3,680 research outputs found

    Equational Reasonings in Wireless Network Gossip Protocols

    Get PDF
    Gossip protocols have been proposed as a robust and efficient method for disseminating information throughout large-scale networks. In this paper, we propose a compositional analysis technique to study formal probabilistic models of gossip protocols expressed in a simple probabilistic timed process calculus for wireless sensor networks. We equip the calculus with a simulation theory to compare probabilistic protocols that have similar behaviour up to a certain tolerance. The theory is used to prove a number of algebraic laws which revealed to be very effective to estimate the performances of gossip networks, with and without communication collisions, and randomised gossip networks. Our simulation theory is an asymmetric variant of the weak bisimulation metric that maintains most of the properties of the original definition. However, our asymmetric version is particularly suitable to reason on protocols in which the systems under consideration are not approximately equivalent, as in the case of gossip protocols

    Statistical Delay Bound for WirelessHART Networks

    Full text link
    In this paper we provide a performance analysis framework for wireless industrial networks by deriving a service curve and a bound on the delay violation probability. For this purpose we use the (min,x) stochastic network calculus as well as a recently presented recursive formula for an end-to-end delay bound of wireless heterogeneous networks. The derived results are mapped to WirelessHART networks used in process automation and were validated via simulations. In addition to WirelessHART, our results can be applied to any wireless network whose physical layer conforms the IEEE 802.15.4 standard, while its MAC protocol incorporates TDMA and channel hopping, like e.g. ISA100.11a or TSCH-based networks. The provided delay analysis is especially useful during the network design phase, offering further research potential towards optimal routing and power management in QoS-constrained wireless industrial networks.Comment: Accepted at PE-WASUN 201

    On the Reliability of LTE Random Access: Performance Bounds for Machine-to-Machine Burst Resolution Time

    Full text link
    Random Access Channel (RACH) has been identified as one of the major bottlenecks for accommodating massive number of machine-to-machine (M2M) users in LTE networks, especially for the case of burst arrival of connection requests. As a consequence, the burst resolution problem has sparked a large number of works in the area, analyzing and optimizing the average performance of RACH. However, the understanding of what are the probabilistic performance limits of RACH is still missing. To address this limitation, in the paper, we investigate the reliability of RACH with access class barring (ACB). We model RACH as a queuing system, and apply stochastic network calculus to derive probabilistic performance bounds for burst resolution time, i.e., the worst case time it takes to connect a burst of M2M devices to the base station. We illustrate the accuracy of the proposed methodology and its potential applications in performance assessment and system dimensioning.Comment: Presented at IEEE International Conference on Communications (ICC), 201

    Towards a System Theoretic Approach to Wireless Network Capacity in Finite Time and Space

    Get PDF
    In asymptotic regimes, both in time and space (network size), the derivation of network capacity results is grossly simplified by brushing aside queueing behavior in non-Jackson networks. This simplifying double-limit model, however, lends itself to conservative numerical results in finite regimes. To properly account for queueing behavior beyond a simple calculus based on average rates, we advocate a system theoretic methodology for the capacity problem in finite time and space regimes. This methodology also accounts for spatial correlations arising in networks with CSMA/CA scheduling and it delivers rigorous closed-form capacity results in terms of probability distributions. Unlike numerous existing asymptotic results, subject to anecdotal practical concerns, our transient one can be used in practical settings: for example, to compute the time scales at which multi-hop routing is more advantageous than single-hop routing

    Formal analysis techniques for gossiping protocols

    Get PDF
    We give a survey of formal verification techniques that can be used to corroborate existing experimental results for gossiping protocols in a rigorous manner. We present properties of interest for gossiping protocols and discuss how various formal evaluation techniques can be employed to predict them

    Modelling Probabilistic Wireless Networks

    Full text link
    We propose a process calculus to model high level wireless systems, where the topology of a network is described by a digraph. The calculus enjoys features which are proper of wireless networks, namely broadcast communication and probabilistic behaviour. We first focus on the problem of composing wireless networks, then we present a compositional theory based on a probabilistic generalisation of the well known may-testing and must-testing pre- orders. Also, we define an extensional semantics for our calculus, which will be used to define both simulation and deadlock simulation preorders for wireless networks. We prove that our simulation preorder is sound with respect to the may-testing preorder; similarly, the deadlock simulation pre- order is sound with respect to the must-testing preorder, for a large class of networks. We also provide a counterexample showing that completeness of the simulation preorder, with respect to the may testing one, does not hold. We conclude the paper with an application of our theory to probabilistic routing protocols
    • ā€¦
    corecore