345 research outputs found

    Proactive seeding for information cascades in cellular networks

    Get PDF
    Abstract—Online social networks (OSNs) play an increasingly important role today in informing users about content. At the same time, mobile devices provide ubiquitous access to this content through the cellular infrastructure. In this paper, we exploit the fact that the interest in content spreads over OSNs, which makes it, to a certain extent, predictable. We propose Proactive Seeding– a technique for minimizing the peak load of cellular networks, by proactively pushing (“seeding”) content to selected users before they actually request it. We develop a family of algorithms that take as input information primarily about (i) cascades on the OSN and possibly about (ii) the background traffic load in the cellular network and (iii) the local connectivity among mobiles; the algorithms then select which nodes to seed and when. We prove that Proactive Seeding is optimal when the prediction of information cascades is perfect. In realistic simulations, driven by traces from Twitter and cellular networks, we find that Proactive Seeding reduces the peak cellular load by 20%-50%. Finally, we combine Proactive Seeding with techniques that exploit local mobile-to-mobile connections to further reduce the peak load. I

    Content Sharing in Mobile Networks with Infrastructure: Planning and Management

    Get PDF
    This thesis focuses on mobile ad-hoc networks (with pedestrian or vehicular mobility) having infrastructure support. We deal with the problems of design, deployment and management of such networks. A first issue to address concerns infrastructure itself: how pervasive should it be in order for the network to operate at the same time efficiently and in a cost-effective manner? How should the units composing it (e.g., access points) be placed? There are several approaches to such questions in literature, and this thesis studies and compares them. Furthermore, in order to effectively design the infrastructure, we need to understand how and how much it will be used. As an example, what is the relationship between infrastructure-to-node and node-to-node communication? How far away, in time and space, do data travel before its destination is reached? A common assumption made when dealing with such problems is that perfect knowledge about the current and future node mobility is available. In this thesis, we also deal with the problem of assessing the impact that an imperfect, limited knowledge has on network performance. As far as the management of the network is concerned, this thesis presents a variant of the paradigm known as publish-and-subscribe. With respect to the original paradigm, our goal was to ensure a high probability of finding the requested content, even in presence of selfish, uncooperative nodes, or even nodes whose precise goal is harming the system. Each node is allowed to get from the network an amount of content which corresponds to the amount of content provided to other nodes. Nodes with caching capabilities are assisted in using their cache in order to improve the amount of offered conten

    Efficient Proactive Caching for Supporting Seamless Mobility

    Full text link
    We present a distributed proactive caching approach that exploits user mobility information to decide where to proactively cache data to support seamless mobility, while efficiently utilizing cache storage using a congestion pricing scheme. The proposed approach is applicable to the case where objects have different sizes and to a two-level cache hierarchy, for both of which the proactive caching problem is hard. Additionally, our modeling framework considers the case where the delay is independent of the requested data object size and the case where the delay is a function of the object size. Our evaluation results show how various system parameters influence the delay gains of the proposed approach, which achieves robust and good performance relative to an oracle and an optimal scheme for a flat cache structure.Comment: 10 pages, 9 figure

    Improving Mobile Video Streaming with Mobility Prediction and Prefetching in Integrated Cellular-WiFi Networks

    Full text link
    We present and evaluate a procedure that utilizes mobility and throughput prediction to prefetch video streaming data in integrated cellular and WiFi networks. The effective integration of such heterogeneous wireless technologies will be significant for supporting high performance and energy efficient video streaming in ubiquitous networking environments. Our evaluation is based on trace-driven simulation considering empirical measurements and shows how various system parameters influence the performance, in terms of the number of paused video frames and the energy consumption; these parameters include the number of video streams, the mobile, WiFi, and ADSL backhaul throughput, and the number of WiFi hotspots. Also, we assess the procedure's robustness to time and throughput variability. Finally, we present our initial prototype that implements the proposed approach.Comment: 7 pages, 15 figure

    The Price of Fog: a Data-Driven Study on Caching Architectures in Vehicular Networks

    Get PDF
    Vehicular users are expected to consume large amounts of data, for both entertainment and navigation purposes. This will put a strain on cellular networks, which will be able to cope with such a load only if proper caching is in place, this in turn begs the question of which caching architecture is the best-suited to deal with vehicular content consumption. In this paper, we leverage a large-scale, crowd-collected trace to (i) characterize the vehicular traffic demand, in terms of overall magnitude and content breakup, (ii) assess how different caching approaches perform against such a real-world load, (iii) study the effect of recommendation systems and local contents. We define a price-of-fog metric, expressing the additional caching capacity to deploy when moving from traditional, centralized caching architectures to a "fog computing" approach, where caches are closer to the network edge. We find that for location-specific contents, such as the ones that vehicular users are most likely to request, such a price almost disappears. Vehicular networks thus make a strong case for the adoption of mobile-edge caching, as we are able to reap the benefit thereof -- including a reduction in the distance traveled by data, within the core network -- with little or no of the associated disadvantages.Comment: ACM IoV-VoI 2016 MobiHoc Workshop, The 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing: MobiHoc 2016-IoV-VoI Workshop, Paderborn, German

    Energy-efficient wireless content delivery with proactive caching

    Get PDF
    We propose an intelligent proactive content caching scheme to reduce the energy consumption in wireless downlink. We consider an online social network (OSN) setting where new contents are generated over time, and remain relevant to the user for a random lifetime. Contents are downloaded to the user equipment (UE) through a time-varying wireless channel at an energy cost that depends on the channel state and the number of contents downloaded. The user accesses the OSN at random time instants, and consumes all the relevant contents. To reduce the energy consumption, we propose proactive caching of contents under favorable channel conditions to a finite capacity cache memory. Assuming that the channel quality (or equivalently, the cost of downloading data) is memoryless over time slots, we show that the optimal caching policy, which may replace contents in the cache with shorter remaining lifetime with contents at the server that remain relevant longer, has a threshold structure with respect to the channel quality. Since the optimal policy is computationally demanding in practice, we introduce a simplified caching scheme and optimize its parameters using policy search. We also present two lower bounds on the energy consumption. We demonstrate through numerical simulations that the proposed caching scheme significantly reduces the energy consumption compared to traditional reactive caching tools, and achieves close- to-optimal performance for a wide variety of system parameters

    Spreading processes in Multilayer Networks

    Get PDF
    Several systems can be modeled as sets of interconnected networks or networks with multiple types of connections, here generally called multilayer networks. Spreading processes such as information propagation among users of an online social networks, or the diffusion of pathogens among individuals through their contact network, are fundamental phenomena occurring in these networks. However, while information diffusion in single networks has received considerable attention from various disciplines for over a decade, spreading processes in multilayer networks is still a young research area presenting many challenging research issues. In this paper we review the main models, results and applications of multilayer spreading processes and discuss some promising research directions.Comment: 21 pages, 3 figures, 4 table
    • …
    corecore