1,236 research outputs found

    Probabilistic Hybrid Action Models for Predicting Concurrent Percept-driven Robot Behavior

    Full text link
    This article develops Probabilistic Hybrid Action Models (PHAMs), a realistic causal model for predicting the behavior generated by modern percept-driven robot plans. PHAMs represent aspects of robot behavior that cannot be represented by most action models used in AI planning: the temporal structure of continuous control processes, their non-deterministic effects, several modes of their interferences, and the achievement of triggering conditions in closed-loop robot plans. The main contributions of this article are: (1) PHAMs, a model of concurrent percept-driven behavior, its formalization, and proofs that the model generates probably, qualitatively accurate predictions; and (2) a resource-efficient inference method for PHAMs based on sampling projections from probabilistic action models and state descriptions. We show how PHAMs can be applied to planning the course of action of an autonomous robot office courier based on analytical and experimental results

    A Reputational Theory of Two Party Competition

    Get PDF
    We propose a reputational theory of two-party competition. We model the interaction of parties and the electorate as a stochastic game of incomplete information. The parties’ preferred policies (moderate or extreme) are possibly revealed to the electorate only via their policy choices while in government, and partisan preferences change with positive probability following defeat in elections. Due to inertia within party organizations, party preferences display positive serial correlation. When partisans care sufficiently about office, extreme policies are pursued with positive probability by the government only when the ruling party is perceived relatively more extreme than the opposition. In equilibrium such policies occur when (a) both parties are perceived to be more extreme than a long-run benchmark level, and (b) neither party holds a significant advantage regarding its perceived extremism by the electorate. Equilibrium dynamics produce two qualitatively different adjustment paths: one exhibits polarized politics such that there is positive probability of non-moderate policies in the future for a protracted period of time; the other possible adjustment path produces moderation with probability one in all periods. Both adjustment paths are such that one of the two parties (possibly different over time) may win successive elections with high probability in equilibrium.Parliamentary Dynamics, Reputation, Westminster.

    Morphogenesis as Bayesian inference: A variational approach to pattern formation and control in complex biological systems

    Get PDF
    Recent advances in molecular biology such as gene editing [1], bioelectric recording and manipulation [2] and live cell microscopy using fluorescent reporters [3], [4] – especially with the advent of light-controlled protein activation through optogenetics [5] – have provided the tools to measure and manipulate molecular signaling pathways with unprecedented spatiotemporal precision. This has produced ever increasing detail about the molecular mechanisms underlying development and regeneration in biological organisms. However, an overarching concept – that can predict the emergence of form and the robust maintenance of complex anatomy – is largely missing in the field. Classic (i.e., dynamic systems and analytical mechanics) approaches such as least action principles are difficult to use when characterizing open, far-from equilibrium systems that predominate in Biology. Similar issues arise in neuroscience when trying to understand neuronal dynamics from first principles. In this (neurobiology) setting, a variational free energy principle has emerged based upon a formulation of self-organization in terms of (active) Bayesian inference. The free energy principle has recently been applied to biological self-organization beyond the neurosciences [6], [7]. For biological processes that underwrite development or regeneration, the Bayesian inference framework treats cells as information processing agents, where the driving force behind morphogenesis is the maximization of a cell's model evidence. This is realized by the appropriate expression of receptors and other signals that correspond to the cell's internal (i.e., generative) model of what type of receptors and other signals it should express. The emerging field of the free energy principle in pattern formation provides an essential quantitative formalism for understanding cellular decision-making in the context of embryogenesis, regeneration, and cancer suppression. In this paper, we derive the mathematics behind Bayesian inference – as understood in this framework – and use simulations to show that the formalism can reproduce experimental, top-down manipulations of complex morphogenesis. First, we illustrate this ‘first principle’ approach to morphogenesis through simulated alterations of anterior-posterior axial polarity (i.e., the induction of two heads or two tails) as in planarian regeneration. Then, we consider aberrant signaling and functional behavior of a single cell within a cellular ensemble – as a first step in carcinogenesis as false ‘beliefs’ about what a cell should ‘sense’ and ‘do’. We further show that simple modifications of the inference process can cause – and rescue – mis-patterning of developmental and regenerative events without changing the implicit generative model of a cell as specified, for example, by its DNA. This formalism offers a new road map for understanding developmental change in evolution and for designing new interventions in regenerative medicine settings

    Context Exploitation in Data Fusion

    Get PDF
    Complex and dynamic environments constitute a challenge for existing tracking algorithms. For this reason, modern solutions are trying to utilize any available information which could help to constrain, improve or explain the measurements. So called Context Information (CI) is understood as information that surrounds an element of interest, whose knowledge may help understanding the (estimated) situation and also in reacting to that situation. However, context discovery and exploitation are still largely unexplored research topics. Until now, the context has been extensively exploited as a parameter in system and measurement models which led to the development of numerous approaches for the linear or non-linear constrained estimation and target tracking. More specifically, the spatial or static context is the most common source of the ambient information, i.e. features, utilized for recursive enhancement of the state variables either in the prediction or the measurement update of the filters. In the case of multiple model estimators, context can not only be related to the state but also to a certain mode of the filter. Common practice for multiple model scenarios is to represent states and context as a joint distribution of Gaussian mixtures. These approaches are commonly referred as the join tracking and classification. Alternatively, the usefulness of context was also demonstrated in aiding the measurement data association. Process of formulating a hypothesis, which assigns a particular measurement to the track, is traditionally governed by the empirical knowledge of the noise characteristics of sensors and operating environment, i.e. probability of detection, false alarm, clutter noise, which can be further enhanced by conditioning on context. We believe that interactions between the environment and the object could be classified into actions, activities and intents, and formed into structured graphs with contextual links translated into arcs. By learning the environment model we will be able to make prediction on the target\u2019s future actions based on its past observation. Probability of target future action could be utilized in the fusion process to adjust tracker confidence on measurements. By incorporating contextual knowledge of the environment, in the form of a likelihood function, in the filter measurement update step, we have been able to reduce uncertainties of the tracking solution and improve the consistency of the track. The promising results demonstrate that the fusion of CI brings a significant performance improvement in comparison to the regular tracking approaches

    Agents and Robots for Reliable Engineered Autonomy

    Get PDF
    This book contains the contributions of the Special Issue entitled "Agents and Robots for Reliable Engineered Autonomy". The Special Issue was based on the successful first edition of the "Workshop on Agents and Robots for reliable Engineered Autonomy" (AREA 2020), co-located with the 24th European Conference on Artificial Intelligence (ECAI 2020). The aim was to bring together researchers from autonomous agents, as well as software engineering and robotics communities, as combining knowledge from these three research areas may lead to innovative approaches that solve complex problems related to the verification and validation of autonomous robotic systems

    Local Interactions

    Get PDF
    Local interactions refer to social and economic phenomena where individuals' choices are influenced by the choices of others who are "close" to them socially or geographically. This represents a fairly accurate picture of human experience. Furthermore, since local interactions imply particular forms of externalities, their presence typically suggests government action. I survey and discuss existing theoretical work on economies with local interactions and point to areas for further research

    Dynamical Networks of Social Influence: Modern Trends and Perspectives

    Get PDF
    Dynamics and control of processes over social networks, such as the evolution of opinions, social influence and interpersonal appraisals, diffusion of information and misinformation, emergence and dissociation of communities, are now attracting significant attention from the broad research community that works on systems, control, identification and learning. To provide an introduction to this rapidly developing area, a Tutorial Session was included into the program of IFAC World Congress 2020. This paper provides a brief summary of the three tutorial lectures, covering the most “mature” directions in analysis of social networks and dynamics over them: 1) formation of opinions under social influence; 2) identification and learning for analysis of a network’s structure; 3) dynamics of interpersonal appraisals

    Local Interactions

    Get PDF
    Local interactions refer to social and economic phenomena where individuals' choices are influenced by the choices of others who are `close' to them socially or geographically. This represents a fairly accurate picture of human experience. Furthermore, since local interactions imply particular forms of externalities, their presence typically suggests government action. I survey and discuss existing theoretical work on economies with local interactions and point to areas for further research. Les interactions locales concernent les phénomènes socio-économiques où les choix des individus sont influencés par les choix des autres qui sont proches d'eux socialement ou géographiquement. Cela représente une image assez juste de l'expérience humaine. De plus, puisque les interactions sociales sont en fait des externalités particulières, leur présence implique typiquement l'intervention gouvernementale. Dans cet article, je présente la littérature théorique récente sur les interactions locales et propose diverses avenues de recherche.Conformity, externalities, local interactions, Markov perfect equilibrium, multiple equilibria, rational expectations, social interactions, social multiplier, strategic complementarities., Anticipations rationales, conformité, équilibre de Markov parfait, équilibres multiples, externalités, interactions locales, interactions sociales, multiplicateur social, complémentarités stratégiques.

    Arguments as Drivers of Issue Polarisation in Debates Among Artificial Agents

    Get PDF
    corecore