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Abstract: By combining stochastic variational inference with message passing algorithms, we show
how to solve the highly complex problem of navigation and avoidance in distributed multi-robot
systems in a computationally tractable manner, allowing online implementation. Subsequently,
the proposed variational method lends itself to more flexible solutions than prior methodologies.
Furthermore, the derived method is verified both through simulations with multiple mobile robots
and a real world experiment with two mobile robots. In both cases, the robots share the operating
space and need to cross each other’s paths multiple times without colliding.

Keywords: distributed robotics; probabilistic robotics; variational inference; message-passing algorithm;
stochastic variational inference

1. Introduction

Uncertainty is an inherent part of robotics that must be dealt with explicitly through
the robust design of sensors, mechanics, and algorithms. Unlike many other engineering
research areas that also have to deal with uncertainties, robotics problems usually also
consist of a heterogeneous set of interconnected sub-problems and have strict real-time
requirements, making it even harder to deal with uncertainty in an appropriate manner [1].

A common approach to model uncertainties in robotics is to employ probability
mass functions and/or probability density functions, hereinafter jointly referred to as
probability distributions, over model variables. One can then represent many classical
robotics problems as a joint distribution, p(x, z), over observable variables, x, and latent
variables, z. Given the knowledge that the observable variables, x, can be assigned specific
values x, solving the problem then boils down to solving the posterior inference problem
given by the conditional distribution

p(z|x = x) =
p(x = x, z)
p(x = x)

(1)

=
p(x = x, z)∫
p(x = x, z)dz

. (2)

Unfortunately, the marginalization by the integral in the denominator of Equation (2)
is, in general, intractable to compute in most realistic problems, and thereby the reason
why one often has to resort to approximate inference [2].

The classical solution to this problem has been to simplify the model of a problem, p,
sufficiently to obtain an approximate problem definition, q ≈ p, for which one can derive or
use analytical solutions such as the Kalman filter [3], henceforth referred to as the “model
simplification method”. Typically, it is only possible to derive analytical solutions for a
very limited set of probability distributions. Thereby, it may be necessary to apply crude
approximations to obtain a solution, making it a rather inflexible method. However, such
solutions tend to be computationally efficient, which is why they were commonly used
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in the early days of probabilistic robotics where computational resources were limited.
One good example of this is Kalman filter-based simultaneous localization and mapping
(SLAM). It is well known that in many cases the true posterior, p, is multi-modal, e.g., due
to ambiguities and changes in the environment [4]. However, Kalman filter-based SLAM
implicitly assumes a uni-modal Gaussian posterior, q, which in some cases can lead to
poor solutions.

Another possibility is to use Monte Carlo methods such as particle filters. These
methods have the benefit that they usually do not enforce any restrictions on the model,
p, making these methods highly flexible. Furthermore, with these methods, it is often
possible to obtain any degree of accuracy at the cost of losing computational efficiency.
The computational complexity usually makes these methods unsuitable for solving complex
robotics problems in real-time. An example of the use of Monte Carlo methods in robotics is
the particle filter-based SLAM algorithm called FastSLAM [5], which only utilizes a particle
filter to estimate the posterior of the robots pose and settles for Kalman filters for estimating
the pose of landmarks.

The third set of methods, that have gained increasing interest in the last decade due
to the advancement in stochastic optimization and increase in computational resources,
is the optimization-based method called variational inference. In variational inference,
optimization is used to approximate the distribution, p(z), that we are interested in finding,
by another simpler distribution q(z), called the variational distribution. Like analytical
solutions, variational inference assumes an approximation model, q, and thereby introduces
a bias into the solution. The set of possible models that can be employed in modern
variational inference is wide, making the method very flexible for modelling robotics
problems. This optimization-based approach also makes the distinction between the model
of the real problem, p, and the model used to find an approximate solution, q, very explicit
and gives a measure of the applicability of the approximate model, q. Furthermore, the use
of an approximate model, q, usually allows this set of methods to be more computationally
efficient than Monte Carlo methods. As such, variational inference can be viewed as a
compromise between the computational efficiency of the model simplification method
and the flexibility of Monte Carlo methods. This makes variational inference especially
interesting for robotics applications.

Initial efforts on applying variational inference for robot applications have shown
promising results in various problems. In [6] variational inference is used to solve several
tasks related to navigation in spatial environments for a single robot. In [7] variational
inference is used to learn low-level dynamics as well as meta-dynamics of a system, which
is subsequently used to plan actions at multiple temporal resolutions. In a similar fashion,
it is also demonstrated in [8] how variational inference can be used to learn both low-level
and high-level action policies from demonstrations. In [9], variational inference with a
mixture model as the variational distribution is used to find approximate solutions to robot
configurations satisfying multiple objectives. Variational inference has also been used in
some distributed settings. In [10], they perform centralised training with decentralised
execution for cooperative deep multi-agent reinforcement learning, where a variational
distribution is used in the approximation of a shared global mutual information objective
common for all the agents. In [11], variational inference is used to learn a latent variable
model that infers the role and index assignments for a set of demonstration trajectories,
before these demonstrations are passed to another algorithm that than learns the optimal
policy for each agent in a coordinated multi-Agent problem. Common for [10,11] is that
variational inference is used to learn global parameters in a centralized fashion. In [12], a
more decentralized approach is taken. Here, variational inference is used locally on each
robot in a swarm to estimates a Bayesian Hilbert Map. These locally estimated maps are
subsequently merged through a method called Conflation. A method applicable due to an
assumption about normal distributed random variables. While others have successfully
used variational inference for robotics applications even in distributed settings, the use of
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a combination of stochastic variational inference and message-passing for decentralized
distributed robotic problems has been an untouched topic to date.

In the present effort, we unite these two major solution approaches in variational
inference to outline a flexible framework for solving probabilistic robotics problems in a
distributed way. The main contribution of this paper is:

• A demonstration of the feasibility of combining stochastic variational inference with
message-passing for distributed robotic applications by deriving an algorithm for
multi-robot navigation with cooperative avoidance under uncertainty. We validate
this through simulations and a real-world experiment with two robots.

In Section 2, we formally present the basics of variational inference, message-passing,
and stochastic variational inference. In Section 3, we introduce the problem of and derive
the algorithm for multi-robot navigation with cooperative avoidance under uncertainty. In
Section 4, we present the results of simulations and a real-world experiment. Finally, in
Sections 5 and 6, we conclude upon the obtained results and discuss the potential use cases
of the proposed approach.

2. Variational Inference

Variational inference uses optimization to approximate one distribution p(z) by an-
other, simpler distribution q(z) called the variational distribution. Notice that, in general,
p(z) does not need to be a conditional distribution, p(z|x = x), as in Equation (2). However,
for the sake of the topic in this paper, we will focus on the conditional distribution case.
Thus, we will concentrate on solving a variational inference problem on the form

q∗(z) = arg min
q(z)∈Q

D(p(z|x = x)||q(z)), (3)

where D is a so-called divergence measure, measuring the similarity between p and q, and Q
is the family of variational distributions from which we want to find our approximation.
The notation D(x||y) denotes that we are dealing with a divergence measure and that
the order of arguments, x and y, matters. The family of variational distributions, Q, is
usually selected as a compromise between how good an approximation one wants and
computational efficiency. The divergence measure, D, can have a rather large impact on the
approximation. However, experiments have shown that for the family of α-divergences,
subsuming the commonly used Kullback–Leibler divergence, all choices will give similar
results as long as the approximating family, Q, is a good fit to the true distribution [13].

Sections 2.1 and 2.2 present two solution approaches commonly used in variational in-
ference, namely message-passing algorithms and stochastic variational inference. Message-
passing algorithms exploit the dependency structure of a given variational inference prob-
lem to decompose the overall problem into a series of simpler variational inference sub-
problems, that can be solved in a distributed fashion [13]. Message-passing algorithms
do not give specific directions on how to solve these sub-problems, and thus classically
required tedious analytical derivations, that effectively limited the usability of the method.
On the other hand, modern stochastic variational inference methods directly solve such
variational inference problems utilizing stochastic optimization that inherently permits the
incorporation of modern machine learning models, such as artificial neural networks, into
the problem definition [14,15]. As such, the fusion of these two approaches can potentially
result in a transparent and flexible framework in which complex problems can be solved
distributively, making it a perfect fit for a broad interdisciplinary research area such as
robotics, inherently accommodating recent trends in research fields such as deep learning,
cloud robotics and multi-robot systems.

2.1. Message-Passing

The overall idea behind message-passing algorithms is to take a possible complicated
problem as defined by Equation (3) and break it down into a series of more tractable
problems that depend on the solution of the other problems [13,16]. This way of solving a
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variational inference problem is known as message-passing because the solution of each
sub-problem can be interpreted as a message sent to the other sub-problems. This is
achieved by assuming that the model of our problem, p(z|x), naturally factorizes into a
product of probability distributions

p(z|x) = ∏
a∈A

p(a)(z|x), (4)

where superscript (a) is used to denote the index of the a’th factor. Notice that the factor-
ization need not be unique and that each probability distribution, p(a)(z|x), can depend on
any number of the variables of p(z|x). The choice is up to us. Similarly, we can choose a
variational distribution, q(z), that factorizes into a similar form

q(z) = ∏
a∈A

q(a)(z). (5)

Now by defining the product of all other than the a’th factor of q(z) and p(z|x),
respectively as

q\a(z) = ∏
b∈A\a

q(b)(z), (6)

p\a(z|x) = ∏
b∈A\a

p(b)(z|x), (7)

and by further assuming that q\a∗(z) ≈ p\a(z|x) is in fact a good approximation, it is
possible to rewrite our full problem in Equation (3) into a series of approximate sub-
problems on the form

q(a)∗(z) ≈ arg min
q(a)∈Q(a)

D
[

p(a)(z|x)q\a(z)||q(a)(z)q\a(z)
]
. (8)

Assuming a sensible choice of factor families, Q(a), from which q(a) can be chosen,
the problem in Equation (8) can be more tractable than the original problem, and by iterating
over these coupled sub-problems as shown in Algorithm 1, we can obtain an approximate
solution to our original problem.

Algorithm 1: The generic message-passing algorithm.

1: Initialize q(a)∗(z) for all a ∈ A
2: repeat
3: Pick a factor a ∈ A
4: Solve Equation (8) to find q(a)∗(z)
5: until q(a)∗(z) converges for all a ∈ A

The approach is not guaranteed to converge for general problems. Furthermore,
Equation (8) might still be a hard problem to solve, thus previously in practice, the approach
has been limited to problems for which Equation (8) can be solved analytically such as fully
discrete or Gaussian problems [13]. However, besides breaking the original problem into a
series of more tractable sub-problems, this solution approach also gives a principle way
of solving the original problem in a distributed fashion, which can be a huge benefit in
robotics applications. Furthermore, depending on the dependency structure of the problem,
a sub-problem might only depend on the solution of some of the other sub-problems,
which can significantly reduce the amount of communication needed due to sparsely
connected networks.



Robotics 2022, 11, 38 5 of 19

2.2. Stochastic Variational Inference

Stochastic Variational Inference (SVI) reformulates the minimization problem of a
variational inference problem, e.g., Equation (3) or Equation (8), into a dual maximization
problem with an objective, L, that is suited for stochastic optimization. To use stochastic
optimization, we need to assume that the variational distribution, q, is parameterized
by some parameters, φ. We will denote the parameterized variational distribution by qφ.
The steps and assumptions taken to obtain this dual problem and the objective function,
L, of the resulting maximization problem of course depends on whether we have cho-
sen the Kullback–Leibler divergence [17–19], α-divergences [20], or another divergence
measure [21]. However, the resulting maximization problem ends up being on the form

φ∗ = arg max
φ

L
(

p(z, x = x), qφ(z)
)︸ ︷︷ ︸

Ez∼qφ(z)
[l(z,φ)]

. (9)

This dual objective function, L, does not depend on the posterior, p(z|x = x), but only
the variational distribution, qφ(z) and the unconditional distribution p(z, x = x) making
the problem much easier to work with. Furthermore, by, for example, utilizing the reparam-
eterization trick or the REINFORCE-gradient, it is possible to obtain an unbiased estimate
of the gradient, ∇φL, of the dual objective L. Stochastic gradient ascent can then be used to
iteratively optimize the objective through the updated equation

φl = φl−1 + ρl−1∇φLl
(

φl−1
)

, (10)

where superscript l is used to denote the l’th iteration. If the sequence of learning rates,
ρl−1, follows the Robbins–Monro conditions,

∞

∑
l=1

ρ(l) = ∞,
∞

∑
l=1

(
ρ(l)
)2

< ∞, (11)

then stochastic gradient ascent converges to a maximum of the objective function L,
and Equation (9) is dual to the original minimization problem, thus providing a solu-
tion to the original problem.

An unbiased gradient estimator with low variance is pivotal for this method, and vari-
ance reduction methods are often necessary. However, a discussion of this subject is outside
the scope of this paper and can often be achieved automatically by probabilistic program-
ming libraries/languages such as Pyro [14]. Besides providing the basic algorithms for
stochastic variational inference, such modern probabilistic programming languages also
provide ways of defining a wide variety of probability distributions and extensions to
stochastic variational inference that permits incorporating and learning of parameterized
functions, such as neural networks, into the unconditional distribution p(z, x = x), thereby
making the approach very versatile. The benefit of solving variational inference problems
with stochastic optimization is that noisy estimates of the gradient are often relatively
cheap to compute due to, e.g., subsampling of data. Furthermore, the use of noisy gradi-
ent estimates can cause algorithms to escape shallow local optima of complex objective
functions [19].

To summarize, if we want to distribute a complex inference problem, one potential
solution is to first find variational inference sub-problems via the message-passing method,
and then use stochastic variational inference to solve these sub-problems. This procedure
is illustrated in Figure 1, and the next section explains the usage of our method for a
distributed multi-robot system.
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messages

messagesStochastic Variational Inference
Problem

Stochastic Variational Inference
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Stochastic Variational Inference
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Variational Inference Problem

Variational Inference Problem

Variational Inference Problem

Variational Inference Problem

General
Message-Passing Our Approach

Figure 1. We propose to solve complicated robotics problems explicitly, taking uncertainty into
account by utilising variational inference as seen in the single blue box. To distribute the necessary
computations, we propose to utilise the concept of message-passing algorithms to divide the overall
problem into a set of sub-problems that can potentially be sparsely connected, as illustrated in
the green box with blue boxes inside. To make these sub-problems computationally tractable, we
furthermore propose to solve them utilizing stochastic variational inference as seen in the green box
with yellow boxes inside.

3. Navigation with Cooperative Avoidance under Uncertainty

Multi-robot collision avoidance is the problem of multiple robots navigating a shared
environment to fulfil their respective objective without colliding. It is a problem that
arises in many situations such as warehouse management and transportation, collaborative
material transfer and construction [22], entertainment [23], search and rescue missions [24],
and connected autonomous vehicles [25]. Due to its importance in these and other ap-
plications, multi-robot collision avoidance has been extensively studied in the literature.
In non-cooperative collision avoidance, each robot assumes that other robots do not ac-
tively take actions to avoid collisions, i.e., a worst case scenario. A common approach to
non-cooperative collision avoidance is velocity obstacles [26–28]. Velocity obstacles geomet-
rically characterize the set of velocities for the robot that result in a collision at some future
time, assuming that the other robots maintains the observed velocity. By only allowing
robots to take actions that keep them outside of this set, they avoid collisions. However,
non-cooperative approaches are conservative by nature as they neglect the fact that other
robots, in most cases, will also try to avoid collisions. Cooperative collision avoidance
alleviates this conservatism by assuming that the responsibility of avoiding collisions is
shared between the robots. Such approaches include the extensions to velocity obstacles
referred to as reciprocal collision avoidance [29–32], but also includes approaches relying
on centralized computations of actions, and decentralized approaches in which robots
communicate their intentions to each other. For both non- and cooperative collision avoid-
ance, action decision is commonly based on a deterministic optimization/model predictive
control formulations [28,33–35]. However, optimal control [36], Lyapunov theory [37,38],
and even machine learning approaches [39] have also been used.

Despite many claims of guaranteed safety in the literature, uncertainty is often totally
neglected, treated in an inapt way, or only to a limited extent. An inapt but common
approach to handle uncertainties is to derive deterministic algorithms assuming no uncer-
tainties, and afterwards artificially increase the size of robots used in the algorithm by an
arbitrary number, as in [28,30]. For example, in [30], uncertainties are handled by artificially
increasing the radii of robots with 33%. Despite being stated otherwise in the paper, it
is clear from the accompanying video material (https://youtu.be/s9lvMvFcuCE?t=144
Accessed on 1 February 2022) that this is not sufficient to avoid contact between robots
during a real-world experiment. When uncertainty is treated in an appropriate way, it is
usually only examined for a single source of uncertainty, e.g., position estimation error as
in [27,35,38], presumably due to the difficulties of other methods mentioned in Section 1,
such as deriving analytical solutions or computing solutions in real-time, which is only
further complicated by the need for distributed solutions.

https://youtu.be/s9lvMvFcuCE?t=144
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Within this section, we illustrate how the approach outlined in Section 2 can be utilized
to solve the multi-robot collision avoidance problem in a cooperative and distributed way
that appropriately treats multiple sources of uncertainty. Section 3.1 introduces the problem
dealt with in this paper, in Section 3.2 the algorithm is derived and explained, and finally,
in Section 4, the result of simulations and a real-world experiment is presented, validating
the approach.

3.1. Problem Definition and Modelling

Consider N uni-cycle robots placed in the same environment. Each of them have to
navigate to a goal location, zg,n =

[
zx,g,n, zy,g,n

]T , by controlling their translational and
rotational velocities while communicating with the other robots to avoid collision. We will
consider the two-dimensional case where the robots can obtain a mean and covariance
estimate of their own current pose at time t, zt

q,n =
[
zt

x,n, zt
y,n, zt

ψ,n

]T
, e.g., from a standard

localization algorithm such as Adaptive Monte Carlo Localization (AMCL) from the Nav2
ROS2 package [40]. Therefore, we model the current pose of the n’th robot as the following
normal distribution

p(zt
q,n) = N(µzt

q,n
, σzt

q,n
). (12)

We do not consider the dynamics of the robots but settle for a standard discrete
kinematic motion model of a uni-cycle robot given by

zτ+1
q,n = zτ

q,n +


cos
(

zτ
ψ,n

)
0

sin
(

zτ
ψ,n

)
0

0 1

A
(
zτ

a,n
)
∆T

︸ ︷︷ ︸
f (zτ

q,n ,zτ
a,n)

, (13)

where zτ
a,n =

[
zτ

a1,n, zτ
a2,n

]T
, zτ

a1,n and zτ
a2,n are the translational and rotational velocities of

the n’th robot at time τ normalized to the range
[
0, 1
]
, respectively, A is a linear scaling of

the velocity to be in the range
[
zτ

a,n, zτ
a,n

]
corresponding to the minimum and maximum

velocities of the n’th robot, and ∆T is the temporal difference between τ and τ + 1. As
Equation (13), among other things, does not consider the dynamics of the motion, an
estimate based on this will yield an error. To model this error, we employ an uniform
distribution and define

p
(

zτ+1
q,n |zτ

q,n, zτ
a,n

)
= U

(
f
(

zτ
q,n, zτ

a,n

)
−M, f

(
zτ

q,n, zτ
a,n

)
+ M

)
, (14)

where M is a constant vector that captures the magnitude of the model error. As Equa-
tion (13) is obtained through the use of the forward Euler method, M could potentially be
obtained as an upper bound by analysing the local truncation error. However, this would
probably be too conservative. Instead, we consider M as a tuning parameter. The robots do
not naturally have any preference for selecting specific translational and rotational veloci-
ties, thus, we also model the prior over the normalized velocities as a uniform distribution.
That is

p
(
zτ

a,n
)
= U(0, 1). (15)

So far, we have modelled everything we need to describe the uncertainty in the motion
of each of the robots. Now, we turn to the problem of modelling optimality and constraints.
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The only criteria of optimality that we will consider are that the robots grow closer to their
respective goal locations, zg,n. To do so, we define the following simple reward function

r
(

zτ
q,n

)
=

√(
zg,n − zτ

p,n

)2
, (16)

where

zτ
p,n =

[
1 0 0
0 1 0

]
zτ

q,n.

To include the optimality into the probabilistic model, we use a trick commonly
utilized in probabilistic Reinforcement Learning and Control [41]. We start by defining
a set of binary optimality variables, xτ

O,n, for which xτ
O,n = 1 denotes that time step τ is

optimal for the n’th robot, and conversely xτ
O,n = 0 denotes that time step τ is not optimal.

We now define the distribution of this optimality variable at time τ, xτ
O,n, conditioned on

the pose of the robot at time τ, zτ
q,n, as

p
(

xτ
O,n|zτ

q,n

)
= Bernoulli

(
e−c1·r(zτ

q,n)
)

, (17)

where c1 is a tuning constant. Notice that, as r
(

zτ
q,n

)
≥ 0, it follows that e−c1·r(zτ

q,n) ∈
[
0, 1
]
.

The intuition behind Equation (17) is that the state with the highest reward has the highest
probability and states with lower reward have exponentially lower probability.

As stated, the robots should avoid colliding with each other. Therefore, we would like
to impose a constraint on the minimum distance, dmin, that the n’th and m’tn robots should
keep. To do so we define

c
(

zτ
q,n, zτ

q,m

)
=

{
0 ; dτ

n,m ≤ dmin

dτ
n,m − dmin ; dτ

n,m > dmin
, (18)

where dτ
n,m =

√(
zτ

p,n − zτ
p,m

)2
. Similarly, as we modeled optimality we can now also

define binary constraint variables, xτ
C,n,m, for which xτ

C,n,m = 1 denotes that the minimum
distance constraint between the n’th and m’tn robot is violated at time τ, and model the
constraint by the distribution given by

p
(

xτ
C,n,m|zτ

q,n, zτ
q,m

)
= Bernoulli

(
e−c2·c(zτ

q,n ,zτ
q,m)
)

, (19)

where c2 is a tuning constant. Again, when the distance between two robots becomes larger,
it has an exponentially lower probability of violating the distance constraint. With the
above variable definitions, we can now formulate a solution to the navigation problem at
time t as the following conditional probability distribution

p
(
zt

a,1, . . . , zt
a,N |Xt

O = 1, Xt
C = 0

)
=
∫

Zt\{zt
a,1,...,zt

a,N}
p
(
Zt|Xt

O = 1, Xt
C = 0

)
, (20)



Robotics 2022, 11, 38 9 of 19

where

Xt
O =

{
Xt

O,1, . . . , Xt
O,N

}
,

Xt
O,n =

{
xt+1

O,n , . . . , xk·t
O,n

}
,

Zt =
{

Zt
1, . . . , Zt

N
}

,

Zt
n =

{
zt

q,n, zt
a,n, zt+1

q,n . . . , zk·t−1
a,n , zk·t

q,n

}
,

Xt
C =

{
xt+1

C,1,2, . . . , xt+1
C,N−1,N , . . . , xk·t

C,1,2, . . . , xk·t
C,N−1,N

}
.

To capitalize, Equation (20) states that we are interested in finding the distribution over
the next action, zt

a,n, that each robot should take conditioned on that it should be optimal,
specified by the “observations” xt

O = 1, and should not result in violation of the constraints,
specified by the “observations” xt

C = 0. Furthermore, it states that we can obtain this
distribution as the marginal to the conditional distribution on the right-hand side of the
equal sign. If we can evaluate this problem efficiently in real-time, it will act as probabilistic
model predictive control, taking the next k time-steps into account. However, as discussed
in the introduction, solving such a problem is, in general, intractable. Therefore, the next
section will derive an approximate solution based on message-passing and Stochastic
Variational Inference.

3.2. Algorithm Derivation

Instead of solving Equation (20), in this section we will show how to find an ap-
proximate solution based on variational inference. The derived algorithm is shown in
Algorithm 2. At each time step, t, we want to approximate Equation (20) by solving the
following problem

min
q(Zt)

D
[
p
(
Zt|Xt

O = 1, Xt
C = 0

)
||q
(
Zt)], (21)

while making sure that it is easy to obtain the marginals for the variables of interest,
zt

a,1, . . . , zt
a,N , from this approximation. To utilize the idea of message-passing, we need

to find a natural factorization of the model of the problem. By applying the definition of
conditional probability together with the chain rule, and by considering the dependency
structure of the model, the conditional probability distribution on the right-hand side of
Equation (20) can be rewritten as

p
(
Zt|Xt

O = 1, Xt
C = 0

)
=

p
(
Xt

C = 0|Zt)
p
(
Xt

C = 0
) ∏

n∈[1,N]

p
(
Zt

n|Xt
O,n = 1

)
. (22)

From Equation (22), it is seen that the model naturally factorizes into a fraction related
to the constraints and N factors related to the pose, actions, and optimality variables of each
of the N robots. Thus, it is natural to choose a variational distribution that factorizes as

q
(
Zt) = ∏

n∈[1,N]

q
(
Zt

n
)
. (23)

Now considering Equation (8) we can distribute the computations by letting the n’th
robot solve a problem on the form

q∗
(
Zt

n
)
= arg min

q(Zt
n)

D

 p(Xt
C=0|Zt)

p(Xt
C=0)

p
(

Zt
n|Xt

O,n = 1
)

·∏m∈[1,N]\n q
(
Zt

m
)

∣∣∣∣∣∣
∣∣∣∣∣∣ ∏
n∈[1,N]

q
(
Zt

n
), (24)

and broadcast the result, q∗
(
Zt

n
)
, to the rest of the vehicles. This could be repeated until

convergence, or simply until a solution for the next time step, t + 1, has to be found. How-
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ever, Equation (24) still includes the unknown term p
(
Xt

C = 0
)
. To overcome this hurdle,

we utilize stochastic variational inference, for which we can work with the unconditional
distribution given by Equation (25) instead.

p̃(n)
(
Zt, Xt

O,n = 1, Xt
C = 0

)
= p

(
Xt

C = 0|Zt)p
(
Xt

O,n = 1|Zt
n
)

p
(
Zt

n
)

∏
m∈[1,N]\n

q
(
Zt

m
)
, (25)

where

p
(
Xt

C = 0|Zt) = kt

∏
τ=t+1

N−1

∏
n=1

N

∏
m=n+1

p
(

xτ
C,n,m = 0|zτ

q,n, zτ
q,m

)
,

p
(
Xt

O,n = 1|Zt
n
)
=

kt

∏
τ=t+1

p
(

xτ
O,n = 1|zτ

q,n

)
,

p
(
Zt

n
)
= p(zt

q,n)
kt−1

∏
τ=t

p
(

zτ+1
q,n |zτ

q,n, zτ
a,n

)
p(zτ

a,n). (26)

Algorithm 2: Navigation with Cooperative Avoidance under Uncertainty.
1: On each of the n robots
2: repeat
3: t← t + 1
4: Get µzt

q,n
, σzt

q,n
from localization algorithm

5: Initialize φt,∗
n =

{
αt

n, βt
n, . . . , αkt−1

n , βkt−1
n

}
6: repeat
7: if messages available for m ∈ [1, N]\n then
8: Store µzt

q,m
, σzt

q,m
and φt,∗

m

9: end if
10: Solve Equation (29) to find φt,∗

n
11: Broadcast µzt

q,n
, σzt

q,n
and φt,∗

n

12: until φt,∗
n converges or time is up.

13: until Suitable stop criteria; e.g., goal reached.

All terms in Equation (25) except for the variational distribution, q
(
Zt

m
)
, were de-

fined in Section 3.1. To choose an appropriate variational distribution, q
(
Zt

m
)
, consider

Equation (26) describing the motion of the robot. The only distribution in Equation (26)
that can actually be directly controlled is p(zτ

a,n), as p(zt
q,n) is the current best estimate of the

n’th robots’ current location provided by a localization algorithm, and p
(

zτ+1
q,n |zτ

q,n, zτ
a,n

)
is

derived from the kinematics of the robots. Therefore, an appropriate choice of variational
distribution is

q
(
Zt

n
)
= p(zt

q,n)
kt−1

∏
τ=t

p
(

zτ+1
q,n |zτ

q,n, zτ
a,n

)
q(zτ

a,n), (27)

leaving only the distribution q(zτ
a,n) left to be chosen. q(zτ

a,n) has a direct connection to
p
(
zt

a,n
)

in Equation (15), and thus it is natural to choose a distribution that shares some of
the same properties such as the support. Therefore, we have chosen

q(zτ
a,n) = Beta(ατ

n, βτ
n), (28)
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which has the exact same support as and even subsumes p
(
zt

a,n
)
. To summarize, at each

time-step, t, each robot, n, has to iteratively solve a sub-problem through stochastic varia-
tional inference represented by

arg max
φt

n

L
(

p̃(n)
(
Zt, Xt

O,n = 1, Xt
C = 0

)
, q
(
Zt)), (29)

where φt
n =

{
αt

n, βt
n, . . . , αkt−1

n , βkt−1
n

}
, and broadcast the result φt,∗

n to the other vehicles as
illustrated in Figure 2. In practice, to ease the computational burden, some of the terms
can be removed from Equation (29), as only the evaluation of the constraints involving the
n’th robot is non-constant. Overall we have divided the original approximation problem in
Equation (21) into a series of less computationally demanding sub-problems that can be
solved distributively by each of the robots. The next section presents a simulation study and
a real world experiment utilizing this algorithm to make multiple robots safely navigate
the same environment, and we will refer to it as “Stochastic Variational Message-passing
for Multi-robot Navigation” (SVMMN).

arg max
φt

1

L
(

p̃(1)
(
Zt, Xt

O,1 = 1, Xt
C = 0

)
, q
(
Zt)) arg max

φt
2

L
(

p̃(2)
(
Zt, Xt

O,2 = 1, Xt
C = 0

)
, q
(
Zt))

µzt
p,2

, σzt
p,2

, φt,∗
2

µzt
p,1

, σzt
p,1

, φt,∗
1

p(zt
p,1)

p(zt
p,2)

zg,1zg,2

q∗
(
Zt

n
)

q∗
(

zt+1
p,n

) q∗
(

zt+2
p,n

)
q∗
(

zt+3
p,n

)

Figure 2. The derived algorithm for cooperative navigation under uncertainty of multiple uni-cycle
type robots works by letting each robot solve a sub-problem with stochastic variational inference
and broadcast the solution to the other robots. Based on the broadcasted solution, a robot implicitly

derives a distribution over the other robot’s future positions, q∗
(

zτ
p,n

)
; τ > t, and uses the information

in its sub-problem.

4. Validation

To validate SVMMN described in Section 3, we performed both a simulation study
and a real-world experiment, described in Sections 4.1 and 4.2, respectively. In both
cases, the models described in Section 3.1 were implemented utilizing the probabilistic
programming language Pyro [14], and Pyro’s build-in stochastic variational inference
solver was used. For solver options, we chose “Trace_ELBO”, thus implicitly using the
Kullback–Leibler divergence, and the commonly used “Adam” stochastic optimization
solver with 10 epochs/iterations per sent message.

4.1. Simulations

To evaluate the stochastic properties of SVMMN, we implemented a simple simulation
environment for simulating N uni-cycle robots in parallel and in an asynchronous fashion.
For ease of future comparison of algorithms, the environment was created according to the
OpenAI Gym API [42]. Currently, the environment implements multiple scenarios com-
monly used to evaluate multi-robot collision avoidance algorithms: the antipodal goal circle
scenario with both evenly distributed initialisation and with random initialisation used in,
e.g., [29,32,34,37], and the antipodal circle swapping scenario used in, e.g., [27–35,38,39].
Both scenarios are illustrated in Figure 3. For each of the robots in these scenarios, two goal
zones with a radius, Rgoal , are generated evenly on the circumference of a circle with radius,
Renv. When the simulation starts, each of the robots are initialized with a position in the
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centre of one of their respective goal zones. The goal of the robots is then to drive either one
time or as many times as possible between the two goal zones without colliding with the
robots during the simulated time. While both scenarios cause unnaturally crowded environ-
ments, the antipodal circle swapping scenario is specifically designed to provoke reciprocal
dances [43] and deadlocks, whereas running the antipodal goal circle scenario with random
initialisation for longer durations seems to cause more natural and diverse interactions.
Results of simulations for both of these scenarios are summarized in the following sections.
The environment, together with the code, data, and an accompanying video for each of
the simulations, are available at [44]. Table A1 in Appendix A summarizes the parameters
chosen for the model, environment, and simulations. During the simulations, the real-time
factor was adjusted to allow the robots to send approximately 3–4 messages per time-step,
imitating the capabilities of the hardware used in the real world experiment.

Rgoal

Renv

goal zones

robots

(a)

Renv

(b)

Figure 3. Illustration of the simulated environment with N = 4. (a) Shows the antipodal goal circle
scenario and (b) shows the antipodal circle swapping scenario. Two goal zones are generated for
each of the robots, and the robot is initialized in the center of one of these goal zones.

4.1.1. The Antipodal Goal Circle Scenario

A series of 50 simulations of the antipodal goal circle scenario with 12 robots, and a
simulated duration of 300 s were conducted. The simulations were performed with robots
having physical properties similar to the robots used in the real world experiment. To
quantify the ability of SVMMN to avoid collisions, we utilize the minimum separating
distance (MSD) metric also used in [45]. We calculate the MSD of the i’th simulation as the
minimum distance between any of the robots during the whole simulation:

MSD(i) = min
t∈[0,300]

SSD(t, i),

where

SSD(t, i) = min
n ∈ [1, N − 1]
m ∈ [n + 1, N]

Dist
(

St,i
n , St,i

m

)
= min

n ∈ [1, N − 1]
m ∈ [n + 1, N]

||zt,i
p,n − zt,i

p,m|| − Rn − Rm, (30)

St,i
n is the geometrical set describing the shape and position of the n’th robots at time

t, zt,i
p,n is the position of the n’th robot at time t in the i’th simulation, Ri

n is the radius of
the n’th robot, and the last equality in Equation (30) assumes that a disk can describe the
robots. The MSD metric has the natural interpretation that a value strictly greater than
0 implies no collisions. Figure 4 shows the smallest separating distance (SSD) between
any of the robots during all of the simulation, together with the mean of the MSD of the
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50 simulations, and the smallest MSD recorded in any of the simulations. As seen from
Figure 4, the MSD is strictly greater than 0 at any time, thus 0 collisions occurred. Figure 5
shows how many times the robots reached a goal zone during the simulations. These plots
indicate that no deadlock occurred during the simulations. From these simulations, it can
be concluded that SVMMN successfully manages to guide the robots towards their goals
while still avoiding collisions.

0 50 100 150 200 250 300
0

0.2

0.4

Time [s]

D
is

ta
nc

e
[m

]

MSD Collision MSD Mean MSD Minimum

Figure 4. The smallest separating distance between any of the 12 robots during each of the
50 simulations.

0 1 2 3 4 5 6 7 8
0

100

200

Number of Times a Goal was Reached [1]

C
ou

nt
[1

]

Figure 5. Histogram of the number of times the robots reached their goal zones during the simulations.

4.1.2. The Antipodal Circle Swapping Scenario

A series of 10 simulations of the antipodal goal circle scenario with 4, 8, 16, and
32 robots were conducted. The simulations were stopped when all robots had reached their
first goal. To make the results comparable with the B-UAVC algorithm [35], we adjusted
the simulated radius of the robots together with the noise parameters to fit those used for
simulations in [35]. Figure 6 presents the results of the simulation. As we do not use the
same maximum velocities as in [35], we have normalized the travel distance and the travel
time, with the minimum possible travel distance and time, respectively. As indicated by
the MSD in Figure 6 zero collisions occurred during these simulations as well. Comparing
SVMMN to B-UAVC, SVMMN generally seems to take a shorter path. For a small number
of robots in the environment, B-UAVC has the smallest travel time despite SVMMN taking
the shortest path. Data from the simulations reveal that the maximum translational velocity
reference generated by SVMMN during the simulations with two robots was only 85.9%
of the possible translational velocity. This is despite there being nothing to avoid most
of the time, indicating that our approach generally picks velocities conservatively. This
conservatism could be explained by the use of the Kullback–Leibler divergence, which
tends to make the variational distribution, q(z), cover a larger part of the true distribution,
p(z|x), rather then the most probable mode [13]. However, for a large number of robots,
SVMMN still seems superior. Thus, from these simulations it can be concluded that
SVMMN performs as well as, if not better than, B-UAVC specifically made for the problem
of multi-robot collision avoidance.
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1.6
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2 4 8 16 32
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0.2

0.4

0.6

Number of Robots [1]

M
SD

[m
]

Theoretical Minimum B-UAVC SVMMN

Figure 6. Comparison of our algorithm called, “Stochastic Variational Message-passing for Multi-
robot Navigation” (SVMMN), based on the combination of message-passing and stochastic variational
inference, with B-UAVC [35] made specifically for the problem of multi-robot collision avoidance.
The left, middle, and right plot shows the mean and standard deviations of the normalized travel
distance (NTD), the normalized travel time (NTT), and the minimum separating distance (MSD)
during the simulations, respectively. Notice that the data for B-UAVC are manually obtained from
Figure 5 in [35].

4.2. Real-Wold Experiment

The real-wold experiment was performed with two TurtleBot3 Burger robots, each
equipped with the standard lidar and an Intel NUC10FNK as the on-board processing
unit. The parameters chosen for the model are summarized in Table A1 in Appendix A.
To facilitate communication between the robots as needed for message-passing as described
in Section 3.2, the meta operating system ROS2 was utilized. As the communication
medium, 5 Ghz Wi-Fi provided by an Asus rt-ax92u router was used. As in the simulations,
the robots were programmed to utilize alternating goal locations, zg,n, each time they
reached within 20cm of their current goal locations. To provide the estimate of the robots
current pose distribution, p(zt

q,n), we utilized AMCL from the Nav2 ROS2 package [40].
The implemented algorithm is available at [46].

The results of the experiments are shown in Figures 7–9. On average, the robots
managed to solve their sub-problem and sent a solution to the other robot 3.01 times
per time-step. Figure 7 shows the full path taken by the robots during the 388 s long
experiment. Robot 0 and Robot 1 travelled approximately 37.5 m and 34.8 m, respectively,
while reaching their goals 17 times each giving plenty of opportunities for collisions.

Figure 8 shows the distance between the robots and their respective goal together with
the SSD between the two robots themselves during the experiments, and the MSD for the
whole test. In this test, the MSD was 7.8 cm. From the plot, it is clear to see that the robots
manage to reach their goal several times, while keeping a distance larger than dmin from
each other.

Figure 9 illustrates in more detail how SVMMN behaves in one of the situations where
the robots were close to each other. To avoid a collision, at time t = 33 robot 2 waits for
robot 1 to pass. At the time t = 34, robot 1 has passed and robot 2 begins planning a
trajectory towards its goal and drives towards the goal at t > 34. At time t = 39, robot 1 has
reached one of its goals and starts planning a trajectory towards its other goal. However,
for t > 39 robot 2 is blocking robots 1’s path, and therefore robot 1 does not drive that far.

Overall, the experiment illustrates how SVMMN successfully manages to make the
robots drive to their goals while avoiding collisions despite the uncertainty in the localiza-
tion from AMCL and uncertainty in the future movement of the other vehicle.
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Figure 7. Traces of the two robots mean positions, µzt
p,n

, during the experiment, together with the
mean of their initial positions distribution, µz0

p,n
, and goal areas defined as a circle with a radius of

20 cm around their goal locations, zg,n. The plots show how the robots sometimes deviate from the
most direct path between their goal locations to avoid collision with each other.
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Figure 8. Each of the robots’ distances to their respective current goals, together with the distance
between the two robots for the first 100 s of the experiment, and the minimum distance conservatively
calculated as two times the length of the TurtleBot3 Burger platform, 2× 138 mm. The jumps in
the plots of the robots’ distances to their goals are due to change in goal location. The plots show
that the robots manage to reach their goal several times without violating a safe distance, dmin,
from each other.
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Figure 9. Kernel density estimate plots of the robots final predicted positions, zτ
p,n; τ > t, together

with kernel density estimate plot of the robots initial positions, z0
p,n, the mean of the samples used to

generate each plot, µzτ
p,n

; τ > t and µzτ
p,n

, and finally the traces of their traversed paths, µzτ
p,n

; τ < t,
for each t ∈ [33, 45]. The plots clearly illustrate how the robots manage to negotiate trajectories that
avoid a collision while taking the relevant uncertainties into account.

5. Conclusions

In this paper, we have discussed how variational inference can be a tractable way of
solving robotics problems with non-neglectable uncertainties. More specifically, we have
shown how two main solution approaches to variational inference, message-passing algo-
rithms, and stochastic variational inference, relate. We outline how these two approaches
can be potentially combined to flexibly solve problems with uncertainty in a distributed
manner. By deriving and implementing an algorithm for navigation of multiple robots
with cooperative avoidance under uncertainty, we furthermore demonstrate the feasibility
of the proposed approach. Through simulations, we show that the derived algorithm
works with multiple robots, and performs as well as, if not better than, the state of the
art algorithm B-UAVC. Finally, we demonstrate that the derived algorithm works in a
real-world experiment with two mobile robots.

6. Discussion

Many algorithms in robotics are already based on and derived directly from probabilis-
tic models. The wide set of possible models that can be employed in stochastic variational
inference should make it straightforward to apply the approach proposed in this paper to
many of these probabilistic models, thereby resulting in new and interesting algorithms.
Furthermore, due to the separation into sub-problems, the approach could potentially
lead the way for offloading more computations to the cloud. As variational inference can
incorporate neural networks, the approach also allows for the combination of classical
modelling based methods and modern purely learning-based methods.
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Appendix A

Table A1 summarizes the parameters used during the simulations and the real-
world experiment.

Table A1. Parameters used during the simulations and the real-world experiment.

Parameter General
zt

a,n, zt
a,n [−0.22,−2.84], [0.22, 2.84]

M [0.05, 0.05, 0.10]
∆T 1 s
k 4
dmin Rn + Rm

Real-world Experiment
Robot 1 Robot 2

Rn 138 mm
Rgoal 0.2 m

zg,n [0.00, 0.00]T ,
[2.00, 1.00]T

[0.50, 0.13]T ,
[1.50, 1.87]T

c1, c2 3, 25
Antipodal Goal Circle

N 12
Rn 138 mm ±20%
Renv, Rgoal 2 m, 0.25 m
c1, c2 3, 5

σzt
q,n

Diag
(

0.05 m
3 , 0.05 m

3 , 2.5◦
3

)2

Antipodal Circle Swapping
N 2, 4, 8, 16, 32
Rn 200 mm
Renv, Rgoal 4 m, 0.1 m
c1, c2 2, 5

σzt
q,n

Diag
(

0.12m
3 , 0.12m

3 , 2.5◦
3

)2
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