876,161 research outputs found

    Quantitative model checking of continuous-time Markov chains against timed automata specifications

    Get PDF
    We study the following problem: given a continuous-time Markov chain (CTMC) C, and a linear real-time property provided as a deterministic timed automaton (DTA) A, what is the probability of the set of paths of C that are\ud accepted by A (C satisfies A)? It is shown that this set of paths is measurable and computing its probability can be reduced to computing the reachability probability in a piecewise deterministic Markov process (PDP). The reachability probability is characterized as the least solution of a system of integral equations and is shown to be approximated by solving a system of partial differential equations. For the special case of single-clock DTA, the system of integral equations can be transformed into a system of linear equations where the coefficients are solutions of ordinary differential equations

    Alternate Scheme for Optical Cluster-State Generation without Number-Resolving Photon Detectors

    Get PDF
    We design a controlled-phase gate for linear optical quantum computing by using photodetectors that cannot resolve photon number. An intrinsic error-correction circuit corrects errors introduced by the detectors. Our controlled-phase gate has a 1/4 success probability. Recent development in cluster-state quantum computing has shown that a two-qubit gate with non-zero success probability can build an arbitrarily large cluster state with only polynomial overhead. Hence, it is possible to generate optical cluster states without number-resolving detectors and with polynomial overhead.Comment: 10 pages, 4 figures, 4 tables; made significant revisions and changed forma

    On the Problem of Computing the Probability of Regular Sets of Trees

    Get PDF
    We consider the problem of computing the probability of regular languages of infinite trees with respect to the natural coin-flipping measure. We propose an algorithm which computes the probability of languages recognizable by \emph{game automata}. In particular this algorithm is applicable to all deterministic automata. We then use the algorithm to prove through examples three properties of measure: (1) there exist regular sets having irrational probability, (2) there exist comeager regular sets having probability 00 and (3) the probability of \emph{game languages} Wi,kW_{i,k}, from automata theory, is 00 if kk is odd and is 11 otherwise
    corecore