9 research outputs found

    Provenance for the people: an HCI perspective on the W3C PROV standard through an online game

    Get PDF
    In the information age, tools for examining the validity of data are invaluable. Provenance is one such tool, and the PROV model proposed by the World Wide Web Consortium in 2013 offers a means of expressing provenance in a machine readable format. In this paper, we examine from a user’s standpoint notions of provenance, the accessibility of the PROV model, and the general attitudes towards history and the verifiability of information in modern data society. We do this through the medium of an online-game designed to explore these issues and present the findings of the study along with a discussion of some of its implications

    Visualization of Network Data Provenance

    Get PDF
    Visualization facilitates the understanding of scientific data both through exploration and explanation of the visualized data. Provenance also contributes to the understanding of data by containing the contributing factors behind a result. The visualization of provenance, although supported in existing workflow management systems, generally focuses on small (medium) sized provenance data, lacking techniques to deal with big data with high complexity. This paper discusses visualization techniques developed for exploration and explanation of provenance, including layout algorithm, visual style, graph abstraction techniques, and graph matching algorithm, to deal with the high complexity. We demonstrate through application to two extensively analyzed case studies that involved provenance capture and use over three year projects, the first involving provenance of a satellite imagery ingest processing pipeline and the other of provenance in a large-scale computer network testbed

    NeuroProv: Provenance data visualisation for neuroimaging analyses

    Get PDF
    © 2019 Elsevier Ltd Visualisation underpins the understanding of scientific data both through exploration and explanation of analysed data. Provenance strengthens the understanding of data by showing the process of how a result has been achieved. With the significant increase in data volumes and algorithm complexity, clinical researchers are struggling with information tracking, analysis reproducibility and the verification of scientific output. In addition, data coming from various heterogeneous sources with varying levels of trust in a collaborative environment adds to the uncertainty of the scientific outputs. This provides the motivation for provenance data capture and visualisation support for analyses. In this paper a system, NeuroProv is presented, to visualise provenance data in order to aid in the process of verification of scientific outputs, comparison of analyses, progression and evolution of results for neuroimaging analyses. The experimental results show the effectiveness of visualising provenance data for neuroimaging analyses

    Accountable artefacts: the case of the Carolan guitar

    Get PDF
    We explore how physical artefacts can be connected to digital records of where they have been, who they have encountered and what has happened to them, and how this can enhance their meaning and utility. We describe how a travelling technology probe in the form of an augmented acoustic guitar engaged users in a design conversation as it visited homes, studios, gigs, workshops and lessons, and how this revealed the diversity and utility of its digital record. We describe how this record was captured and flexibly mapped to the physical guitar and proxy artefacts. We contribute a conceptual framework for accountable artefacts that articulates how multiple and complex mappings between physical artefacts and their digital records may be created, appropriated, shared and interrogated to deliver accounts of provenance and use as well as methodological reflections on technology probes

    Workflow Provenance: from Modeling to Reporting

    Get PDF
    Workflow provenance is a crucial part of a workflow system as it enables data lineage analysis, error tracking, workflow monitoring, usage pattern discovery, and so on. Integrating provenance into a workflow system or modifying a workflow system to capture or analyze different provenance information is burdensome, requiring extensive development because provenance mechanisms rely heavily on the modelling, architecture, and design of the workflow system. Various tools and technologies exist for logging events in a software system. Unfortunately, logging tools and technologies are not designed for capturing and analyzing provenance information. Workflow provenance is not only about logging, but also about retrieving workflow related information from logs. In this work, we propose a taxonomy of provenance questions and guided by these questions, we created a workflow programming model 'ProvMod' with a supporting run-time library to provide automated provenance and log analysis for any workflow system. The design and provenance mechanism of ProvMod is based on recommendations from prominent research and is easy to integrate into any workflow system. ProvMod offers Neo4j graph database support to manage semi-structured heterogeneous JSON logs. The log structure is adaptable to any NoSQL technology. For each provenance question in our taxonomy, ProvMod provides the answer with data visualization using Neo4j and the ELK Stack. Besides analyzing performance from various angles, we demonstrate the ease of integration by integrating ProvMod with Apache Taverna and evaluate ProvMod usability by engaging users. Finally, we present two Software Engineering research cases (clone detection and architecture extraction) where our proposed model ProvMod and provenance questions taxonomy can be applied to discover meaningful insights

    Big Data Analytics in Static and Streaming Provenance

    Get PDF
    Thesis (Ph.D.) - Indiana University, Informatics and Computing,, 2016With recent technological and computational advances, scientists increasingly integrate sensors and model simulations to understand spatial, temporal, social, and ecological relationships at unprecedented scale. Data provenance traces relationships of entities over time, thus providing a unique view on over-time behavior under study. However, provenance can be overwhelming in both volume and complexity; the now forecasting potential of provenance creates additional demands. This dissertation focuses on Big Data analytics of static and streaming provenance. It develops filters and a non-preprocessing slicing technique for in-situ querying of static provenance. It presents a stream processing framework for online processing of provenance data at high receiving rate. While the former is sufficient for answering queries that are given prior to the application start (forward queries), the latter deals with queries whose targets are unknown beforehand (backward queries). Finally, it explores data mining on large collections of provenance and proposes a temporal representation of provenance that can reduce the high dimensionality while effectively supporting mining tasks like clustering, classification and association rules mining; and the temporal representation can be further applied to streaming provenance as well. The proposed techniques are verified through software prototypes applied to Big Data provenance captured from computer network data, weather models, ocean models, remote (satellite) imagery data, and agent-based simulations of agricultural decision making

    AcCORD: um modelo colaborativo assíncrono para a reconciliação de dados

    Get PDF
    Reconciliation is the process of providing a consistent view of the data imported from different sources. Despite some efforts reported in the literature for providing data reconciliation solutions with asynchronous collaboration, the challenge of reconciling data when multiple users work asyn- chronously over local copies of the same imported data has received less attention. In this thesis we investigate this challenge. We propose AcCORD, an asynchronous collaborative data reconciliation model. It stores users’ integration decision in logs, called repositories. Repositories keep data prove- nance, that is, the operations applied to the data sources that led to the current state of the data. Each user has her own repository for storing the provenance. That is, whenever inconsistencies among im- ported sources are detected, the user may autonomously take decisions to solve them, and integration decisions that are locally executed are registered in her repository. Integration decisions are shared among collaborators by importing each other’s repositories. Since users may have different points of view, repositories may also be inconsistent. Therefore, AcCORD also introduces several policies that can be applied by different users in order to solve conflicts among repositories and reconcile their integration decisions. Depending on the applied policy, the final view of the imported sources may either be the same for all users, that is, a single integrated view, or result in distinct local views for each of them. Furthermore, AcCORD encompasses a decision integration propagation method, which is aimed to avoid that a user take inconsistent decisions over the same data conflict present in different sources, thus guaranteeing a more effective reconciliation process. AcCORD was validated through performance tests that investigated the proposed policies and through users’ interviews that investigated not only the proposed policies but also the quality of the multiuser reconciliation. The re- sults demonstrated the efficiency and efficacy of AcCORD, and highlighted its flexibility to generate a single integrated view or different local views. The interviews demonstrated different perceptions of the users with regard to the quality of the result provided by AcCORD, including aspects related to consistency, acceptability, correctness, time-saving and satisfaction.Reconciliação é o processo de prover uma visão consistente de dados provenientes de várias fontes de dados. Embora existam na literatura trabalhos voltados à proposta de soluções de reconciliação baseadas em colaboração assíncrona, o desafio de reconciliar dados quando vários usuários colaborativos trabalham de forma assíncrona sobre as mesmas co´pias locais de dados, compartilhando somente eventualmente as suas decisões de integração particulares, tem recebido menos atenção. Nesta tese de doutorado investiga-se esse desafio, por meio da proposta do modelo AcCORD (Asynchronous COllaborative data ReconcIliation moDel). AcCORD é um modelo colaborativo assíncrono para reconciliação de dados no qual as atualizações dos usuários são mantidas em um repositório de operações na forma de dados de procedência. Cada usuário tem o seu próprio repositório para armazenar a procedência e a sua própria cópia das fontes. Ou seja, quando inconsistências entre fontes importadas são detectadas, o usuário pode tomar decisões de integração para resolvê-las de maneira autônoma, e as atualizações que são executadas localmente são registradas em seu próprio repositório. As atualizações são compartilhadas entre colaboradores quando um usuário importa as operações dos repositórios dos demais usuários. Desde que diferentes usuários podem ter diferentes pontos de vista para resolver o mesmo conflito, seus repositórios podem estar inconsistentes. Assim, o modelo Ac- CORD também inclui a proposta de diferentes políticas de reconciliação multiusuário para resolver conflitos entre repositórios. Políticas distintas podem ser aplicadas por diferentes usuários para reconciliar as suas atualizações. Dependendo da política aplicada, a visão final das fontes importadas pode ser a mesma para todos os usuários, ou seja, um única visão global integrada, ou resultar em distintas visões locais para cada um deles. Adicionalmente, o modelo AcCORD também incorpora um método de propagação de decisões de integração, o qual tem como objetivo evitar que um usuário tome decisões inconsistentes a respeito de um mesmo conflito de dado presente em diferentes fontes, garantindo um processo de reconciliação multiusuário mais efetivo. O modelo AcCORD foi validado por meio de testes de desempenho que avaliaram as políticas propostas, e por entrevistas a usuários que avaliaram não somente as políticas propostas mas também a qualidade da reconciliação multiusuário. Os resultados obtidos demonstraram a eficiência e a eficácia do modelo proposto, além de sua flexibilidade para gerar uma visão integrada ou distintas visões locais. As entrevistas realizadas demonstraram diferentes percepções dos usuários quanto à qualidade do resultado provido pelo modelo AcCORD, incluindo aspectos relacionados à consistência, aceitabilidade, corretude, economia de tempo e satisfacão

    Probe-It! Visualization Support for Provenance

    No full text
    Abstract. Visualization is a technique used to facilitate the understanding of scientific results such as large data sets and maps. Provenance techniques can also aid in increasing the understanding and thus acceptance of scientific results by providing access to information about the sources and methods which were used to derive them. Visualization and provenance techniques, although rarely used in combination, may further increase scientists ’ understanding of results since the scientists may be able to use a single tool to see and evaluate result derivation processes including any final or partial result. In this paper we introduce Probe-It!: a visualization tool of scientific provenance information that enables scientists to move the visualization focus from intermediate and final results to provenance back and forth. To evaluate the benefits of Probe-It!, in the context of maps, this paper presents a quantitative user study on how the tool was used by scientists to discriminate between quality results and results with known imperfections. The study demonstrates that only a very small percentage of the scientists tested can identify imperfections using maps without the help of knowledge provenance and that most scientists, whether GIS experts, subject matter experts (i.e., experts on gravity data maps) or not, can identify and explain several kinds of map imperfections when using maps together with knowledge provenance visualization.
    corecore