
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2010

Mobile robot localization failure recovery Mobile robot localization failure recovery

Sepideh Seifzadeh
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Seifzadeh, Sepideh, "Mobile robot localization failure recovery" (2010). Electronic Theses and
Dissertations. 7867.
https://scholar.uwindsor.ca/etd/7867

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7867&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7867?utm_source=scholar.uwindsor.ca%2Fetd%2F7867&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

MOBILE ROBOT LOCALIZATION FAILURE RECOVERY

by

Sepideh Seifzadeh

A Thesis
Submitted to the Faculty of Graduate Studies

through School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada

2010

© 2010 Sepideh Seifzadeh

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de i'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-62736-5
Our file Notre reference
ISBN: 978-0-494-62736-5

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lntemet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• + •

Canada

Declaration of Co-Authorship/Previous

Publications

In all cases, the key ideas, primary contributions, experimental designs, data analysis

and interpretation, were performed by the author, and the contribution of co-authors

was primarily through the provision of corrections and constructive criticism. I am

aware of the University of Windsor Senate Policy on Authorship and I certify that

I have properly acknowledged the contribution of other researchers to my thesis,and

have obtained written permission from each of the co-author (s) to include the above

material(s) in my thesis. I certify that, with the above qualification, this thesis, and

the research to which it refers, is the product of my own work. This thesis includes

1 original paper that has been previously published, as follows:

Authors

S. Seifzadeh,

D. Wu, Y.

Wang

Publication title/full citation

"Cost-effective Active Localization Technique

for Mobile Robots"; IEEE International Confer­

ence on Robotics and Biomimetics, 2009

Publication

status

Published

I hereby certify that I have obtained a written permission from the copyright

owner(s) to include the above published material(s) in my thesis. I certify that the

above material describes work completed during my registration as graduate student

at the University of Windsor.

in

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone's copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix. I declare that this is a true copy of my thesis,

including any final revisions, as approved by my thesis committee and the Graduate

Studies office, and that this thesis has not been submitted for a higher degree to any

other University or Institution.

IV

Abstract

Mobile robot localization is one of the most important problems in robotics. Localiza­

tion is the process of a robot finding out its location given a map of its environment.

A number of successful localization solutions have been proposed, among them the

well-known and popular Monte Carlo localization method, which is based on particle

niters. This thesis proposes a localization approach based on particle filters, using

a different way of initializing and resampling of the particles, that reduces the cost

of localization. Ultrasonic and light sensors are used in order to perform the experi­

ments. Monte Carlo Localization may fail to localize the robot properly because of

the premature convergence of the particles. Using more number of particles increases

the computational cost of localization process. Experimental results show that, ap­

plying the proposed method robot can successfully localize itself using less number of

particles; therefore the cost of localization is decreased.

v

Dedication

I would like to dedicate this thesis to my mother and the memory of my father.

VI

Acknowledgements

I would like to express my gratitude to all those who gave me the possibility to

complete this thesis. I am grateful to each of my thesis committee members, whose

individual and collaborative efforts and guidance have made this endeavour an un­

forgettable experience, characterized by academic and professional growth and self-

discovery. I wish to thank my advisor, Dr. Dan Wu for his constant support during

my thesis work and through completion of my degree requirements and research.

Without his support, this thesis could not have been completed. I also would like to

thank members of my master committee, Dr. Scott Goodwin, School of Computer

Science, Dr. Chunhong Chen, Department of Electrical and Computer Engineering,

for being in my committee, and their constructive criticism, helpful advices, and

guidance, and to Dr. Jianguo Lu, the chair of the committee.

vn

Table of Contents

Page

Declaration of Previous Publications iii

Abstract v

Dedication vi

Acknowledgements vii

List of Tables x

List of Figures xi

Chapter

1 Introduction 1

1.1 Outline 2

2 Background Knowledge 4

2.1 Probabilistic Robotics 4

2.1.1 Map Representation 6

2.2 Mobile Robot Localization and Localization Algorithms 7

2.2.1 The Bayes Filter and Kalman Filter Algorithms 7

2.3 Categories of Localization Problems 9

2.3.1 Whether the Initial Pose is Known to the Robot 9

2.3.2 Weather or Not the Robot's Effectors are Controlled 10

2.3.3 Type of Environment 10

2.3.4 Number of Mobile Robots 10

2.4 Monte Carlo Localization Algorithm and its Implementation 11

vm

2.4.1 Monte Carlo Localization 11

2.4.2 Implementation of MCL 12

2.5 Kidnapped Robot Problem 15

2.6 Related Works 16

3 Mobile Robot Localization Failure Recovery 19

3.1 Motivation of Our Method 19

3.2 The Proposed Method 20

3.2.1 Problem Statement 20

3.2.2 Description of the Proposed Method 20

3.2.3 Initialization of the Particles 22

3.2.4 Resampling the Particles 22

3.2.5 Kidnapped Robot Problem 24

4 Implementation and Experimental Results 26

4.1 Implementation Details 26

4.1.1 Hardware Platform and Programming Environment 26

4.2 Experimental Results 29

4.2.1 Simulation Results 29

4.2.2 Experiments Using Real Robot 36

4.2.3 Discussion and Comparison 42

5 Conclusion and Future Work 48

5.1 Conclusion 48

5.2 Future Work 49

References 50

Vita Auctoris 54

IX

List of Tables

2.1 Bayes Filter Algorithm 8

2.2 Markov-localization Algorithm 9

2.3 MCL Algorithm 18

4.1 Comparison of performance of the proposed method and traditional

MCL, for kidnapping problem in simulation environment without ob­

stacle 34

4.2 Comparison of performance of the proposed method and traditional

MCL, for kidnapping problem in simulation environment with obstacle. 34

4.3 Comparison of performance of the proposed method and traditional

MCL, for kidnapping problem in real environment without obstacle. . 40

4.4 Comparison of performance of the proposed method and traditional

MCL, for kidnapping problem in real environment with obstacle. . . . 40

4.5 Timeline of the experiments for the proposed method and MCL. . . . 44

x

List of Figures

2.1 Probabilistic generation of robot kinematic; (a) A path of moving for­

ward; (b) A path of more complicated motion command [25] 13

2.2 Odometry model 14

3.1 Proposed algorithm 21

3.2 Initialization: (a) Initialization in regular MCL; (b) Beginning of the local­

ization process; (c) Initialization of the particles base on sensor readings. . 23

3.3 Failure recovery: (a) Mobile robot is localized; (b) Kidnapped robot prob­

lem; (c) Robot is recovered and re-localized 25

4.1 LEGO MINDSTORM NXT 28

4.2 Localization in the first simulation environment : (a) Beginning of localiza­

tion process; (b) Initialization of particles; (c) Mobile robot is localized; (d)

Robot is kidnapped; (e) Localization failure recovery. 32

4.3 Localization in the Second simulation environment : (a) Beginning of local­

ization process; (b) Initialization of particles; (c) Robot is kidnapped; (e)

Localization failure recovery. 33

4.4 Simulation environment without obstacle 34

4.5 Simulation environment with obstacle 35

4.6 Localization environment without obstacle 36

4.7 NXT calculates its distance to the wall 37

XI

4.8 Real localization environment with obstacle: (a) Localization environ­

ment with obstacle; (b) NXT is located in a random place; (c) Initial­

ization of particles; (d) Initialization of the particles based on sensor

data 38

4.9 Real localization environment with obstacle: (a) Particles trying to

localize the robot; (b) Mobile robot trying to localize itself; (c) Particles

are localizing the robot; (d)Robot is localized 39

4.10 Real environment without obstacle 41

4.11 Real environment with obstacle 41

4.12 Localization using MCL in environment without obstacle, (a) Particles

are generated randomly; (b) Robot is localized; (c) Robot is being

kidnapped 46

4.13 Localization using MCL in environment with an obstacle, (a) Initial­

ization of the particles; (b) Mobile robot is localized; (c) Robot is being

kidnapped 47

xii

Chapter 1

Introduction

Localization is the most fundamental problem to provide a mobile robot with au­

tonomous capabilities. Almost all tasks of mobile robots require a robot to have

accurate knowledge about its location such as in Robotic Soccer. Mobile robot local­

ization [4] is the problem of determining the position of a mobile robot relative to a

given map of the environment and using the sensor data. It is often called position

estimation or position tracking [13]. Let I = (x, y, 8) denote a location, the robot

pose is usually given by three variables, robot's two location coordinates in the plane

(x, y) and robot's orientation 9. In probabilistic robotics, the notion of belief bel(Lt)

is used to reflect the robot's internal knowledge about the state of the environment.

The state cannot be measured directly. It must be inferred from the measurement

data and control data.

Monte Carlo Localization which is based on Particle filters and represents the

belief bel(xt) of the mobile robot by particles is one of the localization algorithms

and has already become one of the most popular localization algorithms in robotics.

It is easy to implement, and tends to work well across a broad range of localization

problems. Most of the existing approaches can not recover from localization failure

and kidnapped robot problems. Therefore we need a method to localize the robot

with higher probability and with ability to recover robot from kidnapping problem.

1

The number of samples to be used is important, since using more number of particles

will increase the cost of localization.

The proposed method is an improved approach to localize the mobile robot. It

recovers the robot from localization failures with high probability. It has some dif­

ferences from the regular MCL algorithm, modified initialization step and modified

resampling step that helps to reduce some steps of localization and the cost of lo­

calization, and re-generating particles in the case of localization failure that helps

to prevent the robot from failure in kidnapped robot problem situation. Applying

the proposed method, it is expected that robot localizes itself with a high probability

with lower cost. In terms of realization proposed method is much easier to implement,

since particles are not generated from the very beginning and the cost of localization

and computational costs are therefore decreased. Localization is done faster and more

accurate with the use of less number of particles.

This thesis is only concerned on the localization problems in indoor environments,

particularly in small-scale room with robot equipped with low-cost sensors. The

most important aspect of the proposed method is to help the robot to recover from

localization failure.

1.1 Outline

This remainder of the thesis is organized as follows.

Chapter 2 consists background knowledge. This chapter is focused on the materi­

als that the proposed approach is based on. First, we will introduce the uncertainty

in robotics and provide a comprehensive overview of probabilistic robotics. Then

description of basic probabilistic concepts are given. Monte Carlo localization which

is one of the methods of localization and is the fundament of the proposed method

is given in more details and finally there is a brief review of the related works in the

area of mobile robot localization. In chapter 3 the proposed method is presented in

2

details. First the statement of the problem and the general description of our method,

and then the comparison of the proposed method with the existing methods which

is followed by the discussion of the experimental results in chapter 4. Experiments

are performed in different environments to verify the performance of the proposed

approach. The detailed information of the implementation and the experimental re­

sults are discussed. Finally, we conclude this research work with discussion of possible

future research directions and open problems in chapter 5.

3

Chapter 2

Background Knowledge

This chapter provides the background knowledge which the proposed method is based

on. First, we present basic idea of probabilistic robotics, followed by the definition of

mobile robot localization and localization algorithm. Then, Monte Carlo localization

(MCL) algorithm is explained since it is one of the most important probabilistic

algorithms for mobile robot localization and also the foundation of the proposed

method followed by implementations of MCL. Then, we describe kidnapped robot

problem which is a problem that may occur during the localization of the mobile

robot and will result in localization failure. The summary of the related work to date

is given at the end.

2.1 Probabilistic Robotics

Unlike the previous approaches relying on a single best guess of what might be the

case; probabilistic algorithms describe the robot and the environment using random

variable. In particular, there are two basic models involved in probabilistic robotics:

perception, the way sensor is processed, and action, the way robot behaves. By doing

so, probabilistic robotics provides a great way to accommodate the uncertainty that

comes from most robot practice. As a result, they perform excellent in the face of

uncertainty.

4

In probabilistic robotics, we describe the robot and environments using the notion

of state, which can be defined as a collection of all aspects of the robot and its

environment that can impact the future [14]. The state variables that tend to change

over time will be called dynamic state, such as walking people around the robot. The

state that does not change is called static state, such as location of walls in buildings.

The state also involves variables related to robot itself, such as its pose, velocity and

so on. In this thesis, state is denoted as x; the state at time t is denoted as xt.

Time defined here is discrete. That is, all states can be described at discrete time

steps t = 0,1,2,.... The initial state of the robot will be denoted as time t = 0.

For robot action, the state includes variables for the configuration of the robot's

actuators. The location and features of surrounding objects in the environment are

also state variables. An object may be a chair, a box or a wall. Features of these

objects may be their texture or color. The location of objects in the environment is

static in this thesis. Many other variables that may impact a robot's operation can

be state variables as well. The list of all possible state variables is endless. Typical

state variable used in this thesis is the robot pose that includes robot's location and

orientation relative to a global coordinate system. Strictly speaking, mobile robots

have six such state variables, three for Cartesian coordinates, and three for angular

orientation. But for robots defined in planar environments, the pose is usually given

by three variables, two location coordinates in the plane and the heading direction.

There are two fundamental types of interaction between a robot and its environ­

ment: sensor measurements and control actions [14].

Sensor measurement is the process in which the robot obtains the information

about its environment through sensors. Control actions include the robot motion and

the manipulation of objects in the environment. In accordance with two kinds of

environment interactions, robot receives two different streams of data: measurement

data and control data (also referred to as movement data or motion data).

For measurement data, we use z\lt to denote all measurement data from time 1

5

to time t and zt to denote the measurement data at time t. For movement data,

we use ui-t to denote all movement data from time 1 to time t and ut to denote

movement data at time t. For these two kinds of data, localization algorithms based

on probabilistic robotics [14] have two separate components to process them. One

is the measurement model, and the other is the motion model. The measurement

model p(zt \ xt) is the conditional probability of zt at the state xt . The motion

model comprises the state transition probability p(xt | ut, xt~i), which describes the

posterior distribution after incorporating the motion data ut at xt-\.

2.1.1 Map Representation

Mobile robot localization problem assumes that robot is given a map in advance. If

the map of the environment is not given to the mobile robot then the robot should

build the map while trying to localize itself in the environment and that is called

SLAM (simultaneous localization and mapping). The map specifies the environment

in which measurements are generated. Formally, a map m is a list of objects in the

environment with their properties. M = m\, m2, , mn.

If the map of the environments is not given to the mobile robot, then the robot

can calculate the posterior over maps given the data. p(m \ z\-t, Xi:t). Let m; denote

the grid cell with index i. An occupancy grid map partitions the space into finitely

many grid cells: m = ^2 i. Each m; has attached to it a binary occupancy value,

which specifies whether a cell is occupied or free. We will write " 1" for occupied and

"0" for free. The notation p(m, = 1) or p{mi) will refer to a probability that a grid

cell is occupied.

6

2.2 Mobile Robot Localization and Localization

Algorithms

2.2.1 The Bayes Filter and Kalman Filter Algorithms

The most general algorithm for the state estimation is Bayes filter [14]. It calculates

the posterior probability bel(xt) according to the measurement and control data as

follows:

bel(a;t) = p(xt | z0:U u0-t)

where xt denotes the robot pose (x, y, 9) at time t, z0:t = ZQ, Z\, ... , zt denotes

the sensor readings up to t, and uo:t — uo, u\, ... , ut is the control data changing the

state of the world. The input of Bayes filter is the belief bel(x t-i) at time t — 1, along

with the most recent control ut, and the most recent measurements zt. The output is

the belief bel(xt) at time t. The measurements of sensors and the control information

are corrupted with noise. In order to deal with these uncertainties, Bayes filter is

conducted in two phases: prediction phase (line 3 of the algorithm), it processes the

movement data ut , and calculate the state xt using the prior belief over state xt-\

and the movement ut. The second step (line 4 of the algorithm) is called update

phase. It processes the measurement data zt, and incorporate it into bel(x(). But

the result be\(xt) may not integrate to 1, so it uses the normalization constant r] to

normalize the result bel(xt).

The Kalman filter technique is commonly used in local localization. The robot

estimates its pose continuously by counterbalancing the odometric error using the

sensor data. Therefore, if the initial pose is accurate and sensor error is small, the

Kalman filter can provide efficient, accurate, and continuous localization result.

Mobile robot localization is the problem of determining the pose of a robot in a

given map of the environment. Localization algorithms are variant implementations

of the Bayes filter. A Bayes filter is an algorithm used for calculating the probabilities

7

Table 2.1: Bayes Filter Algorithm

1:

2:

3:

4:

5:

6:

Algorithm Bayes_filter (6e/(xf_i, ut, zt)

for all xt do

bel(xt) = J'p(xt\ut, xt^i) bel(xt-i)dxt-i

bel(xt) = r]p(zt\xt) bel(xt)

endfor

return bel(xt)

of multiple beliefs to allow a robot to infer its position and orientation. Table 2.1

shows Bayes filter algorithm.

Localization algorithms based on probabilistic theory are variants of Bayes filter.

In the context of mobile robot localization, Bayes filters is also known as Markov

localization [14], [2]. Table 2.2 shows the basic algorithm of Markov localization.

It is derived from the Bayes filter algorithm with map m of the environment also

as input (line 1 of the algorithm). The map m is important in the measurement model

p(zt | xt, m) (line 4 of the algorithm), and is also used in the motion model p(xt \

ut, Xt-i, m) (line 3 of the algorithm). The same as Bayes filter, Markov localization

calculates the probabilistic belief bel(xt) at time t from time t — 1 recursively.

Markov localization or Bayes filter is independent of the representation of state

space [14], and it can be implemented by using different state representation methods,

for example, histogram filter and particle filter. Histogram filter decomposes the state

space into finite regions and represents the cumulative posterior for each region by

a single probability value [24]. Particle filter [11] approximates the posterior by a

finite number of samples which populates the state space, and the samples are drawn

8

Table 2.2: Markov-localization Algorithm

1: Algorithm Markov_localization(6e/(x t_1), ut, zt, m):

2: for all xt do

3: bel(xt) = Jp(xt\ut,xt-1,m) bel(xt-i)dx

4: bel(ort)=T7 p(zt \ xt, m) bel(xt)

5: endfor

6: return bel(xt)

randomly from the posterior [23], [1].

2.3 Categories of Localization Problems

Localization problem can be classified based on 1) whether the initial pose is known

to robot or not, 2) weather or not the robot's effectors are controlled, 3) type of the

environment, and 4) the number of robots.

2.3.1 Whether the Initial Pose is Known to the Robot

Localization can be divided into two parts, global position estimation [7] and local

position tracking [21], [22], [14]. Global position estimation is the ability to determine

the robot's position in a previously learned map, given no other information than that

the robot is somewhere in the map. Once a robot has been localized in the map, local

tracking is the problem of keeping track of that position over time.

9

2.3.2 Weather or Not the Robot's Effectors are Controlled

Passive localization approaches, do not exploit the opportunity to control the robot's

effectors during localization. In passive localization, the localization module only

works as an observer on the robot. Active localization provides setting the robot's

motion direction and determining the pointing direction of the sensors during local­

ization. The control of the robot does not include facilitating localization. The robot

might move randomly or do its own jobs. Active localization algorithms control the

robot in order to minimize the localization error or the costs that risk a poorly local­

ized robot moving into dangerous places. Active approaches for localization problem

usually have much better localization results than passive ones, such as coastal navi­

gation.

2.3.3 Type of Environment

Environments can be static or dynamic. In static environment, only the robot moves

and all other objects stay at the same location. In dynamic environments, other than

robot, the location or configuration of other objects change over time.

2.3.4 Number of Mobile Robots

The last class of the localization problem is characterized by the number of robots

included: single-robot localization and multi-robot localization. In single robot case,

all data only need to be collected on a single robot platform, and no communication

issue comes in this problem. The multi-robot localization problem is brought by a

group of robots. The issue of multi-robot localization arises from the representation

of beliefs and the nature of the communication between them.

The most important characteristics of the mobile robot localization problems are

covered in these four categories. In this thesis, we deal with global localization of

passive localization for a single mobile robot in static environments.

10

2.4 Monte Carlo Localization Algorithm and its

Implementat ion

2.4.1 Monte Carlo Localization

As described in previous section, Kalman niters offer an elegant and efficient algorithm

for localization. However, the plain Kalman filters is inapplicable to global localization

problems due to the restrictive nature of the belief representation. In contrast to

Kalman filtering based techniques; MCL is able to represent multi-modal distributions

and therefore can globally localize a robot.

Monte Carlo Localization (MCL) takes a new approach to represent uncertainty

in mobile robot localization, instead of describing the state space by a probability

density function; represents it by maintaining a set of samples that are randomly

drawn from it. Monte Carlo methods are used to update this density representation

over time. MCL algorithm is the most popular approach to date, since it is easy to

implement, and works well across a broad range of localization problems. MCL is

applied to both global and local localization problems. MCL algorithm is shown in

Table 2.3 [14].

Table 2.3 shows the basic MCL algorithm, which is obtained by substituting the

appropriate probabilistic motion and perceptual models into the algorithm particle

filters. The basic MCL algorithm represents the belief bel(xt) by a set of M particles

Xt = xt ,xt, ...,xt . Lines 4 in the algorithm (Table 2.3) samples from the motion

model, using particles from present belief as starting points. The beam measurement

model is then applied in line 5 to determine the importance weight of that particle.

The initial belief bel(xo) is obtained by randomly generating M such particles from

the prior distribution p(x0), and assigning the uniform importance factor M _ 1 to

each particle. As the robot gets sensor measurements line 5 of the algorithm, MCL

assigns importance factors to each particle. Line 8-11 in the MCL algorithm shows

11

the resampling step, and after incorporating the robot motion (line 4). This leads to

a new particle set with uniform importance weights, but with an increased number

of particles near the three likely places. The new measurement assigns non-uniform

importance weights to the particle set. At this point, most of the cumulative prob­

ability mass is centered on the second door, which is also the most likely location.

Further motion leads to another resampling step, and a step in which a new particle

set is generated according to the motion model. The particle sets approximate the

correct posterior, as would be calculated by an exact Bayes filter [14].

We have used odometry motion model as the basis for calculating the robot's

motion over time. Odometry motion model is commonly obtained by integrating

wheel encoders information. In the updating part according to the sensor reading the

weight of the particles will be updated. After updating, there is a resampling step

and then the summation of the weights of all particles should be equal to one.

2.4.2 Implementation of MCL

We will describe the implementation of MCL algorithm, in details below.

(a) Motion Model

Within the framework of MCL, motion model corresponds to the step sampling

from the state transition distribution p(xt \ ut, £t-i), which generates a hypothetical

state xt based on the particle set £t_i and the control ut. The motion model plays

an essential role in the prediction step of MCL.

The robot motion of probabilistic robotics conforms to the fact that the outcome

of a control is uncertain, because of the control noise or un-modeled effects. Therefore,

the outcome of a control will be represented by a posterior probability. The robot

motion, formally kinematics, is the calculating of the effect of control actions on the

configuration of a robot. The configuration of a mobile robot is commonly described

by three variables, referred as pose (x, y, 6). The pose without orientation is robot's

location (x, y). The probabilistic kinematic model, or motion model, plays the role

12

of the state transition model p(xt | ut, xt-\) in mobile robotics. The xt and xt-\ are

both robot poses and ut is a motion command. This model describes the posterior

distribution over states of kinematic when the motion command ut is executed at

Xt-\. Fig. 2.1 shows two examples of kinematic model for a mobile robot controlled

in a planar environment with the robot's pose initialed as xt-\. The shaded area

shows the distribution p(xt | ut, xt-i): the darker a pose, the more likely it is for the

robot to be at that location.

urn.

Figure 2.1: Probabilistic generation of robot kinematic; (a) A path of moving for­
ward; (b) A path of more complicated motion command [25].

There are two common probabilistic motion models for mobile robots: velocity

motion model and odometry motion model. Velocity motion model assumes robot

is controlled through two velocities, a rotational and a translational velocity; and

odometry motion model assumes we have access to odometry information, which is

commonly obtained by integrating wheel encoder information. Velocity motion model

calculates the probability p(xt | ut, xt-i) of being at xt after executing the control ut

at the state xt-\. It assumes that the control is carried out for the fixed short time

duration t. Odometry motion model is used in our proposed method.

The odometry information consists of the distance a robot passed and the angle

a robot rotated. Most of the commercial robots provide odometry using kinematic

information. NXT has wheel encoders to obtain odomety information. Practical ex­

perience suggests that odometry is usually more accurate than velocity. In odometry

model, the robot motion in the time interval (t — 1, t] is approximated by a rotation,

13

followed by a translation and a second rotation shown in Fig. 2.2 [14]. Both the turns

and translation suffer noisy, such as drift and slippage.

Figure 2.2: Odometry model

In Fig. 2.2 the robot motion in the time interval (t — l,t] is approximated by a

rotation 5rot\, followed by a translation 6trans a n d a second rotation 8Tot2- The turns

and translation are noisy.

(b) Measurement Model

Another important model in probabilistic robotics is the measurement model. The

probabilistic models of sensor measurements p(zt | xt) are essential for the measure­

ment update step in MCL. Measurement models describe the formation process by

which sensor measurements are generated in physical world. Today's robots use a

variety of different sensors, such as tactile sensors, range sensors, or cameras. Prob­

abilistic robotics explicitly models the inherent uncertainty in sensor measurements.

NXT has ultrasonic sensor, touch sensor, light sensor and sound sensor. The ultra­

sonic sensor will return the distance of the NXT to objects. In our experiment, we

use the ultrasonic sensor measurements in order to recognize if NXT is close to wall

or any object in the environment and light sensor measurements to recognize obsta­

cles. Then, high weight will be assigned to the particles that are close to the sensor

reading, and low weight will be given to the rest of particles. The weighted particles

14

are forward to the next step importance sampling.

(c) Resampling

Another important component of MCL is known as resampling or importance

sampling. In our experiment, the algorithm low variance sampling is chosen for

resampling. The basic idea of low variance sampler includes a sequential stochas­

tic process. Instead of choosing M random numbers and selecting those particles

that correspond to these random numbers, this algorithm computes a single random

number and selects samples according to this number but still with a probability pro­

portional to the sample weight. The algorithm showed in Table 2.3 selects particles

by repeatedly adding the fixed amount M — 1 to r and by choosing the particle that

corresponds to the resulting number. The while loop at step 8 stops when i is the

index of the particle such that the corresponding sum of weights exceeds U. Then the

particle is selected. The low variance sampler is very efficient. At the end, we count

the number of particles with zero weight and if the "num-zero" variable is equal to or

greater than half of total number of particles, then a new set of particles is generated.

In regular MCL when the particles can not localize the robot or in situation like

kidnapping there is no surviving particles near the location of the robot, there is no

chance for to robot to recover from failure. But in the extended works that are based

on MCL they inject random particles to the localization process. In this work when

we apply the MCL, we calculate the weight of particles; as soon as the weight of all

particles are zero then a new set of particles is initialized and randomly distributed

all over the environment.

2.5 Kidnapped Robot Problem

Kidnapped robot problem [6], [19], [20] is a variant of global localization problem. It

happens when a robot that is aware of its location is moved to another location of

the environment without being told. The kidnapped robot problem is more difficult

15

than global localization problem. In global localization problem, robot knows that

it does not know where it is. In kidnapped robot problem, Robot might believe it

knows where it is, while it does not. It is commonly used to test a robot's ability to

recover from localization failures.

Most of MCL-based works suffer from the kidnapping problem, since this approach

collapses when the current estimate does not fit observations. There are several exten­

sions to MCL that solves this problem by adding random samples at each iteration.

2.6 Related Works

Several authors have demonstrated different methods in the area of mobile robot lo­

calization. The most efficient ones are based on particle filters where the significant

advantage of particle filter is to globally localize the mobile robot. Fox et al. intro­

duces Monte Carlo Localization for mobile robot localization [1]. Later, they have

proposed a technique for active localization of mobile robots [2], [3], [10], [9].

In [12] combination of existing methods was used to increase the efficiency of lo­

calization, i.e., first global search is made then a local search is performed, in order

to reduce the probability of finding a local minimum and improving the stability and

accuracy of solutions near the optimum. Extended Kalman filter (EKF) is used to

limit the search ares, otherwise the genetic search becomes too costly from the compu­

tational point of view. EKF obtains a seed which is used to estimate a neighborhood,

where the true value of the state is located, then in this restricted area the most

accurate solution is searched. Genetic algorithm only works in restricted areas of the

solution space and as the result it is a fast optimization method. Fitness function

then focuses the search in a certain neighborhood around the previous estimate, if

the new generation contains a solution that produces an output that is close enough

or equal to the desired answer then the problem has been solved.

In another related work [5] particle filter algorithm is used at first to generate the

16

cluster of particles. Based on sensor readings, which enables the robot to estimate

some positions with higher probability instead of generating particles that are ran­

domly distributed all over the environment, they have initialized particles just in the

places that the robot will know it is most probable to be the true position. Genetic

algorithm is then employed to work on the clusters that have been generated to get

a unique estimate of the real position of the robot.

In [7] a multi-robot active localization technique is proposed based on CEAMCL.

Using CEAMCL, samples are clustered into species which will evolve according to

a co-evolutionary model derived from the competition of ecological species, and the

size of the species will adaptively change according to the state of the robot. In

this way, CEAMCL cannot only prevent premature convergence of MCL but also

improves its efficiency, so CEAMCL is selected for cooperative localization. In [8] a

t-test revealed that it is significantly better to apply the active approach than the

passive one for the global localization task. Kummerle et al. [8] have presented an

approach to active Monte Carlo localization with a mobile robot using MLS (Multi­

level surface) maps. The approach actively selects the orientation of the laser range

finder to improve the localization results. To speed up the entire process, a clustering

operation was applied on the particles and only evaluate potential orientations based

on these clusters. Their new proposed approach is able to increase the efficiency of the

localization by minimizing the expected entropy. In contrast to the former approaches

[8] focus on reducing the computational demands of the active localization. The goal

of this paper is to develop an active localization method which is able to deal with

large outdoor environments.

17

Table 2.3: MCL Algorithm

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

Algorithm M.CL(Xt~i,ut, zt,m)

x t = x t — 4>

for m = 1 to M do

x™ = sample — motion — model(ut, x™[)

tv™ = measurement — model(zt, x\ , m)

xt=xt+<x
[r\w[r]>

endfor

for m = 1 to M do

draw i with probability a wf'

add xf to Xt

endfor

return Xt

18

Chapter 3

Mobile Robot Localization Failure

Recovery

The description of the proposed method can be found in this chapter.

3.1 Motivation of Our Method

Most of the existing approaches can not recover from localization failure and kid­

napped robot problem. Therefore we need a method to localize the robot with higher

probability and with the ability to recover the robot from kidnapping problem . The

number of samples to be used is important, since using more number of particles will

increase the cost of localization. Since almost all tasks of mobile robots require a

robot to have accurate knowledge about its location, we need a method to localize

the robot with higher probability and with the ability to be able to recover the mobile

robot from kidnapping problem or any type of localization failure with the use of less

number of particles and with higher probability.

19

3.2 The Proposed Method

3.2.1 Problem Statement

Localization is the most fundamental problem to provide a mobile robot with au­

tonomous capabilities, therefore the result of the localization task should be accurate

and reliable to provide the robot an accurate knowledge about its location. Most

of the existing approaches can not recover from localization failure, for example kid­

napped robot problem which is a variant of localization failure. Therefore we need a

method to localize the robot with higher probability and with the ability to recover

the robot from kidnapping problem. The number of samples to be used is important,

since using more number of particles will increase the cost of localization. Therefore,

in the proposed method, we are trying to localize the robot with less number of par­

ticles than the other methods in order to reduce the cost of localization and localize

the robot with higher probability to recover from the failure.

3.2.2 Description of the Proposed Method

The proposed method [15] is an improved approach to localize the robot. It recovers

the robot from localization failures with high probability. Proposed method is based

on Monte Carlo Localization and has two differences from the regular MCL algorithm,

first modified initialization step and second modified resampling step.

It has the ability to re-generate the particles in the case of localization failure.

Applying the proposed method, it is expected that robot localize itself with a high

probability with lower cost. Two main advantages of the method, first different way

of initializing the particles that helps to reduce some steps and the cost of localiza­

tion. Second a new resampling scheme to solve the kidnapped robot problem and

localization failures.

Fig. 3.1 shows the proposed algorithm.

20

Robot gets sensor
reading and moves

< C ^ ' do >20 J ^ >
Yes ^^~~~~-r~^^

Yes

Initializing the particles
based on sensor reading

< '
Prediction, Updating

Resampling the particles

Particle Checker ""'

Robot is localized

Figure 3.1: Proposed algorithm.

In the algorithm which is presented in Fig. 3.1; in first step, robot moves and

gets the value of its sensors. The value of the ultrasonic sensor which presents the

distance of the robot to the wall is presented as d0. Whenever the distance of the

robot to the wall (do) is less than 20cm then the particles are initialized; otherwise

robot continues moving and getting the sensor data. The distance of the robot to

wall is set to 20cm in order for robot to stop and turn since when doing the real

environment experiments, robot should have enough space in order to make a turn.

After initializing the particles, they are updating and resampling and their weights

changes as the robot moves. Particle-Checker step checks the condition of failure, if

the number of the particles with zero weight are greater than half of the total number

of particles then a new set of particles is generated.

The experiments are performed in order to evaluate the Error rate for the proposed

method and Regular MCL for Kidnapped robot Problem using different number of

21

particles. The error rate is calculated as follows:

Number of times robot cannot localize itself successfully
Error rate = ——-

Total number or times

There is a comparison between Error rates for different experimental environ­

ments. In first two cases we calculate Error rate in the simulation environments with

obstacle and without obstacle. The last two sets of experiments are performed in the

real environment using NXT. In each set of experiments we run the program for MCL

and the proposed method 50 times and then draw a graph in order to compare the

Error rate for each case.

3.2.3 Initialization of the Particles

In this part there is a description of the differences of the initialization part in regular

MCL and the proposed method. In initialization part of regular MCL, as soon as

MCL runs; particles are generated. There is a uniform distribution of the particles all

over the environment. As shown in Fig. 3.2 (a) particles all have same weight at the

time of generation, bel(L0) is uniformly distributed to reflect the global uncertainty

of the robot.

In the proposed initialization technique, particles are not generated from the very

beginning as in Fig. 3.2 (b), they are generated based on sensor reading. As soon as

robot gets a sensor reading; particles are generated based on the most recent sensor

reading. The weight of the particles that are close to the location of the sensor reading

are higher than the other particles. Therefore particles are generated as some cluster

of particles rather than normally distributed all over the environment as shown in

Fig. 3.2 (c). Therefore, initial belief of the robot bel(L0) is not uniformly distributed.

3.2.4 Resampling the Particles

In this part there is a description of the differences of the resampling part of regular

MCL and resampling in the proposed method. In the resampling step of regular MCL,

22

! - *

•MfM

1 m •

• < ; v .

', kl
(a)

aissi

(c)

(b)
ttmiL JOA

Figure 3.2: Initialization: (a) Initialization in regular MCL; (b) Beginning of the local­
ization process; (c) Initialization of the particles base on sensor readings.

23

when robot gets a sensor reading in the resampling part, particles are assigned new

weights based on new sensor reading. Particles are not re-generated if they do not

localize the robot correctly. In the proposed resampling technique, algorithm guesses

possible locations of the robot based on the sensor reading.

Using motion model this guess is corrected and particles will be assigned new

weights in the resampling step. As the extension of resampling step; if the weight

of most of the particles is zero, a new set of particles is generated based on the new

sensor reading. In other works done, some random particles are added to re-localize

the robot based on regular MCL. In this method, whenever robot knows that it is

lost, a new set of particles is generated based on the sensor reading.

3.2.5 Kidnapped Robot Problem

In the case of kidnapped robot problem, when robot is taken and placed in another

location of the environment; first it can not recognize that its location has been

changed and particles are predicted based on the previous information. When the

robot gets new sensor readings, since most of the particle's weights become zero,

based on new resampling method a new set of particles is generated to help the robot

localize itself and to figure out its true location.

The following figures illustrate the kidnapped robot situation. At first, when the

robot is taken and placed in another location of the environment it can not recognize

of being kidnapped. Particles continue their previous path, but after robot gets new

sensor readings and the weight of the particles is updated based on that, after the

"Particle-Checker" part which counts the number of the particles having zero weight,

if there is more than half of the particles with zero weight then a new set of particles

is generated based on the sensor reading. In Fig. 3.3 (a) robot is localized, but as

in Fig. 3.3 (b) it is being kidnapped and lost, and using the proposed resampling

technique the mobile robot realizes of being kidnapped and it successfully re-localize

itself as in Fig. 3.3 (c).

24

•

•

. ?
»* ** * *•*" J" •«

•

(a)

mm-r

i

tMMfUW4inr>*« i i ' «'i

(b)

(c)

Figure 3.3: Failure recovery: (a) Mobile robot is localized; (b) Kidnapped robot problem;
(c) Robot is recovered and re-localized.

25

Chapter 4

Implementation and Experimental Results

The implementation of our proposed method and experiment results are described

in this chapter. Hardware platform and programming environment are presented at

first, followed by experimental results.

4.1 Implementation Details

4.1.1 Hardware Platform and Programming Environment

In 2006 Lego released MindStorms NXT. It includes a local file system on 256 KB

flash RAM. In our experiments we changed the original graphical operating system

inside NXT to LeJOS NX J operating system [28], [29], which is a tiny Java-based

operating system and is used for LEGO MINDSTORM NXT. NXT has four sensors,

sound sensor, light sensor, touch sensor and ultrasonic sensor.

Sound sensor: is the robot's ears. It allows LEGO MINDSTORMS NXT robot to

hear and is able to measure noise levels in both dB (decibels) and dBA (frequencies

around 36 kHz where the human ear is most sensitive), as well as recognize sound

patterns and identify tone differences.

Touch sensor: is robot's fingers. It reacts to touch and release, enabling NXT to

"feel". It can detect single or multiple button presses, and reports back to the NXT

26

Intelligent.

Light sensor: detects light intensity. The Light sensor assists in helping the robot

to "see". Using the NXT Brick, it enables the robot to distinguish between light

and dark, as well as determine the light intensity in a room or the light intensity of

different colors. It can detect lights invisible to human eye such as infrared light.

Ultrasonic sensor: is robot's eyes, it enables the robot to see and detect objects,

also it is used to make the robot to avoid obstacles, and sense and measure distances,

and detect movement. It is able to measure distances from 0 to 255 centimeters with

a precision of ±3cm. The Ultrasonic sensor uses the same scientific principle as bats:

it measures distance by calculating the time it takes for a sound wave to hit an object

and return, just like an echo. Large sized objects with hard surfaces return the best

readings. Objects made of soft fabric or those that are curved (like a ball) or the ones

that are very thin or small can be difficult for the sensor to detect. The dynamic test

revealed two weaknesses of the ultrasonic sensor. The first issue is that it showed

some areas where the sensor tends to measure 255cm instead of the actual distance.

The second even more important issue is the critical area in between 25cm and 50cm

where the sensor has a high probability of returning the wrong value of 48cm.

NXT also contains a break that is robot's brain, features a powerful 32-bit micro­

processor and flash memory support for Bluetooth and USB 2.0. It has four sensor

ports and three ports in order to connect the motors to the break. It has a LCD with

resolution of 100x64.

The iCommand [30] is used on PC and LeJOS NXT operating system on NXT,

instead of uploading the program to NXT and letting the NXT run the program itself,

since memory of NXT is very small. If the program is bigger than memory of the

NXT, it will not be able to store the program and run it. This limitation of memory is

solved by using iCommand. The iCommand runs programs on the computer instead

of NXT, and sends commands to NXT through Bluetooth connection. iCommand

code runs on PC and iCommand can access to memeory on PC. It controls the NXT

27

Figure 4.1: LEGO MINDSTORM NXT

brick by sending individual commands wirelessly and can access all devices on PC,

such as the Internet and other hardware devices.

Programs are written in Java. In the computer we have to install Eclipse with

three packages, iCommand.jar which is a Java package to control the NXT brick over

a Bluetooth connection. RXTXcomm.jar [31] which is a native lib providing serial and

parallel communication for the Java Development Toolkit(JDK) and Bluecove.jar [32]

which is a JSR-82(the official Java Bluetooth API) implementation on Java Standard

Edition (J2SE). Fig. 4.1 shows the construction of NXT for doing the experiments.

In the experiments light and ultrasonic sensors are used.

The size of the environment is 80cm x 80cm and the simulation environment size is

500cmx 500cm. Therefore, we make the movement of NXT and the simulation robot

simultaneously. The speed of the motors of NXT are set to 60 and NXT-distance =

10cm. In each step, the distance that NXT moves is calculated as follows:

NXTJC = NXTJC + NXT.distance * (Math.cos{NXT.A))

NXT.Y = NXT.Y + NXT_distance * (Math.sin(NXT-A)).

28

4.2 Experimental Results

We have performed experiments in two different environments. The environments are

of the same shape, the only difference is that in the first one there is no obstacle in

the environment and the shape of the environment is symmetry which is the most

difficult type of environment for a mobile robot to localize itself. In the second

one, there is an obstacle in the environment which makes the environment not to be

symmetry anymore. As soon as robot gets to wall, it recognizes and after updating

and resmapling parts, there will be more particles next to the wall; since the weight

of the particles in that area become more than other particles. If after calling the

function "Particle-Checker" which calculates the number of the particles with zero

weight, the number of particles with zero wight are more than half of total number

of the particles then a new set of the particles is generated.

For each case; we performed experiments for different number of particles, since

there is no specific number of particles defined for localization task, we compare the

results of the experiments. The number of the particles that we used is in a large

range in order to compare different numbers more clear.

One of the issues that has to be taken into consideration while using the proposed

method, is the accuracy of the sensors of mobile robot. Robot should have reliable

sensors in order to get reliable results or the possible error values should be taken

into consideration.

4.2.1 Simulation Results

There are a number of experiments that are performed in the simulation environment.

For each simulation environment we run regular MCL 50 times for different number

of particles and then we run the proposed method 50 times for different number of

particles as well in order to compare number of successful localization. In the figures

below, the big red circle indicates the mobile robot NXT, and small blue circles

29

indicate the particles. The green square shows the obstacle in the environment. Each

particle represents a possible position of NXT. As the robot moves, based on the

motion model, particles are predicted to the new location and as soon as the robot gets

a sensor reading particles's weight will be updated; particles which are close to the area

of sensor reading are assigned higher weight compared to other particles. Then in the

resampling step, since particles with higher weight are chosen more; therefore particles

which are further from the area of sensor reading are eliminated and the concentration

of the particles will be in the places next to the sensor reading area which is the true

location of the mobile robot. Therefore, after some steps particles merge to a group to

localize the robot and that concentrated group of particles indicates the true location

of the mobile robot.

In the previous works done in the field of mobile robot localization, there is no end

for the localization process. The robot must recognize and stop when it is localized

and a cluster of particles are correctly localize the location of the robot. Therefore,

in [27] they have combined MCL and clustering algorithm in order to stop the lo­

calization process when it is successfully completed. In our work since our concern

is not to implement that part of localization process, we recognize when to stop the

localization process manually like the other works done in this area as discussed in

[27].

In general, a binomial distribution applies when an experiment is repeated a fixed

number of times. Each trial of the experiment has two possible outcomes, namely

success and failure. The probability of success is the same for each trial, and the

trials are statistically independent. The confidence interval for experimental results

is determined via P ± za/2\/P(l — P)/n where P is the Error rate and n is the

number of experiments. For Error type I, which is the case of study in this work,

a = 0.05 and thus za/2 = 1.96 from the standard normal cumulative probabilities

table in [26]. Based on this formula if the number of experiments (n) is increased

then the confidence interval range is decreased.

30

In some situations, there is an estimation on the robot's location with a low

probability. For example, if based on the information from its sensors it indicates

that it is next to the wall; then all of the particles which are next to the wall will get

higher weight. In some other situation, we may have two or more group of particles

concentrated in the environment in which robot is trying to localize itself such as in

the symmetry environment. But as the robot moves and gets more information about

its environment, it can localize itself more accurate until there will be only one group

of particles in most cases.

Fig. 4.2, shows the localization process in the environment without any obstacle.

Fig. 4.2 (a) shows the beginning of the localization process, where the particles are

not generated yet. At the beginning the initial position of the robot is set as a

random number. After the mobile robot moves and gets to the border (wall in the

real environment) then particles are generate based on the sensor reading as shown in

Fig. 4.2 (b). Fig. 4.2 (c) shows the time which robot has localized itself successfully.

In the user interface of the program there is three text boxes, as soon as we enter

the new pose of the robot which contain the new coordinates and the orientation of

mobile robot and press the "Replace" button. The robot moves to the new location

and it is being kidnapped. In Fig. 4.2 (d) robot is being kidnapped, but the particles

still continue their last path since the robot is not aware of being kidnapped and

Fig. 4.2 (e) shows that robot has localized itself again after being kidnapped based

on the resampling method.

Fig. 4.3 shows localization process in the simulation environment with an obstacle.

Fig. 4.3 (a) shows the beginning of the localization process, where the particles are

not generated yet. In Fig. 4.3 (b) particles are generated based on sensor information.

Fig. 4.3 (c) shows the time that the robot is localized. In Fig. 4.3 (d) robot is being

kidnapped, and Fig. 4.3 (e) shows that robot has recovered from kidnapping problem.

In Tables 4.1, 4.2 and Figs. 4.4 and 4.5 there is a comparison of performance

of regular MCL and proposed method for kidnapped robot problem in simulation

31

?Sfi
£1
?tf
• . • • • • • - . ' • •

m:

, * .«.**

* * • *
M M M . i

^

3
..-

•

• ' i r

SP

&

*
.'--.

• •, r

* : > » • '

^

(c) (d)

(e)

Figure 4.2: Localization in the first simulation environment : (a) Beginning of localiza­
tion process; (b) Initialization of particles; (c) Mobile robot is localized; (d)
Robot is kidnapped; (e) Localization failure recovery.

32

(a)

.?&.?

p
...-. •..
*-\.
'. :*

:

& '
••' * i
•X-V
" • • • { ' •

^ ' ^
« ? . . ^ .

>1: •vts*-
•Sv;

•: -:.-.
.<;.J

•.AW
:'"-7

3&
- -

(b)

• • • - i S S * # ' ^ - : * ' * ,

(e)

Figure 4.3: Localization in the Second simulation environment : (a) Beginning of local­
ization process; (b) Initialization of particles; (c) Robot is kidnapped; (e)
Localization failure recovery.

33

Table 4.1: Comparison of performance of the proposed method and traditional
MCL, for kidnapping problem in simulation environment without ob­
stacle.

Number of Particles

500

1000

1500

2000

2500

Error rate for proposed method (%)

60±14

60±14

52±14

40±14

52±14

Error rate for MCL (%)

100±0

90±8

100±0

80±11
72±12

Table 4.2: Comparison of performance of the proposed method and traditional
MCL, for kidnapping problem in simulation environment with obstacle.

Number of Particles

500

1000

1500

2000
2500

Error rate for proposed method (%)

40±14

30±13

32±13
40±14

20±11

Error rate for MCL (%)

80±11

70±13

60±13
62±10
46±14

1.0

o.8 ^

0.6

0.4

0.2

0.0
500 1000 1500 2000 2500

Number of particles

Figure 4.4: Simulation environment without obstacle.

34

1.0

0.8 -\

0.6

0.4 |

0.2

0.0

MCL with different initialization and resampling

0 500 1000 1500 2000 2500

Number of particles

Figure 4.5: Simulation environment with obstacle.

environment with and without an obstacle in the environment. It shows the Error

rate, which is measured in percentage of time averaged over 50 independent runs,

during which the robot lost track of its position for different number of samples. In

this case, Error rate describes the percentage of lost positions. The results of the

experiments when there is an obstacle in the environment is better since presence

of the obstacle helps the robot to localize itself and removes the symmetry of the

environment.

As it is seen in Tables 4.1 Error rate for MCL in simulation environment without

obstacle when using 2500 particles is 72% which is even higher than using only 500

number of particles in the proposed method. In Table 4.2 also we can see the higher

probability of localization by comparing the Error rates in these two methods in

simulation environment with obstacle. The Error rate when using 2500 particles is

46% in regular MCL which is more than Error rate of 40% when using the proposed

method. In same table, when using 500 particles for the localization process, the

Error rate for the proposed method is 40% and the Error rate for regular MCL is

80%. Using the proposed method we run the program for 50 times and 20 times out

of this 50 times the localization process failed. Using regular MCL 40 times out of

35

total runs of 50 were not successful. In same table when using 2500 particles, we see

that the Error rate for the proposed method has decreased to 20% and for regular

MCL is decreased to 46%, which indicates 10 unsuccessful results for the proposed

method using 2500 particles and 24 unsuccessful runs for MCL respectively.

4.2.2 Experiments Using Real Robot

We performed two sets of experiments in two different environments in order to make

sure that the proposed method works well in any type of environment. For each real

environment we run regular MCL 50 times for different number of particles and then

we run the proposed method 50 times for different number of particles as well in order

to compare the results of the number of successful localization times. In each set of

experiments, we use different number of particles for localization, since the number of

particles to be used for a specific localization problem is not denned. Therefore, we

performed experiments with different number of particles for each environment and

then we can compare the results.

Figure 4.6: Localization environment without obstacle.

Fig. 4.6 shows the first real environment with no obstacle in which robot tries

36

Figure 4.7: NXT calculates its distance to the wall.

to localize itself. In Fig. 4.7, the first time robot gets to the wall and the value of

ultrasonic sensor is less than 20, robot turns 90 degrees and particles are generated,

but after that each time when the value of ultrasonic sensor is less than 20 it rotates

135 degrees.

Figs. 4.8 and 4.9 show the second environment with one obstacle, which is located

in the location (100,300) with size (100,100). When the robot gets to the obstacle, the

weight of the particles in that area will be higher. Generally by an obstacle we mean

something recognizable by the robot which helps it to localize itself. In most cases

they use objects since the robots which are used have vision and they can recognize

different objects by taking pictures and that helps them to localize themselves. Since

NXT provides light sensor which recognizes different colors from each other, we use

color tapes as obstacle, therefore when robot gets to the colored tape it will recognize

it by the value of light sensor and the weight of the particles in that area will be

higher.

Fig. 4.8 (a), (b) show the beginning part of the localization, where there is no

particle generated yet. We put the mobile robot in the experimental environment

at the location that corresponds to the location of the big circle in the simulation

37

(a)

. » . " • ,

• * •

£.V
•. ' "•
; . . v
' »'>Y

Hew Po iUu i <M I1W RalKrt { j 1

^ * • « !

% • ;

• <•%•«

. < ,
. : 1 /
. f O -
T^-.r

i »nn if nop

(c) (d)

Figure 4.8: Real localization environment with obstacle: (a) Localization environ­
ment with obstacle; (b) NXT is located in a random place; (c) Initial­
ization of particles; (d) Initialization of the particles based on sensor
data.

38

"^'TffWJMI

"•I«"•'*•. .v

vm
mPosiiztnoMtaRaM

(c) (d)

Figure 4.9: Real localization environment with obstacle: (a) Particles trying to
localize the robot; (b) Mobile robot trying to localize itself; (c) Particles
are localizing the robot; (d)Robot is localized.

39

Table 4.3: Comparison of performance of the proposed method and traditional
MCL, for kidnapping problem in real environment without obstacle.

Number of Particles

500

1000

1500

2000

2500

Error rate for proposed method (%)

50±14

40±14

48±14

38±13
40±14

Error rate for MCL (%)

100±0

100±0

90±8

80±11
72±12

Table 4.4: Comparison of performance of the proposed method and traditional
MCL, for kidnapping problem in real environment with obstacle.

Number of Particles

500

1000

1500
2000

2500

Error rate for proposed method (%)

60±11
60±14

40±14

32±13

32±13

Error rate for MCL (%)

80±11
72±12

72±12
50±14

40±14

environment. Fig. 4.8 (c), (d) show the time in which particles are generated since the

robot gets to the wall. As soon as the real robot turns in the simulation environment

the big circle which indicates the robot turns as well. Fig. 4.9 (a), (b) show the time

that the robot is trying to localize itself. Fig. 4.9 (c), (d) show the time when robot

gets to the obstacle and update the weight of the particles based on that. In the real

experiments when we enter the new pose of the robot in the simulation environment

at the same time we take the real robot and locate it in the corresponding location

in the environment.

In Tables 4.3, 4.4 and Figs. 4.10 and 4.11 there is a comparison of performance of

regular MCL and proposed method for kidnapped robot problem in real environment

using NXT with and without the presence of the obstacle in the environment. They

show Error rate, which is measured in percentage of time averaged over 50 indepen­

dent runs, during which the robot lost track of its position for different number of

40

1.0

0.8

0.6

0.4

0.2

0.0
0 500 1000 1500 2000 2500

Number of particles

Figure 4.10: Real environment without obstacle.

1.0

0.8

0.6 -I

0.4

0.2 ^

0.0
0 500 1000 1500 2000 2500

Number of particles

Figure 4.11: Real environment with obstacle.

41

samples. It shows the ability of this algorithm to handle kidnapped robot problem.

The results of the experiments in simulation is better than the result of the experi­

ments performed in the real environment, since in the real environment there is sensor

and robot's wheels errors that effect the localization process.

As seen in Tables 4.3 Error rate using 2500 particles is 40% for regular MCL

which is equal to the Error rate of using 1500 particles in proposed method. In Table

4.4, for example when using 500 number of particles for the localization process,

the Error rate for the proposed method is 60% and Error rate for regular MCL is

80%. The results show that using the proposed method we have run the program for

this environment 50 times and 30 times out of this 50 times the localization process

failed. Using regular MCL 40 times out of total runs of 50 were not successful. But,

for example in same table when using 2500 particles, we see that Error rate for the

proposed method has decreased to 32% and for regular MCL is decreased to 40%,

which indicate 16 unsuccessful results for the proposed method using 2500 particles

and 20 unsuccessful runs for MCL respectively.

4.2.3 Discussion and Comparison

We have compared the result of localization for kidnapped robot situation for the

regular MCL and the proposed method in four different environments. For each

environment we have performed the experiment 50 times for each method and then

divide the number of times that the robot could not successfully localize itself by the

total number of executing the program for that specific number of particles and then

multiply the result by 100 in order to get the Error rate.

There are two timing parameters, i.e., the time that the mobile robot localizes it­

self (t{), and computational time required for particles (tp). If we have 1000 particles,

in each step we have to calculate the new position and assign new weight for each

particle, however, if there are only 100 particles then the calculations are only per­

formed for 100 particles. Therefore, using large number of particles the time required

42

for each step is increased and so does the computational cost.

If the number of particles is infinity and robot has infinite amount of time in

order to localize itself, then using regular MCL it can localize itself, but our concern

is about the possibility of doing this task; i.e., to implement it, and if possible the

huge computational cost of large number of particles is the main issue. For example,

using a Thinkpad Z60m laptop with an Intel Pentium processor at 1.73 GHz and

512 MB of RAM to perform the experiments, using 500,000 particles, each step of

localization takes a long time; since the prediction and update functions calculate

new position and weight of each particle respectively in each step and using 1,000,000

particles the program could not run on this computer. Therefore, in reality since

using infinite number of particles or very large number of particles is impossible, we

require a method to localize the robot with higher probability using the same number

of particles that is possible to implement and with lower computational cost. In this

thesis the concern is to get better results of localization; with higher probability of

success using the same number of particles compared to MCL and less amount of

localization time £/.

Regarding U, the time of localization, using the proposed method it takes shorter

amount of time for mobile robot to localize itself in the case of success. This is illus­

trated in Table 4.5. We have compared the time of localization using 2500 particles

in order to give a general idea about the time of localization process. Also using

proposed method the time of generation of particles depends on the initial position

of mobile robot; how far it is located from the wall or obstacles; since particles are

generated based on sensor data. It should be noted that the time that it takes the

mobile robot to localize itself depends on different parameters such as the speed of

robot. Since we can change the speed of motors through the program, if the speed of

robot is increased then it will take less time for the robot to localize itself.

In the comparison that is performed below, t0 is the time that localization pro­

cess starts, ti represents the time of initializing the particles. t2 indicates time of

43

Table 4.5: Timeline of the experiments for the proposed method and MCL.

Localization process

Localization starts
Initialization

Localization and kidnapping

Particles are re-generated
Robot is re-localized

Timeline

to
h
h

*3

u

Proposed method (sec)

0
3

17
22

38

Regular MCL (sec)

0
0

59
74

149

localization and kidnapping the robot, £3 is the time that particles are re-generated

and in time £4 robot is re-localized. In the timeline of the regular MCL, particles are

generated in time ti from the beginning of localization process which is equal to to. ti

is the time that robot has successfully localized itself and being kidnapped. £3 is the

time of re-generating the particles randomly all over the environment after detecting

that the weight of all particles are zero. At £4 robot is re-localized and it is recovered

from the failure. This timeline is obtained from one of the successful runs in order

to compare the time that it takes the mobile robot to localize itself; for comparing

the time of localization process. Also, it is pointed out that if identical number of

particles are used, the proposed method is faster than MCL, as it is shown in Table

4.5.

Tables 4.1, 4.2, 4.3, 4.4 and Figs. 4.4, 4.5, 4.10 and 4.11 show that the proposed

algorithm succussed with more probability in mobile robot localization process after

comparing the Error rate for each case.

Fig. 4.12 and 4.13 show the result of using regular MCL. Fig. 4.12 shows the en­

vironment without any obstacle. In Fig. 4.12 (a) particles are generated randomly all

over the environment. Then, after some random movements mobile robot is localized

and the particles which are gathered in a group of particles are localizing the robot in

Fig. 4.12 (b). In Fig. 4.12 (c) mobile robot is being kidnapped, it is taken and placed

in another location of the environment. Respectively Fig. 4.13 shows the localiza­

tion using MCL algorithm in an environment with obstacle. It shows initialization of

44

the particles, and Fig. 4.13 (a) shows the initialization of the particles, Fig. 4.13 (b)

shows the time when the robot is localized, and Fig. 4.13 (c) shows the time when

the mobile robot is kidnapped.

As shown in the experimental results, the results are better with higher number of

particles. It is obvious that using more number of particles helps the robot to localize

itself with higher accuracy since the number of particles that get higher weight are

more; therefore, robot loses track of its location with lower probability. We don't

want to use large number of particles; therefore, we search for an algorithm to reduce

the number of particles during the localization task, in order to reduce the cost of

localization. Using more number of particles will result in higher cost of localizing the

mobile robot. By using the new way of initialization, since particles are not generated

from the beginning all over the environment and there is no estimation of the robot's

position in the time of initialization process, it reduces the cost of localization by

using less number of particles for a successful localization and it also help to reduce

the time of localization.

As conclusion, experimental results show that we have reached both lower cost in

the localization process and also higher probably of localization failure recovery. The

lower cost is reached by using less number of particles and ability to recover from

the failure is gained by checking the particles with zero weight and decide weather to

re-generate the particle set.

45

p™»™

DGigsiO

(c)

Figure 4.12: Localization using MCL in environment without obstacle, (a) Particles
are generated randomly; (b) Robot is localized; (c) Robot is being
kidnapped.

46

* « • * a

. ..•; • . * ' . •
. % * -

, i - . • * •

i-V.' A

, • •"
.• • *.•

.:•""

*

<• %

0'
•*

• *
• *

* *

• * a

• • • • •

• : y : •>•:.p.-*

. . • . . . \ * - •

• » S a • .

* • ' • • • •
1 *« .~"8- .' . • . . •

V ••• • I • • .

.. • •
• • .

(c)

Figure 4.13: Localization using MCL in environment with an obstacle, (a) Initial­
ization of the particles; (b) Mobile robot is localized; (c) Robot is being
kidnapped.

47

Chapter 5

Conclusion and Future Work

This chapter concludes this research work with discussion of possible future research

directions and open problems.

5.1 Conclusion

Most of the existing approaches can not recover from localization failure and kid­

napped robot problem. Therefore we need a method to localize the robot with higher

probability and with the ability to recover the robot from kidnapping problem . The

number of samples to be used is important, since using more number of particles will

increase the cost of localization.

The proposed method is an improved approach to localize the robot. It recovers

the robot from localization failures with high probability. Proposed method is based

on Monte Carlo Localization and has two differences from the regular MCL algorithm,

first modified initialization step and second modified resampling step. It has the

ability to re-generate the particles in the case of localization failure. Applying the

proposed method, it is expected that robot localizes itself with a high probability with

lower cost. Two main advantages of the method, first different way of initializing the

particles that helps to reduce some steps and the cost of localization. Second a new

resampling scheme to solve the kidnapped robot problem and localization failures.

48

This method can be applied to most type of environments, in order to localize the

mobile robots. In regular MCL, the number of samples to be used is generally kept

very high in order to cover all the space and converge to the right position. The cost

of localization is low; since particles are not generated from the very. Using more

number of particles will result in higher cost of localizing the mobile robot. By using

the new way of initialization, since particles are not generated from the beginning

all over the environment in the time of initialization process, it reduces the cost of

localization by using less number of particles for a successful localization and it also

helps to reduce the time of localization. As conclusion, experimental results show that

we have reached both lower cost in the localization process and also higher probably

of localization failure recovery. The lower cost is reached by using less number of

particles, and ability to recover from the failure is gained by checking the particles

with zero weight and decide weather to re-generate the particle set.

5.2 Future Work

The localization described in our approach is being implemented using one mobile

robot. Therefore, one objective for future research is to do the localization task using

multi-robot and the proposed method.

In dynamic environments, other than robot, the location or configuration of other

objects such as people and movable furniture changes over time. Most real envi­

ronments are dynamic; localization in dynamic environments is more difficult than in

static ones. Another possible extension of this work is to use this method to efficiently

localize mobile robot in dynamic environments.

49

References

[1] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, "Monte Carlo Localization:

Efficient Position Estimation for Mobile Robots," Proc. of the Sixteenth National

Conference on Artificial Intelligence (AAAI-99)., 1999.

[2] D. Fox, Wolfram Burgard, and S. Thrun, "Active Markov Localization for Mobile

Robots," Preprint submitted to Elsevier Preprint., March. 1998.

[3] W. Burgard, D. Fox, and S. Thrun, "Active Mobile Robot Localization," 15th

International Joint Conference on Artificial Intelligence., 1997.

[4] J. Kleinberg, "The localization problem for mobile robots," In Proc. of the 35th

IEEE Symposium on Foundations of Computer Science., 1994.

[5] L. Moreno, J. M. Armingol, S. Garrido,A. DE LA Escalera, and M. A. Salichs,

"A Genetic Algorithm for Mobile Robot Localization Using Ultrasonic Sensors"

Journal of Intelligent and Robotic Systems, vol. 34, pp. 135-154, July, 2001.

[6] R.Luo and B. Hong, "An Adaptive Algorithm For Localization In Highly Sym­

metric Environments," International Journal of Innovative Computing, Infor­

mation and Control., vol. 1, no. 2, pp. 1349-4198, June 2005.

[7] L.Ronghua, M. Huaqing, L. Maohai, and H. Qingcheng, "A Method for Active

Global Localization in Multi-robot System," International Journal of Advanced

Robotic Systems, vol. 5, no. 3., pp. 269-278, 2001.

50

[8] R. Kummerle, R. Triebel, P.Pfaff, and W. Burgard, "Monte Carlo Localization in

Outdoor Terrains using Multi-Level Surface Maps," Autonome Mobile Systeme,

Springer Berlin Heidelberg., vol. 55, pp. 29-35, Oct. 2007.

[9] P. Jensfelt, and S. Kristensen, "Active Global Localization for a Mobile Robot

Using Multiple Hypothesis Tracking," IEEE Transactions On Robotics And Au­

tomation., vol. 17, no. 5., Oct. 2001.

[10] F. Giuffrida , P. Morasso, G .Vercellit , R.Zaccaria, "Active Localization Tech­

niques for Mobile Robots in the Real World," IEEE Proc. IROS 96., Dec. 1996.

[11] M. Adams, S. Zhang, and L. Xie, "Particle filter based outdoor robot localization

using natural features extracted from laser scanners." In Proc. of the IEEE Int.

Conf. on Robotics and Automation ICRA., 2004.

[12] A. M. Whitbrook, U. Aickelin, J. M. Garibaldi, "Genetic-Algorithm Seeding Of

Idiotypic Networks For Mobile-Robot Navigation," IEEE Trans, on Circ. and

Syst. II, Analog Digit. Signal Process., vol. 46, no. 12, pp. 1487-1496, Dec. 1999.

[13] W. Burgard, D. Fox, and D. Hennig, "Fast grid-based position tracking for mo­

bile robots." In Proc. of the 21th German Conference on Artificial Intelligence,

Germany. Springer Verlag., 1997.

[14] S. Thurn, W. Burgard, and D. Fox, "Probabilistic Robotics", MIT Press, Cam­

bridge, MA, 2005.

[15] S. Seifzadeh, D. Wu, Y. Wang, "Cost-effective Active Localization Technique for

Mobile Robots", International Conference on Robotics and Biomimetics (RO-

BIO), Dec. 2009.

[16] J.S. Gutmann, D. Fox, "An experimental comparison of localization methods

continued", in: Proc. of the 2002 IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems, IROS02, pp. 454-459, 2002.

51

[17] D. Fox, "Adapting the sample size in particle niters through KLDsampling",

International Journal of Robotics Research, 2003.

[18] S. Lenser, M. Veloso, "Sensor resetting localization for poorly modeled mobile

robots", in: Proceedings of ICRA 2000, pp. 1225-1232, 2000.

[19] J. Borenstein, B. Everett, and L. Feng, "Navigating Mobile Robots: Systems

and Techniques", A. K. Peters, Ltd., Wellesley, MA, 1996.

[20] D. Fox, "Markov Localization: A Probabilistic Framework for Mobile Robot

Localization and Navigation", PhD thesis, University of Bonn, Germany, 1998.

[21] Z. Duan, Z. Cai, and J. Yu, "Robust Position Tracking for Mobile Robots with

Adaptive Evolutionary Particle Filter", Third Int. Conf. on Natural Computation

(ICNC), 2007.

[22] W. Burgard, A. Den, D. Fox, and A. B. Cremers, "Integrating Global Position

Estimation and Position Tracking for Mobile Robots: The Dynamic Markov Lo­

calization Approach", Proceedings of the 1998 IEEE LRSJ Intl. Conf. on Intellig.

Robots and Syst., Victoria, B.C., Canada, Oct. 1998.

[23] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, "Robust Monte Carlo Localiza­

tion for Mobile Robots", Artificial Intellig., vol. 128, pp. 99-141, 2000.

[24] W.Burgard, D.Fox, D.Hennig, and T.Schmidt, "Estimation the absolute position

of a mobile robot using position probability grids", In: Proc. AAAI-96, Oregon,

USA, 1996.

[25] S. Thrun, "Probabilistic robotics", Communications of the ACM, vol. 45, no. 3,

pp. 52-57, 2002.

[26] R. L. Mason, R. F. Gunst, J. L. Hess., "Statistical design and analysis of ex­

periments: with applications to engineering and science", John Wiley abd Sons,

Hoboken, NJ, 2003.

52

[27] J. Chen, "Bring Consciousness to Mobile Robot Being Localized", Master's

sis, University of Windsor, Canada, 2009.

[28] http://www.docstoc.com/docs/22433745/leJOS-NXJ-LEGO-NXT

[29] http://lejos.sourceforge.net

[30] http://mac.softpedia.com/get/Math-Scientific/iCommand.shtml

[31] http://rxtx.qbang.org/wiki/index.php/Download

[32] http://sourceforge.net/projects/bluecove

[33] http://www.eclipse.org/downloads

53

http://www.docstoc.com/docs/22433745/leJOS-NXJ-LEGO-NXT
http://lejos.sourceforge.net
http://mac.softpedia.com/get/Math-Scientific/iCommand.shtml
http://rxtx.qbang.org/wiki/index.php/Download
http://sourceforge.net/projects/bluecove
http://www.eclipse.org/downloads

Vita Auctoris

NAME

PLACE OF BIRTH

YEAR OF BIRTH

EDUCATION

Sepideh Seifzadeh

Tehran, Iran

1986

Computer Engineering Department

Eastern Mediterranean University

Famagusta, TRNC

Cyprus

2004 - 2008 B.Sc.

School of Computer Science

University of Windsor

Windsor, Ontario, Canada

2008 - 2010 M.Sc.

54

	Mobile robot localization failure recovery
	Recommended Citation

	ProQuest Dissertations

