2,674 research outputs found

    Bring Consciousness to Mobile Robot Being Localized

    Get PDF
    Mobile robot localization is one of the most important problems in robotics research. A number of successful localization solutions have been proposed, among them, the well-known and popular Monte Carlo Localization (MCL) method. However, in all these methods, the robot itself does not carry a notion whether it has or has not been localized, and the success or failure of localization is judged by normally a human operator of the robot. In this paper, we put forth a novel method to bring consciousness to a mobile robot so that the robot can judge by itself whether it has been localized or not without any intervention from human operator. In addition, the robot is capable to notice the change between global localization and position tracking, hence, adjusting itself based on the status of localization. A mobile robot with consciousness being localized is obviously more autonomous and intelligent than one without

    Kalman-variant estimators for state of charge in lithium-sulfur batteries

    Get PDF
    Lithium-sulfur batteries are now commercially available, offering high specific energy density, low production costs and high safety. However, there is no commercially-available battery management system for them, and there are no published methods for determining state of charge in situ. This paper describes a study to address this gap. The properties and behaviours of lithium-sulfur are briefly introduced, and the applicability of ‘standard’ lithium-ion state-of-charge estimation methods is explored. Open-circuit voltage methods and ‘Coulomb counting’ are found to have a poor fit for lithium-sulfur, and model-based methods, particularly recursive Bayesian filters, are identified as showing strong promise. Three recursive Bayesian filters are implemented: an extended Kalman filter (EKF), an unscented Kalman filter (UKF) and a particle filter (PF). These estimators are tested through practical experimentation, considering both a pulse-discharge test and a test based on the New European Driving Cycle (NEDC). Experimentation is carried out at a constant temperature, mirroring the environment expected in the authors' target automotive application. It is shown that the estimators, which are based on a relatively simple equivalent-circuit–network model, can deliver useful results. If the three estimators implemented, the unscented Kalman filter gives the most robust and accurate performance, with an acceptable computational effort

    Mobile robot localization failure recovery

    Get PDF
    Mobile robot localization is one of the most important problems in robotics. Localization is the process of a robot finding out its location given a map of its environment. A number of successful localization solutions have been proposed, among them the well-known and popular Monte Carlo localization method, which is based on particle filters. This thesis proposes a localization approach based on particle filters, using a different way of initializing and resampling of the particles, that reduces the cost of localization. Ultrasonic and light sensors are used in order to perform the experiments. Monte Carlo Localization may fail to localize the robot properly because of the premature convergence of the particles. Using more number of particles increases the computational cost of localization process. Experimental results show that, applying the proposed method robot can successfully localize itself using less number of particles; therefore the cost of localization is decreased
    • …
    corecore