and its derivatives have greatly improved our understanding of 

the 3D genome (Goel and Hansen 2021). 3C-based methods capture 

contacts genome-wide or in a targeted manner and rely on the proper cross-

linking and ligation of the fragments that are in close proximity (Belaghzal, 

Dekker, and Gibcus 2017; Krietenstein et al. 2020; Fullwood et al. 2009; Fang 

et al. 2016). Ligation-free methods have also been developed to detect 

genome-wide interactions (Quinodoz et al. 2018; Beagrie et al. 2017). Each of 

these methods capture an aspect of chromatin folding with different sensitivity 

and resolutions, however, none of these methods provide a complete picture 

of chromosome folding.  

Each of the methods measuring 3D genome organization has several 

inherent limitations and advantages that depend on the experimental 

approach and parameters. Hi-C and Micro-C, which are ligation-based 

methods that capture genome-wide contacts, are dependent on the key 

experimental parameters, such as crosslinking and fragmentation. Efficient 

crosslinking is important for keeping the chromatin intact for proximity ligation. 

While proper fragmentation is crucial to get a uniformly fragmented genome 

that will enable gathering information from all regions of the genome. Hi-C 

protocol is limited by the restriction sites of an enzyme used for fragmenting 

the genome. For instance, if a genomic region does not have restriction sites 

the contacts will not be captured in this region. An ideal restriction enzyme 

should have uniformly distributed and closely spaced restriction sites all over 
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the genome. To overcome some limitations in fragmenting the genome, 

multiple restriction enzymes have been used to increase the probability of 

getting a uniformly fragmented genome. (See Hi-C 3.0 in Chapter III) . Hi-C 

3.0 provided approximately 2kb resolution. Hi-C variant uses MNase for 

fragmentation, which produces nucleosome level resolution (~150 bp). 

However, Micro-C has a bias toward nucleosome-free active regions and has 

limited capacity in detecting long-range interactions. 

PLAC-Seq and ChIA-PET are also ligation-based methods that capture 

genome-wide contacts of specific protein-bound chromatin regions (Fang et 

al. 2016; Fullwood et al. 2009). They have been used to detect long-range 

interactions between active promoters, active enhancers and regulatory 

elements. Similar to 3C-based protocols, PLAC-Seq and ChIA-PET methods 

include chromatin cross-linking and fragmentation steps. They also include a 

chromatin pull-down step to enrich for targeted regions using antibodies 

against the targeted protein. The performance of these methods depends on 

the specificity of the antibodies used. Because these methods are region-

specific, they do not capture the genome-wide contacts in an entirety, while 

they capture the contacts of targeted regions at high resolution. 

SPRITE is a ligation-free method that captures genome-wide contacts 

and is dependent on the split-pool barcoding strategy (Quinodoz et al. 2018). 

The protocol requires extensive optimizations for efficient barcoding. SPRITE 

can capture multiway genomic contacts by detecting clusters of chromatin that 

share the same barcodes because they travel together during the split-pool 
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step. The SPRITE cluster sizes can range from two to up to thousands of 

DNA molecules. Fragments that are identified to be in the same cluster are 

assumed to interact with each other. Considering the small clusters this 

assumption is correct. However, this assumption might be misleading for 

bigger clusters since it is unclear what is the distance between the fragments 

within the same cluster. In this chapter, I will investigate the features of 

various cluster sizes detected by SPRITE. Such features include the 

quantification of chromatin compartments and loops.  

GAM is another ligation-free method that captures genome-wide 

contacts by measuring the distance between genomic regions within the 

nucleus (Beagrie et al. 2017). It is based on random cryosectioning of the 

crosslinked nucleus and the resulting sections are then barcoded and 

sequenced.  GAM uses different cross-linking techniques compared to other 

genome-wide techniques, it uses 4% and 8% paraformaldehyde to crosslink 

the cells. All other techniques use FA with DSG or EGS for crosslinking the 

chromatin. If two genomic regions are observed to be in multiple nuclei 

sections at the same time they are expected to be in close distance to each 

other. Information from multiple nuclei sections is combined to predict the 

distance between genomic regions. The resolution of structures detected in 

GAM is limited by the number of nuclei that are sectioned for the experiment. 

For example, to generate a genomic interaction map at 30 kb resolution,  

~407 nuclei have been used (Beagrie et al. 2017).  

The information from all these methods described above can be 
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visualized by contact matrices. Pre-processed files of Hi-C, Micro-C, ChIA-

PET, PLAC-Seq, SPRITE, and GAM are downloaded from the 4DN Data 

portal for the analysis in this chapter. This allows diminishing the variations 

that might occur due to different aligners and using variant tools for data 

processing. Briefly, all datasets are mapped using BWA-mem and processed 

using pairtools as described in 4DN Data Portal pipelines 

(https://data.4dnucleome.org/). Cooler is used to create multi-resolution cooler 

files for downstream analysis (Abdennur and Mirny 2020).  

The relationship between genome organization and gene activity is not 

clear. Spatial organization of the genome correlates with chromatin 

landscape, gene expression, and replication timing (Boninsegna et al. 2022; 

Yildirim et al. 2022; Rao et al. 2014; Zheng and Xie 2019). To determine 

chromatin landscape, several methods including DamID have been 

developed. DamID is used to quantify protein-DNA interactions using 

antibodies targeting the protein of interest. The position of a gene relative to 

nuclear speckles (high transcriptional activity) and nuclear lamina (low 

transcriptional activity) can be used as a predictor of gene expression levels. 

A method called TSA-Seq has been developed to measure the distance 

between genes and nuclear speckles or nuclear lamina. TSA-Seq, a 

cytological ruler, and DamID mapping provide information for gene activation 

and gene silencing (Wang et al. 2021; Chen et al. 2018; Vogel, Peric-Hupkes, 

and van Steensel 2007).  Dividing cells follow a program called replication 

timing that determines duplication speed of their DNA in S phase. Replication 

timing is a conserved process between eucaryotes, stable within the cell type 
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and could be important for conducting genomic alterations for specific parts of 

the genome (Marchal, Sima, and Gilbert 2019; Pope et al. 2014).  To 

determine the replication timing, a method called Repli-Seq, has been 

developed. These methods are used to extract information about the function 

of the genome and how it correlates with genome organization.  

In this chapter, we have integrated contact information from the 

methods explained above and quantified the chromatin structures to gain a 

broad understanding of genome folding. Additionally, we used functional 

assays such as TSA-Seq, DamID-Seq and Repli-Seq to investigate the 

correlation between genome structure, chromatin landscape, and replication 

timing. 

Results 

● Distance-dependent interaction frequency of all methods.  

To better understand the complete picture of the chromosome folding, 

we have used Hi-C, Micro-C, ChIA-PET,  PLAC-seq, SPRITE and GAM data 

that were generated in two commonly used cell lines: H1-hESC and HFFc6.  

To compare genomic interactions obtained in these methods at 

different scales, we generated heatmaps (Figure 4.1 a). Visual inspection of 

the heatmaps showed that short-range structures are more pronounced in the 

pull-down methods (lower panel, PLAC-Seq and ChIA-PET) compared to 

unbiased genome-wide methods (upper panel, Hi-C, Micro-C, SPRITE, and 

GAM). However, long-range structures were more obvious in the unbiased 
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genome-wide methods, particularly in Hi-C and SPRITE. 

The number of sequencing reads obtained from these experiments 

were considerably different, which is expected considering the differences in 

these methods (Figure 4.1 b). Before starting data analysis, we first wanted to 

check the quality of these datasets. One aspect of determining data quality is 

to compare the percentage of intra-chromosomal (cis) versus inter-

chromosomal (trans) interactions. The expectation is that cis interactions 

should be higher than the trans interactions due to arrangements of 

chromosomes into territories (Cremer and Cremer 2010). All of these methods 

showed around 85% cis contacts, which confirms the good quality of these 

data (Figure 4.1 c).  

Distance-dependent interaction probability (P(s)) graph shows that 

these methods differ in both short and longer genomic distances. Micro-C 

showed similar interaction probability in small distances to pull-down methods 

in HFFc6 (Figure 4.1 d). While, Hi-C, SPRITE, and GAM, showed significantly 

lower interactions in small distances compared to Micro-C and pull-down 

methods 

Next, using HiCRep we correlated the interaction profiles of these 

methods. HiCRep calculates the Pearson correlation of specific genomic 

distances of the methods and takes the weighted average of these 

correlations to calculate the stratum-adjusted correlation coefficient. Stratum-

adjusted correlations of these methods showed that the variation between 

methods does not exceed the cell-type-specific variations because the cluster 
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formation was similar in different cell types regardless of the methods (Figure 

4.1 e). SPRITE and GAM don’t cluster with their corresponding cell types. 

SPRITE experiments performed in H1-hESC and HFFc6 cluster together.  

Based on these results we concluded that the SPRITE experiments might 

have some bias that leads to clustering two cell types together. Additionally, 

we observed that the GAM experiment  produces the most distinct interaction 

map (HicRep correlation < 0.5 ). For a given cell type observing strong 

correlations between methods (assures the reproducibility of the genomic 

interactions. It also suggests that these methods are comparable. Next, we 

compared specific structures detected in these methods.   

● Compartment detection/strength.  

Genomes are segregated into active A and inactive B compartments 

which correlate with euchromatin and heterochromatin, respectively. To 

investigate the detectability of A and B compartments in all methods, we 

identified compartments in Hi-C, Micro-C, ChIA-PET,  PLAC-seq, and SPRITE  

in HFFc6 and H1-hESC cell lines using eigenvector decomposition. Although, 

eigenvector decomposition initially developed for Hi-C experiments, we 

observed strong correlation between the first eigenvectors of different 

methods (Spearman correlation coefficient > 0.73) (Figure 4.2 a). In other 

words overall detection of the compartments was similar in all methods 

(Figure 4.2 a). SPRITE eigenvector showed a slightly lower correlation 

compared to other methods indicating that SPRITE might be detecting a set of 

compartments that are unique to the method.  To quantify the strength of the 
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detected A and B compartments, we used eigenvectors, which provided a 

number of observations explained below (Figure 4.2 b):  First, HFFc6 cell line 

showed stronger compartments than H1-hESC cell line. For a given method 

the compartment strength of HFFc6 is around three fold higher than the 

compartment strength of H1-hESC. Second, the strongest 

compartmentalization was observed in SPRITE and Hi-C methods. Hi-C 

detected quantitatively similar A and B compartments, while SPRITE detected 

stronger B compartments and weaker A compartments (Figure 4.2 b). Third, 

the strength of the compartments showed significant differences among 

methods. These differences were more obvious in the HFFc6 cell line that has 

stronger compartments as compared to H1-hESC.  

Compartment detection in SPRITE showed a lower correlation (0.73)  

with other methods indicating that these compartments may have some 

differences. We indeed found some interesting examples of compartments, 

which were detected as a whole B compartment in SPRITE but showed 

alternating A and B compartment patterns in other methods  (Figure 4.2 c). 

This result raised the possibility that SPRITE may detect compartments as 

large blocks, which would reduce the number of detected compartments. To 

test this, we plotted the number of compartments detected in each of these 

protocols and found that SPRITE has the lowest number of compartments in 

HFFc6 but not for H1-hESC (Figure 4.2 d). To determine the size of these 

compartments, we sampled the same number of A and B compartments from 

each method and plotted their cumulative size distribution. SPRITE showed 

larger compartments in HFFc6 but not in H1-hESC (Figure 4.2 e).  The 
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compartments are weak in H1-hESC but strong and better defined in HFFc6 

which indicate that HFFc6 highlights more  differences between protocols 

than H1-hESC.  Furthermore, we investigated the genomic regions that are 

identified differentially between methods. These genomic regions are 

assigned to different compartments in at least one of the methods.  We found 

that ChIA-PET for RNA Pol II and SPRITE identify distinct sets of 

compartments in both HFFc6 and H1-hESC (Figure 4.2 f). These sets of new 

compartments might be special interactions that are harder to detect by other 

methods. Alternatively, they may be artifacts caused by the experimental 

technique.  

● Preferential interactions detected by 3D Methods 

Multiple studies have shown that the spatial organization of the 

genome correlates with chromatin landscape, gene expression, and 

replication timing (Boninsegna et al. 2022; Yildirim et al. 2022; Marchal, Sima, 

and Gilbert 2019; Wang et al. 2021) .To investigate these correlations with the 

3D methods described above, we analyzed DamID of LMNB1, TSA-Seq for 

predicting gene expression levels, and Repli-Seq for determining replication 

timing. The  TSA-Seq data is targeting SON, Laminin subunit beta 1 (LMNB1) 

, Nuclear factor NF-kappa-B p105 subunit  (NFK1), Centromere protein 

(CENB1), RNA Polymerase I Subunit E (POLR1E). For correlation analysis, 

we performed pairwise Spearman correlation between these assays and the 

compartment signal detected by the 3D methods. Overall, compartments 

showed correlation below 0.2 for both HFFc6 and H1-hESC (Figure 4.3 a,b). 
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The signal for DamID, TSA-Seq is locus-specific which explains the lower 

correlation for the whole genome. Additionally, using two time points (early 

and late) for  Repli-Seq might not be informative enough to cover the whole 

genome information. Correlation of specific regions in the genome could be 

used for more accurate correlation coefficients. An example of such region is 

shown in Figure 4.3 c. To investigate the relationship between these regions 

and 3D methods we extracted the genomic regions that have the strongest 

20% signal from these methods. Then we quantified the preferential 

interactions between these regions using 3D methods. We observed that 

preferential interactions are more diverse in HFFc6 compared to H1-hESC 

(Figure 4.3 d, e). We don’t observe differences between methods in H1-

hESC, however, the differences become more obvious in HFFc6, stronger in 

Hi-C and SPRITE compared to all other methods (Figure 4.3 d, e).  Hi-C and 

SPRITE capture preferential interactions better than other methods, especially 

the interactions between speckles that are measured by SON TSA-Seq. In 

summary, the detection of preferential genomic contacts is method 

dependent. It’s crucial to select the right method to detect desired interaction 

in the genome.  

● Insulation Strength 

Topologically associating domains (TADs) are mid-megabase 

structures that have been suggested to play a fundamental role in gene 

regulation (Nora et al. 2012; Dixon et al. 2012). The boundary of a TAD has 

been shown to restrict interactions between cis-regulatory elements and 
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genes outside of the TAD, thereby contributing to the regulation of gene 

expression (Crane et al. 2015; Hyle et al. 2019; Lupianez et al. 2015; Melo et 

al. 2020). To measure the boundaries of TADs, we examined the insulation 

scores of all 3D methods.  

First, we calculated the Pearson correlation of the genome-wide 

insulation scores of all methods.  All methods are highly correlated except 

SPRITE (> 0.75 for H1-hESC and > 0.8 for HFFc6) (Figure 4.4 a,b). SPRITE 

has lower correlations (0.35-0.54  in H1-hESC, 0.47-0.71 for HFFc6.) than 

other methods in both H1-hESC and HFFc6 (Figure 4.4 a,b). An example of 

insulation score plotted below interaction maps in Figure 4.4 c. Tracks of 

insulation scores look similar between methods but less pointy in SPRITE.  

Second, we investigated the distribution of insulation scores and calculated 

their average (Figure 4.4 a,b ). We considered the insulation scores below the 

average as weak (blue), the insulation scores above the average as strong 

(red). Although insulation scores showed some variations in different 3D 

methods, SPRITE did not clearly distinguish the strong and weak boundaries 

(Figure 4.4 d, e). Then, we quantified the insulation strength of possible TAD 

boundaries by selecting the strongest insulation scores and found that Micro-

C has the strongest insulation followed by ChIA-PET protocols in H1-hESC. 

However, ChIA-PET protocols have stronger insulation strength in HFFc6.  

Finally, SPRITE has the weakest insulation in both cell types (Figure 4.4 f,g).    

All 3D methods show similar performance detecting and quantifying 

TAD boundaries. It seems like SPRITE shows a strong quantification 



 129 

detecting large scale structures like compartments but the quantifications are 

weaker for smaller-scale structures such as TADs. 

● Chromatin Loops 

Chromatin loops are the finest structures detected in 3D-based 

methods. Detectability and the strength of the loops are crucial to understand 

the genome-wide high-resolution chromatin interactions such as promoter-

enhancer contacts. Detection of such promoter-enhancer loops is important to 

understand the gene expression. 3D-based methods have been improved to 

better detect these promoter-enhancer loops. We identified loops in Hi-C, 

Micro-C, ChIA-PET and PLAC-Seq. SPRITE data did not have the 

sequencing depth that is required for loop identification therefore we did not 

call loops in SPRITE data. ChIA-PET PolII and Micro-C detect the most loops 

in both H1-hESC and HFFc6 (Figure 4.5 a,b). Investigating the genomic 

separation of these loops we found that ChIA-PET PolII detects the smallest 

loops compared to other methods (Figure 4.5 c,d).  

To compare the strength of the loops, we took the union of loops 

detected in all methods. We piled up and averaged the union loop set to 

quantify their strength in all these methods and we found that ChIA-PET PolII 

and Micro-C have the highest loop strengths (Figure 4.5 e,f).  It is very 

appealing to see a genome-wide method, Micro-C, with a great resolution 

detecting thousands of loops and yet these loops are stronger than all other 

methods. Next, we examined the combination of loops detected using 

different protocols for H1-hESC. Extracting the top 31 combinations we 
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observed that i) loops detected in pull-down methods are the smallest loops, 

ii) Micro-C detects both small and large loops iII) Loops that are detected by 

multiple methods are stronger than the loops that are detected by one or two 

methods (Figure 4.5 g,h). In summary, the union set of all these methods 

provides a great reference into cell-type-specific looping interactions including 

promoter-enhancer contacts. This reference set can be used to compare the 

performance of methods at loop detection.  

● SPRITE clusters show differences in quantifying genomic 

structures 

SPRITE is unique compared to other methods that are considered in 

this study by capturing not only pair-wise but also higher-order contacts in 

different chromatin clusters. The number of possible multi-way interactions 

increases with larger clusters. However, since multi-way contacts are 

captured only by SPRITE, for comparisons the information about multi-way 

contacts is not used here. Instead, all possible pairwise interactions are 

created from each cluster separately and then these interactions are 

combined. In small clusters it is possible that all fragments are interacting, 

however, in bigger clusters, it is difficult to predict the interactions between 

fragments. Fragments in bigger clusters don’t have equal interaction 

probability. These differences between small and big clusters led us to 

investigate cluster-specific features in SPRITE. We quantified and compared 

the structures such as compartments, loops detected by SPRITE clusters with 

sizes 2-10, 11-100, 101-1000, 1001-10000 fragments. We found that i) the 
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number of reads as well as the cis percent decrease as the clusters get larger 

in SPRITE  (Figure 4.6 a,b). ii) The interaction frequencies differ for different 

genomic distances such that smaller clusters have more short-range 

interactions whereas larger clusters have more long-range interactions 

(Figure 4.6 c). Also, larger clusters detect more inter-chromosomal 

interactions.  

We sought to quantify the compartments and loops for different 

SPRITE clusters to determine cluster size effect on structure detection. For 

compartment identification, we used the eigenvector computed from 

combined clusters. Quantification of compartment strength showed that 

clusters with size 2-10 are more powerful detecting compartments  (Figure 4.6 

e). It is important to point that the compartment detection is independent of 

the read count (Figure 4.6 d).  Since SPRITE data did not have the resolution 

for loop detection, we used the union loop sets that are used in Figure 4.5 to 

quantify the loop strengths in different SPRITE clusters. Similar to 

compartment analysis, cluster sizes of 2-10 are better at detecting chromatin 

loops in both H1-hESC and HFFc6 (Figure 4.6 f, g). Compartment and loop 

quantification of the combined clusters show a slightly lower signal than the 

clusters that have 2-10 fragments.  

Due to lack of bioinformatics tools, SPRITE data is not analyzed with its whole 

potential. Since information detected by different SPRITE clusters is different 

it would be crucial to understand this difference and select specific clusters for 

specific comparisons. Larger clusters of SPRITE seem to collect information 
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distinctly compared to other methods. However, further investigation is 

needed to characterize these large clusters. 

Discussion 

Comprehensive comparison of Hi-C, Micro-C, ChIA-PET,  PLAC-seq, 

and SPRITE showed that genome-wide methods are good at detecting larger 

chromatin structures such as compartments, and pull-down methods are good 

at detecting smaller scale structures such as loops. Unlike other genome-wide 

methods, Micro-C performs the best at detecting high-resolution chromatin 

loops.  

Hi-C, Micro-C, SPRITE and GAM are advantageous over pull-down 

methods by capturing contacts genome-wide and in an unbiased manner. The 

unbiased detection of structures allows performing a comparative analysis of 

the interaction frequencies for the whole genome. On the other hand, pull-

down methods target specific regions in the genome which provide enhanced 

interactions of these regions. This bias toward specific regions makes it 

challenging to compute if these interactions are statistically significantly 

enriched. Additionally, genome-wide methods require a high sequencing 

depth hence higher cost to reach a specific resolution, whereas pull-down 

methods can reach the desired resolution with less sequencing depth. This 

makes pull-down methods cost-efficient compared to genome-wide methods. 
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Figure 4.1: Methods Overview 

a. Heatmaps of contact maps generated using Hi-C, Micro-C, ChIA PET,  

PLAC Seq, SPRITE and GAM (upper heatmaps 100kb bins, chr 2, 0- 

70mb, lower heatmaps 25 kb bins, chr2, 12-16mb ) 

b. The number of valid pairs for Hi-C, Micro-C, ChIA PET, PLAC Seq,  

SPRITE 

c. The % of cis contacts in each method specified in Figure 4.1 b 

d. P(s) plot showing distance dependent contact probability of interactions  

detected with all protocols applied to HFFc6 cells (top). Derivative of  

the P(s) plots shown in panel d (bottom).  

e. HiCRep correlation of Hi-C, Micro-C, ChIA-PET, PLAC-Seq, SPRITE  

and GAM 
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Figure 4.2: Compartments are better detected in Hi-C and SPRITE 

a. Spearman correlation of the first eigenvectors identified using  
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Hi-C, Micro-C, ChIA PET, PLAC Seq, SPRITE in H1-hESC and HFFc6 

b. Quantification of the A-A and B-B compartment strength using saddle  

plots of cis for Hi-C, Micro-C, ChIA PET, PLAC Seq, SPRITE in H1- 

hESC and HFFc6 

c. An example of IGV track of the first eigenvectors showing a large B  

compartment in SPRITE that is detected differently from other  

methods.  

d. The number of compartments detected in Hi-C, Micro-C, ChIA PET,  

PLAC Seq, SPRITE in H1-hESC and HFFc6 

e. Cumulative plot of compartments sizes plotted for A and B  

compartments separately.  

f. Hierarchical clustering of genomic regions are assigned to a different  

compartment in at least one of the methods 

 



 136 

 

 



 137 

Figure 4.3: Preferential Interactions differ between methods and cell 

types 

a.b. Spearman correlation of eigenvector detected using Hi-C, Micro-C,  

ChIA PET, PLAC Seq, SPRITE, TAS Seq with different targets, DamID 

and Replication Timing in H1-hESC (a) and HFFc6 (b) 

c. 1D tracks show enrichment for DamID Seq, TSA-Seq and Replication  

timing.  

d.e. Preferential interactions quantified in Hi-C, Micro-C, ChIA PET, PLAC  

Seq, SPRITE using DamID Seq, Early and Late replication timing and  

TSA Seq targeting SON, LMNB1, POLR1E, CENB1, NIFK in H1-hESC 

(d) and HFFc6 (e) 
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Figure 4.4: TAD boundaries are consistent between methods except 

SPRITE 

b. Pearson Correlation of insulation score for H1-hESC (a) and HFFc6  

(b).  

c.         Heatmaps generated from ChIA PET, PLAC Seq, Hi-C, Micro-C and  

SPRITE with their insulation score 
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d-e.     Distribution of insulation scores for H1-hESC (d) and HFFc6 (e).  

Values larger than the mean are plotted in red and values smaller than  

the mean are plotted in blue. 

f.g       Quantification of average insulation strength of the strong insulation  

scores (Figure 4.4 d, e red) for H1-hESC (f) and HFFc6 (g). 

 



 140 

 

Figure 4.5: ChIA-PET PolII and Micro-C detects the most loops 

a-b. The number of loops detected in ChIA PET, PLAC Seq, Hi-C, Micro-C  

in H1-hESC (a) and HFFc6 (b) 

c-d. Loop size distribution (genomic separation of anchors that create the  
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chromatin loop) of loops detected in ChIA PET, PLAC Seq, Hi-C,  

Micro-C in H1-hESC (c), in HFFc6 (d). 

e-f. Loop pileups of union loop lists created using loop sets from Figure 4.5  

a for H1-hESC (e) and b for HFFc6 (f). 

g. Top 31 loop combinations to of loops (left) and loop sizes (right) for  

H1-hESC 

h. The heatmap of hierarchical clustering of loop strengths for the top 31  

loop sets mentioned in Figure 4.5 g 
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Figure 4.6: SPRITE clusters detect different chromatin features 

 a. The number of fragments in each SPRITE cluster. Cluster sizes are  
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formed using 2-10, 11-100, 101-1000, 1001-10000 fragments.  

b. The % of cis contacts in each cluster 

c. Heatmaps of chr 17 interacting with chromosome 17,18 and 19 for  

interaction map created using different cluster sizes. 

d. Compartment detection of all SPRITE clusters compared to Hi-C.  

e.       Compartment strength of various clusters for H1-hESC (d), HFFc6 (e). 

f.g   Loop pileups for various cluster sizes for H1-hESC (f) and HFFc6 (g).  

Union loops sets described in Figure 4.5 are used for pileups.  
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Chapter V: Discussion 

Why do we need to precisely map the genome structure? 

Human DNA is about 2 meters long and fits into a 10 μm nucleus 

(Bickmore and van Steensel 2013) which requires extensive packaging 

through chromatin folding. This folding inside the nucleus is not random and is 

organized in a hierarchical manner. Chromosomes occupy individual volumes 

inside the nucleus called chromosome territories (Cremer and Cremer 2010). 

3D methods have not only allowed the detection of chromosome territories but 

also led to the identification of layered organization inside each chromosome 

from compartmental domains to  Topologically associated domains (TADs) 

and chromatin loops (Gibcus and Dekker 2013).   

The organization of chromatin appears to have a great correlation with 

gene expression, replication timing, and distinct chromatin domains, At a 

global scale, A and B compartments detected with 3D methods correlate with 

active euchromatin and inactive heterochromatin respectively. At a smaller 

scale, the expression of genes within a TAD tends to be regulated similarly 

(Kagey et al. 2010; Schwarzer et al. 2017). This co-regulation may be 

important to achieve cell-type-specific gene expression during development 

(Bonev et al. 2017; Dixon et al. 2015). Genes are often regulated by an 

enhancer that is located within the same TAD where more frequent contacts 

occur as compared to other TADs (Symmons et al. 2014; Consortium, Moore, 

et al. 2020; Heintzman and Ren 2009). The frequency of enhancers and 

promoters interactions through chromatin looping can contribute to the 
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regulation of gene expression (Fudenberg et al. 2016; Ay, Bailey, and Noble 

2014; Dekker and Mirny 2016; Hnisz et al. 2016; Valton and Dekker 2016). 

The organization of chromatin also correlates with replication timing and 

chromatin domains marked by specific histone modifications. Thus, 

understanding the organization of chromatin is crucial to unveil how genome 

activity is regulated and will provide insights into the regulation of replication 

timing and formation of chromatin domains.  

In this study, we have investigated genome folding in detail and its 

relationship to genome activity by i) extensively evaluating the experimental 

parameters that determine interaction matrix in the most commonly used 3D 

method; Hi-C, ii) integrating 3D methods to have a complete picture of the 

genome folding and resolve method-specific features.  

In chapter II, we have evaluated how two parameters; cross-linking 

chemistry and fragmentation level influence the interaction maps in 3C-based 

methods. We found that using multiple cross-linkers improves the signal-to-

noise ratio hence the detection of small and large scale structures. Finer 

fragmentation also improved the detection of small-scale structures. These 

results led us to develop a new Hi-C method Hi-C 3.0, which is capable of 

detecting both small and large scale structures at relatively high resolution 

compared to other 3-C based genome-wide capture assays (Chapter III). The 

improved Hi-C 3.0 method will allow us to resolve the role of proteins involved 

in various scales of genome folding and will facilitate new discoveries related 

to genome organization.   
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In chapter IV, we compared 3D methods to capture different aspects of 

genome folding. We have also used TSA-Seq, DamID and Repli-Seq assays 

to investigate the performance of these methods to correlate with genome 

activity, chromatin landscape, and replication timing. We found that 3D 

methods are biased in detecting specific loop sets that are defined by 

ChromHMM as poised promoter, insulator, transcriptional transition, active 

promoter-strong enhancer, active promoter, and transcriptional elongation 

(Ernst and Kellis 2012). Integrative analysis of these 3D methods allows us to 

capture a more complete picture of genome folding and provide insights into 

the formation of specific loop sets.  

Taken together, these results showed that improving 3D methods and 

combining information gained from these methods helps develop new 

approaches to unveil the relationship between chromatin folding and genome 

activity.   

The relationship between genome folding and disease 

Structures detected by 3D methods provide explanations for the action 

of regulatory elements and their targets. Such actions play a crucial role in 

diseases such as sickle cell anemia, β-thalassemia, human lymphomas, 

Glioma and limb malformations  (Deng et al. 2014; Roix et al. 2003; Flavahan 

et al. 2016; Lupianez et al. 2015).  

The proximity of a distal enhancer called the Locus control region 

(LCR) to β-globin genes is dynamic and differs between cell types (Deng et al. 

2014; Deng et al. 2012). The interaction between LCR and globin genes 
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determines the level of hemoglobin production and the disruption of these 

interactions leads to sickle cell anemia and β-thalassemia (Wilber et al. 2010; 

Deng et al. 2014). The looping interactions between LCR and globin genes 

can be leveraged to develop potential therapies for these diseases.  

Genomic regions that are in close spatial proximity have a higher 

probability for translocations. For instance, normal B cells have MYC, BCL, 

and immunoglobulin loci close in spatial distance. These regions are often 

translocated in B-cell lymphomas and contribute to the disease progression 

(Roix et al. 2003). These results point to the contributions of genome 

organization in the acquisition of genomic aberrations in diseases. 

Gain of function isocitrate dehydrogenase (IDH) mutants are used to 

identify gliomas (Pirozzi and Yan 2021). IDH mutants are DNA 

hypermethylated and this methylation causes changes in CTCF binding sites, 

which then alter TAD boundaries that are located around these IDH mutants. 

This results in continuous expression of PDGRFA, a well-known glioma 

oncogene (Flavahan et al. 2016). 

Rearrangement of a TAD boundary can also result in limb 

malformations. Disruption of TAD boundaries around 

WNT6/IHH/EPHA4/PAX3 loci via deletions, insertions, and inversions led to 

aberrant gene expression and contributed to Brachydactyly, F-syndrome, and 

Polydactyly diseases (Lupianez et al. 2015). 

The examples above illustrate the application of 3D genome 

organization in the diagnosis and prognosis of diseases. Controlling gene 
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expression by altering the chromatin interactions could provide new 

opportunities for future therapies. 

Measuring genome folding 

Over the years the number of methods that measure 3D genome 

organization increased. Each of these methods measures different aspects of 

chromosome folding. Some of them quantify genome-wide interactions (Hi-C, 

Micro-C, SPRITE, GAM) whereas others specialize to capture locus-specific 

interactions (ChIA-PET, PLAC-Seq) (Belaghzal, Dekker, and Gibcus 2017; 

Krietenstein et al. 2020; Quinodoz et al. 2018; Beagrie et al. 2017; Fang et al. 

2016; Fullwood et al. 2009). Below, the pros and cons of these methods are 

discussed. 

Genome-wide methods require deeper sequencing to detect genomic 

loops, whereas locus-specific methods can reach the same resolution with 

fewer reads. Reaching the desired resolution with fewer reads makes locus-

specific methods cost-efficient. However, finding the significantly enriched 

interactions is not straightforward for locus-specific methods since they are 

enriched and biased toward particular sets of interactions, and the expected 

interaction frequency of these regions is not known. On the other hand, 

genome-wide methods are unbiased and it is easier to compare different 

genomic regions so as to detect the enriched loci.  

Hi-C and Micro-C rely on proximity ligation; they use the same cross-

linkers but different strategy to fragment chromatin. Quantifying the strength of 

union loops detected by all methods showed that Micro-C has the strongest 
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loop signal indicating that Micro-C performs the best in detecting chromatin 

loops compared to both genome-wide (Hi-C, SPRITE, and GAM) and locus-

specific methods (PLAC-Seq and ChIA-PET). Micro-C targets nucleosome-

free regions which makes it biased toward active regions. Hence more 

interactions are detected in active regions compared to inactive regions in 

Micro-C. The newly developed Hi-C 3.0 performs nearly as Micro-C in 

detecting small-scale looping interactions and does not show a bias towards 

active regions, because uniform fragmentation is achieved in Hi-C 3.0 using 

multiple restriction enzymes.  

SPRITE uses a split-pool approach and does not rely on proximity 

ligation. It has a unique capacity for detecting multi-way contacts within a 

given chromatin cluster. Fragments located in the same cluster are assumed 

to have a physical interaction in SPRITE. That assumption might be for small 

clusters, but as the cluster size increases, it becomes challenging to predict 

the distance and interaction frequency between two fragments that are 

located in the same cluster.  

GAM measures the genomic distance between fragments that are co-

localized in cryo-sectioned nuclei. Slice orientation and the number of slices in 

nuclei are the two deterministic factors for measuring the genomic distance. 

Slicing the nuclei from multiple orientations is required to have enough 

representation of the whole chromatin. Due to the nature of GAM, it is more 

likely to detect interactions that are enriched in the center of the nucleus and 

less likely to detect the interactions that are enriched in the nucleus periphery. 



 150 

The number of cryo-sectioned nuclei is another factor that determines the 

distances in GAM. As the number of nuclei increases, it is more likely to 

detect less represented interactions and increase the resolution. GAM differs 

from other methods by measuring the distance, not the genomic interactions.  

PLAC-Seq and ChIA-PET capture locus-specific interactions. PLAC-

seq has some advantages over ChIA-PET has superiority over ChIA-PET in 

terms of using in terms of requiring 20 fold fewer cells,  being 100 times more 

cost-effective, producing more unique read pairs, having a smaller PCR 

duplication rate and producing more intra-chromosomal interactions. 

Additionally, PLAC-seq has more specificity and sensitivity in detecting 

chromatin loops than ChIA-PET.   

Genome folding with two mechanisms - loop extrusion and 

compartmentalization 

Mechanisms that form chromatin loops and compartments have been 

proposed to be different (Nora et al. 2017; Rao et al. 2017; Schwarzer et al. 

2017). Loops form by loop extrusion mechanism where cohesin pulls the 

chromatin until it hits boundary element, CTCF, to create a loop (Fudenberg 

et al. 2017; Mirny, Imakaev, and Abdennur 2019). Similarly, TADs also form 

by loop extrusion mechanism where the TAD boundaries are defined by the 

CTCF binding sites. On the other hand, chromatin compartments are 

predicted to form by phase separation or chromatin compaction by 

heterochromatin (Hildebrand and Dekker 2020).  

Multiple studies have investigated the interplay between chromatin loops and 
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compartments by depletion or deletion of CTCF and/or cohesion (Rao et al. 

2017; Nora et al. 2017; Schwarzer et al. 2017). These studies found that 

chromatin loops and TADs completely lost or weakened the dependence of 

the experiment while compartments are not changed or enhanced. One such 

study knocked down cohesin loading factor NIPBL using liver-specific 

tamoxifen-inducible Cre driver (Schwarzer et al. 2017). Depletion of NIPBL led 

to complete loss of chromatin loops and TADs but enhanced signal for 

compartments. This study showed that the loop extrusion and 

compartmentalization are independent. However, the analysis in this paper 

was done genome-wide without considering the drastic differences between 

scales of compartment and loop interactions. Because loop extrusion exists in 

smaller scales than compartments, we predicted that there is an interplay 

between loops and compartments in specific genomic distances where loops 

and compartments co-exist. To investigate this interplay, we used the 

published data and quantified the compartment strength for different genomic 

distances in wild-type mice, Tamoxifen control (TAM) and NIPBL deleted mice 

(Schwarzer et al. 2017). In smaller genomic distances where loops and 

compartments co-exist, NIPBL depletion led to stronger compartments. This 

effect was more prominent for A compartment, where most of the loop 

extrusion occurs (Figure 5.1 a). The change in compartment strength due to 

NIPBL depletion is higher in smaller genomic distances compared to large 

genomic distances. As a sanity check, we used Hi-C and Micro-C data (3 

experimental conditions for H1-hESC and 3 experimental conditions for 

HFFc6 generated in Chapter II) to confirm that the number of loops detected 
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in A compartments is higher than the number of loops detected in B 

compartments, especially in small genomic distances (Figure 5.1 b). These 

results suggest that loop extrusion and compartmentalization may not be 

completely independent, and there may be an interplay between loop and 

compartment formation in small genomic distances. Understanding the loop 

extrusion, compartmentalization and interplay between them could be 

important to identify the forces that drive the chromatin to form loops and 

compartments. The newly developed Hi-C 3.0 could provide an advantage in 

investigating this interplay at various genomic scales, as Hi-C 3.0 could 

capture both large (compartments) and small (loops) genomic scales due to 

its low signal-to-noise ratio compared to other methods (conventional Hi-C 

and Micro-C).  

CTCF and cohesin in regulating genome organization 

CTCF and cohesin play a fundamental role in genome organization. 

However, deletion or depletion of CTCF and cohesin has minimal changes on 

global gene expression. CTCF is involved in multiple functions including 

genome organization, regulation of cell type-specific genes as a result of 

distal promoter-enhancer and promoter-promoter interactions, RNA splicing 

and RNA processing (Kubo et al. 2021; Hyle et al. 2019; Braccioli and de Wit 

2019; Shukla et al. 2011; Ruiz-Velasco et al. 2017; Valton et al. 2021). 

Furthermore, some studies have reported that different CTCF sites have 

distinct functions (Khoury et al. 2020; Luan et al. 2021). Various 3C-based 

methods have been used to measure and classify CTCF interactions in the 
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aforementioned studies which makes it harder to have a complete 

classification of CTCF sites. Furthermore, in absence of CTCF and cohesin 

release factor Wings apart-like (Wapl), cohesin accumulates in 3’ of active 

genes indicating that cohesin forms domain boundaries that are CTCF-

independent (Busslinger et al. 2017; Valton et al. 2021). A deeper 

understanding of the CTCF and cohesin function requires genome-wide high-

resolution 3D maps. The newly developed Hi-C 3.0 protocol could be used to 

generate high-resolution contact maps for better categorization of the CTCF 

and cohesin binding sites based on their functions. Additionally, Hi-C 3.0 

could reveal new functions of CTCF and cohesin.  

Future directions 

Outstanding research has been done to unveil 3D genome 

organization and its functionality over the years. However, the field is still 

lacking answers for some of the main questions. Major discoveries in biology 

have often been led by developing tools/technologies to address critical 

questions. The genome organization field has been developing tools to map 

genome organization at the highest possible resolutions. In addition to these 

efforts, integration of imaging technologies, physics-based modeling, and 

machine learning approaches will be necessary to get a better understanding 

of genome organization.  

It has been proposed that chromatin compartments form independent 

of chromatin loops (Rao et al. 2017; Schwarzer et al. 2017; Nora et al. 2017). 

However, the complete picture of the interplay between compartments and 
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loops is lacking. There are several questions that need to be answered to 

understand the formation of compartments and loops: How does a genomic 

region decide to form a compartment but not a loop? How do loop extrusion 

and chromatin compartmentalization play a role in cell fate? What are the 

implications of the interplay between loops and compartments in diseases? 

These questions could only be answered by further improving the detection of 

genome structures and integrating various approaches from multiple fields, 

such as super-resolution microscopy, physics-based modeling, and machine 

learning. 

Chromatin loops have mostly been studied under steady-state 

conditions. However, growing evidence suggests that loops are highly 

dynamic and heterogeneous across cell populations. It would be important to 

understand the mechanisms that regulate the mobility of chromatin loops and 

how this mobility regulates expression of genes. Advancement in imaging 

technologies and developing new tools to track chromatin loops in live cells 

will provide insights into the formation and function of these dynamic loops. 

Integrating population-based assays with single cell assays would be 

informative to better understand the chromatin organization. In population-

based assays capturing a chromatin loop depends on two criteria; the 

strength of the loop and the number of cells these loops exist. For example, if 

a loop is weak and formed in only <5% of the cells, it would be very difficult to 

capture. Single cell assays could help to determine the number of cells that 

contain a  specific loop, which informs about the heterogeneity in a cell 
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population. On the other hand, population-based assays are helpful in 

detecting weak loops because many weak loops will create a stronger signal 

for detection. Combining information from the two types of assays would be 

useful to learn about cell to cell variation and the strength of structures.  

Trans interactions : Measuring trans interactions emerge to understand the 

positions of chromosomes inside the nucleus. Translocations occur within and 

between chromosomes that are close in spatial distance. Therefore 

chromosome positions play an important role in understanding translocations 

in cancer and developing therapeutic approaches for drug development. 

Additionally, it is important to know the relationship between a chromosome 

position and its activity. Chromosomes located in the middle of the nucleus 

interact more and tend to be more active than the chromosomes located at 

the periphery. Chromosome positions differ between cells hence detection of 

trans interactions is challenging. Due to proximity ligation 3C based methods 

are limited to detecting trans interactions. Improving current methods or 

developing new methods is required to understand the interactions between 

chromosomes and the functional outcome of these interactions.  

Analysis tool development: Tool development is needed to analyze, 

visualize and integrate diverse datasets. 

 3D methods and chromatin binding assays have different resolutions. For 

example, current loop calling tools detect loops that are ~5kb. New tools are 

needed to detect chromatin loops in higher resolution than 5kb. Detecting 

loops in high resolution (<=1kb) would help a better integration of protein-
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chromatin binding assays because these assays have ~500bp resolution. 

Additionally tools are needed to integrate 3D methods with binding assays. 

  Another important tool development is needed to integrate 3D methods 

with high resolution imaging data to track single molecules in the genome.     

Finally, developing predictive tools (machine-learning algorithms) and models 

for annotating coding and non-coding variants in the genome would be useful 

for genome-wide chromatin structure. 
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Figure 5.1: Interplay between compartments and loops 

a. Compartment strength of A and B compartments is plotted for different  

genomic distances for  wild type mice, Tamoxifen control (TAM) and  

NIPBL deleted mice.  

b. # of loops detected in A and B compartments for H1-hESC and HFFc6.  

 

 

 

 

 

 

 

 

Materials and Methods 

cLIMS: A Laboratory Information Management System for C-Data 

 cLims is a web-based lab information management system tailored for 

chromosome conformation capture experiments. It can be used to organize, 

store and export metadata of various experiment types such as HiC, 5C, 

ATAC-Seq, etc. The metadata organization is compatible with 4DN DCIC 

standards and data to cLIMS can be used to export 4DN DCIC and GEO 
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systems with one click.  

For the matrix project, we had increasing levels of detail in metadata, growing 

number of experiments, long time periods between data creation and 

submission and many people working on the same data sets, hence cLIMS 

helped us to keep this information properly maintained. The details included 

cell line, assay, treatments, sequencing, contributor’s information. This will 

also help us in reproducibility of experiments. 

cLIMS has been developed using the Django web framework on the back-end 

and HTML5 and Javascript libraries on the front-end. It is running on 

PostgreSQL database and Apache web server and can be hosted on major 

Linux distributions. 

Cell line culture and fixation 

● HFFc6 

HFFc6 was cultured according to 4DN SOP 

(https://data.4dnucleome.org/biosources/4DNSRC6ZVYVP/). Cells were 

grown at 37°C under 5% CO2 in 75cm2 flasks containing Dulbeco’s Modified 

Eagle Medium (DMEM), supplemented with 20%, heat-inactivated Fetal 

Bovine Serum (FBS). For sub-culture, cells were rinsed with 1x DPBS and 

detached using 0.05% trypsin at 37 °C for 2-3 minutes. Cells were typically 

split every 2-3 days at a 1:4 ratio and harvested while sub-confluent, ensuring 

they would not overgrow. 

● H1-hESC 
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Human Embryonic stem cells (H1 – WiCell, WA01, lot # WB35186) were 

cultured in mTeSR1 media (StemCell Technologies, 85850) under feeder-free 

conditions on Matrigel H1-hESC-qualified matrix (Corning, 354277, lot # 

6011002) coated plates at 37°C and 5% CO2. H1 cells were daily fed with 

fresh mTeSR1 media and passaged every 4-5 days using ReLeSR reagent 

(StemCell Technologies, 05872). Cells were dissociated into single cells with 

TrypLE Express (Thermo Fisher, 12604013). 

● Fixation protocol 

Final harvest of 5 million HFFc6 and H1-hESC cells was performed after 

washing twice with Hank’s Buffered Salt Solution (HBSS) before cross-linking 

in HBSS with 1% Formaldehyde for 10 minutes at room temperature. 

Formaldehyde was quenched with glycine (128 mM final concentration) at 

room temperature for 5 minutes and on ice for an additional 15 minutes. Cells 

were washed twice with DPBS before pelleting and flash freezing with liquid 

nitrogen into 5 million aliquots. Alternatively, formaldehyde fixed cells were 

centrifuged at 800xg and subjected to additional cross-linking with either 3mM 

Disuccinimidyl glutarate (DSG) or Ethylene glycol bis (succinimidylsuccinate) 

(EGS), freshly prepared and diluted from a 300mM stock in DMSO, for 40 

minutes at room temperature. DSG and EGS cross-linked cells were both 

quenched with 0.4M glycine for 5 minutes and washed twice with DPBS, 

supplemented with 0.5% Bovine Serum Albumin, before flash freezing with 

liquid nitrogen into 5 million aliquots. 

Hi-C protocol 
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Chromosome conformation capture was performed as described previously 

and we refer to Belaghzal et al. (Belaghzal, Dekker, and Gibcus 2017) for a 

step-by-step version similar to this protocol. Briefly, 5x106cross-linked cells 

were lysed for 15 minutes in ice cold lysis buffer (10 mM Tris-HCl pH8.0, 10 

mM NaCl, 0.2% Igepal CA-630) in the presence of Halt protease inhibitors 

(Thermo Fisher, 78429). Then, the cells were disrupted by homogenization 

with pestle A for 2x 30 strokes. An aliquot if 8 µL was taken to later assess 

chromatin integrity. Remaining chromatin was solubilized in 0.1% SDS at 

65°C for 10 minutes, quenched by 1% Triton X-100 (Sigma, 93443) and 

digested with 400 units of either HindIII (R0104 in NEBuffer 2.1), DdeI 

(R0175, in NEBuffer 3.1) or DpnII (R0543 in NEBuffer 3.1) for 16 hours at 

37°C. Samples were incubated at 65 ̊C for 20 minutes to inactivate the 

restriction enzyme after which 10 µL was set aside to assess digestion 

efficiency. Fill-in of digested overhangs by DNA polymerase I, large Klenow 

fragment (NEB, M0210) in the presence of 250 nM biotin-14-dCTP (HindIII; 

Thermo Fisher, 19518018) or biotin-14-dATP (DdeI, DpnII; Thermo Fisher, 

19524016 ) for 4 hours at 23°C was performed prior to ligation with 50 µL T4 

DNA ligase (Thermo Fisher, 15224090) for 4 hours at 16°C in a total volume 

of 1.2 mL. Cross-links of ligated chromatin were reversed at 65°C overnight 

by 2 separate 50 µL additions of 10 mg/mL proteinase K (Fisher, BP1750I-

400). DNA was isolated by adding 2.6 mL saturated phenol pH 8.0: 

chloroform (1:1) to 1.3 mL of sample. The mixture was vortexed and spun 



 161 

down in phase-lock tubes (Quiagen, 129065) before standard precipitation 

with 100% ethanol in the presence of 1/10 vol/vol of 3 M sodium acetate pH 

5.2. DNA cleanup and desalting was performed using an AMICON Ultra 

Centrifuge filter, following manufacturer’s instructions (EMD Millipore, 

UFC5030BK). RNA was removed by incubation with 1 µL of 1 mg/mL RNAase 

A for 30 minutes at 37°C in a total of 100 µL TLE (10 mM Tris-HCl, 0.1 mM 

EDTA in milliQ) and quantified on a 0.7% agarose gel. Biotin was removed at 

20°C for 4 hours in a 50 µL reaction for every 5 µg of DNA using 15 units of 

T4 DNA polymerase (NEB, M0203L) and 25 nM dATP and 25nM dGTP in 

NEBuffer 3.1 (no dTTP and dCTP). Polymerase was inactivated for 20 mins at 

75°C and placed at 4°C. Volume was brought up to 130 µL and DNA was 

sheared for 3 minutes using a Covaris sonicator (E220 evolution: Duty Cycle 

10%, Intensity 5, Cycles per Burst 200 or M220: Peak Incident Power 50W, 

Duty Cycle 20%, Cycles per Burst 200) and size selected with Agencourt 

AMPure® XP (Beckman Coulter, A63881) to obtain 150 - 350 basepair 

fragments, validated by DNA gel electrophoresis. DNA was repaired by 

adding a cocktail of 20 µL of the end-repair mix [3.5X NEB ligation buffer 

(NEB, B0202S), 17.5 mM dNTP mix, 7.5 units of T4 DNA polymerase (NEB, 

M0203L), 25 units of T4 polynucleotide kinase (NEB, M0201S), 2.5 units 

Klenow polymerase Polymerase I (NEB, M0210L)] to 50µL DNA solution at 

20°C for 30 minutes, followed by a 20 minute incubation at 75°C to inactivate 

Klenow polymerase. For every library, at least 10 µL of streptavidin coated 
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DynabeadsTM MyOneTM Streptavidin C1 (Thermo Fisher, 65001) in LoBind 

tubes (Eppendorf, 022431021) were prepared by washing the beads twice 

with Tris Wash Buffer [5 mM Tris-HCl pH8.0, 0.5 mM EDTA, 1 M NaCl, 0.05% 

Tween20] and resuspending in 400 µL of 2X Binding Buffer [10 mM Tris-HCl 

pH 8, 1 mM EDTA, 2 M NaCl]. The washed beads were added to the 

biotinylated DNA (brought to 400 µL TLE) and incubated for 15 minutes at 

room temperature under rotation. Thereafter, the beads were first washed 

with 1x Binding Buffer and then with TLE before final elution in 41µL TLE on a 

magnetic stand. Then, a 9 µL A-tailing mix consisting of 5 µL 10x NEBuffer 

2.1, 1 µL of 10 mM dATP and 15 units of Klenow 3’ → 5’ exo- (NEB M0212L) 

was added to blunted ends and incubated at 37°C for 30 minutes, followed by 

inactivation for 20 minutes at 65°C. Beads were reclaimed, washed with 1x 

ligation buffer (from 5x T4 DNA ligase buffer, Thermo Fisher, 46300-018) and 

Illumina paired-end adapters were added by ligation with T4 DNA ligase 

(Thermo Fisher, 15224090) for 2 hours at room temperature. To determine 

the minimal number of PCR cycles needed to generate a Hi-C library, a PCR 

titration was performed prior to the production PCR (using Illumina primers 

PE1.0 and PE2.0). Primers were separated from the final library by size 

selection with AMpure XP (1:1 ratio) prior to 50 bp paired-end sequencing on 
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an Illumina HiSeq 4000 sequencer (Thermo Fisher). 

For each deep library repeat, we generated 4 Hi-C libraries in parallel (20x 106 

cells total) and sequenced each of the generated libraries on a single lane of 

an Illumina HiSeq 4000 flow cell. 

Micro-C-XL protocol 

The Micro-C XL protocol was adopted from Hsieh et al. and Krietenstein et al. 

(7, 8). Frozen cells were resuspended in 200 µl cold 1x PBS (10 mM 

Na2HPO4/KH2PO4, pH 7.4, 137 mM NaCl, 2.7 mM KCl,) per 1 mio cells and 

split into 1 mio cells aliquots. Note, 1x BSA (NEB,#B9000S) was added to 

PBS prior resuspension and wash to reduce stickiness of HFFc6 cells to the 

tub walls. After 20 min incubation on ice, cells were collected by centrifugation 

(5000x g, 5 min), washed with 500 µl buffer MB#1 (10 mM Tris-HCl, pH 7.5, 

50 mM NaCl, 5 mM MgCl2, 1 mM CaCl2, 0.2% NP-40, 1x Roche cOmplete 

EDTA-free (Roche diagnostics, 04693132001)), collected by centrifugation 

(5000x g, 5 min), and resuspended in 200 µl MB#1. Chromatin was 

fragmented with MNase for 10 min at 37°C. MNase concentrations were 

chosen to yield mostly mono-nucleosomal fragments, as tested in prior 

digestion tests, typically 5-20 U MNase (Wortington Biochem, LS004798). The 

digestion was stopped by addition of 0.5 M EGTA (Bioworld, #405200081) to 

a 1.5 mM final concentration and incubation at 65°C for 10 min. Chromatin 

aliquots were pooled for further processing. Here, the equivalent of 2.5 mio 
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cells input yielded the best results, more than 5 mio cell-equivalent per aliquot 

is not recommended. The chromatin was collected by centrifugation (5000x g, 

5 min), washed with 500 µl 1x NEBuffer 2.1 (NEB, #B7202S), collected by 

centrifugation (5000x g, 5 min), and resuspended in 45 µl NEBuffer 2.1. DNA 

ends were dephosphorylated by addition of 5 µl rSAP (NEB, #M0203) and 

incubation at 37°C for 45 min. The reaction was stopped by incubation at 

65°C for 5 min. 5’ overhangs were generated by 3’ resection. Here, 40 µl pre-

mix (5 µl 10x NEBuffer 2.1, 2 µl 100 mM ATP (Thermo Fisher, #R0441), 3 µl 

100 mM DTT, 30 µl H2O) and 8 µl Large Klenow Fragment (NEB, #M0210L) 

and 2 µl T4 PNK (NEB,#M0201L) were added to the sample in respective 

order. The reaction was incubated at 37°C for 15 min. The DNA overhangs 

were filled with biotinylated nucleotides by addition of 100 µl pre-mix (25 µl 0.4 

mM Biotin-dATP (Invitrogen, #19524016), 25 µl 0.4 mM Biotin-dCTP 

(Invitrogen, #19518018), 2 µl 10 mM dGTP and 10 mM dTTP (stock solutions: 

NEB, #N0446), 10 µl 10x T4 DNA Ligase Reaction Buffer (NEB #B0202S), 

0.5 µl 200x BSA (NEB, #B9000S), 38.5 µl H2O) and incubation at 25°C for 45 

min. The reaction was stopped by addition of 12 µl 0.5 M EDTA (Invitrogen, 

#15575038) and incubation at 65°C for 20 min. The chromatin was collected 

by centrifugation (10000x g), washed in 500 µl 1x Ligase Reaction Buffer, and 

collected by centrifugation (10000x g). The chromatin pellet was resuspended 

in 2500 µl ligation reaction buffer (1x NEB Ligase buffer, 1x NEB BSA, 12500 

U NEB T4 Ligase (NEB, #M0202L)) and incubated rotating at RT for 2.5-3 h. 
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After proximity ligation, the chromatin was collected, resuspended in 200 µl 1x 

NEBuffer 1 (NEB, #B7001S) and 200 U NEB Exonuclease III (NEB, 

#M0206S), and incubated for 5 min at 37°C to remove biotin from unligated 

ends. For deproteination and reverse crosslinking, 25 µl ProteinaseK 

(25mg/ml in TE with 50% glycerol) and 25 µl 10% SDS (Invitrogen, #15553-

035) were added and the sample was incubated at 65°C o/n. The DNA was 

first phenol/chloroform purified and second purified with DNA Clean & 

Concentrator Kit (Zymo, #D4013). The 300 bp sized MicroC library was 

purified via 1.5% agarose gel electrophoresis and extracted with Zymoclean 

Gel DNA Recovery Kit (ZymoResearch, #D4002) with a final elution volume of 

50 µl. 5 µl DynabeadsTMMyOneTMStreptavidin C1 beads (Invitrogen, #65001) 

were washed twice with 300 µl 1x TBW (5 mM Tris-HCl, pH7.5, 0.5 mM 

EDTA, 1 M NaCl) and suspended in 150 µl 2x TBW (10 mM Tris-HCl, pH 7.5, 

1 mM EDTA, 2 M NaCl). 100 µl H2O and150 µl washed Streptavidin beads in 

2x TBW were added to the sample and incubated rotation at RT for 20 min. 

The beads were washed twice with 300 µl 1x TBW and resuspended in 50 µl 

TE buffer. Sequencing libraries were prepared with NEBNext®UltraII DNA 

Library Prep Kit for Illumina® (NEB, #E7645) according to protocol, except for 

the DNA purification and size selection prior PCR. Here, adaptor-ligated DNA 

was pulled-down via still attached Streptavidin beads and washed twice with 

300 µl 1x TBW and once with 0.1x TE. Finally, the beads were resuspended 

in 20 µl 0.1x TE. PCR amplification, sample indexing, and DNA purification 
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after PCR was performed with according to (NEB, #E7645) using 

NEBNext®Multiplex Oligos for Illumina®. The samples were sequenced on an 

Illumina HiSeq 4000 on 50 base pair paired end mode. 

  

Size range of chromatin fragments produced after digestion 

Cells were cross-linked, lysed and digested as with the Hi-C protocol (see 

above). Then, cross-links were reversed and DNA was isolated as in Hi-C, but 

without ligation and biotin incorporation. DNA was loaded on an Advanced 

Analytical Fragment Analyzer (Agilent) for size range analysis and data was 

analyzed with PROsize3 software (Agilent). PROsize3 traces were exported 

separately as 4x8 bins (32 total) ranging from 40-500; 500-1300; 1300-8000 

and 8000-100000 basepairs. Size ranges of potential restriction sites (hg38) 

were identified with cooltools genome digest 

(https://cooltools.readthedocs.io/en/latest/cli.html?highlight=enzyme#cooltools

-genome-digest). 

Cut&Tag protocol 

Samples were processed as previously described in Kaya-Okur et.al. (22) , 

with few modifications. Briefly, approximately 100K cells per sample were 

permeabilized in the wash buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 

0.5 mM Spermidine, 1× Protease inhibitor cocktail) and then cells were 

coupled with activated concanavalin A-coated magnetic beads for 10 min at 

RT. Pelleted beads were resuspended in antibody buffer (Mix 8 μL 0.5 M 
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EDTA and 6.7 µL 30% BSA with 2 mL Dig-wash buffer) with 1:100 dilution of 

SMC1 (Bethyl, cat# A300-055A) or CTCF antibody (Active motif, cat # 61311) 

and incubated overnight at 4 °C on a rotator. The next day, the pelleted bead 

complex was incubated with 1: 50 dilution of secondary antibody (guinea pig 

α-rabbit antibody, cat. # ABIN101961) in Dig-Wash buffer (20 mM HEPES pH 

7.5, 150 mM NaCl, 0.5 mM Spermidine, 1× Protease inhibitor cocktail, 0.05% 

Digitonin) and incubated at RT for 30 min on rotator. After two washes in Dig-

Wash buffer, 1:250 diluted pAG-Tn5 adapter complex in Dig-300 buffer 

(20 mM HEPES pH 7.5, 300 mM NaCl, 0.5 mM Spermidine, 1× Protease 

inhibitor cocktail, 0.05% Digitonin) were added to bead complex and 

incubated at RT for 1 hr. After two washes in Dig-300 buffer, beads were 

resuspended in 300 µL of Tagmentation buffer (20 mM HEPES pH 7.5, 

300 mM NaCl, 0.5 mM Spermidine, 1× Protease inhibitor cocktail, 0.05% 

Digitonin,10 mM MgCl2) and incubated at 37 °C for 1 h 45 min. Samples were 

subjected to Proteinase K treatment and extracted tagmented DNA using 

Phenol:Chloroform:Isoamyl Alcohol (25:24:1). In preparation for Illumina 

sequencing, 21 µL DNA was mixed with 2 µL of a universal i5, 2 µL of a 

uniquely barcoded i7 primer, and 25 µL of NEBNext HiFi 2× PCR Master mix. 

The sample was placed in a thermocycler with a heated lid using the following 

cycling conditions: 72 °C for 5 min; 98 °C for 30 s; 14 cycles of 98 °C for 10 s 

and 63 °C for 30 s; final extension at 72 °C for 1 min and hold at 4 °C. Post-

PCR clean-up was performed by adding 1.1× volume of Ampure XP beads 

and incubated for 15 min at RT, washed twice gently in 80% ethanol, and 

eluted in 30 µL 10 mM Tris pH 8.0. Final library samples were paired-end 
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sequenced on Nextseq500. 

Cut&Run Protocol 

Cut&Run raw data (fastq files) of H1-hESC are downloaded from Janssens et 

al. 2018 and raw files of HFFc6 are generated by Steve Henikoff Lab using 

Skene et al. 2017 protocol (Skene and Henikoff 2017). 

ATAC Seq Protocol 

We have followed a published protocol to perform H1-hESC ATAC Seq 

experiments. The protocol details are described in Genga et al. 2019 (Genga 

et al. 2019). 

ATAC-seq experiments on HFFc6 cells were performed following previously 

published protocol (Buenrostro et al. 2015). Briefly, 50,000 cells per 

experiment were washed and lysed using a lysis buffer (0.1% NP-40, 10 mM 

Tris-HCl (pH 7.4), 10 mM NaCl and 3 mM MgCl2). Lysed cells were then 

transposed using the Nextera DNA library prep kit (Illumina #FC-121-1030) for 

30 min at 37C, immediately followed by DNA collection using Qiagen MinElute 

columns (Qiagen #28004). Appropriate cycle numbers for amplification were 

determined for each sample individually using qPCR. Finally, primers were 

removed using AMpure XP beads (Beckman Coulter #A63881) prior to 

2x50bp paired-end sequencing. 
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Data analysis 

● Chromosome capture data processing 

Distiller (https://github.com/mirnylab/distiller-nf) pipeline is used to process Hi-

C and Micro-C datasets. First, sequencing reads were mapped to hg38 using 

bwa mem with flags-SP. Second, mapped reads were parsed and classified 

using the pairtools package (https://github.com/mirnylab/pairtools) to get 4DN-

compliant pairs files. PCR and/optical duplicates removed by matching the 

positions of aligned reads with 2bp flexibility. Next, pairs were filtered using 

mapping quality scores (MAPQ > 30) on each side of aligned chimeric read, 

binned into multiple resolutions and low coverage bins are removed. Finally 

multiresolution cooler files were created using the cooler package 

(33)(https://github.com/mirnylab/cooler.git). We normalized contact matrices 

using the iterative correction procedure from Imakaev et al. 2012 (Imakaev et 

al. 2012). Interaction heatmaps were created using the “cooler show“ 

command from the cooler package.  

● Hicrep correlations 

We used HiCRep to do distance corrected correlations of the various 

protocols and cell states. Correlation is calculated in two steps. First, 

interaction maps are stratified by genomic distances and the correlation 

coefficients are calculated for each distance separately. Second, the 

reproducibility is determined by a novel stratum-adjusted correlation 

coefficient statistic (SCC) by aggregating stratum-specific correlation 

coefficients using a weighted average. We correlated the individual 
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chromosomes between protocols and averaged the correlations across all 

chromosomes. 

● Cis and Trans Ratio 

Trans percent is calculated by dividing the total interactions between 

chromosomes with the sum of interactions within and between chromosomes 

(trans/cis+trans). Distance seperated cis interactions are calculated by 

dividing total interactions within specified distance of the chromosomes by the 

sum of interactions within and between chromosomes (cis of specific 

distance/cis+trans). Pairtools provides statistics for the numbers of 

interactions captured within and between chromosomes.  

● P(s) Plots 

P(s) plots describe the decay of the average probability of contact between 

two regions on a chromosome as a function of the genomic separation 

between them.  

As per best practices, scalings are typically computed for each chromosomal 

arm of the genome before being aggregated. In order to obtain the extent of 

each chromosomal arm, the sizes of the chromosomes and the positions of 

their associated centromeres must be obtained. The sizes of the chromosome 

were obtained using the fetch_chromsizes function that is found in the 

bioframe library 

(https://github.com/open2c/bioframe/blob/master/bioframe/io/resources.py#L6

1) and the starts and ends of the centromere were obtained from bioframe 
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using 

fetch_centromeres(https://github.com/open2c/bioframe/blob/master/bioframe/i

o/resources.py#L109). The results of these two functions were combined to 

create a single list containing the extents of each chromosomal arm of the 

Human hg38 genome. For all libraries except those made from Hela S3 cells, 

all chromosome arms were used in the scaling calculation. For Hela libraries 

we excluded the chromosomes with translocations and used only 

chromosomes 4, 14, 17, 18, 20, and 21. 

 We used the diagsum function from the cooltools library 

(https://github.com/open2c/cooltools/blob/master/cooltools/expected.py#L541) 

to calculate scaling. This function takes in a cooler, extracts the table of non-

zero read counts across the genome (known as the pixel table) and calculates 

the sum of read counts based on its distance from the main diagonal. It also 

simultaneously calculates the total number of possible counts obtainable at a 

given distance (called valid pairs) based on masking of region due to 

balancing and other use provided criteria. Additionally, this function also has 

the ability of transforming the read-counts obtained from the pixel table before 

aggregating the result. This is done by passing the appropriate use defined 

function to the “transforms” parameter of diagsum. 

To obtain the scaling plots shown in the manuscript, for each library, the 

diagsum function was applied on the 1kb cooler associated with the library. 

1kb is the recommended resolution to calculate scalings as it allows us to 

observe variations at the finest scales. Along with the cooler, the 
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chromosomal arms extents were also provided using the regions argument. A 

transform (named “balanced”) was also applied to the data to convert raw 

read-counts to balanced read-counts. This was done by multiplying the count 

value with the associated row and column weights obtained from balancing 

the cooler.  

The resulting output is a single table with 4 relevant columns: 1) “region” 

which describes what chromosome arm a specific row was obtained from; 2) 

“diag” which refers to the genomic separation at which the data was 

aggregated; 3) “balanced.sum” which is the sum of read-counts for that given 

region and genomic separation after they were transformed by the “balanced” 

transform and 4) “n_valid” the number of possible valid pairs at a given 

distance (as described earlier). The individual column values were aggregated 

over the different arms and then further aggregated into logarithmically 

spaced bins of genomic separation. Finally, the “balanced.sum” column was 

divided by the “n_valid” column to create the “balanced.avg” column that is a 

measure of the average number of contacts across the genomic for a given 

genomic separation. The curves shown in the main text are the 

“balanced.avg” values plotted as a function of “diag” for the different libraries. 

In addition to the interaction decay within a chromosome, interaction between 

different chromosomes can also be quantified. This is done using the 

“blocksum_asymm” function in cooltools 

(https://github.com/open2c/cooltools/blob/master/cooltools/expected.py#L820) 

which uses a very similar methodology. Two sets of regions are provided to 
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blocksum_asymm and “balanced.sum” and “n_valid” is calculated for every 

pair of regions (entire chromosomes in this case). Since the interactions are 

between two chromosomes there is no notion of genomic separation between 

two regions. The “balanced.avg” is calculated in the same manner as above 

and the mean of this value is visualized as horizontal dashed lines in the main 

text figures. 

• Average slope of scaling 

In order to magnify small variations between the different libraries, we 

calculated “derivative curves” from the scaling curves. Derivative curves 

represent the rate of change of scaling curves as observed on a log-log scale. 

These are computed by taking the log of scaling data (both x and y), 

calculating the finite difference measure of the slope and smoothing that value 

with a gaussian kernel. The smoothing function used is gaussian_filter1d from 

the scipy library (with a spread of 1). The smooth finite difference values can 

be plotted as a function of distance. Alternatively, the average value of this 

derivative is calculated and correlated with other features. 

• Genome Coverage Analysis 

For genome wide coverage analysis, the mapped read pairs were split into 

two individual files and the read coverage at respective bins (genome-wide at 

100 kb bins) were computed with bedtools coverage (v2.29.2) function 

(Quinlan and Hall 2010). The read density was normalized to reads per million 

to compare between samples with different total read counts and 

subsequently by reads per 1 kb to compare between annotations with 
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different bin sizes. The compartment associations were extracted from HindIII 

compartment calls using the respective cell types. 

• Compartment Analysis 

We assessed compartments using eigenvector decomposition on observed-

over-expected contact maps at 100kb resolution separated for each 

chromosomal arm using the cooltools package derived scripts. Eigenvector 

that has the strongest correlation with gene density is selected, then A and B 

compartments were assigned based on the gene density profiles such that A 

compartment has high gene density and B compartment has low gene density 

profile . Spearman correlation was used to correlate the eigenvectors of 

different experiments performed with various protocols and cell states. Saddle 

plots were generated as follows: the interaction matrix of an experiment was 

sorted based on the eigenvector values from lowest to highest (B to A). 

Sorted maps were then normalized for their expected interaction frequencies; 

the upper left corner of the interaction matrix represents the strongest B-B 

interactions, lower right represents strongest A-A interactions, upper right and 

lower left are B-A and A-B respectively. To quantify saddle plots we took the 

strongest 20% of BB and strongest 20% of AA interactions and normalized 

them by the sum of AB and BA (top(AA)/(AB+BA) and top(BB)/(AB+BA)). 

Saddle quantifications were used to create the scatter plots in figure 3c and 

heatmaps in supplemental figure 3 that compare A and B compartments for all 

cell types. Both scatter plots and heatmaps in figure 3 and Supplemental 

figure 3 were created using the Matplotlib package from Python. 
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• Identification of chromatin loops 

The cooltools call-dots function 

(https://github.com/open2c/cooltools/blob/master/cooltools/cli/call_dots.py ),a 

reimplementation of HICCUPS was used to detect the chromatin loops that 

are reflected as dots in the interaction matrix. We used the following 

parameters to call the loops: fdr=0.1, diag_width=10000000, tile_size = 

5000000, --max-nans-tolerated 4. We called dots in deep data at both 5kb 

and 10 kb resolutions, using MAPQ> 30 pairs and before merging the results 

using the criteria mentioned in Rao et al. 2014 (Rao et al. 2014). Briefly, to 

merge 5kb and 10 kb loop calls, both the reproducible 5kb calls and unique 10 

kb calls were kept. Unique 5kb calls were kept if the genomic separation of 

the region was <100kb or if the dots were particularly strong (i.e.more than 

100 raw interactions per 5kb pixel). More detailed explanations for dot calling 

can be found in Rao et al. 2014 and Krietenstein et al. 2020.  

• Comparison of loops detected in different protocols 

Bedtools intersect  was re-implemented to overlap 2D loops between 

protocols. Since loop calls are fundamentally 2 dimensional data, they needed 

to be processed for use with bedtools (which operate on 1d data) (Quinlan 

and Hall 2010).  

Each loop call consists of 6 coordinates: chrom1, start1, end1, chrom2, start2, 

end2. Since chrom1 is always the same as chrom2 for loop calls, we ignored 

these two columns and reduced our space to4 coordinates. Furthermore, to 

account for errors in the positioning of loop during the loop calling, we 
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introduced the following margin of error around the called region (typically 

10kb):  

pos1 = (start1 + end1)/2;        start1 = (pos1 - 5kb);              end1 = (pos1 + 

5kb) 

pos2 = (start1 + end1)/2;        start2 = (pos1 - 5kb);              end2 = (pos2 + 

5kb) 

In order to overlap two lists, we performed 2 separate 1D overlaps with 

bedtools and then merged the results. To this end, every entry on each list is 

given a unique “loop ID.” Using bedtools overlap on each dimension of the 

loop list, we obtained a pair of loop IDs (one from each list) that were used to 

track which pairs of dots overlapped along both dimensions. Thus only pairs 

of dots with overlaps in both dimensions are merged and outputted.  

• Upset Plots 

Upset plots were created for overlapping loops using the following R package: 

https://cran.r-project.org/web/packages/UpSetR/vignettes/basic.usage.html. 

• Quantification of chromatin loops 

We created the loop pileups using notebooks from the hic-data-analysis-

bootcamp notebook (https://github.com/hms-dbmi/hic-data-analysis-

bootcamp/blob/master/notebooks/06_analysis_cooltools-snipping-

pileups.ipynb). The pileups were done at 5kb resolution and with a 50kb 

extension on each side of the loop. To quantify the loop strength, first, we 

created an interaction matrix of 50x50 kb, centered around the loop. Then, we 



 177 

calculated the intensity of the loop by dividing the average of a 3x3 square in 

the middle of the interaction matrix by the average of its neighboring pixels; 

upper left, upper middle, upper right, lower left and right middle. See the 

image below: 

This quantification of loop enrichment using its local background was also 

done to identify the loops. These quantifications are shown in figure 4b-4c, 

supplemental figure 5b-e.  

• Anchor Analysis 

We concatenated the genomic positions of the left and the right anchors for 

each loop to create a 1D anchor list for each deep dataset (FA-DpnII, 

FA+DSG-DpnII, FA+DSG-MNase) derived from both H1-hESC and HFFc6 

cell lines.  

We used BEDtools merge with “--c 1 -o count “ parameters to remove 

redundant anchors (based on their genomic position) and to find the number 

of merged anchors in each genomic location. The number of merged anchors 

in a given genomic locus reflected loop valency at this anchor. Using 

BEDtools 

multiinter(https://bedtools.readthedocs.io/en/latest/content/overview.html) we 

identified the anchors that were shared in 1,2 or 3 protocols (Figure 5a-5b-5c 

and Supplemental Figure 6a-e). 

• Cut&Run, Cut&Tag and ChIP Seq Analysis 

Cut&Run data (HFFc6 H3K4me3, HFFc6 H3K27ac, H1-hESC CTCF, H1-



 178 

hESC H3K4me3, H1-hESC H3K27ac) was generated in the lab of Steve 

Henikoff and can be found on the 4DN Data Portal 

(https://data.4dnucleome.org/). Cut&Tag (HFFc6 CTCF, HFFc6 SMC1) data 

was generated in the lab of René Maehr at UMass Medical school. Finally, 

ChIP Seq data was downloaded from ENCODE. We processed raw fastq files 

for Cut&Run and Cut&Tag data and downloaded already processed bigwig 

and peak lists for ChIP Seq data. We mapped and processed the fastq files 

using nf-core ATAC Seq (35) pipelines. BWA was used for mapping the fastq 

files to the hg38 reference genome; MACS2 (with default parameters) was 

used to find the enriched peaks and BEDtools intersect was subsequently 

used to identify the loop anchors from these enriched peaks. 

We found the intersected anchors between the three protocols (FA-DpnII, 

FA+DSG-DpnII, FA+DSG-MNase) and the FA+DSG-MNase specific anchors 

using bedtools intersect. We extracted the open chromatin (ATAC Seq peaks) 

regions located at these anchors and then aggregated the average signal 

enrichments of CTCF, SMC1, H3K4me3, H3K27ac, YY1 and RNA PolII. 

Deeptools was used to create the enrichment profiles in Figure 5e and 

Supplemental Figure 6f (36). We downloaded the lists of candidate Cis 

Regulatory Elements (cCREs) for H1-hESC and HFFc6 from ENCODE (24) 

and overlapped these cCREs with the intersected anchor list and the 

FA+DSG-MNase anchor list, again using BEDtools intersect. Finally 

separated them based on the cCRE categories. 

To compare the anchor specific enrichments, we used the loop lists of FA-
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DpnII, FA+DSG-DpnII and FA+DSG-MNase. We identified enriched 

convergent CTCF sites located at these loop anchors and compared the 

enrichments of CTCF, SMC1, H3K4me3, H3K27ac, YY1 and RNA PolII per 

anchor. To obtain convergent CTCF sites, we selected Anchor 1 (left anchor) 

to overlap with CTCF sites that had a “+” orientation and a CTCF peak and 

Anchor 2 (right anchor) to overlap with CTCF sites that had a “-” orientation. 

We plotted convergent CTCF sites located at Anchor 1 and Anchor 2 for FA-

DpnII, FA+DSG-DpnII and FA+DSG-MNase in both HFFc6 and H1-hESC.  

For HFFc6, we used Cut&Tag data generated with an antibody against the N-

terminus of CTCF. For H1-hESC cells, we used Cut&Run data generated with 

an antibody against the C-terminus of CTCF. Since CTCF motifs are known to 

locate at the N-terminus of the CTCF protein, the orientation of the CTCF 

enrichments differed between the data sets from Cut&Tag and Cut&Run.  

• Insulation Score 

We calculated diamond insulation scores using cooltools ( 

https://github.com/open2c/cooltools/blob/master/cooltools/cli/diamond_insulati

on.py ) as implemented from Crane et al. We defined the insulation and 

boundary strengths of each 10 kb bin by detecting the local minima of 10 kb 

binned data with a 200kb window size. We used cooltools’s diamond-

insulation function with these parameters: “ --ignore-diags 2, --window-pixels 

20”. We separated weak and strong boundaries using the mean insulation 

score of each protocol ( i.e.: weak boundaries < mean < strong boundaries). 

Since diamond insulation pipelines cannot differentiate between compartment 
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boundaries and insulation boundaries we manually removed the compartment 

boundaries before any further analysis. Therefore the depth in local minima 

here is a result of strong insulation strength not a compartment switch. Next, 

we aggregated the insulation strength of the deep datasets at loop anchors, 

strong boundaries and loop anchors located at the strong boundaries using 

scripts from the hic-data-analysis-bootcamp notebook ( 

https://github.com/hms-dbmi/hic-data-analysis-

bootcamp/blob/master/notebooks/06_analysis_cooltools-snipping-

pileups.ipynb). For both deep and matrix data we used only strong boundaries 

for further analysis since they reflected the true boundaries across protocols. 

Since the position of insulation boundaries was often offset by one or two bins 

between protocols, we extended the boundary bin by 10 kb on each side (30 

kb total) in each protocol. We then used bedtools 

multiinter(https://bedtools.readthedocs.io/en/latest/content/overview.html) to 

count the boundaries that were found in one or more protocols within the cell 

type. We defined our stringent boundary list as the boundaries that were 

shared in at least 50% of the matrix protocols within each cell type and used 

these boundary lists for further comparisons. In heatmaps, we used the 

average insulation strength of these boundaries per protocol. To create the 

heatmaps we used the loop anchors that were shared between the 3 

protocols that were deeply sequenced: FA+DpnII, FA+DSG-DpnII and 

FA+DSG-MNase in both H1-hESC and HFFc6.  
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• Loop quantification for specific genomic separations 

To quantify the loop strengths for HFFc6 deep datasets described (FA-DpnII, 

FA+DSG-DpnII, FA+DSG-MNase), first, we seperated the loops based on 

their genomic separations into 100 kb bins, starting from 70kb (i.e. 70-170-kb, 

170-270kb,...970-1070 kb), because 70kb was the smallest detectable loop 

size and then plotted the number of loops detected in each distance interval 

(Fig. 6d). Since the number of detected loops in these genomic separations 

was different for each library, we sampled 1,000 loops for each distance from 

FA+DSG-DdeI-DpnII to quantify loop enrichments of the 5 libraries. If the 

number of loops at a specified distance was smaller than 1000 we use the 

entire loop set at this distance.  

Finally, we sampled 2,000 loops from each HFFc6 deep dataset, (FA-DpnII, 

FA+DSG-DpnII, FA+DSG-DdeI, FA+DSG-DdeI-DpnII, FA+DSG-MNase), 

combined them and then quantified the loop strength of the total 10,000 loops 

in these deep datasets and in matrix datasets described in Fig. 2.1 a. Loop 

enrichments were quantified as described in the “Quantification of chromatin 

loops” section.  

• Determining the # of reads as a function of fragment size 

10 million reads sampled from 3 experimental conditions; Hi-C 2.5 DdeI, Hi-C 

2.5 DpnII and Hi-C 3.0. Then these reads were mapped to the fragments they 

belong to. In figure we plot the number of interactions mapped to each 

fragment vs the size of the fragment.           
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• Loop quantification for specific genomic separations 

To quantify the loop strengths for HFFc6 deep datasets described in Fig 6d 

(FA-DpnII, FA+DSG-DpnII, FA+DSG-DdeI, FA+DSG-DdeI-DpnII, FA+DSG-

MNase), first, we seperated the loops based on their genomic separations into 

100 kb bins, starting from 70kb (i.e. 70-170-kb, 170-270kb,...970-1070 kb), 

because 70kb was the smallest detectable loop size and then plotted the 

number of loops detected in each distance interval. Since the number of 

detected loops in these genomic separations was different for each library, we 

sampled 1,000 loops for each distance from FA+DSG-DdeI-DpnII to quantify 

loop enrichments of the 5 libraries. If the number of loops at a specified 

distance was smaller than 1000 we use the entire loop set at this distance.  

Finally, we sampled 2,000 loops from each HFFc6 deep dataset, (FA-DpnII, 

FA+DSG-DpnII, FA+DSG-DdeI, FA+DSG-DdeI-DpnII, FA+DSG-MNase), 

combined them and then quantified the loop strength of the total 10,000 loops 

in these deep datasets and in matrix datasets described in Fig. 2.1 a. Loop 

enrichments were quantified as described in the “Quantification of chromatin 

loops” section.  

• Sampling Experiment 

We combined two biological replicates for the deep datasets obtained with 

each of the protocols. We then sampled 10 experiments with different 

numbers of interactions (valid pairs): 200 Million reads, 400 M, ...1800M, 2B 

reads. For each sample we then called and quantified compartment strength, 

and loops exactly as described above. 
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• Visualization of methods  

We used cooler package to create interaction heatmaps of all 3D methods. 

The color scale of each method was determined by the 10th and 90th 

percentile of the data distribution.  

• Processing TSA-Seq, DamID and Replication Timing data 

TSA-Seq, DamID and Replication timing bedGraph files were downloaded 

from 4DN Data Portal. These files were binned to 50kb bins for the 

comparison with 3D methods. Basically the signal in 50kb bins is summed 

during binning.  

• Quantification of preferential interactions 

Interaction heatmaps were sorted using TSA-Seq, DamID and Replication 

timing datasets. The strongest 20% signal is quantified and normalized to the 

non-preferential interactions. Non-preferential interactions are defined as the 

interactions that occur between strong TSA-Seq regions and weak TSA-Seq 

regions.  

• Processing SPRITE data 

SPRITE data for H1-hESC and HFFc6 downloaded from 4DN Data portal. 

Fragments were classified based on their barcode combinations such that 

fragments that have the same barcode combination locate at the same 

cluster. All possible combinations of pairs of fragments within the cluster are 

created. Cooler is used to convert pairs of fragments to interaction matrices.  

Then the methods specified above were used to quantify compartments and 
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TADs. Since the resolution of SPRITE not high enough to call loops; union 

loop lists that are created in Figure 4.5 a and 4.5 b are used to create loop 

pileups.  
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