5 research outputs found

    A Programmable SoC-Based Accelerator for Privacy-Enhancing Technologies and Functional Encryption

    Get PDF
    A multitude of privacy-enhancing technologies (PETs) has been presented recently to solve the privacy problems of contemporary services utilizing cloud computing. Many of them are based on additively homomorphic encryption (AHE) that allows the computation of additions on encrypted data. The main technical obstacles for adaptation of PETs in practical systems are related to performance overheads compared with current privacy-violating alternatives. In this article, we present a hardware/software (HW/SW) codesign for programmable systems-on-chip (SoCs) that is designed for accelerating applications based on the Paillier encryption. Our implementation is a microcode-based multicore architecture that is suitable for accelerating various PETs using AHE with large integer modular arithmetic. We instantiate the implementation in a Xilinx Zynq-7000 programmable SoC and provide performance evaluations in real hardware. We also investigate its efficiency in a high-end Xilinx UltraScale+ programmable SoC. We evaluate the implementation with two target use cases that have relevance in PETs: privacy-preserving computation of squared Euclidean distances over encrypted data and multi-input functional encryption (FE) for inner products. Both of them represent the first hardware acceleration results for such operations, and in particular, the latter one is among the very first published implementation results of FE on any platform.Peer reviewe

    A survey of state-of-the-art methods for securing medical databases

    Get PDF
    This review article presents a survey of recent work devoted to advanced state-of-the-art methods for securing of medical databases. We concentrate on three main directions, which have received attention recently: attribute-based encryption for enabling secure access to confidential medical databases distributed among several data centers; homomorphic encryption for providing answers to confidential queries in a secure manner; and privacy-preserving data mining used to analyze data stored in medical databases for verifying hypotheses and discovering trends. Only the most recent and significant work has been included

    Privacy protection for wireless medical sensor data

    No full text
    In recent years, wireless sensor networks have been widely used in healthcare applications, such as hospital and home patient monitoring. Wireless medical sensor networks are more vulnerable to eavesdropping, modification, impersonation and replaying attacks than the wired networks. A lot of work has been done to secure wireless medical sensor networks. The existing solutions can protect the patient data during transmission, but cannot stop the inside attack where the administrator of the patient database reveals the sensitive patient data. In this paper, we propose a practical approach to prevent the inside attack by using multiple data servers to store patient data. The main contribution of this paper is securely distributing the patient data in multiple data servers and employing the Paillier and ElGamal cryptosystems to perform statistic analysis on the patient data without compromising the patients' privacy
    corecore