93 research outputs found

    COMPARATIVE ANALYSIS OF NEURO- FUZZY AND SIMPLEX OPTIMIZATION MODEL FOR CONGESTION CONTROL IN ATM NETWORK.

    Get PDF
    Congestion always occurred when the transmission rate increased the data handling capacity of the network. Congestion normally arises when the network resources are not managed efficiently. Therefore if the source delivers at a speed higher then service rate queue, the queue size will be higher. Also if the queue size is finite, then the packet will observed delay. MATLAB Software was used to carry out simulations to develop Congestion control optimization Scheme for ATM Network with the aims to reducing the congestion of Enugu ATM Network. The results of the research reveal the minimization of congestion application model for Enugu ATM using optimization and Neuro-fuzzy. The result shows that congestion control model with Optimization and Neuro-fuzzy were 0.00003153 and 0.00002098 respectively. The ATM Congestion was reduced by 0.0000105, which is 18.2% decrease after Neuro-fuzzy controller was used. The results show the application of Neuro-fuzzy model which can use to control and minimized the ATM Congestion of Enugu ATM Network. The result shows that when Neuro-fuzzy is applied the congestion and the packet queue length in the buffer will be minimized. Key words: Congestion, MATLAB, Optimization, Neuro-fuzzy, ATM DOI: 10.7176/CTI/10-05 Publication date:July 31st 2020

    On the time scales in video traffic characterization for queueing behavior

    Get PDF
    To guarantee quality of service (QoS) in future integrated service networks, traffic sources must be characterized to capture the traffic characteristics relevant to network performance. Recent studies reveal that multimedia traffic shows burstiness over multiple time scales and long range dependence (LRD). While researchers agree on the importance of traffic correlation there is no agreement on how much correlation should be incorporated into a traffic model for performance estimation and dimensioning of networks. In this article, we present an approach for defining a relevant time scale for the characterization of VER video traffic in the sense of queueing delay. We first consider the Reich formula and characterize traffic by the Piecewise Linear Arrival Envelope Function (PLAEF). We then define the cutoff interval above which the correlation does not affect the queue buildup. The cutoff interval is the upper bound of the time scale which is required for the estimation of queue size and thus the characterization of VER video traffic. We also give a procedure to approximate the empirical PLAEF with a concave function; this significantly simplifies the calculation in the estimation of the cutoff interval and delay bound with little estimation loss. We quantify the relationship between the time scale in the correlation of video traffic and the queue buildup using a set of experiments with traces of MPEG/JPEG-compressed video. We show that the critical interval i.e. the range for the correlation relevant to the queueing delay, depends on the traffic load: as the traffic load increases, the range of the time scale required for estimation for queueing delay also increases. These results offer further insights into the implication of LRD in VER video traffic. (C) 1999 Elsevier Science B.V. Ail rights reserved

    Optimization and Performance Analysis of High Speed Mobile Access Networks

    Get PDF
    The end-to-end performance evaluation of high speed broadband mobile access networks is the main focus of this work. Novel transport network adaptive flow control and enhanced congestion control algorithms are proposed, implemented, tested and validated using a comprehensive High speed packet Access (HSPA) system simulator. The simulation analysis confirms that the aforementioned algorithms are able to provide reliable and guaranteed services for both network operators and end users cost-effectively. Further, two novel analytical models one for congestion control and the other for the combined flow control and congestion control which are based on Markov chains are designed and developed to perform the aforementioned analysis efficiently compared to time consuming detailed system simulations. In addition, the effects of the Long Term Evolution (LTE) transport network (S1and X2 interfaces) on the end user performance are investigated and analysed by introducing a novel comprehensive MAC scheduling scheme and a novel transport service differentiation model

    Quality of service over ATM networks

    Get PDF
    PhDAbstract not availabl

    Traffic Management and Congestion Control in the ATM Network Model.

    Get PDF
    Asynchronous Transfer Mode (ATM) networking technology has been chosen by the International Telegraph and Telephony Consultative Committee (CCITT) for use on future local as well as wide area networks to handle traffic types of a wide range. It is a cell based network architecture that resembles circuit switched networks, providing Quality of Service (QoS) guarantees not normally found on data networks. Although the specifications for the architecture have been continuously evolving, traffic congestion management techniques for ATM networks have not been very well defined yet. This thesis studies the traffic management problem in detail, provides some theoretical understanding and presents a collection of techniques to handle the problem under various operating conditions. A detailed simulation of various ATM traffic types is carried out and the collected data is analyzed to gain an insight into congestion formation patterns. Problems that may arise during migration planning from legacy LANs to ATM technology are also considered. We present an algorithm to identify certain portions of the network that should be upgraded to ATM first. The concept of adaptive burn-in is introduced to help ease the computational costs involved in virtual circuit setup and tear down operations

    Video traffic modeling and delivery

    Get PDF
    Video is becoming a major component of the network traffic, and thus there has been a great interest to model video traffic. It is known that video traffic possesses short range dependence (SRD) and long range dependence (LRD) properties, which can drastically affect network performance. By decomposing a video sequence into three parts, according to its motion activity, Markov-modulated self-similar process model is first proposed to capture autocorrelation function (ACF) characteristics of MPEG video traffic. Furthermore, generalized Beta distribution is proposed to model the probability density functions (PDFs) of MPEG video traffic. It is observed that the ACF of MPEG video traffic fluctuates around three envelopes, reflecting the fact that different coding methods reduce the data dependency by different amount. This observation has led to a more accurate model, structurally modulated self-similar process model, which captures the ACF of the traffic, both SRD and LRD, by exploiting the MPEG structure. This model is subsequently simplified by simply modulating three self-similar processes, resulting in a much simpler model having the same accuracy as the structurally modulated self-similar process model. To justify the validity of the proposed models for video transmission, the cell loss ratios (CLRs) of a server with a limited buffer size driven by the empirical trace are compared to those driven by the proposed models. The differences are within one order, which are hardly achievable by other models, even for the case of JPEG video traffic. In the second part of this dissertation, two dynamic bandwidth allocation algorithms are proposed for pre-recorded and real-time video delivery, respectively. One is based on scene change identification, and the other is based on frame differences. The proposed algorithms can increase the bandwidth utilization by a factor of two to five, as compared to the constant bit rate (CBR) service using peak rate assignment

    Theories and Models for Internet Quality of Service

    Get PDF
    We survey recent advances in theories and models for Internet Quality of Service (QoS). We start with the theory of network calculus, which lays the foundation for support of deterministic performance guarantees in networks, and illustrate its applications to integrated services, differentiated services, and streaming media playback delays. We also present mechanisms and architecture for scalable support of guaranteed services in the Internet, based on the concept of a stateless core. Methods for scalable control operations are also briefly discussed. We then turn our attention to statistical performance guarantees, and describe several new probabilistic results that can be used for a statistical dimensioning of differentiated services. Lastly, we review recent proposals and results in supporting performance guarantees in a best effort context. These include models for elastic throughput guarantees based on TCP performance modeling, techniques for some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support

    Theory and applications of artificial neural networks

    Get PDF
    In this thesis some fundamental theoretical problems about artificial neural networks and their application in communication and control systems are discussed. We consider the convergence properties of the Back-Propagation algorithm which is widely used for training of artificial neural networks, and two stepsize variation techniques are proposed to accelerate convergence. Simulation results demonstrate significant improvement over conventional Back-Propagation algorithms. We also discuss the relationship between generalization performance of artificial neural networks and their structure and representation strategy. It is shown that the structure of the network which represent a priori knowledge of the environment has a strong influence on generalization performance. A Theorem about the number of hidden units and the capacity of self-association MLP (Multi-Layer Perceptron) type network is also given in the thesis. In the application part of the thesis, we discuss the feasibility of using artificial neural networks for nonlinear system identification. Some advantages and disadvantages of this approach are analyzed. The thesis continues with a study of artificial neural networks applied to communication channel equalization and the problem of call access control in broadband ATM (Asynchronous Transfer Mode) communication networks. A final chapter provides overall conclusions and suggestions for further work

    Designing new network adaptation and ATM adaptation layers for interactive multimedia applications

    Get PDF
    Multimedia services, audiovisual applications composed of a combination of discrete and continuous data streams, will be a major part of the traffic flowing in the next generation of high speed networks. The cornerstones for multimedia are Asynchronous Transfer Mode (ATM) foreseen as the technology for the future Broadband Integrated Services Digital Network (B-ISDN) and audio and video compression algorithms such as MPEG-2 that reduce applications bandwidth requirements. Powerful desktop computers available today can integrate seamlessly the network access and the applications and thus bring the new multimedia services to home and business users. Among these services, those based on multipoint capabilities are expected to play a major role.    Interactive multimedia applications unlike traditional data transfer applications have stringent simultaneous requirements in terms of loss and delay jitter due to the nature of audiovisual information. In addition, such stream-based applications deliver data at a variable rate, in particular if a constant quality is required.    ATM, is able to integrate traffic of different nature within a single network creating interactions of different types that translate into delay jitter and loss. Traditional protocol layers do not have the appropriate mechanisms to provide the required network quality of service (QoS) for such interactive variable bit rate (VBR) multimedia multipoint applications. This lack of functionalities calls for the design of protocol layers with the appropriate functions to handle the stringent requirements of multimedia.    This thesis contributes to the solution of this problem by proposing new Network Adaptation and ATM Adaptation Layers for interactive VBR multimedia multipoint services.    The foundations to build these new multimedia protocol layers are twofold; the requirements of real-time multimedia applications and the nature of compressed audiovisual data.    On this basis, we present a set of design principles we consider as mandatory for a generic Multimedia AAL capable of handling interactive VBR multimedia applications in point-to-point as well as multicast environments. These design principles are then used as a foundation to derive a first set of functions for the MAAL, namely; cell loss detection via sequence numbering, packet delineation, dummy cell insertion and cell loss correction via RSE FEC techniques.    The proposed functions, partly based on some theoretical studies, are implemented and evaluated in a simulated environment. Performances are evaluated from the network point of view using classic metrics such as cell and packet loss. We also study the behavior of the cell loss process in order to evaluate the efficiency to be expected from the proposed cell loss correction method. We also discuss the difficulties to map network QoS parameters to user QoS parameters for multimedia applications and especially for video information. In order to present a complete performance evaluation that is also meaningful to the end-user, we make use of the MPQM metric to map the obtained network performance results to a user level. We evaluate the impact that cell loss has onto video and also the improvements achieved with the MAAL.    All performance results are compared to an equivalent implementation based on AAL5, as specified by the current ITU-T and ATM Forum standards.    An AAL has to be by definition generic. But to fully exploit the functionalities of the AAL layer, it is necessary to have a protocol layer that will efficiently interface the network and the applications. This role is devoted to the Network Adaptation Layer.    The network adaptation layer (NAL) we propose, aims at efficiently interface the applications to the underlying network to achieve a reliable but low overhead transmission of video streams. Since this requires an a priori knowledge of the information structure to be transmitted, we propose the NAL to be codec specific.    The NAL targets interactive multimedia applications. These applications share a set of common requirements independent of the encoding scheme used. This calls for the definition of a set of design principles that should be shared by any NAL even if the implementation of the functions themselves is codec specific. On the basis of the design principles, we derive the common functions that NALs have to perform which are mainly two; the segmentation and reassembly of data packets and the selective data protection.    On this basis, we develop an MPEG-2 specific NAL. It provides a perceptual syntactic information protection, the PSIP, which results in an intelligent and minimum overhead protection of video information. The PSIP takes advantage of the hierarchical organization of the compressed video data, common to the majority of the compression algorithms, to perform a selective data protection based on the perceptual relevance of the syntactic information.    The transmission over the combined NAL-MAAL layers shows significant improvement in terms of CLR and perceptual quality compared to equivalent transmissions over AAL5 with the same overhead.    The usage of the MPQM as a performance metric, which is one of the main contributions of this thesis, leads to a very interesting observation. The experimental results show that for unexpectedly high CLRs, the average perceptual quality remains close to the original value. The economical potential of such an observation is very important. Given that the data flows are VBR, it is possible to improve network utilization by means of statistical multiplexing. It is therefore possible to reduce the cost per communication by increasing the number of connections with a minimal loss in quality.    This conclusion could not have been derived without the combined usage of perceptual and network QoS metrics, which have been able to unveil the economic potential of perceptually protected streams.    The proposed concepts are finally tested in a real environment where a proof-of-concept implementation of the MAAL has shown a behavior close to the simulated results therefore validating the proposed multimedia protocol layers

    Bandwidth scheduling and its application in ATM networks

    Get PDF
    corecore