5,082 research outputs found

    An Imprecise Probability Approach for Abstract Argumentation based on Credal Sets

    Full text link
    Some abstract argumentation approaches consider that arguments have a degree of uncertainty, which impacts on the degree of uncertainty of the extensions obtained from a abstract argumentation framework (AAF) under a semantics. In these approaches, both the uncertainty of the arguments and of the extensions are modeled by means of precise probability values. However, in many real life situations the exact probabilities values are unknown and sometimes there is a need for aggregating the probability values of different sources. In this paper, we tackle the problem of calculating the degree of uncertainty of the extensions considering that the probability values of the arguments are imprecise. We use credal sets to model the uncertainty values of arguments and from these credal sets, we calculate the lower and upper bounds of the extensions. We study some properties of the suggested approach and illustrate it with an scenario of decision making.Comment: 8 pages, 2 figures, Accepted in The 15th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2019

    Probabilistic Argumentation. An Equational Approach

    Get PDF
    There is a generic way to add any new feature to a system. It involves 1) identifying the basic units which build up the system and 2) introducing the new feature to each of these basic units. In the case where the system is argumentation and the feature is probabilistic we have the following. The basic units are: a. the nature of the arguments involved; b. the membership relation in the set S of arguments; c. the attack relation; and d. the choice of extensions. Generically to add a new aspect (probabilistic, or fuzzy, or temporal, etc) to an argumentation network can be done by adding this feature to each component a-d. This is a brute-force method and may yield a non-intuitive or meaningful result. A better way is to meaningfully translate the object system into another target system which does have the aspect required and then let the target system endow the aspect on the initial system. In our case we translate argumentation into classical propositional logic and get probabilistic argumentation from the translation. Of course what we get depends on how we translate. In fact, in this paper we introduce probabilistic semantics to abstract argumentation theory based on the equational approach to argumentation networks. We then compare our semantics with existing proposals in the literature including the approaches by M. Thimm and by A. Hunter. Our methodology in general is discussed in the conclusion

    Probabilistic Argumentation with Epistemic Extensions and Incomplete Information

    Full text link
    Abstract argumentation offers an appealing way of representing and evaluating arguments and counterarguments. This approach can be enhanced by a probability assignment to each argument. There are various interpretations that can be ascribed to this assignment. In this paper, we regard the assignment as denoting the belief that an agent has that an argument is justifiable, i.e., that both the premises of the argument and the derivation of the claim of the argument from its premises are valid. This leads to the notion of an epistemic extension which is the subset of the arguments in the graph that are believed to some degree (which we defined as the arguments that have a probability assignment greater than 0.5). We consider various constraints on the probability assignment. Some constraints correspond to standard notions of extensions, such as grounded or stable extensions, and some constraints give us new kinds of extensions

    A Labelling Framework for Probabilistic Argumentation

    Full text link
    The combination of argumentation and probability paves the way to new accounts of qualitative and quantitative uncertainty, thereby offering new theoretical and applicative opportunities. Due to a variety of interests, probabilistic argumentation is approached in the literature with different frameworks, pertaining to structured and abstract argumentation, and with respect to diverse types of uncertainty, in particular the uncertainty on the credibility of the premises, the uncertainty about which arguments to consider, and the uncertainty on the acceptance status of arguments or statements. Towards a general framework for probabilistic argumentation, we investigate a labelling-oriented framework encompassing a basic setting for rule-based argumentation and its (semi-) abstract account, along with diverse types of uncertainty. Our framework provides a systematic treatment of various kinds of uncertainty and of their relationships and allows us to back or question assertions from the literature

    Empirical Evaluation of Abstract Argumentation: Supporting the Need for Bipolar and Probabilistic Approaches

    Get PDF
    In dialogical argumentation it is often assumed that the involved parties always correctly identify the intended statements posited by each other, realize all of the associated relations, conform to the three acceptability states (accepted, rejected, undecided), adjust their views when new and correct information comes in, and that a framework handling only attack relations is sufficient to represent their opinions. Although it is natural to make these assumptions as a starting point for further research, removing them or even acknowledging that such removal should happen is more challenging for some of these concepts than for others. Probabilistic argumentation is one of the approaches that can be harnessed for more accurate user modelling. The epistemic approach allows us to represent how much a given argument is believed by a given person, offering us the possibility to express more than just three agreement states. It is equipped with a wide range of postulates, including those that do not make any restrictions concerning how initial arguments should be viewed, thus potentially being more adequate for handling beliefs of the people that have not fully disclosed their opinions in comparison to Dung's semantics. The constellation approach can be used to represent the views of different people concerning the structure of the framework we are dealing with, including cases in which not all relations are acknowledged or when they are seen differently than intended. Finally, bipolar argumentation frameworks can be used to express both positive and negative relations between arguments. In this paper we describe the results of an experiment in which participants judged dialogues in terms of agreement and structure. We compare our findings with the aforementioned assumptions as well as with the constellation and epistemic approaches to probabilistic argumentation and bipolar argumentation

    Exploiting Parallelism for Hard Problems in Abstract Argumentation

    Get PDF
    Abstract argumentation framework (AF) is a unifying framework able to encompass a variety of nonmonotonic reasoning approaches, logic programming and computational argumentation. Yet, efficient approaches for most of the decision and enumeration problems associated to AF s are missing, thus potentially limiting the efficacy of argumentation-based approaches in real domains. In this paper, we present an algorithm for enumerating the preferred extensions of abstract argumentation frameworks which exploits parallel computation. To this purpose, the SCC-recursive semantics definition schema is adopted, where extensions are defined at the level of specific sub-frameworks. The algorithm shows significant performance improvements in large frameworks, in terms of number of solutions found and speedup
    • …
    corecore