6 research outputs found

    On the path-avoidance vertex-coloring game

    Full text link
    For any graph FF and any integer r2r\geq 2, the \emph{online vertex-Ramsey density of FF and rr}, denoted m(F,r)m^*(F,r), is a parameter defined via a deterministic two-player Ramsey-type game (Painter vs.\ Builder). This parameter was introduced in a recent paper \cite{mrs11}, where it was shown that the online vertex-Ramsey density determines the threshold of a similar probabilistic one-player game (Painter vs.\ the binomial random graph Gn,pG_{n,p}). For a large class of graphs FF, including cliques, cycles, complete bipartite graphs, hypercubes, wheels, and stars of arbitrary size, a simple greedy strategy is optimal for Painter and closed formulas for m(F,r)m^*(F,r) are known. In this work we show that for the case where F=PF=P_\ell is a (long) path, the picture is very different. It is not hard to see that m(P,r)=11/k(P,r)m^*(P_\ell,r)= 1-1/k^*(P_\ell,r) for an appropriately defined integer k(P,r)k^*(P_\ell,r), and that the greedy strategy gives a lower bound of k(P,r)rk^*(P_\ell,r)\geq \ell^r. We construct and analyze Painter strategies that improve on this greedy lower bound by a factor polynomial in \ell, and we show that no superpolynomial improvement is possible

    Erdos-Szekeres-type theorems for monotone paths and convex bodies

    Get PDF
    For any sequence of positive integers j_1 < j_2 < ... < j_n, the k-tuples (j_i,j_{i + 1},...,j_{i + k-1}), i=1, 2,..., n - k+1, are said to form a monotone path of length n. Given any integers n\ge k\ge 2 and q\ge 2, what is the smallest integer N with the property that no matter how we color all k-element subsets of [N]=\{1,2,..., N\} with q colors, we can always find a monochromatic monotone path of length n? Denoting this minimum by N_k(q,n), it follows from the seminal 1935 paper of Erd\H os and Szekeres that N_2(q,n)=(n-1)^q+1 and N_3(2,n) = {2n -4\choose n-2} + 1. Determining the other values of these functions appears to be a difficult task. Here we show that 2^{(n/q)^{q-1}} \leq N_3(q,n) \leq 2^{n^{q-1}\log n}, for q \geq 2 and n \geq q+2. Using a stepping-up approach that goes back to Erdos and Hajnal, we prove analogous bounds on N_k(q,n) for larger values of k, which are towers of height k-1 in n^{q-1}. As a geometric application, we prove the following extension of the Happy Ending Theorem. Every family of at least M(n)=2^{n^2 \log n} plane convex bodies in general position, any pair of which share at most two boundary points, has n members in convex position, that is, it has n members such that each of them contributes a point to the boundary of the convex hull of their union.Comment: 32 page

    Probabilistic One-player Ramsey Games via Deterministic Two-player Games

    No full text

    Coloring random graphs online without creating monochromatic subgraphs

    Full text link
    Consider the following random process: The vertices of a binomial random graph Gn,pG_{n,p} are revealed one by one, and at each step only the edges induced by the already revealed vertices are visible. Our goal is to assign to each vertex one from a fixed number rr of available colors immediately and irrevocably without creating a monochromatic copy of some fixed graph FF in the process. Our first main result is that for any FF and rr, the threshold function for this problem is given by p0(F,r,n)=n1/m1(F,r)p_0(F,r,n)=n^{-1/m_1^*(F,r)}, where m1(F,r)m_1^*(F,r) denotes the so-called \emph{online vertex-Ramsey density} of FF and rr. This parameter is defined via a purely deterministic two-player game, in which the random process is replaced by an adversary that is subject to certain restrictions inherited from the random setting. Our second main result states that for any FF and rr, the online vertex-Ramsey density m1(F,r)m_1^*(F,r) is a computable rational number. Our lower bound proof is algorithmic, i.e., we obtain polynomial-time online algorithms that succeed in coloring Gn,pG_{n,p} as desired with probability 1o(1)1-o(1) for any p(n)=o(n1/m1(F,r))p(n) = o(n^{-1/m_1^*(F,r)}).Comment: some minor addition
    corecore