2,493 research outputs found

    Data security and trading framework for smart grids in neighborhood area networks

    Get PDF
    Due to the drastic increase of electricity prosumers, i.e., energy consumers that are also producers, smart grids have become a key solution for electricity infrastructure. In smart grids, one of the most crucial requirements is the privacy of the final users. The vast majority of the literature addresses the privacy issue by providing ways of hiding user’s electricity consumption. However, open issues in the literature related to the privacy of the electricity producers still remain. In this paper, we propose a framework that preserves the secrecy of prosumers’ identities and provides protection against the traffic analysis attack in a competitive market for energy trade in a Neighborhood Area Network (NAN). In addition, the amount of bidders and of successful bids are hidden from malicious attackers by our framework. Due to the need for small data throughput for the bidders, the communication links of our framework are based on a proprietary communication system. Still, in terms of data security, we adopt the Advanced Encryption Standard (AES) 128bit with Exclusive-OR (XOR) keys due to their reduced computational complexity, allowing fast processing. Our framework outperforms the state-of-the-art solutions in terms of privacy protection and trading flexibility in a prosumer-to-prosumer design

    When energy trading meets blockchain in electrical power system: The state of the art

    Get PDF
    With the rapid growth of renewable energy resources, energy trading has been shifting from the centralized manner to distributed manner. Blockchain, as a distributed public ledger technology, has been widely adopted in the design of new energy trading schemes. However, there are many challenging issues in blockchain-based energy trading, e.g., low efficiency, high transaction cost, and security and privacy issues. To tackle these challenges, many solutions have been proposed. In this survey, the blockchain-based energy trading in the electrical power system is thoroughly investigated. Firstly, the challenges in blockchain-based energy trading are identified and summarized. Then, the existing energy trading schemes are studied and classified into three categories based on their main focuses: energy transaction, consensus mechanism, and system optimization. Blockchain-based energy trading has been a popular research topic, new blockchain architectures, models and products are continually emerging to overcome the limitations of existing solutions, forming a virtuous circle. The internal combination of different blockchain types and the combination of blockchain with other technologies improve the blockchain-based energy trading system to better satisfy the practical requirements of modern power systems. However, there are still some problems to be solved, for example, the lack of regulatory system, environmental challenges and so on. In the future, we will strive for a better optimized structure and establish a comprehensive security assessment model for blockchain-based energy trading system.This research was funded by Beijing Natural Science Foundation (grant number 4182060).Scopu

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    Demand Bidding Program and Its Application in Hotel Energy Management

    Get PDF
    Demand bidding program (DBP) is recently adopted in practice by some energy operators. DBP is a risk-free demand response program targeting large energy consumers. In this paper, we consider DBP with the application in hotel energy management. For DBP, optimization problem is formulated with the objective of maximizing expected reward, which is received when the amount of energy saving satisfies the contract. For a general distribution of energy consumption, we give a general condition for the optimal bid and outline an algorithm to find the solution without numerical integration. Furthermore, for Gaussian distribution, we derive closed-form expressions of the optimal bid and the corresponding expected reward. Regarding hotel energy, we characterize loads in the hotel and introduce several energy consumption models that capture major energy use. With the proposed models and DBP, simulation results show that DBP provides economics benefits to the hotel and encourages load scheduling. Furthermore, when only mean and variance of energy consumption are known, the validity of Gaussian approximation for computing optimal load and expected reward is also discussed

    A Systematic Literature Review of Peer-to-Peer, Community Self-Consumption, and Transactive Energy Market Models

    Get PDF
    Capper, T., Gorbatcheva, A., Mustafa, M. A., Bahloul, M., Schwidtal, J. M., Chitchyan, R., Andoni, M., Robu, V., Montakhabi, M., Scott, I., Francis, C., Mbavarira, T., Espana, J. M., & Kiesling, L. (2021). A Systematic Literature Review of Peer-to-Peer, Community Self-Consumption, and Transactive Energy Market Models. Social Science Research Network (SSRN), Elsevier. https://doi.org/10.2139/ssrn.3959620Peer-to-peer and transactive energy markets, and community or collective self-consumption offer new models for trading energy locally. Over the past 10 years there has been significant growth in the amount of academic literature and trial projects examining how these energy trading models might function. This systematic literature review of 139 peer-reviewed journal articles examines the market designs used in these energy trading models. The Business Ecosystem Architecture Modelling framework is used to extract information about the market models used in the literature and identify differences and similarities between the models. This paper identifies six archetypal market designs and three archetypal auction mechanisms used in markets presented in the reviewed literature. It classifies the types of commodities being traded, the benefits of the markets and other features such as the types of grid models. Finally, this paper identifies five evidence gaps which need future research before these markets can be widely adopted.publishersversionpublishe

    Research of Smart Grid Cyber Architecture and Standards Deployment with High Adaptability for Security Monitoring

    Get PDF
    corecore