4,730 research outputs found

    Creating a Relational Distributed Object Store

    Full text link
    In and of itself, data storage has apparent business utility. But when we can convert data to information, the utility of stored data increases dramatically. It is the layering of relation atop the data mass that is the engine for such conversion. Frank relation amongst discrete objects sporadically ingested is rare, making the process of synthesizing such relation all the more challenging, but the challenge must be met if we are ever to see an equivalent business value for unstructured data as we already have with structured data. This paper describes a novel construct, referred to as a relational distributed object store (RDOS), that seeks to solve the twin problems of how to persistently and reliably store petabytes of unstructured data while simultaneously creating and persisting relations amongst billions of objects.Comment: 12 pages, 5 figure

    NASA TileWorld manual (system version 2.2)

    Get PDF
    The commands are documented of the NASA TileWorld simulator, as well as providing information about how to run it and extend it. The simulator, implemented in Common Lisp with Common Windows, encodes a particular range in a spectrum of domains, for controllable research experiments. TileWorld consists of a two dimensional grid of cells, a set of polygonal tiles, and a single agent which can grasp and move tiles. In addition to agent executable actions, there is an external event over which the agent has not control; this event correspond to a 'gust of wind'

    Ontological Support for Living Plan Specification, Execution and Evaluation

    Get PDF
    Maintaining systems of military plans is critical for military effectiveness, but is also challenging. Plans will become obsolete as the world diverges from the assumptions on which they rest. If too many ad hoc changes are made to intermeshed plans, the ensemble may no longer lead to well-synchronized and coordinated operations, resulting in the system of plans becoming itself incoherent. We describe in what follows an Adaptive Planning process that we are developing on behalf of the Air Force Research Laboratory (Rome) with the goal of addressing problems of these sorts through cyclical collaborative plan review and maintenance. The interactions of world state, blue force status and associated plans are too complex for manual adaptive processes, and computer-aided plan review and maintenance is thus indispensable. We argue that appropriate semantic technology can 1) provide richer representation of plan-related data and semantics, 2) allow for flexible, non-disruptive, agile, scalable, and coordinated changes in plans, and 3) support more intelligent analytical querying of plan-related data

    Learning relational models with human interaction for planning in robotics

    Get PDF
    Automated planning has proven to be useful to solve problems where an agent has to maximize a reward function by executing actions. As planners have been improved to salve more expressive and difficult problems, there is an increasing interest in using planning to improve efficiency in robotic tasks. However, planners rely on a domain model, which has to be either handcrafted or learned. Although learning domain models can be very costly, recent approaches provide generalization capabilities and integrate human feedback to reduce the amount of experiences required to learn. In this thesis we propase new methods that allow an agent with no previous knowledge to solve certain problems more efficiently by using task planning. First, we show how to apply probabilistic planning to improve robot performance in manipulation tasks (such as cleaning the dirt or clearing the tableware on a table). Planners obtain sequences of actions that get the best result in the long term, beating reactive strategies. Second, we introduce new reinforcement learning algorithms where the agent can actively request demonstrations from a teacher to learn new actions and speed up the learning process. In particular, we propase an algorithm that allows the user to set the mínimum quality to be achieved, where a better quality also implies that a larger number of demonstrations will be requested . Moreover, the learned model is analyzed to extract the unlearned or problematic parts of the model. This information allow the agent to provide guidance to the teacher when a demonstration is requested, and to avoid irrecoverable errors. Finally, a new domain model learner is introduced that, in addition to relational probabilistic action models, can also learn exogenous effects. This learner can be integrated with existing planners and reinforcement learning algorithms to salve a wide range of problems. In summary, we improve the use of learning and task planning to salve unknown tasks. The improvements allow an agent to obtain a larger benefit from planners, learn faster, balance the number of action executions and teacher demonstrations, avoid irrecoverable errors, interact with a teacher to solve difficult problems, and adapt to the behavior of other agents by learning their dynamics. All the proposed methods were compared with state-of-the-art approaches, and were also demonstrated in different scenarios, including challenging robotic tasks.La planificación automática ha probado ser de gran utilidad para resolver problemas en los que un agente tiene que ejecutar acciones para maximizar una función de recompensa. A medida que los planificadores han sido capaces de resolver problemas cada vez más complejos, ha habido un creciente interés por utilizar dichos planificadores para mejorar la eficiencia de tareas robóticas. Sin embargo, los planificadores requieren un modelo del dominio, el cual puede ser creado a mano o aprendido. Aunque aprender modelos automáticamente puede ser costoso, recientemente han aparecido métodos que permiten la interacción persona-máquina y generalizan el conocimiento para reducir la cantidad de experiencias requeridas para aprender. En esta tesis proponemos nuevos métodos que permiten a un agente sin conocimiento previo de la tarea resolver problemas de forma más eficiente mediante el uso de planificación automática. Comenzaremos mostrando cómo aplicar planificación probabilística para mejorar la eficiencia de robots en tareas de manipulación (como limpiar suciedad o recoger una mesa). Los planificadores son capaces de obtener las secuencias de acciones que producen los mejores resultados a largo plazo, superando a las estrategias reactivas. Por otro lado, presentamos nuevos algoritmos de aprendizaje por refuerzo en los que el agente puede solicitar demostraciones a un profesor. Dichas demostraciones permiten al agente acelerar el aprendizaje o aprender nuevas acciones. En particular, proponemos un algoritmo que permite al usuario establecer la mínima suma de recompensas que es aceptable obtener, donde una recompensa más alta implica que se requerirán más demostraciones. Además, el modelo aprendido será analizado para identificar qué partes están incompletas o son problemáticas. Esta información permitirá al agente evitar errores irrecuperables y también guiar al profesor cuando se solicite una demostración. Finalmente, se ha introducido un nuevo método de aprendizaje para modelos de dominios que, además de obtener modelos relacionales de acciones probabilísticas, también puede aprender efectos exógenos. Mostraremos cómo integrar este método en algoritmos de aprendizaje por refuerzo para poder abordar una mayor cantidad de problemas. En resumen, hemos mejorado el uso de técnicas de aprendizaje y planificación para resolver tareas desconocidas a priori. Estas mejoras permiten a un agente aprovechar mejor los planificadores, aprender más rápido, elegir entre reducir el número de acciones ejecutadas o el número de demostraciones solicitadas, evitar errores irrecuperables, interactuar con un profesor para resolver problemas complejos, y adaptarse al comportamiento de otros agentes aprendiendo sus dinámicas. Todos los métodos propuestos han sido comparados con trabajos del estado del arte, y han sido evaluados en distintos escenarios, incluyendo tareas robóticas

    Scientific knowledge and scientific uncertainty in bushfire and flood risk mitigation: literature review

    Get PDF
    EXECUTIVE SUMMARY The Scientific Diversity, Scientific Uncertainty and Risk Mitigation Policy and Planning (RMPP) project aims to investigate the diversity and uncertainty of bushfire and flood science, and its contribution to risk mitigation policy and planning. The project investigates how policy makers, practitioners, courts, inquiries and the community differentiate, understand and use scientific knowledge in relation to bushfire and flood risk. It uses qualitative social science methods and case studies to analyse how diverse types of knowledge are ordered and judged as salient, credible and authoritative, and the pragmatic meaning this holds for emergency management across the PPRR spectrum. This research report is the second literature review of the RMPP project and was written before any of the case studies had been completed. It synthesises approximately 250 academic sources on bushfire and flood risk science, including research on hazard modelling, prescribed burning, hydrological engineering, development planning, meteorology, climatology and evacuation planning. The report also incorporates theoretical insights from the fields of risk studies and science and technology studies (STS), as well as indicative research regarding the public understandings of science, risk communication and deliberative planning. This report outlines the key scientific practices (methods and knowledge) and scientific uncertainties in bushfire and flood risk mitigation in Australia. Scientific uncertainties are those ‘known unknowns’ and ‘unknown unknowns’ that emerge from the development and utilisation of scientific knowledge. Risk mitigation involves those processes through which agencies attempt to limit the vulnerability of assets and values to a given hazard. The focus of this report is the uncertainties encountered and managed by risk mitigation professionals in regards to these two hazards, though literature regarding natural sciences and the scientific method more generally are also included where appropriate. It is important to note that while this report excludes professional experience and local knowledge from its consideration of uncertainties and knowledge, these are also very important aspects of risk mitigation which will be addressed in the RMPP project’s case studies. Key findings of this report include: Risk and scientific knowledge are both constructed categories, indicating that attempts to understand any individual instance of risk or scientific knowledge should be understood in light of the social, political, economic, and ecological context in which they emerge. Uncertainty is a necessary element of scientific methods, and as such risk mitigation practitioners and researchers alike should seek to ‘embrace uncertainty’ (Moore et al., 2005) as part of navigating bushfire and flood risk mitigation

    Reality Versus Fantasy: An Analysis of Emergency Management Practices Portrayed in Disaster Movies

    Get PDF
    In Hollywood, disaster films are often highly fictionalized for entertainment purposes. They often misrepresent disaster protection, mitigation, response, and overall preparedness. The films Jurassic World (2015), San Andreas (2015), and Your Name (2016) misrepresent mass island evacuation and response, earthquake preparedness and mitigation, and near-Earth impacts (NEOs) and protection respectfully. However, the disasters exaggerated are based upon real hazards that emergency management officials must plan for. The disasters portrayed are analyzed with the U.S. Department of Homeland Security’s National Preparedness Goal and its core capabilities to demonstrate effective strategies for the incidents, and proper identification of the discrepancies between disaster management fact versus fiction

    Decentrilazation as ability to adapt

    Get PDF
    No abstract availableEconomics ;
    corecore