93 research outputs found

    Heuristic Dispatching Rules for Dynamic Scheduling of Heavy Engineering Equipments

    Get PDF
    Dynamic scheduling problem has been an attractive area for researches to investigate since a long time. Many techniques have been used to tackle such problems, but all of these techniques require high efforts to formulate the dynamic scheduling problems inorder to obtain optimal solution. Using Heuristic or dispatching rules to solve the dynamic scheduling problem is efficient and popular manner to reach an acceptable level of scheduling. In this paper hybrid techniques are used in the proposed developed model. First the switching of four dispatching rules (Earliest Due Date (EDD), Slack Time (SLACK), Slack / Remaining Operations (S/ROP) and Priority Index) with the aim of choosing minimum tardy jobs. Second, scheduling-rescheduling approach is used to tackle the dynamic environment of job-shop problem depending on three level algorithms. Third, proposing three level algorithms, these levels are resource level, process planning level to improve scheduling with the aim of minimizing tardy jobs and shorten "order-to-delivery", and job level to design rescheduling policy depending on identified factors of each job order. The developed model is applied to real data from the Heavy Engineering Equipment State Company/Baghdad, and considerable advantages are observed. Applying the proposed model lead to zero number of tardy jobs (NT) and zero mean tardiness (MT). It is obvious from the obtained results that by adopting such model, a better solution for job orders' due dates can be achieved; hence "order-to-delivery" time can be shortene

    HIERARCHICAL-GRANULARITY HOLONIC MODELLING

    Get PDF
    This thesis aims to introduce an agent-based system engineering approach, named Hierarchical-Granularity Holonic Modelling, to support intelligent information processing at multiple granularity levels. The focus is especially on complex hierarchical systems. Nowadays, due to ever growing complexity of information systems and processes, there is an increasing need of a simple self-modular computational model able to manage data and perform information granulation at different resolutions (i.e., both spatial and temporal). The current literature lacks to provide such a methodology. To cite a relevant example, the object-oriented paradigm is suitable for describing a system at a given representation level; notwithstanding, further design effort is needed if a more synthetical of more analytical view of the same system is required. In the literature, the agent paradigm represents a viable solution in complex systems modelling; in particular, Multi-Agent Systems have been applied with success in a countless variety of distributed intelligence settings. Current agent-oriented implementations however suffer from an apparent dichotomy between agents as intelligent entities and agents\u2019 structures as superimposed hierarchies of roles within a given organization. The agents\u2019 architectures are often rigid and require intense re-engineering when the underpinning ontology is updated to cast new design criteria. The latest stage in the evolution of modelling frameworks is represented by Holonic Systems, based on the notion of \u2018holon\u2019 and \u2018holarchy\u2019 (i.e., hierarchy of holons). A holon, just like an agent, is an intelligent entity able to interact with the environment and to take decisions to solve a specific problem. Contrarily to agent, holon has the noteworthy property of playing the role of a whole and a part at the same time. This reflects at the organizational level: holarchy functions first as autonomous wholes in supra-ordination to their parts, secondly as dependent parts in sub-ordination to controls on higher levels, and thirdly in coordination with their local environment. These ideas were originally devised by Arthur Koestler in 1967. Since then, Holonic Systems have gained more and more credit in various fields such as Biology, Ecology, Theory of Emergence and Intelligent Manufacturing. Notwithstanding, with respect to these disciplines, fewer works on Holonic Systems can be found in the general framework of Artificial and Computational Intelligence. Moreover, the distance between theoretic models and actual implementation is still wide open. In this thesis, starting from the Koestler\u2019s original idea, we devise a novel agent-inspired model that merges intelligence with the holonic structure at multiple hierarchical-granularity levels. This is made possible thanks to a rule-based knowledge recursive representation, which allows the holonic agent to carry out both operating and learning tasks in a hierarchy of granularity levels. The proposed model can be directly used in terms of hardware/software applications. This endows systems and software engineers with a modular and scalable approach when dealing with complex hierarchical systems. In order to support our claims, exemplar experiments of our proposal are shown and prospective implications are commented

    Digital Twins: Review and Challenges

    Full text link
    [EN] With the arises of Industry 4.0, numerous concepts have emerged; one of the main concepts is the digital twin (DT). DT is being widely used nowadays, however, as there are several uses in the existing literature; the understanding of the concept and its functioning can be diffuse. The main goal of this paper is to provide a review of the existing literature to clarify the concept, operation, and main characteristics of DT, to introduce the most current operating, communication, and usage trends related to this technology, and to present the performance of the synergy between DT and multi-agent system (MAS) technologies through a computer science approach.This work was partly supported by the Spanish Government (RTI2018-095390-B-C31)Juárez-Juárez, MG.; Botti, V.; Giret Boggino, AS. (2021). Digital Twins: Review and Challenges. Journal of Computing and Information Science in Engineering. 21(3):1-23. https://doi.org/10.1115/1.405024412321

    Fusion of Information and Analytics: A Discussion on Potential Methods to Cope with Uncertainty in Complex Environments (Big Data and IoT)

    Get PDF
    International audienceInformation overload and complexity are core problems to most organizations of today. The advances in networking capabilities have created the conditions of complexity by enabling richer, real-time interactions between and among individuals, objects, systems and organizations. Fusion of Information and Analytics Technologies (FIAT) are key enablers for the design of current and future decision support systems to support prognosis, diagnosis, and prescriptive tasks in such complex environments. Hundreds of methods and technologies exist, and several books have been dedicated to either analytics or information fusion so far. However, very few have discussed the methodological aspects and the need of integrating frameworks for these techniques coming from multiple disciplines. This paper presents a discussion of potential integrating frameworks as well as the development of a computational model to evolve FIAT-based systems capable of meeting the challenges of complex environments such as in Big Data and Internet of Things (IoT)

    An agile and adaptive holonic architecture for manufacturing control

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. 2004. Faculdade de Engenharia. Universidade do Port

    Modellierung und Analyse individuellen Konsumentenverhaltens mit probabilistischen Holonen

    Get PDF
    Der Schwerpunkt dieser Arbeit liegt in der Entwicklung eines agentenbasierten, probabilistischen Konsumentenverhaltensmodells zur Repräsentation und Analyse individuellen Kaufverhaltens. Das Modell dient zur Entscheidungsunterstützung im Handel und speziell im Customer Relationship Management (CRM). Als Modellgrundlage wird eine Klasse probabilistischer Agenten eingeführt, die sich zu Holonen zusammenschließen können und deren Wissensbasen erweiterte Bayes';sche Netze (Verhaltensnetze) sind. Mit Hilfe probabilistischer Holone werden Kundenagenten entwickelt, die einzelne reale Kundenmodellieren. Dazu werden kundenindividuelle Verhaltensmuster unter Berücksichtigung von Domänenwissen aus historischen Kundendaten extrahiert und als nichtlineare Abhängigkeiten zwischen Einflussfaktoren und artikelbezogenen Kundenreaktionen in Verhaltensnetzen repräsentiert. Ein Kundenagent ist dabei ein Holon aus mehreren so genannten Feature-Agenten, die jeweils einzelne Kundeneigenschaften repräsentieren, entsprechende Feature-Verhaltensnetze verwalten und durch Interaktion das Gesamtverhalten des Kunden bestimmen. Die Simulation des Verhaltens besteht aus der Ermittlung von Kundenreaktionen auf vorgegebene Einkaufsszenarien mit Hilfe quantifizierbarer probabilistischer Schlussfolgerungen. Kundenagenten können sich durch Holonisierung zu Kundengruppenagenten zusammenschließen, die unterschiedliche Aggregationen des Kaufverhaltens der Gruppenmitglieder repräsentieren. Zur Bestimmung gleichartiger Kunden werden auf Basis der Verhaltensnetze mehrere Ähnlichkeitsanalyseverfahren sowie verhaltensbezogene Ähnlichkeitsmaße zum Vergleich des dynamischen Kaufverhaltens entwickelt. Bestehende Klassifikations- und Clusteringverfahren werden anschließend so erweitert, dass sie neben klassischen Attributvektoren verhaltensnetzbasierte Repräsentationen als Vergleichsgrundlage verwenden können. Darüber hinaus werden Verfahren zur Zuordnung anonymer Kassenbons zu vorgegebenen Kundengruppen entwickelt, um Ergebnisse von Kundensimulationen auf die Gesamtheit der anonymen Kunden eines Unternehmens übertragen zu können. Nutzen und Qualität der entwickelten Modelle, Verfahren und Maße werden mit Hilfe einer umfangreichen Software-Implementierung anhand mehrerer Anwendungsbeispiele aus der Praxis demonstriert und in einigen Fallstudien evaluiert — basierend auf realen Daten eines deutschen Einzelhandelsunternehmens.The focus of this work is the development of an agent-based, probabilistic model for representing and analysing individual consumer behaviour. The model provides a basis for decision making in marketing and especially in customer relationship management (CRM). As foundation of the model, a class of probabilistic agents is introduced. These agents can be merged to holonic agents (holons) and have probabilistic knowledge bases adapted from Bayesian networks (behaviour networks). An individual customer is modelled as a customer agent which is a probabilistic holon consisting of several feature agents. A feature agent represents a particular property (feature) of the customer';s behaviour and encapsulates appropriate feature-related behaviour networks. The total behaviour of a customer agent is determined by interaction of its feature agents. Individual behaviour patterns of a customer are extracted from real data — in consideration of given domain knowledge — and are represented within behaviour networks as non-linear dependencies between influencing factors and the customer';s product-related reactions. Behaviour simulation is realised by evaluation of expected reactions of customers on given shopping scenarios based on quantifiable, probabilistic reasoning. Customer agents are able to join to customer group agents which represent different behaviour aggregations of their members. Based on behaviour networks, several behaviour-related methods of analysis as well as distance measures are developed to identify homogeneous customers on the basis of their dynamic shopping behaviour. Subsequently, existing vector-based methods of classification and clustering are extended by these behaviour-related methods and measures. In addition, methods are developed to assign anonymous receipts to given customer groups in order to extent customer-related simulation results to anonymous customers of a company. Benefits and quality of the developed models, methods and measures, which are implemented within a complex software system, are shown by practical examples and evaluated in several case studies — based on real data from a German retailer

    Open research issues on multi-models for complex technological systems

    Get PDF
    Abstract -We are going to report here about state of the art works on multi-models for complex technological systems both from the theoretical and practical point of view. A variety of algorithmic approaches (k-mean, dss, etc.) and applicative domains (wind farms, neurological diseases, etc.) are reported to illustrate the extension of the research area
    • …
    corecore