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Abstract 

Mobile robot localization is one of the most important problems in robotics. Localiza­

tion is the process of a robot finding out its location given a map of its environment. 

A number of successful localization solutions have been proposed, among them the 

well-known and popular Monte Carlo localization method, which is based on particle 

niters. This thesis proposes a localization approach based on particle filters, using 

a different way of initializing and resampling of the particles, that reduces the cost 

of localization. Ultrasonic and light sensors are used in order to perform the experi­

ments. Monte Carlo Localization may fail to localize the robot properly because of 

the premature convergence of the particles. Using more number of particles increases 

the computational cost of localization process. Experimental results show that, ap­

plying the proposed method robot can successfully localize itself using less number of 

particles; therefore the cost of localization is decreased. 
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Chapter 1 

Introduction 

Localization is the most fundamental problem to provide a mobile robot with au­

tonomous capabilities. Almost all tasks of mobile robots require a robot to have 

accurate knowledge about its location such as in Robotic Soccer. Mobile robot local­

ization [4] is the problem of determining the position of a mobile robot relative to a 

given map of the environment and using the sensor data. It is often called position 

estimation or position tracking [13]. Let I = (x, y, 8) denote a location, the robot 

pose is usually given by three variables, robot's two location coordinates in the plane 

(x, y) and robot's orientation 9. In probabilistic robotics, the notion of belief bel(Lt) 

is used to reflect the robot's internal knowledge about the state of the environment. 

The state cannot be measured directly. It must be inferred from the measurement 

data and control data. 

Monte Carlo Localization which is based on Particle filters and represents the 

belief bel(xt) of the mobile robot by particles is one of the localization algorithms 

and has already become one of the most popular localization algorithms in robotics. 

It is easy to implement, and tends to work well across a broad range of localization 

problems. Most of the existing approaches can not recover from localization failure 

and kidnapped robot problems. Therefore we need a method to localize the robot 

with higher probability and with ability to recover robot from kidnapping problem. 
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The number of samples to be used is important, since using more number of particles 

will increase the cost of localization. 

The proposed method is an improved approach to localize the mobile robot. It 

recovers the robot from localization failures with high probability. It has some dif­

ferences from the regular MCL algorithm, modified initialization step and modified 

resampling step that helps to reduce some steps of localization and the cost of lo­

calization, and re-generating particles in the case of localization failure that helps 

to prevent the robot from failure in kidnapped robot problem situation. Applying 

the proposed method, it is expected that robot localizes itself with a high probability 

with lower cost. In terms of realization proposed method is much easier to implement, 

since particles are not generated from the very beginning and the cost of localization 

and computational costs are therefore decreased. Localization is done faster and more 

accurate with the use of less number of particles. 

This thesis is only concerned on the localization problems in indoor environments, 

particularly in small-scale room with robot equipped with low-cost sensors. The 

most important aspect of the proposed method is to help the robot to recover from 

localization failure. 

1.1 Outline 

This remainder of the thesis is organized as follows. 

Chapter 2 consists background knowledge. This chapter is focused on the materi­

als that the proposed approach is based on. First, we will introduce the uncertainty 

in robotics and provide a comprehensive overview of probabilistic robotics. Then 

description of basic probabilistic concepts are given. Monte Carlo localization which 

is one of the methods of localization and is the fundament of the proposed method 

is given in more details and finally there is a brief review of the related works in the 

area of mobile robot localization. In chapter 3 the proposed method is presented in 
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details. First the statement of the problem and the general description of our method, 

and then the comparison of the proposed method with the existing methods which 

is followed by the discussion of the experimental results in chapter 4. Experiments 

are performed in different environments to verify the performance of the proposed 

approach. The detailed information of the implementation and the experimental re­

sults are discussed. Finally, we conclude this research work with discussion of possible 

future research directions and open problems in chapter 5. 

3 



Chapter 2 

Background Knowledge 

This chapter provides the background knowledge which the proposed method is based 

on. First, we present basic idea of probabilistic robotics, followed by the definition of 

mobile robot localization and localization algorithm. Then, Monte Carlo localization 

(MCL) algorithm is explained since it is one of the most important probabilistic 

algorithms for mobile robot localization and also the foundation of the proposed 

method followed by implementations of MCL. Then, we describe kidnapped robot 

problem which is a problem that may occur during the localization of the mobile 

robot and will result in localization failure. The summary of the related work to date 

is given at the end. 

2.1 Probabilistic Robotics 

Unlike the previous approaches relying on a single best guess of what might be the 

case; probabilistic algorithms describe the robot and the environment using random 

variable. In particular, there are two basic models involved in probabilistic robotics: 

perception, the way sensor is processed, and action, the way robot behaves. By doing 

so, probabilistic robotics provides a great way to accommodate the uncertainty that 

comes from most robot practice. As a result, they perform excellent in the face of 

uncertainty. 
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In probabilistic robotics, we describe the robot and environments using the notion 

of state, which can be defined as a collection of all aspects of the robot and its 

environment that can impact the future [14]. The state variables that tend to change 

over time will be called dynamic state, such as walking people around the robot. The 

state that does not change is called static state, such as location of walls in buildings. 

The state also involves variables related to robot itself, such as its pose, velocity and 

so on. In this thesis, state is denoted as x; the state at time t is denoted as xt. 

Time defined here is discrete. That is, all states can be described at discrete time 

steps t = 0,1,2,.... The initial state of the robot will be denoted as time t = 0. 

For robot action, the state includes variables for the configuration of the robot's 

actuators. The location and features of surrounding objects in the environment are 

also state variables. An object may be a chair, a box or a wall. Features of these 

objects may be their texture or color. The location of objects in the environment is 

static in this thesis. Many other variables that may impact a robot's operation can 

be state variables as well. The list of all possible state variables is endless. Typical 

state variable used in this thesis is the robot pose that includes robot's location and 

orientation relative to a global coordinate system. Strictly speaking, mobile robots 

have six such state variables, three for Cartesian coordinates, and three for angular 

orientation. But for robots defined in planar environments, the pose is usually given 

by three variables, two location coordinates in the plane and the heading direction. 

There are two fundamental types of interaction between a robot and its environ­

ment: sensor measurements and control actions [14]. 

Sensor measurement is the process in which the robot obtains the information 

about its environment through sensors. Control actions include the robot motion and 

the manipulation of objects in the environment. In accordance with two kinds of 

environment interactions, robot receives two different streams of data: measurement 

data and control data (also referred to as movement data or motion data). 

For measurement data, we use z\lt to denote all measurement data from time 1 
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to time t and zt to denote the measurement data at time t. For movement data, 

we use ui-t to denote all movement data from time 1 to time t and ut to denote 

movement data at time t. For these two kinds of data, localization algorithms based 

on probabilistic robotics [14] have two separate components to process them. One 

is the measurement model, and the other is the motion model. The measurement 

model p(zt \ xt) is the conditional probability of zt at the state xt . The motion 

model comprises the state transition probability p(xt | ut, xt~i), which describes the 

posterior distribution after incorporating the motion data ut at xt-\. 

2.1.1 Map Representation 

Mobile robot localization problem assumes that robot is given a map in advance. If 

the map of the environment is not given to the mobile robot then the robot should 

build the map while trying to localize itself in the environment and that is called 

SLAM (simultaneous localization and mapping). The map specifies the environment 

in which measurements are generated. Formally, a map m is a list of objects in the 

environment with their properties. M = m\, m2, , mn. 

If the map of the environments is not given to the mobile robot, then the robot 

can calculate the posterior over maps given the data. p(m \ z\-t, Xi:t). Let m; denote 

the grid cell with index i. An occupancy grid map partitions the space into finitely 

many grid cells: m = ^2 i. Each m; has attached to it a binary occupancy value, 

which specifies whether a cell is occupied or free. We will write " 1" for occupied and 

"0" for free. The notation p(m, = 1) or p{mi) will refer to a probability that a grid 

cell is occupied. 
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2.2 Mobile Robot Localization and Localization 

Algorithms 

2.2.1 The Bayes Filter and Kalman Filter Algorithms 

The most general algorithm for the state estimation is Bayes filter [14]. It calculates 

the posterior probability bel(xt) according to the measurement and control data as 

follows: 

bel(a;t) = p(xt | z0:U u0-t) 

where xt denotes the robot pose (x, y, 9) at time t, z0:t = ZQ, Z\, ... , zt denotes 

the sensor readings up to t, and uo:t — uo, u\, ... , ut is the control data changing the 

state of the world. The input of Bayes filter is the belief bel(x t-i) at time t — 1, along 

with the most recent control ut, and the most recent measurements zt. The output is 

the belief bel(xt) at time t. The measurements of sensors and the control information 

are corrupted with noise. In order to deal with these uncertainties, Bayes filter is 

conducted in two phases: prediction phase (line 3 of the algorithm), it processes the 

movement data ut , and calculate the state xt using the prior belief over state xt-\ 

and the movement ut. The second step (line 4 of the algorithm) is called update 

phase. It processes the measurement data zt, and incorporate it into bel(x(). But 

the result be\(xt) may not integrate to 1, so it uses the normalization constant r] to 

normalize the result bel(xt). 

The Kalman filter technique is commonly used in local localization. The robot 

estimates its pose continuously by counterbalancing the odometric error using the 

sensor data. Therefore, if the initial pose is accurate and sensor error is small, the 

Kalman filter can provide efficient, accurate, and continuous localization result. 

Mobile robot localization is the problem of determining the pose of a robot in a 

given map of the environment. Localization algorithms are variant implementations 

of the Bayes filter. A Bayes filter is an algorithm used for calculating the probabilities 
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Table 2.1: Bayes Filter Algorithm 

1: 

2: 

3: 

4: 

5: 

6: 

Algorithm Bayes_filter (6e/(xf_i, ut, zt) 

for all xt do 

bel(xt) = J'p(xt\ut, xt^i) bel(xt-i)dxt-i 

bel(xt) = r]p(zt\xt) bel(xt) 

endfor 

return bel(xt) 

of multiple beliefs to allow a robot to infer its position and orientation. Table 2.1 

shows Bayes filter algorithm. 

Localization algorithms based on probabilistic theory are variants of Bayes filter. 

In the context of mobile robot localization, Bayes filters is also known as Markov 

localization [14], [2]. Table 2.2 shows the basic algorithm of Markov localization. 

It is derived from the Bayes filter algorithm with map m of the environment also 

as input (line 1 of the algorithm). The map m is important in the measurement model 

p(zt | xt, m) (line 4 of the algorithm), and is also used in the motion model p(xt \ 

ut, Xt-i, m) (line 3 of the algorithm). The same as Bayes filter, Markov localization 

calculates the probabilistic belief bel(xt) at time t from time t — 1 recursively. 

Markov localization or Bayes filter is independent of the representation of state 

space [14], and it can be implemented by using different state representation methods, 

for example, histogram filter and particle filter. Histogram filter decomposes the state 

space into finite regions and represents the cumulative posterior for each region by 

a single probability value [24]. Particle filter [11] approximates the posterior by a 

finite number of samples which populates the state space, and the samples are drawn 
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Table 2.2: Markov-localization Algorithm 

1: Algorithm Markov_localization(6e/(x t_1), ut, zt, m): 

2: for all xt do 

3: bel(xt) = Jp(xt\ut,xt-1,m) bel(xt-i)dx 

4: bel(ort)=T7 p(zt \ xt, m) bel(xt) 

5: endfor 

6: return bel(xt) 

randomly from the posterior [23], [1]. 

2.3 Categories of Localization Problems 

Localization problem can be classified based on 1) whether the initial pose is known 

to robot or not, 2) weather or not the robot's effectors are controlled, 3) type of the 

environment, and 4) the number of robots. 

2.3.1 Whether the Initial Pose is Known to the Robot 

Localization can be divided into two parts, global position estimation [7] and local 

position tracking [21], [22], [14]. Global position estimation is the ability to determine 

the robot's position in a previously learned map, given no other information than that 

the robot is somewhere in the map. Once a robot has been localized in the map, local 

tracking is the problem of keeping track of that position over time. 
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2.3.2 Weather or Not the Robot's Effectors are Controlled 

Passive localization approaches, do not exploit the opportunity to control the robot's 

effectors during localization. In passive localization, the localization module only 

works as an observer on the robot. Active localization provides setting the robot's 

motion direction and determining the pointing direction of the sensors during local­

ization. The control of the robot does not include facilitating localization. The robot 

might move randomly or do its own jobs. Active localization algorithms control the 

robot in order to minimize the localization error or the costs that risk a poorly local­

ized robot moving into dangerous places. Active approaches for localization problem 

usually have much better localization results than passive ones, such as coastal navi­

gation. 

2.3.3 Type of Environment 

Environments can be static or dynamic. In static environment, only the robot moves 

and all other objects stay at the same location. In dynamic environments, other than 

robot, the location or configuration of other objects change over time. 

2.3.4 Number of Mobile Robots 

The last class of the localization problem is characterized by the number of robots 

included: single-robot localization and multi-robot localization. In single robot case, 

all data only need to be collected on a single robot platform, and no communication 

issue comes in this problem. The multi-robot localization problem is brought by a 

group of robots. The issue of multi-robot localization arises from the representation 

of beliefs and the nature of the communication between them. 

The most important characteristics of the mobile robot localization problems are 

covered in these four categories. In this thesis, we deal with global localization of 

passive localization for a single mobile robot in static environments. 
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2.4 Monte Carlo Localization Algorithm and its 

Implementat ion 

2.4.1 Monte Carlo Localization 

As described in previous section, Kalman niters offer an elegant and efficient algorithm 

for localization. However, the plain Kalman filters is inapplicable to global localization 

problems due to the restrictive nature of the belief representation. In contrast to 

Kalman filtering based techniques; MCL is able to represent multi-modal distributions 

and therefore can globally localize a robot. 

Monte Carlo Localization (MCL) takes a new approach to represent uncertainty 

in mobile robot localization, instead of describing the state space by a probability 

density function; represents it by maintaining a set of samples that are randomly 

drawn from it. Monte Carlo methods are used to update this density representation 

over time. MCL algorithm is the most popular approach to date, since it is easy to 

implement, and works well across a broad range of localization problems. MCL is 

applied to both global and local localization problems. MCL algorithm is shown in 

Table 2.3 [14]. 

Table 2.3 shows the basic MCL algorithm, which is obtained by substituting the 

appropriate probabilistic motion and perceptual models into the algorithm particle 

filters. The basic MCL algorithm represents the belief bel(xt) by a set of M particles 

Xt = xt ,xt, ...,xt . Lines 4 in the algorithm (Table 2.3) samples from the motion 

model, using particles from present belief as starting points. The beam measurement 

model is then applied in line 5 to determine the importance weight of that particle. 

The initial belief bel(xo) is obtained by randomly generating M such particles from 

the prior distribution p(x0), and assigning the uniform importance factor M _ 1 to 

each particle. As the robot gets sensor measurements line 5 of the algorithm, MCL 

assigns importance factors to each particle. Line 8-11 in the MCL algorithm shows 
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the resampling step, and after incorporating the robot motion (line 4). This leads to 

a new particle set with uniform importance weights, but with an increased number 

of particles near the three likely places. The new measurement assigns non-uniform 

importance weights to the particle set. At this point, most of the cumulative prob­

ability mass is centered on the second door, which is also the most likely location. 

Further motion leads to another resampling step, and a step in which a new particle 

set is generated according to the motion model. The particle sets approximate the 

correct posterior, as would be calculated by an exact Bayes filter [14]. 

We have used odometry motion model as the basis for calculating the robot's 

motion over time. Odometry motion model is commonly obtained by integrating 

wheel encoders information. In the updating part according to the sensor reading the 

weight of the particles will be updated. After updating, there is a resampling step 

and then the summation of the weights of all particles should be equal to one. 

2.4.2 Implementation of MCL 

We will describe the implementation of MCL algorithm, in details below. 

(a) Motion Model 

Within the framework of MCL, motion model corresponds to the step sampling 

from the state transition distribution p(xt \ ut, £t-i), which generates a hypothetical 

state xt based on the particle set £t_i and the control ut. The motion model plays 

an essential role in the prediction step of MCL. 

The robot motion of probabilistic robotics conforms to the fact that the outcome 

of a control is uncertain, because of the control noise or un-modeled effects. Therefore, 

the outcome of a control will be represented by a posterior probability. The robot 

motion, formally kinematics, is the calculating of the effect of control actions on the 

configuration of a robot. The configuration of a mobile robot is commonly described 

by three variables, referred as pose (x, y, 6). The pose without orientation is robot's 

location (x, y). The probabilistic kinematic model, or motion model, plays the role 
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of the state transition model p(xt | ut, xt-\) in mobile robotics. The xt and xt-\ are 

both robot poses and ut is a motion command. This model describes the posterior 

distribution over states of kinematic when the motion command ut is executed at 

Xt-\. Fig. 2.1 shows two examples of kinematic model for a mobile robot controlled 

in a planar environment with the robot's pose initialed as xt-\. The shaded area 

shows the distribution p(xt | ut, xt-i): the darker a pose, the more likely it is for the 

robot to be at that location. 

urn. 

Figure 2.1: Probabilistic generation of robot kinematic; (a) A path of moving for­
ward; (b) A path of more complicated motion command [25]. 

There are two common probabilistic motion models for mobile robots: velocity 

motion model and odometry motion model. Velocity motion model assumes robot 

is controlled through two velocities, a rotational and a translational velocity; and 

odometry motion model assumes we have access to odometry information, which is 

commonly obtained by integrating wheel encoder information. Velocity motion model 

calculates the probability p(xt | ut, xt-i) of being at xt after executing the control ut 

at the state xt-\. It assumes that the control is carried out for the fixed short time 

duration t. Odometry motion model is used in our proposed method. 

The odometry information consists of the distance a robot passed and the angle 

a robot rotated. Most of the commercial robots provide odometry using kinematic 

information. NXT has wheel encoders to obtain odomety information. Practical ex­

perience suggests that odometry is usually more accurate than velocity. In odometry 

model, the robot motion in the time interval (t — 1, t] is approximated by a rotation, 
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followed by a translation and a second rotation shown in Fig. 2.2 [14]. Both the turns 

and translation suffer noisy, such as drift and slippage. 

Figure 2.2: Odometry model 

In Fig. 2.2 the robot motion in the time interval (t — l,t] is approximated by a 

rotation 5rot\, followed by a translation 6trans a n d a second rotation 8Tot2- The turns 

and translation are noisy. 

(b) Measurement Model 

Another important model in probabilistic robotics is the measurement model. The 

probabilistic models of sensor measurements p(zt | xt) are essential for the measure­

ment update step in MCL. Measurement models describe the formation process by 

which sensor measurements are generated in physical world. Today's robots use a 

variety of different sensors, such as tactile sensors, range sensors, or cameras. Prob­

abilistic robotics explicitly models the inherent uncertainty in sensor measurements. 

NXT has ultrasonic sensor, touch sensor, light sensor and sound sensor. The ultra­

sonic sensor will return the distance of the NXT to objects. In our experiment, we 

use the ultrasonic sensor measurements in order to recognize if NXT is close to wall 

or any object in the environment and light sensor measurements to recognize obsta­

cles. Then, high weight will be assigned to the particles that are close to the sensor 

reading, and low weight will be given to the rest of particles. The weighted particles 
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are forward to the next step importance sampling. 

(c) Resampling 

Another important component of MCL is known as resampling or importance 

sampling. In our experiment, the algorithm low variance sampling is chosen for 

resampling. The basic idea of low variance sampler includes a sequential stochas­

tic process. Instead of choosing M random numbers and selecting those particles 

that correspond to these random numbers, this algorithm computes a single random 

number and selects samples according to this number but still with a probability pro­

portional to the sample weight. The algorithm showed in Table 2.3 selects particles 

by repeatedly adding the fixed amount M — 1 to r and by choosing the particle that 

corresponds to the resulting number. The while loop at step 8 stops when i is the 

index of the particle such that the corresponding sum of weights exceeds U. Then the 

particle is selected. The low variance sampler is very efficient. At the end, we count 

the number of particles with zero weight and if the "num-zero" variable is equal to or 

greater than half of total number of particles, then a new set of particles is generated. 

In regular MCL when the particles can not localize the robot or in situation like 

kidnapping there is no surviving particles near the location of the robot, there is no 

chance for to robot to recover from failure. But in the extended works that are based 

on MCL they inject random particles to the localization process. In this work when 

we apply the MCL, we calculate the weight of particles; as soon as the weight of all 

particles are zero then a new set of particles is initialized and randomly distributed 

all over the environment. 

2.5 Kidnapped Robot Problem 

Kidnapped robot problem [6], [19], [20] is a variant of global localization problem. It 

happens when a robot that is aware of its location is moved to another location of 

the environment without being told. The kidnapped robot problem is more difficult 

15 



than global localization problem. In global localization problem, robot knows that 

it does not know where it is. In kidnapped robot problem, Robot might believe it 

knows where it is, while it does not. It is commonly used to test a robot's ability to 

recover from localization failures. 

Most of MCL-based works suffer from the kidnapping problem, since this approach 

collapses when the current estimate does not fit observations. There are several exten­

sions to MCL that solves this problem by adding random samples at each iteration. 

2.6 Related Works 

Several authors have demonstrated different methods in the area of mobile robot lo­

calization. The most efficient ones are based on particle filters where the significant 

advantage of particle filter is to globally localize the mobile robot. Fox et al. intro­

duces Monte Carlo Localization for mobile robot localization [1]. Later, they have 

proposed a technique for active localization of mobile robots [2], [3], [10], [9]. 

In [12] combination of existing methods was used to increase the efficiency of lo­

calization, i.e., first global search is made then a local search is performed, in order 

to reduce the probability of finding a local minimum and improving the stability and 

accuracy of solutions near the optimum. Extended Kalman filter (EKF) is used to 

limit the search ares, otherwise the genetic search becomes too costly from the compu­

tational point of view. EKF obtains a seed which is used to estimate a neighborhood, 

where the true value of the state is located, then in this restricted area the most 

accurate solution is searched. Genetic algorithm only works in restricted areas of the 

solution space and as the result it is a fast optimization method. Fitness function 

then focuses the search in a certain neighborhood around the previous estimate, if 

the new generation contains a solution that produces an output that is close enough 

or equal to the desired answer then the problem has been solved. 

In another related work [5] particle filter algorithm is used at first to generate the 
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cluster of particles. Based on sensor readings, which enables the robot to estimate 

some positions with higher probability instead of generating particles that are ran­

domly distributed all over the environment, they have initialized particles just in the 

places that the robot will know it is most probable to be the true position. Genetic 

algorithm is then employed to work on the clusters that have been generated to get 

a unique estimate of the real position of the robot. 

In [7] a multi-robot active localization technique is proposed based on CEAMCL. 

Using CEAMCL, samples are clustered into species which will evolve according to 

a co-evolutionary model derived from the competition of ecological species, and the 

size of the species will adaptively change according to the state of the robot. In 

this way, CEAMCL cannot only prevent premature convergence of MCL but also 

improves its efficiency, so CEAMCL is selected for cooperative localization. In [8] a 

t-test revealed that it is significantly better to apply the active approach than the 

passive one for the global localization task. Kummerle et al. [8] have presented an 

approach to active Monte Carlo localization with a mobile robot using MLS (Multi­

level surface) maps. The approach actively selects the orientation of the laser range 

finder to improve the localization results. To speed up the entire process, a clustering 

operation was applied on the particles and only evaluate potential orientations based 

on these clusters. Their new proposed approach is able to increase the efficiency of the 

localization by minimizing the expected entropy. In contrast to the former approaches 

[8] focus on reducing the computational demands of the active localization. The goal 

of this paper is to develop an active localization method which is able to deal with 

large outdoor environments. 
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Table 2.3: MCL Algorithm 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

Algorithm M.CL(Xt~i,ut, zt,m) 

x t = x t — 4> 

for m = 1 to M do 

x™ = sample — motion — model(ut, x™[) 

tv™ = measurement — model(zt, x\ , m) 

xt=xt+<x
[r\w[r]> 

endfor 

for m = 1 to M do 

draw i with probability a wf' 

add xf to Xt 

endfor 

return Xt 
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Chapter 3 

Mobile Robot Localization Failure 

Recovery 

The description of the proposed method can be found in this chapter. 

3.1 Motivation of Our Method 

Most of the existing approaches can not recover from localization failure and kid­

napped robot problem. Therefore we need a method to localize the robot with higher 

probability and with the ability to recover the robot from kidnapping problem . The 

number of samples to be used is important, since using more number of particles will 

increase the cost of localization. Since almost all tasks of mobile robots require a 

robot to have accurate knowledge about its location, we need a method to localize 

the robot with higher probability and with the ability to be able to recover the mobile 

robot from kidnapping problem or any type of localization failure with the use of less 

number of particles and with higher probability. 
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3.2 The Proposed Method 

3.2.1 Problem Statement 

Localization is the most fundamental problem to provide a mobile robot with au­

tonomous capabilities, therefore the result of the localization task should be accurate 

and reliable to provide the robot an accurate knowledge about its location. Most 

of the existing approaches can not recover from localization failure, for example kid­

napped robot problem which is a variant of localization failure. Therefore we need a 

method to localize the robot with higher probability and with the ability to recover 

the robot from kidnapping problem. The number of samples to be used is important, 

since using more number of particles will increase the cost of localization. Therefore, 

in the proposed method, we are trying to localize the robot with less number of par­

ticles than the other methods in order to reduce the cost of localization and localize 

the robot with higher probability to recover from the failure. 

3.2.2 Description of the Proposed Method 

The proposed method [15] is an improved approach to localize the robot. It recovers 

the robot from localization failures with high probability. Proposed method is based 

on Monte Carlo Localization and has two differences from the regular MCL algorithm, 

first modified initialization step and second modified resampling step. 

It has the ability to re-generate the particles in the case of localization failure. 

Applying the proposed method, it is expected that robot localize itself with a high 

probability with lower cost. Two main advantages of the method, first different way 

of initializing the particles that helps to reduce some steps and the cost of localiza­

tion. Second a new resampling scheme to solve the kidnapped robot problem and 

localization failures. 

Fig. 3.1 shows the proposed algorithm. 
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Figure 3.1: Proposed algorithm. 

In the algorithm which is presented in Fig. 3.1; in first step, robot moves and 

gets the value of its sensors. The value of the ultrasonic sensor which presents the 

distance of the robot to the wall is presented as d0. Whenever the distance of the 

robot to the wall (do) is less than 20cm then the particles are initialized; otherwise 

robot continues moving and getting the sensor data. The distance of the robot to 

wall is set to 20cm in order for robot to stop and turn since when doing the real 

environment experiments, robot should have enough space in order to make a turn. 

After initializing the particles, they are updating and resampling and their weights 

changes as the robot moves. Particle-Checker step checks the condition of failure, if 

the number of the particles with zero weight are greater than half of the total number 

of particles then a new set of particles is generated. 

The experiments are performed in order to evaluate the Error rate for the proposed 

method and Regular MCL for Kidnapped robot Problem using different number of 
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particles. The error rate is calculated as follows: 

Number of times robot cannot localize itself successfully 
Error rate = ——-

Total number or times 

There is a comparison between Error rates for different experimental environ­

ments. In first two cases we calculate Error rate in the simulation environments with 

obstacle and without obstacle. The last two sets of experiments are performed in the 

real environment using NXT. In each set of experiments we run the program for MCL 

and the proposed method 50 times and then draw a graph in order to compare the 

Error rate for each case. 

3.2.3 Initialization of the Particles 

In this part there is a description of the differences of the initialization part in regular 

MCL and the proposed method. In initialization part of regular MCL, as soon as 

MCL runs; particles are generated. There is a uniform distribution of the particles all 

over the environment. As shown in Fig. 3.2 (a) particles all have same weight at the 

time of generation, bel(L0) is uniformly distributed to reflect the global uncertainty 

of the robot. 

In the proposed initialization technique, particles are not generated from the very 

beginning as in Fig. 3.2 (b), they are generated based on sensor reading. As soon as 

robot gets a sensor reading; particles are generated based on the most recent sensor 

reading. The weight of the particles that are close to the location of the sensor reading 

are higher than the other particles. Therefore particles are generated as some cluster 

of particles rather than normally distributed all over the environment as shown in 

Fig. 3.2 (c). Therefore, initial belief of the robot bel(L0) is not uniformly distributed. 

3.2.4 Resampling the Particles 

In this part there is a description of the differences of the resampling part of regular 

MCL and resampling in the proposed method. In the resampling step of regular MCL, 
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Figure 3.2: Initialization: (a) Initialization in regular MCL; (b) Beginning of the local­
ization process; (c) Initialization of the particles base on sensor readings. 
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when robot gets a sensor reading in the resampling part, particles are assigned new 

weights based on new sensor reading. Particles are not re-generated if they do not 

localize the robot correctly. In the proposed resampling technique, algorithm guesses 

possible locations of the robot based on the sensor reading. 

Using motion model this guess is corrected and particles will be assigned new 

weights in the resampling step. As the extension of resampling step; if the weight 

of most of the particles is zero, a new set of particles is generated based on the new 

sensor reading. In other works done, some random particles are added to re-localize 

the robot based on regular MCL. In this method, whenever robot knows that it is 

lost, a new set of particles is generated based on the sensor reading. 

3.2.5 Kidnapped Robot Problem 

In the case of kidnapped robot problem, when robot is taken and placed in another 

location of the environment; first it can not recognize that its location has been 

changed and particles are predicted based on the previous information. When the 

robot gets new sensor readings, since most of the particle's weights become zero, 

based on new resampling method a new set of particles is generated to help the robot 

localize itself and to figure out its true location. 

The following figures illustrate the kidnapped robot situation. At first, when the 

robot is taken and placed in another location of the environment it can not recognize 

of being kidnapped. Particles continue their previous path, but after robot gets new 

sensor readings and the weight of the particles is updated based on that, after the 

"Particle-Checker" part which counts the number of the particles having zero weight, 

if there is more than half of the particles with zero weight then a new set of particles 

is generated based on the sensor reading. In Fig. 3.3 (a) robot is localized, but as 

in Fig. 3.3 (b) it is being kidnapped and lost, and using the proposed resampling 

technique the mobile robot realizes of being kidnapped and it successfully re-localize 

itself as in Fig. 3.3 (c). 
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Figure 3.3: Failure recovery: (a) Mobile robot is localized; (b) Kidnapped robot problem; 
(c) Robot is recovered and re-localized. 
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Chapter 4 

Implementation and Experimental Results 

The implementation of our proposed method and experiment results are described 

in this chapter. Hardware platform and programming environment are presented at 

first, followed by experimental results. 

4.1 Implementation Details 

4.1.1 Hardware Platform and Programming Environment 

In 2006 Lego released MindStorms NXT. It includes a local file system on 256 KB 

flash RAM. In our experiments we changed the original graphical operating system 

inside NXT to LeJOS NX J operating system [28], [29], which is a tiny Java-based 

operating system and is used for LEGO MINDSTORM NXT. NXT has four sensors, 

sound sensor, light sensor, touch sensor and ultrasonic sensor. 

Sound sensor: is the robot's ears. It allows LEGO MINDSTORMS NXT robot to 

hear and is able to measure noise levels in both dB (decibels) and dBA (frequencies 

around 36 kHz where the human ear is most sensitive), as well as recognize sound 

patterns and identify tone differences. 

Touch sensor: is robot's fingers. It reacts to touch and release, enabling NXT to 

"feel". It can detect single or multiple button presses, and reports back to the NXT 
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Intelligent. 

Light sensor: detects light intensity. The Light sensor assists in helping the robot 

to "see". Using the NXT Brick, it enables the robot to distinguish between light 

and dark, as well as determine the light intensity in a room or the light intensity of 

different colors. It can detect lights invisible to human eye such as infrared light. 

Ultrasonic sensor: is robot's eyes, it enables the robot to see and detect objects, 

also it is used to make the robot to avoid obstacles, and sense and measure distances, 

and detect movement. It is able to measure distances from 0 to 255 centimeters with 

a precision of ±3cm. The Ultrasonic sensor uses the same scientific principle as bats: 

it measures distance by calculating the time it takes for a sound wave to hit an object 

and return, just like an echo. Large sized objects with hard surfaces return the best 

readings. Objects made of soft fabric or those that are curved (like a ball) or the ones 

that are very thin or small can be difficult for the sensor to detect. The dynamic test 

revealed two weaknesses of the ultrasonic sensor. The first issue is that it showed 

some areas where the sensor tends to measure 255cm instead of the actual distance. 

The second even more important issue is the critical area in between 25cm and 50cm 

where the sensor has a high probability of returning the wrong value of 48cm. 

NXT also contains a break that is robot's brain, features a powerful 32-bit micro­

processor and flash memory support for Bluetooth and USB 2.0. It has four sensor 

ports and three ports in order to connect the motors to the break. It has a LCD with 

resolution of 100x64. 

The iCommand [30] is used on PC and LeJOS NXT operating system on NXT, 

instead of uploading the program to NXT and letting the NXT run the program itself, 

since memory of NXT is very small. If the program is bigger than memory of the 

NXT, it will not be able to store the program and run it. This limitation of memory is 

solved by using iCommand. The iCommand runs programs on the computer instead 

of NXT, and sends commands to NXT through Bluetooth connection. iCommand 

code runs on PC and iCommand can access to memeory on PC. It controls the NXT 
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Figure 4.1: LEGO MINDSTORM NXT 

brick by sending individual commands wirelessly and can access all devices on PC, 

such as the Internet and other hardware devices. 

Programs are written in Java. In the computer we have to install Eclipse with 

three packages, iCommand.jar which is a Java package to control the NXT brick over 

a Bluetooth connection. RXTXcomm.jar [31] which is a native lib providing serial and 

parallel communication for the Java Development Toolkit(JDK) and Bluecove.jar [32] 

which is a JSR-82(the official Java Bluetooth API) implementation on Java Standard 

Edition (J2SE). Fig. 4.1 shows the construction of NXT for doing the experiments. 

In the experiments light and ultrasonic sensors are used. 

The size of the environment is 80cm x 80cm and the simulation environment size is 

500cmx 500cm. Therefore, we make the movement of NXT and the simulation robot 

simultaneously. The speed of the motors of NXT are set to 60 and NXT-distance = 

10cm. In each step, the distance that NXT moves is calculated as follows: 

NXTJC = NXTJC + NXT.distance * (Math.cos{NXT.A)) 

NXT.Y = NXT.Y + NXT_distance * (Math.sin(NXT-A)). 
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4.2 Experimental Results 

We have performed experiments in two different environments. The environments are 

of the same shape, the only difference is that in the first one there is no obstacle in 

the environment and the shape of the environment is symmetry which is the most 

difficult type of environment for a mobile robot to localize itself. In the second 

one, there is an obstacle in the environment which makes the environment not to be 

symmetry anymore. As soon as robot gets to wall, it recognizes and after updating 

and resmapling parts, there will be more particles next to the wall; since the weight 

of the particles in that area become more than other particles. If after calling the 

function "Particle-Checker" which calculates the number of the particles with zero 

weight, the number of particles with zero wight are more than half of total number 

of the particles then a new set of the particles is generated. 

For each case; we performed experiments for different number of particles, since 

there is no specific number of particles defined for localization task, we compare the 

results of the experiments. The number of the particles that we used is in a large 

range in order to compare different numbers more clear. 

One of the issues that has to be taken into consideration while using the proposed 

method, is the accuracy of the sensors of mobile robot. Robot should have reliable 

sensors in order to get reliable results or the possible error values should be taken 

into consideration. 

4.2.1 Simulation Results 

There are a number of experiments that are performed in the simulation environment. 

For each simulation environment we run regular MCL 50 times for different number 

of particles and then we run the proposed method 50 times for different number of 

particles as well in order to compare number of successful localization. In the figures 

below, the big red circle indicates the mobile robot NXT, and small blue circles 
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indicate the particles. The green square shows the obstacle in the environment. Each 

particle represents a possible position of NXT. As the robot moves, based on the 

motion model, particles are predicted to the new location and as soon as the robot gets 

a sensor reading particles's weight will be updated; particles which are close to the area 

of sensor reading are assigned higher weight compared to other particles. Then in the 

resampling step, since particles with higher weight are chosen more; therefore particles 

which are further from the area of sensor reading are eliminated and the concentration 

of the particles will be in the places next to the sensor reading area which is the true 

location of the mobile robot. Therefore, after some steps particles merge to a group to 

localize the robot and that concentrated group of particles indicates the true location 

of the mobile robot. 

In the previous works done in the field of mobile robot localization, there is no end 

for the localization process. The robot must recognize and stop when it is localized 

and a cluster of particles are correctly localize the location of the robot. Therefore, 

in [27] they have combined MCL and clustering algorithm in order to stop the lo­

calization process when it is successfully completed. In our work since our concern 

is not to implement that part of localization process, we recognize when to stop the 

localization process manually like the other works done in this area as discussed in 

[27]. 

In general, a binomial distribution applies when an experiment is repeated a fixed 

number of times. Each trial of the experiment has two possible outcomes, namely 

success and failure. The probability of success is the same for each trial, and the 

trials are statistically independent. The confidence interval for experimental results 

is determined via P ± za/2\/P(l — P)/n where P is the Error rate and n is the 

number of experiments. For Error type I, which is the case of study in this work, 

a = 0.05 and thus za/2 = 1.96 from the standard normal cumulative probabilities 

table in [26]. Based on this formula if the number of experiments (n) is increased 

then the confidence interval range is decreased. 
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In some situations, there is an estimation on the robot's location with a low 

probability. For example, if based on the information from its sensors it indicates 

that it is next to the wall; then all of the particles which are next to the wall will get 

higher weight. In some other situation, we may have two or more group of particles 

concentrated in the environment in which robot is trying to localize itself such as in 

the symmetry environment. But as the robot moves and gets more information about 

its environment, it can localize itself more accurate until there will be only one group 

of particles in most cases. 

Fig. 4.2, shows the localization process in the environment without any obstacle. 

Fig. 4.2 (a) shows the beginning of the localization process, where the particles are 

not generated yet. At the beginning the initial position of the robot is set as a 

random number. After the mobile robot moves and gets to the border (wall in the 

real environment) then particles are generate based on the sensor reading as shown in 

Fig. 4.2 (b). Fig. 4.2 (c) shows the time which robot has localized itself successfully. 

In the user interface of the program there is three text boxes, as soon as we enter 

the new pose of the robot which contain the new coordinates and the orientation of 

mobile robot and press the "Replace" button. The robot moves to the new location 

and it is being kidnapped. In Fig. 4.2 (d) robot is being kidnapped, but the particles 

still continue their last path since the robot is not aware of being kidnapped and 

Fig. 4.2 (e) shows that robot has localized itself again after being kidnapped based 

on the resampling method. 

Fig. 4.3 shows localization process in the simulation environment with an obstacle. 

Fig. 4.3 (a) shows the beginning of the localization process, where the particles are 

not generated yet. In Fig. 4.3 (b) particles are generated based on sensor information. 

Fig. 4.3 (c) shows the time that the robot is localized. In Fig. 4.3 (d) robot is being 

kidnapped, and Fig. 4.3 (e) shows that robot has recovered from kidnapping problem. 

In Tables 4.1, 4.2 and Figs. 4.4 and 4.5 there is a comparison of performance 

of regular MCL and proposed method for kidnapped robot problem in simulation 
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Figure 4.2: Localization in the first simulation environment : (a) Beginning of localiza­
tion process; (b) Initialization of particles; (c) Mobile robot is localized; (d) 
Robot is kidnapped; (e) Localization failure recovery. 
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Figure 4.3: Localization in the Second simulation environment : (a) Beginning of local­
ization process; (b) Initialization of particles; (c) Robot is kidnapped; (e) 
Localization failure recovery. 
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Table 4.1: Comparison of performance of the proposed method and traditional 
MCL, for kidnapping problem in simulation environment without ob­
stacle. 

Number of Particles 

500 

1000 

1500 

2000 

2500 

Error rate for proposed method (%) 

60±14 

60±14 

52±14 

40±14 

52±14 

Error rate for MCL (%) 

100±0 

90±8 

100±0 

80±11 
72±12 

Table 4.2: Comparison of performance of the proposed method and traditional 
MCL, for kidnapping problem in simulation environment with obstacle. 

Number of Particles 

500 

1000 

1500 

2000 
2500 

Error rate for proposed method (%) 

40±14 

30±13 

32±13 
40±14 

20±11 

Error rate for MCL (%) 

80±11 

70±13 

60±13 
62±10 
46±14 
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Figure 4.4: Simulation environment without obstacle. 
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Figure 4.5: Simulation environment with obstacle. 

environment with and without an obstacle in the environment. It shows the Error 

rate, which is measured in percentage of time averaged over 50 independent runs, 

during which the robot lost track of its position for different number of samples. In 

this case, Error rate describes the percentage of lost positions. The results of the 

experiments when there is an obstacle in the environment is better since presence 

of the obstacle helps the robot to localize itself and removes the symmetry of the 

environment. 

As it is seen in Tables 4.1 Error rate for MCL in simulation environment without 

obstacle when using 2500 particles is 72% which is even higher than using only 500 

number of particles in the proposed method. In Table 4.2 also we can see the higher 

probability of localization by comparing the Error rates in these two methods in 

simulation environment with obstacle. The Error rate when using 2500 particles is 

46% in regular MCL which is more than Error rate of 40% when using the proposed 

method. In same table, when using 500 particles for the localization process, the 

Error rate for the proposed method is 40% and the Error rate for regular MCL is 

80%. Using the proposed method we run the program for 50 times and 20 times out 

of this 50 times the localization process failed. Using regular MCL 40 times out of 
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total runs of 50 were not successful. In same table when using 2500 particles, we see 

that the Error rate for the proposed method has decreased to 20% and for regular 

MCL is decreased to 46%, which indicates 10 unsuccessful results for the proposed 

method using 2500 particles and 24 unsuccessful runs for MCL respectively. 

4.2.2 Experiments Using Real Robot 

We performed two sets of experiments in two different environments in order to make 

sure that the proposed method works well in any type of environment. For each real 

environment we run regular MCL 50 times for different number of particles and then 

we run the proposed method 50 times for different number of particles as well in order 

to compare the results of the number of successful localization times. In each set of 

experiments, we use different number of particles for localization, since the number of 

particles to be used for a specific localization problem is not denned. Therefore, we 

performed experiments with different number of particles for each environment and 

then we can compare the results. 

Figure 4.6: Localization environment without obstacle. 

Fig. 4.6 shows the first real environment with no obstacle in which robot tries 
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Figure 4.7: NXT calculates its distance to the wall. 

to localize itself. In Fig. 4.7, the first time robot gets to the wall and the value of 

ultrasonic sensor is less than 20, robot turns 90 degrees and particles are generated, 

but after that each time when the value of ultrasonic sensor is less than 20 it rotates 

135 degrees. 

Figs. 4.8 and 4.9 show the second environment with one obstacle, which is located 

in the location (100,300) with size (100,100). When the robot gets to the obstacle, the 

weight of the particles in that area will be higher. Generally by an obstacle we mean 

something recognizable by the robot which helps it to localize itself. In most cases 

they use objects since the robots which are used have vision and they can recognize 

different objects by taking pictures and that helps them to localize themselves. Since 

NXT provides light sensor which recognizes different colors from each other, we use 

color tapes as obstacle, therefore when robot gets to the colored tape it will recognize 

it by the value of light sensor and the weight of the particles in that area will be 

higher. 

Fig. 4.8 (a), (b) show the beginning part of the localization, where there is no 

particle generated yet. We put the mobile robot in the experimental environment 

at the location that corresponds to the location of the big circle in the simulation 
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Figure 4.8: Real localization environment with obstacle: (a) Localization environ­
ment with obstacle; (b) NXT is located in a random place; (c) Initial­
ization of particles; (d) Initialization of the particles based on sensor 
data. 
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Figure 4.9: Real localization environment with obstacle: (a) Particles trying to 
localize the robot; (b) Mobile robot trying to localize itself; (c) Particles 
are localizing the robot; (d)Robot is localized. 

39 



Table 4.3: Comparison of performance of the proposed method and traditional 
MCL, for kidnapping problem in real environment without obstacle. 

Number of Particles 

500 

1000 

1500 

2000 

2500 

Error rate for proposed method (%) 

50±14 

40±14 

48±14 

38±13 
40±14 

Error rate for MCL (%) 

100±0 

100±0 

90±8 

80±11 
72±12 

Table 4.4: Comparison of performance of the proposed method and traditional 
MCL, for kidnapping problem in real environment with obstacle. 

Number of Particles 

500 

1000 

1500 
2000 

2500 

Error rate for proposed method (%) 

60±11 
60±14 

40±14 

32±13 

32±13 

Error rate for MCL (%) 

80±11 
72±12 

72±12 
50±14 

40±14 

environment. Fig. 4.8 (c), (d) show the time in which particles are generated since the 

robot gets to the wall. As soon as the real robot turns in the simulation environment 

the big circle which indicates the robot turns as well. Fig. 4.9 (a), (b) show the time 

that the robot is trying to localize itself. Fig. 4.9 (c), (d) show the time when robot 

gets to the obstacle and update the weight of the particles based on that. In the real 

experiments when we enter the new pose of the robot in the simulation environment 

at the same time we take the real robot and locate it in the corresponding location 

in the environment. 

In Tables 4.3, 4.4 and Figs. 4.10 and 4.11 there is a comparison of performance of 

regular MCL and proposed method for kidnapped robot problem in real environment 

using NXT with and without the presence of the obstacle in the environment. They 

show Error rate, which is measured in percentage of time averaged over 50 indepen­

dent runs, during which the robot lost track of its position for different number of 
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Figure 4.10: Real environment without obstacle. 
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Figure 4.11: Real environment with obstacle. 
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samples. It shows the ability of this algorithm to handle kidnapped robot problem. 

The results of the experiments in simulation is better than the result of the experi­

ments performed in the real environment, since in the real environment there is sensor 

and robot's wheels errors that effect the localization process. 

As seen in Tables 4.3 Error rate using 2500 particles is 40% for regular MCL 

which is equal to the Error rate of using 1500 particles in proposed method. In Table 

4.4, for example when using 500 number of particles for the localization process, 

the Error rate for the proposed method is 60% and Error rate for regular MCL is 

80%. The results show that using the proposed method we have run the program for 

this environment 50 times and 30 times out of this 50 times the localization process 

failed. Using regular MCL 40 times out of total runs of 50 were not successful. But, 

for example in same table when using 2500 particles, we see that Error rate for the 

proposed method has decreased to 32% and for regular MCL is decreased to 40%, 

which indicate 16 unsuccessful results for the proposed method using 2500 particles 

and 20 unsuccessful runs for MCL respectively. 

4.2.3 Discussion and Comparison 

We have compared the result of localization for kidnapped robot situation for the 

regular MCL and the proposed method in four different environments. For each 

environment we have performed the experiment 50 times for each method and then 

divide the number of times that the robot could not successfully localize itself by the 

total number of executing the program for that specific number of particles and then 

multiply the result by 100 in order to get the Error rate. 

There are two timing parameters, i.e., the time that the mobile robot localizes it­

self (t{), and computational time required for particles (tp). If we have 1000 particles, 

in each step we have to calculate the new position and assign new weight for each 

particle, however, if there are only 100 particles then the calculations are only per­

formed for 100 particles. Therefore, using large number of particles the time required 
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for each step is increased and so does the computational cost. 

If the number of particles is infinity and robot has infinite amount of time in 

order to localize itself, then using regular MCL it can localize itself, but our concern 

is about the possibility of doing this task; i.e., to implement it, and if possible the 

huge computational cost of large number of particles is the main issue. For example, 

using a Thinkpad Z60m laptop with an Intel Pentium processor at 1.73 GHz and 

512 MB of RAM to perform the experiments, using 500,000 particles, each step of 

localization takes a long time; since the prediction and update functions calculate 

new position and weight of each particle respectively in each step and using 1,000,000 

particles the program could not run on this computer. Therefore, in reality since 

using infinite number of particles or very large number of particles is impossible, we 

require a method to localize the robot with higher probability using the same number 

of particles that is possible to implement and with lower computational cost. In this 

thesis the concern is to get better results of localization; with higher probability of 

success using the same number of particles compared to MCL and less amount of 

localization time £/. 

Regarding U, the time of localization, using the proposed method it takes shorter 

amount of time for mobile robot to localize itself in the case of success. This is illus­

trated in Table 4.5. We have compared the time of localization using 2500 particles 

in order to give a general idea about the time of localization process. Also using 

proposed method the time of generation of particles depends on the initial position 

of mobile robot; how far it is located from the wall or obstacles; since particles are 

generated based on sensor data. It should be noted that the time that it takes the 

mobile robot to localize itself depends on different parameters such as the speed of 

robot. Since we can change the speed of motors through the program, if the speed of 

robot is increased then it will take less time for the robot to localize itself. 

In the comparison that is performed below, t0 is the time that localization pro­

cess starts, ti represents the time of initializing the particles. t2 indicates time of 
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Table 4.5: Timeline of the experiments for the proposed method and MCL. 

Localization process 

Localization starts 
Initialization 

Localization and kidnapping 

Particles are re-generated 
Robot is re-localized 

Timeline 

to 
h 
h 

*3 

u 

Proposed method (sec) 

0 
3 

17 
22 

38 

Regular MCL (sec) 

0 
0 

59 
74 

149 

localization and kidnapping the robot, £3 is the time that particles are re-generated 

and in time £4 robot is re-localized. In the timeline of the regular MCL, particles are 

generated in time ti from the beginning of localization process which is equal to to. ti 

is the time that robot has successfully localized itself and being kidnapped. £3 is the 

time of re-generating the particles randomly all over the environment after detecting 

that the weight of all particles are zero. At £4 robot is re-localized and it is recovered 

from the failure. This timeline is obtained from one of the successful runs in order 

to compare the time that it takes the mobile robot to localize itself; for comparing 

the time of localization process. Also, it is pointed out that if identical number of 

particles are used, the proposed method is faster than MCL, as it is shown in Table 

4.5. 

Tables 4.1, 4.2, 4.3, 4.4 and Figs. 4.4, 4.5, 4.10 and 4.11 show that the proposed 

algorithm succussed with more probability in mobile robot localization process after 

comparing the Error rate for each case. 

Fig. 4.12 and 4.13 show the result of using regular MCL. Fig. 4.12 shows the en­

vironment without any obstacle. In Fig. 4.12 (a) particles are generated randomly all 

over the environment. Then, after some random movements mobile robot is localized 

and the particles which are gathered in a group of particles are localizing the robot in 

Fig. 4.12 (b). In Fig. 4.12 (c) mobile robot is being kidnapped, it is taken and placed 

in another location of the environment. Respectively Fig. 4.13 shows the localiza­

tion using MCL algorithm in an environment with obstacle. It shows initialization of 
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the particles, and Fig. 4.13 (a) shows the initialization of the particles, Fig. 4.13 (b) 

shows the time when the robot is localized, and Fig. 4.13 (c) shows the time when 

the mobile robot is kidnapped. 

As shown in the experimental results, the results are better with higher number of 

particles. It is obvious that using more number of particles helps the robot to localize 

itself with higher accuracy since the number of particles that get higher weight are 

more; therefore, robot loses track of its location with lower probability. We don't 

want to use large number of particles; therefore, we search for an algorithm to reduce 

the number of particles during the localization task, in order to reduce the cost of 

localization. Using more number of particles will result in higher cost of localizing the 

mobile robot. By using the new way of initialization, since particles are not generated 

from the beginning all over the environment and there is no estimation of the robot's 

position in the time of initialization process, it reduces the cost of localization by 

using less number of particles for a successful localization and it also help to reduce 

the time of localization. 

As conclusion, experimental results show that we have reached both lower cost in 

the localization process and also higher probably of localization failure recovery. The 

lower cost is reached by using less number of particles and ability to recover from 

the failure is gained by checking the particles with zero weight and decide weather to 

re-generate the particle set. 
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Figure 4.12: Localization using MCL in environment without obstacle, (a) Particles 
are generated randomly; (b) Robot is localized; (c) Robot is being 
kidnapped. 
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Figure 4.13: Localization using MCL in environment with an obstacle, (a) Initial­
ization of the particles; (b) Mobile robot is localized; (c) Robot is being 
kidnapped. 
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Chapter 5 

Conclusion and Future Work 

This chapter concludes this research work with discussion of possible future research 

directions and open problems. 

5.1 Conclusion 

Most of the existing approaches can not recover from localization failure and kid­

napped robot problem. Therefore we need a method to localize the robot with higher 

probability and with the ability to recover the robot from kidnapping problem . The 

number of samples to be used is important, since using more number of particles will 

increase the cost of localization. 

The proposed method is an improved approach to localize the robot. It recovers 

the robot from localization failures with high probability. Proposed method is based 

on Monte Carlo Localization and has two differences from the regular MCL algorithm, 

first modified initialization step and second modified resampling step. It has the 

ability to re-generate the particles in the case of localization failure. Applying the 

proposed method, it is expected that robot localizes itself with a high probability with 

lower cost. Two main advantages of the method, first different way of initializing the 

particles that helps to reduce some steps and the cost of localization. Second a new 

resampling scheme to solve the kidnapped robot problem and localization failures. 
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This method can be applied to most type of environments, in order to localize the 

mobile robots. In regular MCL, the number of samples to be used is generally kept 

very high in order to cover all the space and converge to the right position. The cost 

of localization is low; since particles are not generated from the very. Using more 

number of particles will result in higher cost of localizing the mobile robot. By using 

the new way of initialization, since particles are not generated from the beginning 

all over the environment in the time of initialization process, it reduces the cost of 

localization by using less number of particles for a successful localization and it also 

helps to reduce the time of localization. As conclusion, experimental results show that 

we have reached both lower cost in the localization process and also higher probably 

of localization failure recovery. The lower cost is reached by using less number of 

particles, and ability to recover from the failure is gained by checking the particles 

with zero weight and decide weather to re-generate the particle set. 

5.2 Future Work 

The localization described in our approach is being implemented using one mobile 

robot. Therefore, one objective for future research is to do the localization task using 

multi-robot and the proposed method. 

In dynamic environments, other than robot, the location or configuration of other 

objects such as people and movable furniture changes over time. Most real envi­

ronments are dynamic; localization in dynamic environments is more difficult than in 

static ones. Another possible extension of this work is to use this method to efficiently 

localize mobile robot in dynamic environments. 
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