Proactive seeding for information cascades in cellular networks

Abstract

Abstract—Online social networks (OSNs) play an increasingly important role today in informing users about content. At the same time, mobile devices provide ubiquitous access to this content through the cellular infrastructure. In this paper, we exploit the fact that the interest in content spreads over OSNs, which makes it, to a certain extent, predictable. We propose Proactive Seeding– a technique for minimizing the peak load of cellular networks, by proactively pushing (“seeding”) content to selected users before they actually request it. We develop a family of algorithms that take as input information primarily about (i) cascades on the OSN and possibly about (ii) the background traffic load in the cellular network and (iii) the local connectivity among mobiles; the algorithms then select which nodes to seed and when. We prove that Proactive Seeding is optimal when the prediction of information cascades is perfect. In realistic simulations, driven by traces from Twitter and cellular networks, we find that Proactive Seeding reduces the peak cellular load by 20%-50%. Finally, we combine Proactive Seeding with techniques that exploit local mobile-to-mobile connections to further reduce the peak load. I

    Similar works