187 research outputs found

    Self-Adaptive Role-Based Access Control for Business Processes

    Get PDF
    © 2017 IEEE. We present an approach for dynamically reconfiguring the role-based access control (RBAC) of information systems running business processes, to protect them against insider threats. The new approach uses business process execution traces and stochastic model checking to establish confidence intervals for key measurable attributes of user behaviour, and thus to identify and adaptively demote users who misuse their access permissions maliciously or accidentally. We implemented and evaluated the approach and its policy specification formalism for a real IT support business process, showing their ability to express and apply a broad range of self-adaptive RBAC policies

    Temporal analytics for software usage models

    Get PDF
    We address the problem of analysing how users actually interact with software. Users are heterogeneous: they adopt different usage styles and each individual user may move between different styles, from one interaction session to another, or even during an interaction session. For analysis, we require new temporal analytics: techniques to model and analyse temporal data sets of logged interactions with the purpose of discovering, interpreting, and communicating meaningful patterns of usage. We define new probabilistic models whose parameters are inferred from logged time series data of user-software interactions. We formulate hypotheses about software usage together with the developers, encode them in probabilistic temporal logic, and analyse the models according to the probabilistic properties. We illustrate by application to logged data from a deployed mobile application software used by thousands of users

    Data-driven modelling and probabilistic analysis of interactive software usage

    Get PDF
    This paper answers the research question: how can we model and understand the ways in which users actually interact with software, given that usage styles vary from user to user, and even from use to use for an individual user. Our first contribution is to introduce two new probabilistic, admixture models, inferred from sets of logged user traces, which include observed and latent states. The models encapsulate the temporal and stochastic aspects of usage, the heterogeneous and dynamic nature of users, and the temporal aspects of the time interval over which the data was collected (e.g. one day, one month, etc.). A key concept is activity patterns, which encapsulate common observed temporal behaviours shared across a set of logged user traces. Each activity pattern is a discrete-time Markov chain in which observed variables label the states; latent states specify the activity patterns. The second contribution is how we use parametrised, probabilistic, temporal logic properties to reason about hypothesised behaviours within an activity pattern, and between activity patterns. Different combinations of inferred model and hypothesised property afford a rich set of techniques for understanding software usage. The third contribution is a demonstration of the models and temporal logic properties by application to user traces from a software application that has been used by tens of thousands of users worldwide

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling

    Automated test-based learning and verification of performance models for microservices systems

    Get PDF
    Effective and automated verification techniques able to provide assurances of performance and scalability are highly demanded in the context of microservices systems. In this paper, we introduce a methodology that applies specification-driven load testing to learn the behavior of the target microservices system under multiple deployment configurations. Testing is driven by realistic workload conditions sampled in production. The sampling produces a formal description of the users' behavior through a Discrete Time Markov Chain. This model drives multiple load testing sessions that query the system under test and feed a Bayesian inference process which incrementally refines the initial model to obtain a complete specification from run-time evidence as a Continuous Time Markov Chain. The complete specification is then used to conduct automated verification by using probabilistic model checking and to compute a configuration score that evaluates alternative deployment options. This paper introduces the methodology, its theoretical foundation, and the toolchain we developed to automate it. Our empirical evaluation shows its applicability, benefits, and costs on a representative microservices system benchmark. We show that the methodology detects performance issues, traces them back to system-level requirements, and, thanks to the configuration score, provides engineers with insights on deployment options. The comparison between our approach and a selected state-of-the-art baseline shows that we are able to reduce the cost up to 73% in terms of number of tests. The verification stage requires negligible execution time and memory consumption. We observed that the verification of 360 system-level requirements took ~1 minute by consuming at most 34 KB. The computation of the score involved the verification of ~7k (automatically generated) properties verified in ~72 seconds using at most ~50 KB. (C)& nbsp;2022 The Author(s). Published by Elsevier Inc.& nbsp

    Supporting self-adaptation via quantitative verification and sensitivity analysis at run time

    Get PDF
    Modern software-intensive systems often interact with an environment whose behavior changes over time, often unpredictably. The occurrence of changes may jeopardize their ability to meet the desired requirements. It is therefore desirable to design software in a way that it can self-adapt to the occurrence of changes with limited, or even without, human intervention. Self-adaptation can be achieved by bringing software models and model checking to run time, to support perpetual automatic reasoning about changes. Once a change is detected, the system itself can predict if requirements violations may occur and enable appropriate counter-actions. However, existing mainstream model checking techniques and tools were not conceived for run-time usage; hence they hardly meet the constraints imposed by on-the-fly analysis in terms of execution time and memory usage. This paper addresses this issue and focuses on perpetual satisfaction of non-functional requirements, such as reliability or energy consumption. Its main contribution is the description of a mathematical framework for run-time efficient probabilistic model checking. Our approach statically generates a set of verification conditions that can be efficiently evaluated at run time as soon as changes occur. The proposed approach also supports sensitivity analysis, which enables reasoning about the effects of changes and can drive effective adaptation strategies

    High-Level Analysis of the Impact of Soft-Faults in Cyberphysical Systems

    Get PDF
    As digital systems grow in complexity and are used in a broader variety of safety-critical applications, there is an ever-increasing demand for assessing the dependability and safety of such systems, especially when subjected to hazardous environments. As a result, it is important to identify and correct any functional abnormalities and component faults as early as possible in order to minimize performance degradation and to avoid potential perilous situations. Existing techniques often lack the capacity to perform a comprehensive and exhaustive analysis on complex redundant architectures, leading to less than optimal risk evaluation. Hence, an early analysis of dependability of such safety-critical applications enables designers to develop systems that meets high dependability requirements. Existing techniques in the field often lack the capacity to perform full system analyses due to state-explosion limitations (such as transistor and gate-level analyses), or due to the time and monetary costs attached to them (such as simulation, emulation, and physical testing). In this work we develop a system-level methodology to model and analyze the effects of Single Event Upsets (SEUs) in cyberphysical system designs. The proposed methodology investigates the impacts of SEUs in the entire system model (fault tree level), including SEU propagation paths, logical masking of errors, vulnerability to specific events, and critical nodes. The methodology also provides insights on a system's weaknesses, such as the impact of each component to the system's vulnerability, as well as hidden sources of failure, such as latent faults. Moreover, the proposed methodology is able to identify and categorize the system's components in order of criticality, and to evaluate different approaches to the mitigation of such criticality (in the form of different configurations of TMR) in order to obtain the most efficient mitigation solution available. The proposed methodology is also able to model and analyze system components individually (system component level), in order to more accurately estimate the component's vulnerability to SEUs. In this case, a more refined analysis of the component is conducted, which enables us to identify the source of the component's criticality. Thereafter, a second mitigation mechanic (internal to the component) takes place, in order to evaluate the gains and costs of applying different configurations of TMR to the component internally. Finally, our approach will draw a comparison between the results obtained at both levels of analysis in order to evaluate the most efficient way of improving the targeted system design
    • …
    corecore