19,595 research outputs found

    Symbolic Exact Inference for Discrete Probabilistic Programs

    Full text link
    The computational burden of probabilistic inference remains a hurdle for applying probabilistic programming languages to practical problems of interest. In this work, we provide a semantic and algorithmic foundation for efficient exact inference on discrete-valued finite-domain imperative probabilistic programs. We leverage and generalize efficient inference procedures for Bayesian networks, which exploit the structure of the network to decompose the inference task, thereby avoiding full path enumeration. To do this, we first compile probabilistic programs to a symbolic representation. Then we adapt techniques from the probabilistic logic programming and artificial intelligence communities in order to perform inference on the symbolic representation. We formalize our approach, prove it sound, and experimentally validate it against existing exact and approximate inference techniques. We show that our inference approach is competitive with inference procedures specialized for Bayesian networks, thereby expanding the class of probabilistic programs that can be practically analyzed

    Distributional logic programming for Bayesian knowledge representation

    Get PDF
    We present a formalism for combining logic programming and its flavour of nondeterminism with probabilistic reasoning. In particular, we focus on representing prior knowledge for Bayesian inference. Distributional logic programming (Dlp), is considered in the context of a class of generative probabilistic languages. A characterisation based on probabilistic paths which can play a central role in clausal probabilistic reasoning is presented. We illustrate how the characterisation can be utilised to clarify derived distributions with regards to mixing the logical and probabilistic constituents of generative languages. We use this operational characterisation to define a class of programs that exhibit probabilistic determinism. We show how Dlp can be used to define generative priors over statistical model spaces. For example, a single program can generate all possible Bayesian networks having N nodes while at the same time it defines a prior that penalises networks with large families. Two classes of statistical models are considered: Bayesian networks and classification and regression trees. Finally we discuss: (1) a Metropolis–Hastings algorithm that can take advantage of the defined priors and the probabilistic choice points in the prior programs and (2) its application to real-world machine learning tasks

    The generalised distribution semantics and projective families of distributions

    Get PDF
    We generalise the distribution semantics underpinning probabilistic logic programming by distilling its essential concept, the separation of a free random component and a deterministic part. This abstracts the core ideas beyond logic programming as such to encompass frameworks from probabilistic databases, probabilistic finite model theory and discrete lifted Bayesian networks. To demonstrate the usefulness of such a general approach, we completely characterise the projective families of distributions representable in the generalised distribution semantics and we demonstrate both that large classes of interesting projective families cannot be represented in a generalised distribution semantics and that already a very limited fragment of logic programming (acyclic determinate logic programs) in the deterministic part suffices to represent all those projective families that are representable in the generalised distribution semantics at all

    Functorial semantics as a unifying perspective on logic programming

    Get PDF
    Logic programming and its variations are widely used for formal reasoning in various areas of Computer Science, most notably Artificial Intelligence. In this paper we develop a systematic and unifying perspective for (ground) classical, probabilistic, weighted logic programs, based on categorical algebra. Our departure point is a formal distinction between the syntax and the semantics of programs, now regarded as separate categories. Then, we are able to characterise the various variants of logic program as different models for the same syntax category, i.e. structure-preserving functors in the spirit of Lawvere’s functorial semantics. As a first consequence of our approach, we showcase a series of semantic constructs for logic programming pictorially as certain string diagrams in the syntax category. Secondly, we describe the correspondence between probabilistic logic programs and Bayesian networks in terms of the associated models. Our analysis reveals that the correspondence can be phrased in purely syntactical terms, without resorting to the probabilistic domain of interpretation

    Functorial Semantics as a Unifying Perspective on Logic Programming

    Get PDF
    Logic programming and its variations are widely used for formal reasoning in various areas of Computer Science, most notably Artificial Intelligence. In this paper we develop a systematic and unifying perspective for (ground) classical, probabilistic, weighted logic programs, based on categorical algebra. Our departure point is a formal distinction between the syntax and the semantics of programs, now regarded as separate categories. Then, we are able to characterise the various variants of logic program as different models for the same syntax category, i.e. structure-preserving functors in the spirit of Lawvere’s functorial semantics. As a first consequence of our approach, we showcase a series of semantic constructs for logic programming pictorially as certain string diagrams in the syntax category. Secondly, we describe the correspondence between probabilistic logic programs and Bayesian networks in terms of the associated models. Our analysis reveals that the correspondence can be phrased in purely syntactical terms, without resorting to the probabilistic domain of interpretation

    Functorial semantics as a unifying perspective on logic programming

    Get PDF
    Logic programming and its variations are widely used for formal reasoning in various areas of Computer Science, most notably Artificial Intelligence. In this paper we develop a systematic and unifying perspective for (ground) classical, probabilistic, weighted logic programs, based on categorical algebra. Our departure point is a formal distinction between the syntax and the semantics of programs, now regarded as separate categories. Then, we are able to characterise the various variants of logic program as different models for the same syntax category, i.e. structure-preserving functors in the spirit of Lawvere’s functorial semantics. As a first consequence of our approach, we showcase a series of semantic constructs for logic programming pictorially as certain string diagrams in the syntax category. Secondly, we describe the correspondence between probabilistic logic programs and Bayesian networks in terms of the associated models. Our analysis reveals that the correspondence can be phrased in purely syntactical terms, without resorting to the probabilistic domain of interpretation

    Parameter Learning of Logic Programs for Symbolic-Statistical Modeling

    Full text link
    We propose a logical/mathematical framework for statistical parameter learning of parameterized logic programs, i.e. definite clause programs containing probabilistic facts with a parameterized distribution. It extends the traditional least Herbrand model semantics in logic programming to distribution semantics, possible world semantics with a probability distribution which is unconditionally applicable to arbitrary logic programs including ones for HMMs, PCFGs and Bayesian networks. We also propose a new EM algorithm, the graphical EM algorithm, that runs for a class of parameterized logic programs representing sequential decision processes where each decision is exclusive and independent. It runs on a new data structure called support graphs describing the logical relationship between observations and their explanations, and learns parameters by computing inside and outside probability generalized for logic programs. The complexity analysis shows that when combined with OLDT search for all explanations for observations, the graphical EM algorithm, despite its generality, has the same time complexity as existing EM algorithms, i.e. the Baum-Welch algorithm for HMMs, the Inside-Outside algorithm for PCFGs, and the one for singly connected Bayesian networks that have been developed independently in each research field. Learning experiments with PCFGs using two corpora of moderate size indicate that the graphical EM algorithm can significantly outperform the Inside-Outside algorithm

    Categorical Modelling of Logic Programming: Coalgebra, Functorial Semantics, String Diagrams

    Get PDF
    Logic programming (LP) is driven by the idea that logic subsumes computation. Over the past 50 years, along with the emergence of numerous logic systems, LP has also grown into a large family, the members of which are designed to deal with various computation scenarios. Among them, we focus on two of the most influential quantitative variants are probabilistic logic programming (PLP) and weighted logic programming (WLP). In this thesis, we investigate a uniform understanding of logic programming and its quan- titative variants from the perspective of category theory. In particular, we explore both a coalgebraic and an algebraic understanding of LP, PLP and WLP. On the coalgebraic side, we propose a goal-directed strategy for calculating the probabilities and weights of atoms in PLP and WLP programs, respectively. We then develop a coalgebraic semantics for PLP and WLP, built on existing coalgebraic semantics for LP. By choosing the appropriate functors representing probabilistic and weighted computation, such coalgeraic semantics characterise exactly the goal-directed behaviour of PLP and WLP programs. On the algebraic side, we define a functorial semantics of LP, PLP, and WLP, such that they three share the same syntactic categories of string diagrams, and differ regarding to the semantic categories according to their data/computation type. This allows for a uniform diagrammatic expression for certain semantic constructs. Moreover, based on similar approaches to Bayesian networks, this provides a framework to formalise the connection between PLP and Bayesian networks. Furthermore, we prove a sound and complete aximatization of the semantic category for LP, in terms of string diagrams. Together with the diagrammatic presentation of the fixed point semantics, one obtain a decidable calculus for proving the equivalence between propositional definite logic programs
    • …
    corecore