
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. –, NO. –, JULY 2020 1

A Programmable SoC Based Accelerator for Privacy
Enhancing Technologies and Functional Encryption

Milad Bahadori and Kimmo Järvinen

Abstract—A multitude of privacy enhancing technologies have
been presented recently to solve privacy problems of contempo-
rary services utilizing cloud computing. Many of them are based
on additively homomorphic encryption that allows computation
of additions on encrypted data. The main technical obstacles for
adaptation of privacy enhancing technologies in practical systems
are related to performance overheads compared to current
privacy-violating alternatives. In this paper, we present a HW/SW
codesign for programmable SoCs that is designed for accelerating
applications based on Paillier encryption. Our implementation
is a microcode based multi-core architecture which is suitable
for accelerating various privacy enhancing technologies using
additively homomorphic encryption with large integer modular
arithmetic. We instantiate the implementation in a Xilinx Zynq-
7000 programmable SoC and provide performance evaluations
in real hardware. We also investigate its efficiency in a high-
end Xilinx UltraScale+ programmable SoC. We evaluate the
implementation with two target use cases that have relevance
in privacy enhancing technologies: privacy-preserving computa-
tion of squared Euclidean distances over encrypted data and
multi-input functional encryption for inner products. Both of
them represent the first hardware acceleration results for such
operations and, in particular, the latter one is among the very
first published implementation results of functional encryption
on any platform.

Index Terms—SoC, FPGA, homomorphic encryption, Paillier
encryption, privacy-preserving, functional encryption.

I. INTRODUCTION

THE ever-growing use of cloud computing has moved
much of users’ sensitive data into service providers’ (e.g.,

Amazon, Facebook, Google, Microsoft, etc.) servers where
the data is both stored and processed, and this trend is only
expected to accelerate in the future thanks to the emerge of
the Internet-of-Things (IoT). Service providers are known to
regularly exploit users’ data, e.g., for marketing purposes, and
it is evident that users’ privacy has decreased. Many privacy
problems could be avoided by encrypting the data before
storing it into the cloud but this prevents cloud computing
because processing of encrypted data becomes impossible.
The cryptography community has worked on this problem
already for a long time (see, e.g., [1]) and many types of
solutions addressing different aspects of these problems have
been proposed: e.g., homomorphic encryption [2], attribute-
based encryption [3], searchable encryption [4], and functional
encryption [5], just to name a few. In this paper, we will show
how the performance overhead of such solutions can be re-
duced by designing an efficient accelerator on a programmable

M. Bahadori and K. Järvinen are with the Department of Computer Science,
University of Helsinki, FI-00014 Helsinki, Finland.
E-mail: {milad.bahadori, kimmo.u.jarvinen}@helsinki.fi

Date of the manuscript: January 25, 2021.

System-on-Chip (SoC) that combines processor cores with
Field Programmable Gate Array (FPGA) resources.

Partially homomorphic encryption allows computing a lim-
ited set of operations over encrypted data. We focus on Ad-
ditively Homomorphic Encryption (AHE) and Paillier encryp-
tion [6] in particular that allows additions with encrypted data.
Even such a limited functionality enables applications that can
go a long way as shown by multiple publications and discussed
in more detail below. The benefit of AHE compared to Fully
Homomorphic Encryption (FHE) [2], which allows arbitrary
computations on encrypted data, or Somewhat Homomorphic
Encryption (SHE), which allows arbitrary computations up
to some complexity limit, is that AHE schemes are a lot
simpler and typically lead to more efficient outcomes. Despite
this, even AHE introduces significant performance penalties
compared to performing the same operations on unencrypted
data. Thus, there is a clear need for hardware acceleration of
these operations, but very little work exists on this topic in the
literature. An FPGA-based accelerator for Paillier encryption
was presented by San et al. in [7] in 2016, but no other works
seems to be available. This is somewhat surprising given that
a large body of work is available on accelerating FHE/SHE
(see, e.g., [8], [9], [10], [11], [12], [13], [14], [15]), which are
arguably much further from practical adaptation than AHE.

Over the years, Paillier encryption has been a central build-
ing block in many Privacy Enhancing Technologies (PETs).
Paillier encryption was also recently standardized by ISO [16]
making it a very attractive alternative for practitioners because
few other AHE schemes have been standardized. Examples of
use cases of Paillier encryption for PETs include biometrics
with fingerprints and face recognition (see, e.g., [17], [18],
[19], [20]), smart grid related energy-metering and statistics
(see, e.g., [21], [22], [23]), indoor localization (see, e.g., [24],
[25], [26]), medical data processing (see, e.g., [27]), and
different types of user matching applications for social me-
dia, job seeking or dating services (see, e.g., [28], [29]). In
these schemes, a user typically encrypts inputs using Paillier
encryption and a server uses the homomorphic property on the
ciphertexts together with its own input to the scheme (e.g.,
a database) to compute results without revealing the users’
inputs. A particularly popular operation in these schemes
has been the computation of Squared Euclidean Distances
(SEDs) between the user’s input and the server’s database
(see, e.g., [17], [19], [20], [24], [25], [28]). We focus on
SEDs in this paper in order to demonstrate the usability of
our implementation for accelerating PETs.

Another use case of AHE that also relates to PETs can be
found in Functional Encryption (FE) [5], [30], which is a novel
paradigm of encryption that allows to evaluate a function over

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. –, NO. –, JULY 2020 2

encrypted data while obtaining no other information except
the result of the function. Recently, Paillier encryption has
been used for realizing different types of efficient FE schemes
in [31], [32]. In this paper, we show that such schemes can
be accelerated with our implementation. Also other advanced
schemes such as searchable encryption (see, e.g., [33]) utilize
AHE and could benefit from our design, but they are not
directly considered in this work. In this paper, we present the
following contributions:
• We present a programmable SoC based architecture for

accelerating large integer modular arithmetic that has
been tailored for fast computation of AHE (and, par-
ticularly, Paillier encryption). The accelerator utilizes a
microcode based architecture which provides flexibility
and allows using it for different types of applications.
It uses a multi-core structure that allows exploiting the
inherent parallelism that is available in many use cases
of AHE. To the best of our knowledge, this is the first
published accelerator for applications enabled by Paillier
encryption; the main focus of [7] was on encryption and
decryption operations of Paillier and the acceleration of
a PET was studied only cursorily.

• We instantiate the proposed architecture as a Hard-
ware/Software (HW/SW) codesign implemented in a
Xilinx Zynq-7000 programmable SoC and provide per-
formance evaluations with real hardware for two types
of use cases: Firstly, we use the implementation for
computing SEDs over encrypted data, which has been
used in multiple PETs as discussed above. This is the
first published work that is capable of accelerating various
types of PETs and shows that significant speed im-
provements can be achieved, consequently, increasing the
practical adaptability of these PETs. Secondly, we use the
design for accelerating an FE scheme for inner products
from [31], [32] that is based on Paillier encryption. This
represents the first hardware-based accelerator for FE
and shows that SoC-based acceleration can bring this
promising new concept to practical feasibility.

The rest of this paper is organized as follows: Sect. II
surveys the preliminaries of Paillier encryption and the two
use cases that we consider in this paper. Sect. III describes
the specific algorithms that are implemented. Sect. IV presents
the architecture of the HW/SW codesign and discusses its
instantiation in the target SoCs. Sect. V presents the results
and analysis and, finally, Sect. VI ends the paper by drawing
conclusions and identifying certain directions for future work.

II. PRELIMINARIES

A. Additively Homomorphic Encryption
Here, we will discuss AHE and formally introduce Paillier

encryption [6]. Let LmM denote the ciphertext containing m and
let Enc(pk,m) and Dec(sk, LmM) denote the encryption and
decryption with public key pk and secret key sk, respectively.
An AHE scheme allows computing additions with ciphertexts.
Namely, when given two ciphertexts Lm1M = Enc(pk,m1) and
Lm2M = Enc(pk,m2), the following property holds:

Dec(sk, Lm1M ◦ Lm2M) = m1 +m2. (1)

I.e., Lm1 +m2M can be computed by applying the operation ◦
on Lm1M and Lm2M. It is noteworthy that despite being limited
to additions, an AHE still allows to compute multiplications
by a scalar t by repetitively applying the operation ◦:

Dec(sk, LmM ◦ LmM ◦ . . . ◦ LmM︸ ︷︷ ︸
t times

) = t ·m. (2)

1) Paillier Encryption: The Paillier public-key encryption
scheme [6] is a probabilistic encryption scheme based on the
decisional composite residuosity problem. Paillier encryption
comprises the following three algorithms:
• Key Generation. Given a security parameter κ (e.g., κ =

2048), choose two random primes p and q of the length
κ/2 and compute N = p·q. Also, select a group generator
g for the multiplicative group Z∗N2 such that the order of
g is a non-zero multiple of N . The public key pk is the
tuple (N, g) and the secret key sk is λ = lcm(p−1, q−1).

• Encryption. Take a message m ∈ ZN and a public key
(N, g) as inputs and select a random r ∈R Z∗N . Then,
compute and return the ciphertext LmM:

Enc(pk,m) = gm · rN mod N2. (3)

• Decryption. Take LmM ∈ Z∗N2 and the secret key λ as
inputs. Then, compute and return the plaintext m:

Dec(sk, LmM) =
L(LmMλ mod N2)

L(gλ mod N2)
mod N, (4)

such that L(u) = u−1
N and L(gλ mod N2)−1 mod N

can be precomputed.
For Paillier, the operation ◦ is a multiplication. Thus, a homo-
morphic addition is simply a multiplication of two ciphertexts
modulo N2 and a homomorphic scalar multiplication is an
exponentiation to the exponent t modulo N2 (see (1) and (2)).

B. Use Cases of Paillier Encryption

We consider two specific use cases of Paillier encryption
that are relevant in the cloud computing scenario that was
discussed in Sect. I. Firstly, we discuss privacy-preserving
computation of SEDs between the user’s query and the service
provider’s database, which has multiple use cases in PETs.
Secondly, we discuss FE that is a new paradigm for encryption
that permits the service provider to compute only a specific
function (in our case an inner product) over users’ inputs.

1) Privacy-Preserving SEDs over Encrypted Data: Let Y
be a database of n vectors of length m: Y = (y0,y1,
. . . ,yn−1), where yi = (yi,0, yi,1, . . . , yi,m−1) with yi,j ∈Z`.
Without loss of generality, we assume that ` is a power
of two and use ` = 28 as an example in this paper. Let
x = (x0, x1, . . . , xm−1) with xi ∈ Z` be a query vector. We
assume that Y is in the possession of a server and x is a
query sent by a user, who encrypts xi using pk to keep x
confidential: LxM = (Lx0M, Lx1M, . . . , Lxm−1M) = (Enc(pk, x0),
Enc(pk, x1), . . . , Enc(pk, xm−1)).

The server’s task is to calculate encrypted distances LdiM
between the encrypted query LxM and each vector yi in Y. The
final target is to find the indices of the k smallest distances,
i.e., to find the k nearest neighbors (kNN), but only the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. –, NO. –, JULY 2020 3

distance calculation phase is done in the encrypted domain. An
additional requirement is that also the server wants to keep Y
secret from the user requiring a second stage after the distance
calculation phase that finds kNN but prevents the user from
receiving the actual distances, which would reveal information
about Y to the user. This can be achieved, e.g., by masking
the distances with random masks so that removing the masks
and finding the kNN is done with the help of Yao’s garbled
circuits [34] as shown in [20]. Here, we omit the details about
this phase and focus on the computationally more demanding
distance calculation phase. It also helps if the server packs
several distances into a single ciphertext before sending them
to the user because then the communication overhead is
reduced. The above scenario is depicted in Fig. 1(a).

a) Squared Euclidean Distances: The SED is a particu-
larly meaningful distance metric in the above setting because
it has been used, e.g., for privacy-preserving fingerprint match-
ing [17], face recognition [19], [20], indoor localization [24],
[25], and user matching [28]. It can be decomposed into three
terms in the following way [19]:

di = ||x− yi||2 =

m−1∑
j=0

(xj − yi,j)2 =

m−1∑
j=0

x2j +

m−1∑
j=0

(−2xjyi,j) +

m−1∑
j=0

y2i,j = ∆i,1 + ∆i,2 + ∆i,3.

(5)

We see that the term ∆i,1 depends only on the user’s inputs
and ∆i,3 only on the server’s inputs and, therefore, they can
be computed over the plaintexts and, then, encrypted with pk
by the user and server, respectively. Because ∆i,1 is the same
for all distances di, it suffices for the user to send only one
value L∆1M. The middle term is calculated so that the user
sends L−2xjM for j = 0, . . . ,m − 1. The server then utilizes
the properties of (1) and (2) to obtain L∆i,2M:

L∆i,2M =

m−1∏
j=0

L−2xjMyi,j (mod N2). (6)

Finally, the server uses (1) to add the L∆1M, L∆i,2M, and L∆i,3M:

LdiM = L∆1M · L∆i,2M · L∆i,3M (mod N2). (7)

b) Ciphertext Packing: Given upper bounds for n, xj ,
and yi,j , it is possible to calculate an upper bound for the
values of di. For simplicity, we assume that di ∈ Z`′ so
that `′ is a power of two. If `′ is significantly smaller than
the plaintext space of the encryption system, then several
di fit into one ciphertext by placing each into a slot of at
least dlog2(`′)e bits [20]. The condition holds in particular for
Paillier system where the plaintext space is ZN with a large N .
Thus, this packing can significantly reduce the communication
bandwidth when sending LdiM (or other results of computations
with encrypted data) to the user. The server packs T encrypted
distances LdiM, Ldi+1M, . . . , Ldi+T−1M by computing:

LCpackM =

T−1∏
j=0

Ldi+jM`
′j

(mod N2). (8)

As a result, the server sends only one ciphertext (dlog2(N2)e
bits) instead of T ciphertexts (T · dlog2(N2)e bits). After

User k

User k – 1

User k + 1

Server

|

Public key pk

(Δ1), ((-2 x0), (-2 x1), …, (-2 xm-1))

| | | | | |

(Cpack)| |
| |

Server computes: (di) = (||x – yi|| 2) for all yi in Y in the

encrypted domain, and packs (and possibly masks) them

|||

User n – 1

Server

Server computes: x , y = Dec (sk y , (c0 , c1 , … , cn – 1))

c 0 = Enc (sk0 , x0)User 0

User 1

.. . .

.
 .

 .

.
 .

 .

sk
0

sk
1

sk
n-

1

sk
 y

.
 .

 .

c1 = Enc (sk1 , x1)

cn – 1 = Enc (skn – 1 , xn – 1)

=

..

(a)

(b)

Key Authority

Fig. 1. (a) Privacy-preserving SEDs over encrypted data, (b) MIFE-IP scheme.

decrypting LCpackM by sk, the user obtains the plaintext Cpack =∑T−1
j=0 (di+j · `′j) and can unpack di, di+1, . . . , di+T−1.
2) Multi-Input Functional Encryption for Inner Products:

Traditional encryption is “all-or-nothing” in the sense that the
holder of the secret key sk obtains the entire plaintext x from
the ciphertext LxM and the others get nothing at all. FE [5],
[30] is a novel paradigm of encryption that goes beyond this
limitation by providing more fine-grained control. Namely, FE
allows a key authority (the owner of a master secret key msk)
to derive a decryption key skf that allows to learn the value
of f(x) from LxM, but nothing else about x. E.g., FE allows
calculating certain statistics over the LxM without revealing x.

MIFE [35], [36] contains n slots and allows n different users
to encrypt their own plaintexts xi = (xi,0, xi,1, . . . , xi,m−1).
The decryption key skf permits to compute the value f(x) for
x = (x0,x1, . . . ,xn−1). This makes the scheme very useful
for many practical applications such as privacy-preserving data
mining and delegated data processing because data can be
collected from multiple users. This setup is shown in Fig. 1(b).

While FE constructions for arbitrary polynomial-sized cir-
cuits exist (e.g., [37], [38]), they are far from being practical.
Here, we focus on FEs that have been designed with efficiency
in mind for a limited, but still practically relevant functionality
of computing inner product 〈x,y〉 where x is the user’s input
vector and y is the function that is permitted to be computed
from LxM. MIFE-IP allows the holder of skf to compute

fy(x) =

n−1∑
i=0

〈xi,yi〉 =

n−1∑
i=0

m−1∑
j=0

xi,jyi,j . (9)

In the recent years, many schemes for (multi-input) FE for
inner products have been presented based on various cryp-
tographic assumptions and features [31], [32], [39], [40],
[41], [42]. We focus on the recent work from Abdalla et
al. in [32] that gives a generic construction for building a
MIFE-IP scheme from any single-input FE scheme without
pairings. We consider the instantiation from [32] that uses the
single-input FE for inner products based on Paillier encryption
introduced by Agrawal et al. in [31]. The scheme by Agrawal

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. –, NO. –, JULY 2020 4

Algorithm 1: Computation of encrypted middle-terms
L∆i,2M for SEDs: (a) straightforward and (b) optimized

Input: Database Y, where yi,j ∈ Z`, encrypted query
(L−2x0M, . . . , L−2xm−1M)

Output: Middle-terms (L∆0,2M, . . . , L∆n−1,2M)
(t0, t1, . . . , tn−1)← (1, 1, . . . , 1)
for i = 0 to n− 1 do // (a) Straightforward

for j = 0 to m− 1 do
u← ME(L−2xjM, yi,j , N2)
ti ← MM(ti, u,N

2)

for j = 0 to m− 1 do // (b) Optimized
u← 1
for k = 1 to `− 1 do

u← MM(u, L−2xjM, N2)
for {i | yi,j = k} do /* i ∈ [0, n− 1] */

ti ← MM(ti, u,N
2)

return (L∆0,2M = t0, . . . , L∆n−1,2M = tn−1)

et al. [31] does not use Paillier encryption directly as defined
in [6] or in Sect. II-A1, but rather it uses a variation of these
algorithms. However, it also relies on the AHE property and
is based on the decisional composite residuosity problem. For
the sake of brevity, we skip many of the details here and
refer interested readers to [31] for details, but we provide the
relevant algorithms later in Sect. III.

III. ALGORITHMS

A. Long Integer Modular Arithmetic

Typically, the main performance bottleneck in hardware
implementations of public-key cryptography arise from long
integer modular arithmetic operations and, especially, from
Modular Multiplication (MM). We base our modular oper-
ations on the Montgomery modular arithmetic [43] that is
widely adopted in the literature for implementations of public-
key cryptography. We use algorithms for Modular Addition
(MA) and Modular Subtraction (MS), Montgomery Reduction
(MR), radix-2k Montgomery MM, and left-to-right Modular
Exponentiation (ME) from [43], [44], [45]. The implementa-
tions of these algorithms in our architecture are Constant Time
(CT) for all other algorithms except for the left-to-right ME.
If timing attacks are considered as a threat, then a CT ME
algorithm such as the left-to-right square-and-multiply-always
ME can be used via a simple microcode upgrade. The security
model is discussed more closely in Sect. IV-D.

B. Squared Euclidean Distances

In the case of SEDs, we focus on the server’s computational
load because users simply encrypt their inputs using normal
Paillier encryptions described in Sect. II-A1; these encryptions
are also trivial to parallelize as each vector element can be
encrypted independently. For the server, the most significant
computational load is related to computing the middle-terms
L∆i,2M for i = 0, . . . , n − 1 using (6) and to computing the
ciphertext packings using (8).

Alg. 1(a) describes a straightforward scheme for computing
the middle-terms for all vectors yi in the server’s database Y
individually. This algorithm has the advantage that it is very
simple from the control point-of-view and it is straightforward
to compute in parallel: the iterations of the outer for loop are
distributed to different cores. But, computational resources are
wasted because the MEs for computing u are performed mul-
tiple times if yi,j = yi′,j for i 6= i′. An optimization would be
to precompute these MEs, but this quickly becomes unfeasible
when m grows because of large memory requirements.

Alg. 1(b) shows an optimized algorithm for computing the
middle-terms. It processes each element of the user’s input
separately and scans the corresponding values in all vectors
in the server’s database Y in one iteration. This way the MEs
of the values in the user’s input are computed only once. The
disadvantage now is the more complicated control, paralleliza-
tion, and memory management to handle the variables ti for
the middle-terms if n is large. The algorithm relies on the
observation that the values in the server’s database (and also in
the user’s input) are typically relatively small (i.e., ` is small).
Thus, we make a scan with a value k from 1 to ` − 1 (or to
max(yi,j)) for a particular j and multiply the corresponding
u = LxjMk into all middle-terms for which yi,j = k. This
algorithm is particularly useful when n becomes large.

The algorithm for packing is relatively straightforward
because, firstly, an accumulator is initialized with Ldi,T−1M
and, starting from j = T − 2 downwards, the accumulator is
exponentiated with the exponent `′ and the ciphertext Ldi+jM
is multiplied into the accumulator. This will be continued until
j= 0 after which LCpackM is available in the accumulator.

C. MIFE-IP based on Paillier Encryption

As discussed in Sect. II-B2, [31], [32] presented MIFE-IP
based on a variation of Paillier encryption. In this paper, we
consider acceleration of both the encryptions performed by the
users for their respective input vectors xi and the decryption
performed by the server that returns the inner product 〈x,y〉
for a specific y determined by sky. Algorithms for performing
encryptions and decryptions are given in Algs. 2 and 3, respec-
tively. In the following, we will give short introductions to the
general ideas behind the algorithms and, more specifically,
on the computational aspects of these algorithms. Interested
readers are referred to the original publications [31], [32].

Alg. 2 first masks the user’s input vector with masking
values ui that are part of the encryption key ski by performing
m MAs in line 1. The purpose of this masking is to hide the
result of the inner product 〈xi,yi〉 of the user i from the server
when it performs the single-input FE decryption for this user’s
input. In the next lines, the masked input vector is encrypted
with the single-input FE scheme from [31] and it includes
m + 1 MEs, which constitute the main computational load
of the algorithm, and a few MMs and MAs. The MEs are
trivial to parallelize because each of them can be computed
independently of each other.

Alg. 3 begins by performing single-input FE decryp-
tions [31] for all users’ ciphertexts in lines 1–7. The AHE
property of Paillier encryption is used in line 5 to homo-

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. –, NO. –, JULY 2020 5

Algorithm 2: Encryption of MIFE-IP based on Paillier
encryption [32, adapted from Figs. 1, 3 and 9]

Input: The encryption key ski = (N, g,hi,ui) for
input i consisting of the composite modulus N ,
a generator g ∈ Z∗N2 , and two vectors
hi = (hi,0, . . . , hi,m−1) with hi,j ∈ ZN2 and
ui = (ui,0, . . . , ui,m−1) with ui,j ∈ ZL; And
vector xi = (xi,0, . . . , xi,m−1) with xi,j ∈ Z`

Output: ci = (ci,0, . . . , ci,m) where ci,j ∈ ZN2

1 w = (w0, . . . , wm−1)←
((xi,0 + ui,0), . . . , (xi,m−1 + ui,m−1)) (mod L)

2 r ←R {0, 1, . . . , bN/4c}
3 ci,0 ← ME(g, r,N2)
4 for j = 0 to m− 1 do
5 t1 ← ME(hi,j , r,N

2)
6 t2 ← MM(wj , N,N

2)
7 t2 ← MA(t2, 1, N

2)
8 ci,j+1 ← MM(t1, t2, N

2)

9 return ci = (ci,0, . . . , ci,m)

morphically compute xi,jyi,j via homomorphic scalar mul-
tiplications of (2) and in line 6 to compute

∑
xi,jyi,j via

homomorphic additions of (1). In line 8, Np = N−1 (mod L)
can be precomputed for each key set in the beginning. Line 8
also removes the masks by subtracting z =

∑
〈ui,yi〉, which

is a part of the decryption key sky giving the inner product
〈x,y〉 as the result. The most expensive operations in Alg. 3
are the MEs in line 3; the MEs in line 5 are cheaper in
practice because yi,j are typically small. Alg. 3 requires n
modular inversions (MI) in line 2. They can be computed with
just one inversion and 3(n − 1) MMs by using the so-called
Montgomery’s trick [46], [47]. In that case, the inverses are
computed before entering the main for loop. Because line 3
dominates in the computational cost, the most advantageous
way to parallelize computation is to distribute different single-
input FE decryptions (i.e., lines 3–7) to different cores.

IV. ARCHITECTURE

This section describes the architecture of our flexible mi-
crocode based multi-core accelerator. It is constructed as a
HW/SW codesign, where the computationally heavy long
integer modular arithmetic (e.g., MMs and MEs) is performed
by the HW side (FPGA) and controlling of the HW side
and computation of auxiliary operations is performed by the
SW side. As discussed in Sect. III, the use cases that we
consider in this paper are such that they include a lot of
inherent parallelism. This motivated us to design the HW side
as a multi-core architecture including multiple parallel and
programmable Cryptography Processor (CP) cores that are
designed to have a good balance between performance and
area requirements. Each CP core can be programmed with
different microcodes and, hence, the architecture supports both
symmetric and asymmetric processing where the CP cores
process the same computations (but with different data) or
different computations, respectively. The ciphertexts of Paillier
encryption are large (e.g., 4096 bits with the security parameter

Algorithm 3: Decryption of MIFE-IP based on Paillier
encryption [32, adapted from Figs. 1, 3 and 9]
Input: The decryption key sky = (N,y,d, z) for

inner product 〈x,y〉 with the modulus N , the
weight vectors y = (y0, . . . ,yn−1) with
yi = (yi,0, . . . , yi,m−1) and yi,j ∈ Z`, the
vector d = (d0, . . . , dn−1) with di ∈ Z, and
z ∈ ZL; The ciphertexts (c0, . . . , cn−1) where
ci = (ci,0, . . . , ci,m) and ci,j ∈ ZN2

Output: Inner product r ∈ ZL
1 for i = 0 to n− 1 do
2 ri ← MI(ci,0, N2)
3 ri ← ME(ri, di, N

2)
4 for j = 0 to m− 1 do
5 t← ME(ci,j+1, yi,j , N

2)
6 ri ← MM(ri, t, N

2)

7 ri ← MS(ri, 1, N
2)

8 return r ←
(

(N−1 mod L) ·
∑n−1
i=0 ri − z

)
mod L

κ = 2048) and, therefore, data communication between the
CP cores and the SW side easily becomes a bottleneck for
performance. Our HW/SW codesign includes a multi-level
memory structure to mitigate this limitation.

A. High-Level HW/SW Codesign

Fig. 2 illustrates the high-level architecture of the HW/SW
codesign which is divided into two main parts: (1) SW side and
(2) HW side. The architecture is generic and can be instanti-
ated in various programmable SoCs with minor modifications,
but in the following we consider mainly an instantiation in
a Xilinx Zynq-7000 all programmable SoC because we use
an Avnet ZedBoard for prototyping and we will refer to the
specific features of that programmable SoC whenever such a
distinction is required. For Zynq-7000, the SW side (called
Processing System (PS) in Xilinx terminology) consists of a
dual-core ARM Cortex-A9 processor and the HW side (called
Programmable Logic (PL)) is an Artix-7 FPGA.

Fig. 2 also shows the three-level Data Memory (DMEM) of
the HW/SW codesign. The Level-1 DMEM (L1-DMEM) is
located in each CP core and Level-2 DMEM (L2-DMEM) is
shared for all CP cores, and both of them are located in the HW
side. The Level-3 Memory (L3-MEM) is in the SW side and
consists of both on-chip and off-chip memories (the off-chip
memory is a DDR3 memory in the case of ZedBoard). The
control and data communications between the SW and HW
sides are organized based on the capabilities of the specific
programmable SoC, and we use the Advanced Extensible
Interface (AXI) ports of Zynq-7000.

1) SW Side: The SW side, which is shown in the top part
of Fig. 2, is responsible for controlling all operations in the
HW side and external peripherals (i.e., DDR3 memory and
I/O peripherals) as well as performing computations which are
not supported by the multi-core structure of the HW side. The
SW side controls all actions in the HW side. This includes

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. –, NO. –, JULY 2020 6

AXI Peripheral

Interconnect

Snoop ControllerOn-Chip

Memory
(256 KB)

CPU_0

(ARM Core)
MMU

I-Cache
(32 KB)

D-Cache
(32 KB)

MMU

I-Cache
(32 KB)

D-Cache
(32 KB)

512 KB L2 Cache & Controller

G

I

C

Application Processor Unit (APU)

Programmable Logic to

Memory Interconnect

Memory Interface

DDR3

Controller

I/O Peripherals
(GigEthernet, UART, USB, ...)

Other Memory

Interfaces

M
u
ltip

lex
ed I

 /
 O

Clock Generation Reset

SW Side (Processing System)

DDR3

Memory

IRQ

IRQs

AXI Memory

 Interconnect_4

AXI

DMA_1

. . .

AXI

DMA_2

AXI

DMA_M

. . .

. .
 .

. . .

. .
 .

. . .

. .
 .

. . .

. .
 .

AXI Memory

Interconnect_3AXI Memory

Interconnect_2AXI Memory

Interconnect_1

Parallel DMA Blocks

Cluster_1

I / O

Cluster_2

Cluster_M

RD_CHNL

WR_CHNL

RD_CHNL

WR_CHNL

RD_CHNL

WR_CHNL

. . .

.

AXI Peripheral

Interconnect_1

HW Side (Programmable Logic)

. . .

(M N) Commands

.
 .

 .

Status

Shared

Level-2 DMEM

(144 Kb)

(512 MB)

DDR3

I / O Data

Parameters

PU/PR Key

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

TRQs

ACKs

.
 .

 .
CP

Core_1

CP

Core_2

. . .

D
eM

u
x

CP Core_N

StatusCommand .
.
.

TRQ

ACK

Data

.
.
.

A
X

I In
terface

Multi-Core
Structure

Control Unit

Arithmetic Unit

(72 Kb)

IMEM

(28 Kb)DMEM

L1_DMEM

L2_DMEM

L3_MEM

Data

of Clusters: M

of Cores per Cluster: N

of total Cores: (M × N)

High-Performance Ports

Memory

FSMs

& Ctrl.

Smart Router

. .
 .

FSMs & Control
(TRQ Circular Scanning)

In
terco

n
n
ect

ClockReset

.

HP0

HP1

HP2

HP3

HP0

HP1

HP2
HP3

GP0

GP1

Microcodes

CPU_1

(ARM Core)

Off-Chip

Memory

G
en

er
al

-P
u
rp

o
se

 P
o
rt

s

. . .

. . .

. .
 .

AXI GPIO_1

AXI GPIO_ (M × N + 1)

.

. . .

. . .

. .
 .

. . .

.

Central Interconnect

×

Fig. 2. High level architecture of the HW/SW codesign system. The SW and HW sides are depicted in the top and bottom parts, respectively.

sending and receiving data packets to/from the CP cores,
issuing commands to the CP cores, programming all CP cores
and other modules in the HW side, receiving the status of each
CP core and other modules from the HW side, and making
control decisions based on the received status. Thus, the SW
side is responsible for high-level control of the crypto schemes.

In the case of Zynq-7000 SoCs, the two ARM processors
enable parallel controlling of data packets transfer as well
as command and status controlling of the CP cores and
other modules in the HW side which increases throughput
and efficiency. The communication between the SW and HW
sides is performed via two types of ports: High Performance
(HP) and General Purpose (GP) ports. There are four HP
ports which are employed for high performance data transfer
between the HW and SW sides as well as for programming
microcodes in the CP cores. Also, there are two GP ports
which are employed for commands and status transfer.

2) HW Side: The HW side, which is shown in the bottom
part of Fig. 2, contains the CP cores for performing the
actual computations and many supporting modules for data
communication and storage as well as for commands and
status transfer between the HW and SW sides. All modules
in the HW side are connected in an AXI-based structure. The
multi-core architecture is organized into M parallel clusters
where each cluster contains N parallel CP cores, giving a total
number of M ·N CP cores in the multi-core architecture. The
main challenge in this scenario is sending and receiving data
packets, commands, and status between the SW side and the
clusters, as well as managing the execution-flow from the SW
side. The data communication between the SW side and the CP
cores is done via the HP ports that connect to the AXI memory
interconnect blocks which further connect to the CP cores via

AXI Direct Memory Access (DMA) blocks. In Zynq-7000,
we use four parallel AXI memory interconnect blocks that
connect to dM/4e AXI DMA blocks, each connecting to one
cluster of CP cores. The command and status communication
is handled via the AXI peripheral interconnect blocks in the
HW side. They are also used for controlling the AXI DMA
blocks used for high speed data communication.

The L2-DMEM, the shared memory between the CP cores,
contains a single-port RAM and a smart router for controlling
the access of the CP cores to the memory. The smart router
uses circular scanning (the round-robin arbiter) from the first
CP core of the first cluster to the N -th CP core of the M -th
cluster. The first CP core to request access that is encountered
in the scan is selected and connected to the single-port RAM.
This allows the CP core to transfer data between its L1-DMEM
and the single-port RAM of the L2-DMEM. When the selected
core with index i has finished the data transfer, the smart router
will start the circular scan again from index i+ 1.

3) Configuration of the HW/SW Codesign: The system
relies on flexible high-performance data transfer between three
memory levels, parallel high-performance CP cores, and paral-
lel commands/status sending/receiving schemes. The HW/SW
codesign allows high-level software developing in the SW
side and efficient low-level microprogramming in the HW
side, consequently, ensuring fast development of high-level
control for various algorithms in the SW side and maximal
performance for critical operations in the HW side.

Fig. 3 clarifies the taxonomy of different levels of mem-
ories and provides details of the command set of the CPs.
The L3-MEM in the SW side is used for storing different
parameters, variables, input/output data, and microcodes. The
command set of the CP cores includes fields for the ID of

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. –, NO. –, JULY 2020 7

L3-MEM

Key Parameters

Var., Const.,

Param., etc.

Input / Output

Data

L1-DMEM

Key Parameters

Var. and Const.

In
pu

t /
 O

ut
pu

t
D

at
a

Init. and Pre-

Computation Param.

X0

X1

.
.

.

.
.

.

Xj

IMEM

Param. Setting

M
ic

ro
co

de

.
.

.

.
.

.

Sub-Routines,

etc.

L2-DMEM

In
pu

t,
 O

ut
pu

t,
 I

nt
er

.,

an
d

V
ar

. D
at

a

.
.

.

.
.

.

Yi

Y1

Y2

Y0

Up to 8192-bit

Located to each CP

Up to

8192-bit

Shared Data Memory

H
W

 S
id

e
S

W
 S

id
e

Local D / I MEMs

L2-DMEM

O
n

 /
O

ff
 C

h
ip

 S
W

 M
em

.

CP Core Command Set

Parameter :

{Y0, Y1,

…, Yi}

L1-DMEM

Parameter :

{X0, X1, …, Xj},

Key Parameters,

Variables and

Constants, etc.

Transfer Length

O
p

er
at

io
n

s

CP_Init / Config / Run

CP_IMEM_Load

CP_L3L1_DMEM_WR

CP_L3L1_DMEM_RD

CP_L1L2_DMEM_WR

CP_L1L2_DMEM_RD

Microcodes

Master

Slave

Master Slave

 AXI Port (64-bit)

 Simple Port (72-bit)

L2_PAR L1_PAR Operation ID

(
 M

 . N
) C

o
res

×1 Queued-IF

×
4

 P

arallel-IF

Data flows :

×

Fig. 3. Taxonomy of different memory levels and details of the CP command.

the CP core, the operation type, the transfer length between
different levels of memories, the source/destination parameter
in the L1-DMEM, and the source/destination parameter in
the L2-DMEM. The HW side contains the L1 memories in
each CP core (i.e., local L1-DMEM and Instruction Mem-
ory (IMEM)). The IMEMs store microcodes of the specific
algorithm(s) and the L1-DMEMs store different parameters,
intermediate variables, and input/output data. Each L1-DMEM
is partitioned into partitions of up to 8192 bits denoted by Xj .
Additionally, the HW side includes the shared L2-DMEM for
storing input, output, and intermediate data. The L2-DMEM
allows fast data transfers between the CP cores without the
need to move the data between the HW and SW sides. The
L2-DMEM is also partitioned to up to 8192-bit partitions
called Yi. Two main types of the data transfers are considered.
Firstly, data transfers from the L3-MEM to a specific Xj in
the L1-DMEMs of the CP cores, or vice versa. Secondly, data
transfers from a specific Xj from a L1-DMEM to a specific
Yi in the L2-DMEM, or vice versa. Data transfers between
the L2-DMEM and L3-MEM can be done via a L1-DMEM.

B. Cryptography Core

The main idea behind the design of the CP core is to have a
compact, programmable, and high-performance processor for
large integer modular arithmetic optimized for the resources of
modern FPGAs (e.g., DSPs and BRAMs). The objective is to
achieve a good trade-off between speed and area requirements
for an individual CP core in order to facilitate an efficient
multi-core architecture. We chose to realize the CP core based
on a microprogramming architecture instead of implementing
Finite State Machines (FSMs) for specific algorithms because
microprogramming provides both flexibility (parameter sizes)
and programmability (different algorithms) combined with a
small area footprint that would be hard to achieve with FSMs.

Fig. 4(a) shows the architectural diagram of the CP core
which contains an external interface unit, an arithmetic unit,

a data memory unit, an address generation and control unit,
and an instruction memory unit. Also, Fig. 4(b) shows the
architecture details of the CP core and different external or
internal interfaces and signals. The CP has a 72-bit datapath
which was selected for two reasons: (1) The radix in the
long integer modular arithmetic algorithms should be relatively
large in order to have high performance and (2) the datapath
width should match the width of the dedicated arithmetic
resources and memory blocks of FPGAs (i.e., DSPs, BRAMs).

1) External Interface Unit: The external interface unit is the
top module and a wrapper for other units in the CP core. The
main tasks of this unit are receiving/sending command/status
from/to external module(s), supporting AXI-based read and
write interfaces with the SW side, performing handshakes with
the smart router and supporting read and write interfaces with
the shared L2-DMEM, and controlling other units of the CP.

2) Arithmetic Unit: As shown in Fig. 4(b), the arithmetic
unit contains three main parts: (1) source registers, (2) arith-
metic blocks, and (3) an output register. There are three
main source registers (i.e., IN REG 0/1/2) which are loaded
from either the L1-DMEM (i.e., Out1 and Out2), the output
of the arithmetic unit, zero value, and their present values.
These registers provide inputs for the Modular Multiply-Add
Accumulator (MMAA) and Modular Adder/Subtractor (MAS)
blocks. Finally, there is an output register (i.e., OUT REG)
which takes its value from the outputs of the arithmetic blocks.
The output of the arithmetic unit is an input of L1-DMEM.
Also, there is an auxiliary part which extracts one bit of a
vector and it is used for extracting the exponent bit of ME.

The MAS and MMAA blocks are designed to facilitate
efficient computation of modular arithmetic algorithms. The
MAS is a 72-bit adder/subtractor that returns the 72-bit result
of addition or subtraction and a one-bit carry or borrow
when given two 72-bit operands and a carry or borrow from
the previous operation. The MMAA block takes three 72-bit
input operands (In0, In1, and In2) and computes Outlow,j =
(In0,j · In1,j + In2,j + Outhigh,(j−1)) mod 272, and Outhigh,j =(
In0,(j−1) · In1,(j−1) + In2,(j−1) + Outhigh,(j−2)

)
/ 272 where

In0,j , In1,j , In2,j , Outlow,j , and Outhigh,j = 0 for j < 0.
Next, we clarify how the MAS and MMAA blocks are used

for long integer modular arithmetic. MA and MS are computed
by applying the 72-bit additions or subtractions of the MAS
block iteratively. Efficient computation of long integer MMs is
essential because they are the critical operations for public-key
cryptography and are also used as the basis for other important
modular operations (e.g., ME or inversion). Line 4 of the MM
provided in Alg. 4 can be written as follows:

Si+1 = (

α−1∑
j=0

2kj (biaj + si,j) +

α−1∑
j=0

2kjqimj)/2
k

= (

α∑
j=0

2kjri,j +

α−1∑
j=0

2kjqimj)/2
k

(10)

where ri,j ∈ [0, 2k − 1] and α is the number of 72-bit words
required to represent the values to be multiplied (i.e., because
most operations considered in this paper are computed modulo
N2 with N of size κ, then α = d2κ/72e). We observe that

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. –, NO. –, JULY 2020 8

IM
E

M
 U

n
it

A
d

d
ress G

en
eratio

n
 an

d
 C

o
n

tro
l U

n
it

L
1

-D
M

E
M

 U
n

it

IN_REG_0

IN_REG_1

IN_REG_2

72

72

72 72

72
OUT_REG

Modular Multiply-Add

Accumulator Block

(MMAA Block)

In0

In1

In2

Modular Adder /

Subtractor (MAS) Block

In0

In1

AUX_REG

IN_REG_0

IN_REG_1

IN_REG_2 1-bit Left Shift Logic

(<< 1)

LCR_1

+1

–1

LCR_2

+1

–1

LCR_6

+1

–1

LCR_7

+1

–1

RDR1_1

RDR1_2

RDR1_3

RDR2_1

RDR2_2

RDR2_3

CVR_1

CVR_2

CVR_3
.

 .
 .

.
 .

 .

.
 .

 .

.
 .

 .

WRR_1

WRR_2

WRR_3

Adder

(+)

Adder

(+)

Adder

(+)

Stack
REG_0

Stack
REG_1

Stack
REG_2

Stack
REG_3

Stack

Pointer

+1

–1

+1

IMEM Address

Controller

FSM & Controller

L1 ↔ L2 DMEM

AXI FSM & Controller

L3 ↔ L1 DMEM / IMEM

Integer_Value

Next_IMEM_Address

56-bit Arithmetic & Control Instruction Set

...

Arithmetic Instructions Control Instructions

Command

Status

TRQ

ACK

L2_DMEM_IF

L3_AXI_Interface

Control & Arithmetic

Sides Signals

L1_DMEM

L1_DMEM

IMEM_Interface

D
in

A
d

d
r

W
rE

n

D
o

u
t

Din, Addr, WrEn

ADDR

RD_1

ADDR

WR

ADDR

RD_2

True Dual-

Port RAM

TDP_BRAM

(72 Kb)

Simple Dual-

Port RAM

SDP_BRAM

(72 Kb)

Simple Dual-

Port RAM

SDP_BRAM

(28 Kb)

ADDR_RD_1

ADDR_WR

ADDR_RD_2

72

72

72

Out1

WrEn

Out2

10

10

10

10

10

10

In

72

0

0

72

72

72

72

72

72

72

Outlow

Outhigh

72
Out

1
Carry/Borrow out

D
M

E
M

_
IN

72

72

72

72

72 72
1

MSB: [71:71] EXTmsb

1

72

72

0

0

0

0
0

0

0

00

0

0

0

0

0

8

8

8

8

8

8

LCR

10

RDR1

10

RDR2

10

WRR

10

Integer_Value

8

CVR

8LCR

1

10

CR?
= =

IMEM_Interface

56

56

9

IM
E

M
_
O

U
T

(Microcode_WR_IF)

9

9

WrEn

C
/B

o
u
t

E
X

T
m

sb

C
R

C
all

 /
 Ju

m
p

R
etu

rn

E
n
d

_
o
f_

R
u
n

Microcode

External Interface Unit

A
rith

m
etic U

n
it

Fetching

(In0 In1 In2). +

(In0 In1)– +
MultAdd Block

(In 0 × In 1 + In 2)

In 0 In 1 In 2

(Pipelined: Latency = 6)

72 72 72

144

Global Clock

Global SCLR

Global CE

7272

73

72

72 72

72

7272

72
72

72

72 72 1

1

1

1 1

1 1

1

1

1

[71:0][143:72]

[71:0]

MSB: [72:72]

Out low (mod 272)Out high (/ 272)

In_0In_1

Adder (+) Cin

Out

In_0In_1

Adder (+)

Control Signals

72' b0

1' b0

In 0 In 1

72 72Clock Signal

SCLR Signal

Control Signals

73

72

72

1

[71:0]

MSB: [72:72]

Out (mod 272)Carry / Borrow out (/ 272)

Out

1' b0
1' b1

1

1

1

1

11

1

1

1

Cin

Adder / Subtractor Block

(+ / –)
Add / Sub

External Interface Unit
(Interface logic + Control)

Inst. MEM Unit
(Simple Dual-Port

RAM + Control)

(Duplicated True Dual-Port RAMs)
((2 RD + 1 WR) / Cycle)

Level-1 Data Memory Unit

Command
Status

L3↔L1_IF

L1↔L2_IF

Arithmetic Unit (Datapath)

(MMAA, MAS, and AUX Blocks)

Data
Control
Instruction
AXI Interface

RD-1 RD-2

WR-1

Address Gen.

and Sub-

Control Unit

(b)(d)

(c)

(a)

Fig. 4. (a) High-level architecture of the CP core, (b) the architectural details of the CP core, and (c–d) the structures of the MMAA and MAS blocks.

ri,j = bi · aj + si,j , with j ∈ [0, α] can be implemented
efficiently by iterating the MMAA block in a loop over the
length of the operands. The value of qi (line 3 of Alg. 4) can
be calculated based on ri,0 as qi = (ri,0 ·M ′) mod 2k, which
allows us to skip the computation of line 3 of Alg. 4. The
remaining part of (10) can be expressed in the following way:

Si+1 = (2kαri,α +

α−1∑
j=0

2kj (qimj + ri,j))/2
k

= (2kα(ri,α + ti,α) +

α−1∑
j=0

2kjti,j)/2
k.

(11)

Similarly, ti,j = qi ·mj + ri,j ∈ [0, 2k−1] with j ∈ [0, α] can
be implemented efficiently with the MMAA block.

a) MMAA Block: Fig. 4(c) shows the internal structure
of the MMAA block which contains two parts: (1) a multiply-
adder (i.e., MultAdd) block and (2) the complementary circuit
to perform the accumulation and modular operations. The 6-
level pipelined MultAdd block takes three 72-bit inputs and
generates a 144-bit output. The lower part of the MultAdd
output is accumulated with the previous higher part as well
as the previous most significant bit of the accumulation result.
The 73-bit result is divided in two part: (1) the 72-bit lower
part is Outlow and (2) the 1-bit higher part is stored for the next
accumulation. Additionally, the higher part of the MultAdd

Algorithm 4: Radix-2k Montgomery MM [44], [48]
Setting: A modulus M > 2 with gcd(M, 2) = 1 and

positive integers k and α where 4M < 2kα.
R = 2kα mod M ; M ′ = −M−1 mod 2k.

Input: A =
∑α−1
j=0 2kjaj , B =

∑α−1
j=0 2kjbj , and

M =
∑α−1
j=0 2kjmj ; aj , bj ,mj ∈ [0, 2k − 1],

so that 0 ≤ A,B ≤ 2M
Output: Sα = ABR−1 mod M and 0 ≤ Sα < 2M ;

Si =
∑α−1
j=0 2kjsi,j with si,j ∈ [0, 2k − 1]

1 S0 ← 0
2 for i = 0 to α− 1 do
3 qi ← (((Si + biA) mod 2k)M ′) mod 2k

4 Si+1 ← (Si + qiM + biA)/2k

5 return Sα

output is stored for the next accumulation. The second output
of the MultAdd block (i.e., Outhigh) is the higher part of
the previous MMAA computation. Therefore, MMAA block
calculates Outlow with a latency of six clock cycles whereas
the latency for Outhigh is seven clock cycles. The proposed
accumulation method and the one clock cycle difference for
Outlow and Outhigh are essential for the efficiency of the long
integer MM algorithm. The MMAA block supports modular

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. –, NO. –, JULY 2020 9

Sub_MultAddSub_MultAddSub_MultAdd Sub_MultAdd

Sub_MultAddSub_MultAddSub_MultAddSub_MultAdd

Sub_MultAddSub_MultAddSub_MultAddSub_MultAdd

Sub_MultAddSub_MultAddSub_MultAddSub_MultAdd

a0 = In0 [17:0]a1 = In0 [35:18]a2 = In0 [53:36]a3 = In0 [71:54]

c3

In2 [71:54]

c2

In2 [53:36]

c1

In2 [35:18]

c0

In2 [17:0]

In1[71:54]

b2

In1[53:36]

b1

In1[35:18]

b0

In1[17:0]

18 18 18 18

1818

18

18

18

18

18

18

18

18

18

18

1818

18

18

1818

18

18

1818

18

18

1818

18

18

1818

18

18

1818

18

18

1818

18

1818

18

18

1818

18

18

1818

18

18

1818

18

18

1818

18

18

1818

18

18

1818

18

18

1818

18

18

18

18

18

18

18
1818

In_0

In_1

Global Clock

Global SCLR

Global CE

p0 = P [17:0]p2 = P [53:36]p3 = P [71:54]

T0

T0

T0

T0T1

T1

T1

T1T2

T2

T2

T2T3

T3

T3

T3 Ph

Pl

Ph

Pl

Ph

Pl

Ph

Pl

18

Ph

Pl

Ph

Pl

Ph

PlPl

Ph

Ph

Pl

Ph

Pl

Ph

PlPl

Ph

Ph

Pl

Ph

Pl

Ph

PlPl

Ph

×

+

18 18

18

18

18

ai bi

ci

36

36

P

CLK

SCLR

CE

×

+

18 18

18

18

18

36

36

P

Pl

Ph

×

+

18 18

18

18

18

36

36

P

×

+

18 18

18

18

18

36

36

P

P [17:0]
P [35:18]

Pl

Ph

P [17:0]
P [35:18]

Pl

Ph

P [17:0]
P [35:18]

Pl

Ph

P [17:0]

P [35:18]

CLK

SCLR

CE

CLK

SCLR

CE

CLK

SCLR

CE

DSP Slice FabricDSP Slice

DSP SliceDSP Slice Fabric

ai bi

ci

ai bi

ci

ai bi

ci

73

Adder (+)

Out

MSB LSB MSB LSB

Adder (+)
MSB LSB

Adder (+)
MSB LSB

Adder (+)
MSB LSB

73

p1 = P [35:18]

18

[72:18]

[17:0]

55In_01818

In_1

Out

73

18

[72:18]

[17:0]

55In_01818

In_1

Out

73

18

[72:18]

[17:0]

55In_0

{ p7, p6, p5, p4} = P [143:72]

18

In_1

72

72

Out 7373

18

1818181818181818

b3

Sub_MultAdd_T0 Sub_MultAdd_T1

Sub_MultAdd_T2 Sub_MultAdd_T3

Fig. 5. Structure of the MultAdd block (6-level pipelined) and the structural details of four types of Sub MultAdd Tx sub-blocks.

multiply-addition with or without accumulation. The MultAdd
block is the primary computation block in the datapath of each
CP. It consumes most of the FPGA resources, has the highest
dynamic power consumption, and also contains the critical
path. In order to maximize its efficiency, it is implemented
using the DSP slices. Figs. 5 show the structure of the 6-level
pipelined MultAdd block and how it maps into the DSP slices.

b) MAS Block: Fig. 4(d) describes the structure of MAS
block. It works in six operation modes including MA or MS
with zero, one, or a carry or borrow from the previous iteration.

3) Data Memory Unit: The L1-DMEM is the local memory
of each CP and is used for storing all data that is required for
running an algorithm. The outputs of L1-DMEM are directly
connected to the inputs of the arithmetic unit and the output of
the arithmetic unit is an input to L1-DMEM unit. Based on the
functionality descriptions of the MAS and MMAA arithmetic
blocks given above, the most efficient way to implement long
integer modular arithmetic is to read two 72-bit words and to
write one 72-bit word from and to L1-DMEM simultaneously.

L1-DMEM is shown in Fig. 4(b). It contains a duplicated
RAM block and some logic and registers. The first RAM is a
1024×72-bit true dual-port RAM with two independent write
and read ports and the second RAM is a 1024×72-bit simple
dual-port RAM with independent write and read ports. The
first ports of both RAMs are used for writing an incoming
data into both RAMs at the same time. The second ports of
the RAMs are used for separate reads. In such an arrangement,
we have L1-DMEM that can perform two reads and one write
in one clock cycle. Also, the output of the first port of the first
RAM is connected to the external interface unit.

4) Address Generation and Control Unit: This unit is
responsible for generating read and write addresses of
L1-DMEM and making control decisions for loop iterations
(see Fig. 4(b)). It is constructed based on five categories of
control registers: read registers 1 (RDR1 x), read registers
2 (RDR2 x), write registers (WRR x), constant value reg-
isters (CVR x), and loop counter registers (LCR y), where
x ∈ {1, 2, 3} and y ∈ {1, . . . , 7}. All registers can be
initialized with an Integer Value from an instruction from the
IMEM. Additionally, the LCR y registers can be incremented
or decremented by one and set to zero.

The read and write addresses (i.e., ADDR RD 1/2 and
ADDR WR) for L1-DMEM are generated by adding a
value from the respective register bank (i.e., from RDR1 x,
RDR2 x, or WRR x) with a value from LCR y. The selection
of specific values from these register banks is controlled with
instructions from the IMEM. Different constant values (e.g.,
the number of iterations of a for-loop, etc.) can be saved in the
CVR x register bank and they can be compared with a value
from LCR y. The comparison result CR be used as a control
signal for the IMEM (e.g., for terminating a for-loop). Details
of the address generation unit can be seen in Fig. 4(b)).

5) Instruction Memory Unit: IMEM stores microcodes
for algorithms that are run in the CP. The microcodes are
sequences of instructions for different units of the CP. Each
instruction consists of several fields such as arithmetic, control,
next IMEM address, Integer Value, and L1-DMEM fields.
These fields are responsible for applying all required com-
mands to the corresponding units for a working cycle of the
CP. IMEM has an interface via the external interface unit that

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. –, NO. –, JULY 2020 10

allows the SW side to load microcodes. IMEM is implemented
as a 512×56-bit simple dual-port RAM. Also, it consists of
a subunit for generating IMEM read addresses which accepts
several control inputs from the other units and generates the
next read address. IMEM supports different branch scenarios
such as (un)conditional jump/call, return, start/end of program.

C. Implementation of the Use Cases in the HW/SW codesign

1) Paillier Encryption and Decryption: Paillier encryption
is computed completely in the HW side by using consecutive
MMs and MEs. The SW side simply controls data transfers
between the SW and HW sides as well as manages the
commands and status interactions.

Implementation of Paillier decryption in our HW/SW code-
sign consists of two phases: (1) precomputations and (2) main
computations. Firstly, a set of precomputations are performed
for calculating (L(gλ mod N2))−1 mod N (see (4)) including
ME in the HW side and an integer division and a modular
inversion in the SW side. These SW side operations are
performed with wolfSSL embedded library (wolfCrypt library,
Ver. 3.13.0, https://www.wolfssl.com). This is a one time
effort that must be done only once for every modulus N and
generator g. The main computations are performed based on
ME and MM in the HW side and modular division in the SW.

2) Squared Euclidean Distances: Implementation of the
SEDs consists of two parts: computing the encrypted middle-
terms using (6) and the final distances using (7). The first one
is implemented either with the straightforward algorithm of
Alg. 1(a) or the optimized algorithm of Alg. 1(b).

Alg. 1(a) is implemented as follows. Each CP is assigned
for computing a distance between the user’s input and the i-th
entry in the server’s database, where i ∈ [0, n− 1]. I.e., each
CP core computes consecutive MEs and MMs for a specific
i and then performs the two MMs required to compute (7).
Hence, all CP cores process in parallel in a row-based scheme;
i.e., we consider the database as a matrix with n rows (entries)
and m columns (elements of the entries). All computation of
this algorithm is implemented in the HW side and the SW
side performs simple control and data transfer tasks.

Alg. 1(b) is implemented as follows. The CP cores oper-
ate in a mixed column-and-row-based scheme. Firstly, they
work in parallel in a column-based scheme, where columns
(i.e., different iterations of the outer for-loop) are assigned
to different CP cores. Each CP core computes MMs for a
specific column j. Because different CP cores (different j)
must contribute to the same ti, each CP core has its own
copy of ti until it finishes the column-based processing, after
which they are combined with MMs in a row-based manner.
Secondly, the CPs process in parallel in a row-based scheme
for computing the final results of the encrypted middle-terms
using (7) similarly to the above case. Compared to Alg. 1(a),
the SW side performs more control and data transfer tasks,
while the HW side performs fewer operations.

3) MIFE-IP: MIFE-IP encryption of a single user’s input
with Alg. 2 is performed as follows. Lines 1 and 2 are per-
formed in the SW side and the other operations are computed
in the HW side. The m+ 1 elements of the ciphertext ci are

all computed independently and, therefore, line 3 and all m
iterations of the for loop in lines 4–8 can be distributed to
different CP cores, which perform them by executing MEs,
MMs, and MAs. The SW side performs control and data
transfer tasks, but also light computations (lines 1 and 2).

MIFE-IP decryption is performed with Alg. 3 as follows.
The role of the SW side is more emphasized than in the above
algorithms. Implementation of Alg. 3 consists of three phases:
(1) computing the inverse (i.e., (

∏n−1
i=0 ci,0)−1 mod N2) in

the SW side based on Montgomery’s trick [46], [47], (2) all
the CPs in the HW side performing intensive MM, ME, and
MS operations in parallel (independently for each user’s input)
to compute the corresponding c−1i,0 and lines 2–7 of Alg. 3, and
(3) computing the inner product using line 8 in the SW side.

D. Security Model
We assume that Paillier encryption and the protocol are

secure and focus on information leakage from the implementa-
tion. Furthermore, we assume that the adversary lacks physical
access to the other party’s computation platform (also via
malware) and limit our analysis to remote timing side-channel
attacks. Because PETs and FE are the primary use cases, we
assume that the adversary is the other party of the protocol.

In privacy-preserving SED computation (see Fig. 1(a)), an
adversarial user aims to find out the server’s database Y and an
adversarial server aims to find out either (a) the user’s secret
key sk or (b) the user’s input x (note that (a) implies (b),
but not vice versa). Although Enc(pk,m) does not use the
secret key sk, it should still be CT to prevent information
leakage about m via a timing channel. A CT encryption
follows directly from CT MEs. It also suffices to use CT MEs
to protect Dec(sk, c) from leaking sk or information about the
plaintext. An adversarial user wants to find out Y by exploiting
the timing of computing SEDs. The user can measure only the
overall timing of computing all distances and, hence, can make
estimates, e.g., on the density of Y and the sum of Hamming
weights of all yi,j . It is evident that this leakage is not enough
to compromise Y or to construct Y′ ≈ Y which functions
similarly. Even this small leakage can be prevented by using
a CT-variant of Alg. 1(a) by using CT MEs for computations
with yi,j . The cost depends particularly on the density of Y
but also on how yi,j are distributed.

To accommodate protected implementations, we provide
results for CT variants of Paillier encryption and decryption
in Section V. MM, MA, and MS are CT by default, but ME
has two versions: square-and-multiply (non-CT) and square-
and-multiply-always (CT). For FE (see Fig. 1(b)), all parties
perform their computations independently of any other party
so there are no timing channels.

To summarize, our analysis concluded that side-channel
attacks do not pose a major risk for the use cases considered
in this paper but, nonetheless, we recommend to carefully
analyze the risks of side-channel attacks for other use cases
where our implementation may be used.

V. RESULTS AND ANALYSIS

To get performance evaluations in real hardware, we imple-
mented the HW/SW codesign on an Avnet ZedBoard with

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. –, NO. –, JULY 2020 11

TABLE I
SUMMARY OF RESOURCE REQUIREMENTS IN XILINX ZYNQ-7020

Component (#) LUT Reg Slice BRAM DSP
Single CP core design
External interface 73 54 28 0 0

Data-
path

MMAA 690 1295 314 0 16
MAS 152 1 58 0 0
Other 178 387 75 0 0

DMEM 164 0 86 4 0
Control unit 327 196 111 0 0
IMEM 197 0 91 1 0
Total resource
usage

1781
3.4%

1933
1.8%

763
5.7%

5
3.6%

16
7.3%

Multi-CP core design (M = 6, N = 2)
Mem. intercon. (3) 1976 1932 822 0 0
AXI DMA (6) 2120 3490 928 3 0

Cluster
(6)

CP-1 1787 1933 761 5 16
CP-2 1775 1933 758 5 16
FSMs 143 109 95 0 0

Shared Mem. 377 4 200 4 0
Perph. intercon. (2) 1092 1020 568 0 0
AXI GPIOs (13) 62 237 71 0 0
System reset 17 19 13 0 0
Total resource
usage

42871
80.6%

53328
50.1%

13096
98.5%

82
58.6%

192
87.3%

a low-cost Xilinx Zynq-7020 xc7z020clg484-1 including a
dual-core ARM Cortex A9 and an Artix-7 FPGA. For the
SW side, we used C++ and Xilinx Software Development
Kit (SDK) for developing software for a Real-Time Operating
System (RTOS). For the HW side, we used Verilog (HDL)
and Vivado 16.3. The resource requirements are summarized
in Table I. The maximum clock frequencies for the FPGA
and ARM are 122 and 667 MHz, respectively. Based on
Vivado, the total power consumption of the chip is about
3.2W. All reported results are final post-place&route results
and validated with real hardware, unless mentioned otherwise.
Also, in Table II, we report the detailed timings of different
operations including initialization of CP cores, data transfers
between memory levels, and modular arithmetic.

A. Performance of the Use Cases

As mentioned, our HW/SW codesign is primarily imple-
mented for acceleration of use cases that are enabled by
AHE and Paillier encryption in particular. We evaluated the
performance of such use cases on our HW/SW codesign
by focusing on privacy-preserving computation of SEDs and
MIFE-IP. Timing and Peak Memory Usage (PMU) results are
collected in Table III. PMUs are reported for the HW (i.e.,
L1-DMEM and L2-DMEM) and SW (i.e., L3-MEM) sides
separately. Both Paillier encryption and decryption require
roughly 180 ms with κ = 2048. This timing is the time that
it takes to encrypt or decrypt a single plaintext or ciphertext
in a single CP. The decryption timing is for the main com-
putation only, as the precomputation is performed offline (see
Sect. IV-C). The multi-core architecture can process different
operations in parallel and, thus, the HW/SW codesign can
process about 66 encryptions or decryptions per second.

We study the use case of SEDs with different database sizes
and densities. We consider three sizes including small (S)
n= 32 and m= 16, medium (M) n= 128 and m= 32, and large

TABLE II
TIMING CHARACTERISTICS FOR THE SINGLE AND MULTI-CORE DESIGN

Operation Length (bit) HW Latency Tot. Time a Max T-put b

CP Load 28 K 521 4.40µs —

CP Init &
Config

2048 424799 3.59ms —
4096 1524287 12.87ms —
8192 5860174 49.48ms —

CP L3L1
DMEM
WR/RD

2048 50 0.42µs 6467184
4096 82 0.70µs 3943404
8192 146 1.23µs 2214789

CP L1L2
DMEM
WR/RD

2048 35 0.30µs 3384188
4096 63 0.53µs 1880104
8192 120 1.01µs 987055

MA/MS
2048 66 0.54µs 22181808
4096 122 1.00µs 12000000
8192 236 1.93µs 6203388

MR
2048 1426 11.70µs 1026636
4096 4394 36.02µs 333180
8192 15281 125.25µs 95796

MM
2048 2003 16.42µs 730903
4096 7127 54.42µs 205416
8192 27248 223.34µs 53728

ME-1 c
2048 6159400 50.49ms 237
4096 43800644 359.02ms 33
8192 334848125 2744.66ms 4

ME-2 c
2048 3086904 25.30ms 474
4096 21917877 179.66ms 66
8192 167456672 1372.60ms 8

ME-3 c
2048 24081 197.39µs 60794
4096 85573 701.42µs 17108
8192 327015 2680.45µs 4476

a Single CP core: (FPGA: 1×@122 MHz) and (ARM: @ 666.67 MHz).
b Multi-CP core: (FPGA: 12×@122 MHz) and (ARM: @ 666.67 MHz).
c ME-1, 2, and 3 with exponent length `, `/2, and 8 bits and Hamming
weights `/2, `/4, and 4 bits, respectively, where ` ∈ {2048, 4096, 8192}.

(L) n= 512 and m= 64, where n is the number of entries in the
server’s database and m is the length of the user’s input and
each database entry. In practice, databases are often sparse in
the sense that most of the values are zeroes (e.g., [25] reports
that 85.4 % of the database values are zeroes), which allows to
skip them in computations. We study the effects of sparseness
by considering two database densities (DBD) 25 % and 100 %.
For both cases, the database values are represented with one
byte (i.e., yi,j ∈ Z` with ` = 256). As expected, Alg. 1(b)
quickly becomes faster than Alg. 1(a), which is superior only
for small and sparse databases. However, Alg. 1(b) has a
larger memory footprint, especially, for ‘large’ datasets (e.g.,
the database L with density 100 % has the PMUs of 592 and
16730 KB in the SW side for Alg. 1(a) and 1(b), respectively).

Comparisons with software implementations are difficult
because exact counterparts are not available or publications
provide only high-level timings including also other opera-
tions. Nevertheless, the delays are typically in the order of
seconds with parameter sizes comparable to Table III [17],
[20]. Evans et al. [17] reported distance computation timings
of 1.68 s and 6.82 s with m= 640 for n= 128 and n= 512,
respectively, for a fingerprint matching application in an Intel
Xeon E5504 at 2.0 GHz. Nieminen [26] presented an im-
plementation of privacy-preserving indoor localization where
SEDs (comparable to Alg. 1(b)) for a database with n= 150,
m= 50, yi,j ∈ Z16, and density 20 % required 334.55 ms in a
quad-core Intel Xeon E5-2697 at 2.7 GHz. Because the soft-

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. –, NO. –, JULY 2020 12

TABLE III
PERFORMANCE CHARACTERISTICS OF THE PAILLIER AND USE CASES

Operation
(κ = 2048)

Latency (# of clocks) Time PMU a (KB)
FPGA ARM (ms) HW SW

Paillier cryptosystem (single core: w/ one CP core)
Enc 22010717 23205 180.45 12 14
Enc (CT) 29313492 23650 240.31 12 14
Dec 21920763 694161 180.72 10 17
Dec (CT) 29195087 696265 240.35 10 17
SEDs #1 (Straightforward Alg. 1 (a) + (7)) (multi-core: w/ 12 CP cores)

DBD
= 25 %

S b 1273472 270504 10.84 139 67
M b 8858942 1190748 74.40 139 175
L b 70889244 5855616 589.84 139 592

DBD =
100 %

S 4529635 460122 37.82 139 67
M 33146342 1885572 27.520 139 175
L 258970564 11191440 2139.50 139 592

SEDs #2 (Optimized Alg. 1 (b) + (7)) (multi-core: w/ 12 CP cores)

DBD =
25 %

S 3813697 949416 32.68 121 118
M 6426916 2536638 56.48 121 663
L 17333581 12236328 160.43 121 4770

DBD =
100 %

S 4074144 1401582 35.50 121 307
M 8392168 5607654 77.20 121 2158
L 32821507 37348116 325.05 121 16730

Ciphertext Packing of (8) (multi-core: w/ 12 CP cores)

`′ =
232

S 7293968 92820 59.93 12 28
M 29870654 339456 245.35 12 76
L 29884840 396474 245.55 46 268

MIFE-IP (multi-core: w/ 12 CP cores)

Enc
Alg. 2

S’ b 43863516 270504 359.94 84 48
M’ b 65795274 399126 539.90 126 82
L’ b 131590548 784992 1079.79 126 146

Dec
Alg. 3

S’ 23448922 32799936 241.40 44 117
M’ 50071208 33667140 460.92 132 823
L’ 170167033 40629303 1455.76 132 6343

a The HW side includes 1×L1 + L2 and 12×L1 + L2 for single CP core and
multi-CP cores designs, respectively (and 168 KB in total); and the SW side
(L3) includes 256 KB on-chip memory and 512 MB off-chip memory (DDR3).
b Small (S / S’): n= 32 / 4, m= 16, Medium (M / M’): n= 128 / 16, m= 32,
and Large (L / L’): n= 512 / 64, m= 64.

ware timings in the literature are scattered and lack details, we
used our own Python 2.7.16 program on Intel Core i5-6267U
at 2.9 GHz for comparisons. It computes the operations of
[26] in 157.47 ms and is actually faster than [26]. The ‘large’
database with DBD 100% takes 3913.12 ms. Consequently, we
get an approximately 12 times speedup with Zynq-7020.

We study also the use case of MIFE-IP with datasets of
three different sizes including small (S’): n= 4 and m= 16,
medium (M’): n= 16 and m= 32, and large (L’): n= 64
and m= 64, where n is the number of users and m is the
length of each user’s input. The results show that encryption
timing grows linearly with m (or more precisely dm/12e)
whereas decryption timing has a linear dependency on n (or
more precisely dn/12e). Decryption needs more memory than
encryption. The main reason is that encryption is performed
separately for each user, while decryptions computed by the
server need to handle ciphertexts from all users simultane-
ously. Comparisons with software implementations are even
more difficult in the case of MIFE-IP because, to the best of
our knowledge, implementation results for MIFE-IP based on
Paillier encryption are not available1. This is understandable

1Software implementations of FE are available in Github (github.com/
fentec-project/) but this scheme is not currently supported.

TABLE IV
COMPARISON OF FPGA-BASED 1024-BIT ME IMPLEMENTATIONS

Reference
/ Device

Fmax
MHz

Area
(slice)

BRAM
/ DSP a

Time
(ms) Flex A·D b

[45] / Virtex-4 150 6633 — / — 11.95 No 79.3
[49] / Virtex-5 401 12716 — / — 0.92 No 11.7
[50] / Virtex-7 485 1060 — / 26 2.33 No 2.5
[51] / Virtex-5 385 4060 — / — 2.03 No 8.2
[52] / Virtex-5 345 3218 — / — 3.18 No 10.2
[53] / Virtex-4 400 3937 7 / 17 1.71 No 6.7
[54] / Zynq 69 249 5 / 22 15.76 No 3.9

This work c 122 763 5 / 16 7.79 Yes d 5.9
a The specific details of the blocks vary between different FPGAs.
b A·D stands for Area-Delay-Product (slices × seconds).
c Single CP design on Zynq-7020: FPGA @122MHz, ARM @ 667MHz.
d Flexible (for parameter sizes), programmable (various algorithms).

because FE is still an emerging concept and mostly theoretical
papers without implementation results are available. Hence, we
used our own Python 2.7.16 program also in this case. E.g.,
encryption and decryption with the ‘large’ database took 6.88 s
and 8.61 s, respectively; i.e., 6.3 and 5.9 times speedups.

B. Comparisons

To the best of our knowledge, the only work currently
available in the literature about FPGA acceleration of Paillier
encryption was published by San et al. [7] in 2016. Their
accelerator focused on speeding up the computation time
for Paillier encryption and decryption, but the use of the
accelerator for actual applications was only shortly studied by
providing results for a privacy-preserving set intersection pro-
tocol with a small parameter set (smaller than our ‘small’ cases
in Table III). Their implementation is not flexible in any sense
as separate implementations are needed for encryption and
decryption and for all different security parameters κ. When
κ = 2048, their implementations for encryption and decryp-
tion require 4497 slices and 45 DSPs and 3868 slices and 27
DSPs, respectively, in a high-end Xilinx Virtex-7 FPGA. They
compute encryption and decryption in 105.15 ms (34,176,060
clock cycles at 325 MHz) and 110.24 ms (34,396,228 clock
cycles at 312 MHz), respectively. Our HW/SW codesign sys-
tem computes in 180.451 ms and 180.720 ms, respectively, on
a low-cost FPGA with only 763 slices and 16 DSPs even with
just one CP. Hence, we have a much better trade-off between
area and speed. Also, our work is the first one in the literature
to exploit the inherent parallelism of use cases of AHE and
that can be used for accelerating various use cases based on
Paillier encryption with different kind of parameters.

Despite the lack of related work on acceleration of AHE,
there are multiple works on FPGA acceleration of ME. At
least in certain settings, they could also be used for Paillier
computations. Because ME is a central operation also for our
HW/SW codesign, we provide a comparison in Table IV. We
chose security parameter κ = 1024 to maximize the coverage
of related work. Our CP core has comparable performance and
area requirements despite being the only truly flexible design
in the comparison (supports up to 8192-bit modular arithmetic)
and being implemented on a low-cost FPGA.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. –, NO. –, JULY 2020 13

C. Implementation on a High-End Programmable SoC

Our HW/SW codesign is flexible also in the sense that it
can be implemented on different platforms besides the Zynq-
7020 considered above. To demonstrate this and to estimate its
efficiency on a modern high-performance programmable SoC,
we also compiled it for a Xilinx Zynq UltraScale+ MPSoC
ZU9EG chip (i.e., xczu9eg-2ffvb1156e) featuring a quad-core
ARM Cortex-A53 processor running up to 1.5GHz in the SW
side and a 16nm FinFET+ based FPGA in the HW side. Such
a programmable SoC allows a significantly more powerful
instance of our HW/SW codesign to be implemented in a
single chip. In particular, we were able to fit 96 CP cores
(8 clusters with 12 CPs in each cluster) into the FPGA by
using 33391 slices (97.46 %), 504 BRAMs (55.26 %), and
1536 DSPs (60.95 %). Also, the maximum frequency increased
to 193 MHz. The following estimates are based on post-
place&route results, but are not measured from real hardware.

The increased clock frequencies give a direct speedup
(approximately by a factor 1.6), but a much larger advantage
comes from the increased number of CP cores. We estimate
that the ‘large’ cases for SEDs in Table III would be computed
in 16.391 ms (2,670,078 FPGA clocks and 3,867,056 ARM
clocks) and 30.547 ms (4,718,188 FPGA clocks and 9,207,342
ARM clocks) for database densities of 25 % and 100 %,
respectively. These represent speedups of factors 9.8 and
10.6, respectively, compared to Zynq-7020. For MIFE-IP, we
estimate that encryption and decryption for the ‘large’ cases in
Table III would require 113.932 ms (21,948,158 FPGA clocks
and 580,928 ARM clocks) and 169.627 ms (28,420,506 FPGA
clocks and 33,899,055 ARM clocks), respectively. These es-
timates give speedup factors 9.5 and 8.6 for encryption and
decryption, respectively. HW/SW communication may result
in a small decrease in practical speedups, but we expect it to
be minor because the delays are dominated by computation.
Furthermore, we emphasize that such speedups were obtained
despite the fact that even the ‘large’ MIFE-IP cases in Ta-
ble III are too small to fully utilize the parallel processing
capabilities of the 96 CP cores and use only 64 of them. To
summarize, implementing our HW/SW codesign on a high-
end programmable SoC gives a major advantage and enables
very fast computation of even large datasets.

VI. CONCLUSIONS

We presented an efficient HW/SW codesign on a pro-
grammable SoC for accelerating applications of Paillier en-
cryption. The implementation uses a microcode-based multi-
core design optimized for efficient computation of long integer
modular arithmetic. The microcode-based reprogrammability
allows to use the same architecture for various different appli-
cations and the multiple cores allow exploiting the inherent
parallelism of the use cases. We instantiated our HW/SW
codesign in an Avnet ZedBoard with Xilinx Zynq-7020
programmable SoC and demonstrated its operation on real
hardware. We also investigated the efficiency of the HW/SW
codesign in a high-end Xilinx UltraScale+ programmable SoC.
We evaluated two types of use cases of Paillier encryption:
privacy-preserving computation of SEDs and MIFE-IP. Both

of them represent the first hardware based acceleration results
for such applications. In particular, the implementation of the
MIFE-IP is, to the best of our knowledge, the first published
implementation of that specific FE scheme on any platform
and among the very first implementations of FE altogether
(including software). Our work showed that HW/SW code-
signs are capable of delivering good performance for such use
cases, consequently, increasing their practical attractiveness.

There are also possible further directions to explore in
improving the performance of our HW/SW codesign. E.g.,
performance could be increased with an expanse in memory
consumption by performing different types of precomputations
(e.g., using a window-based ME algorithm). Other possibility
is to replace Paillier encryption with another AHE based on
large integer modular arithmetic such as Damgård-Geisler-
Krøigaard (DGK) [55], [56] or Decisional Diffie–Hellman
(DDH) (e.g., [31]). Such optimizations and experiments can
be done via microcode updates without changing the current
architecture. More profound optimizations include changing
the architecture from a homogeneous architecture (all CP cores
are similar) to a heterogeneous architecture where different
cores are specialized for specific tasks (e.g., core for modular
inversions to accelerate the MIFE-IP decryption).

Finally, we see that a lot more research is required in
accelerating FE schemes. Our work was the very first one in
this domain and there are many possible directions to continue.
We focused on the rather limited functionality of computing
linear functions (inner products) but many practical use cases
require more expressive functions such as quadratic functions.
There are efficient schemes for quadratic functions available
(e.g., [57]), but they require a larger set of cryptographic
primitives including, especially, pairings. Pairings are required
also for function hiding FE [32], [40], [42], where the function
to be evaluated is hidden from the server, or decentralized
FE [41], which removes the need for a trusted key authority.
Consequently, future work includes extending our work to
support cryptographic pairings and these additional features.
There are also FE schemes based on different types of
cryptographic assumptions including lattice-based schemes
which may be more efficient in practice, but would require
completely different kind of a computation architecture.

ACKNOWLEDGMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 780108 (FENTEC).

REFERENCES

[1] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and
privacy homomorphisms,” Found. Secur. Comput., vol. 4, no. 11, pp.
169–180, 1978.

[2] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
STOC, 2009, pp. 169–178.

[3] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in EURO-
CRYPT, ser. LNCS, vol. 3494. Springer, 2005, pp. 457–473.

[4] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in EUROCRYPT, ser. LNCS, vol.
3027. Springer, 2004, pp. 506–522.

[5] D. Boneh, A. Sahai, and B. Waters, “Functional encryption: Definitions
and challenges,” in TCC, ser. LNCS, vol. 6597. Springer, 2011, pp.
253–273.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. –, NO. –, JULY 2020 14

[6] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in EUROCRYPT, ser. LNCS, vol. 1592. Springer, 1999,
pp. 223–238.

[7] I. San, N. At, I. Yakut, and H. Polat, “Efficient Paillier cryptoprocessor
for privacy-preserving data mining,” Secur. Commun. Netw., vol. 9,
no. 11, pp. 1535–1546, 2016.

[8] W. Wang and X. Huang, “FPGA implementation of a large-number
multiplier for fully homomorphic encryption,” in ISCAS, 2013, pp.
2589–2592.

[9] Y. Doröz, E. Öztürk, and B. Sunar, “Evaluating the hardware perfor-
mance of a million-bit multiplier,” in DSD, 2013, pp. 955–962.

[10] C. Moore, N. Hanley, J. McAllister, M. O’Neill, E. O’Sullivan, and
X. Cao, “Targeting FPGA DSP slices for a large integer multiplier for
integer based FHE,” in WAHC, ser. LNCS, vol. 7862. Springer, 2013,
pp. 226–237.

[11] T. Pöppelmann, M. Naehrig, A. Putnam, and A. Macias, “Accelerating
homomorphic evaluation on reconfigurable hardware,” in CHES, ser.
LNCS, vol. 9293. Springer, 2015, pp. 143–163.

[12] S. Sinha Roy, K. Järvinen, F. Vercauteren, V. Dimitrov, and I. Ver-
bauwhede, “Modular hardware architecture for somewhat homomorphic
function evaluation,” in CHES, ser. LNCS, vol. 9293. Springer, 2015,
pp. 164–184.

[13] Y. Doröz, E. Öztürk, E. Savas, and B. Sunar, “Accelerating LTV based
homomorphic encryption in reconfigurable hardware,” in CHES, ser.
LNCS, vol. 9293. Springer, 2015, pp. 185–204.

[14] E. Öztürk, Y. Doröz, E. Savaş, and B. Sunar, “A custom accelerator for
homomorphic encryption applications,” IEEE Trans. Comput., vol. 66,
no. 1, pp. 3–16, Jan. 2017.

[15] S. Sinha Roy, K. Järvinen, J. Vliegen, F. Vercauteren, and I. Ver-
bauwhede, “HEPCloud: An FPGA-based multicore processor for FV
somewhat homomorphic function evaluation,” IEEE Trans. Comput.,
vol. 67, no. 11, pp. 1637–1650, Nov. 2018.

[16] ISO, “IT security techniques – encryption algorithms – part 6: Ho-
momorphic encryption,” International Organization for Standardization,
Geneva, Switzerland, ISO/IEC 18033-6:2019, 2019.

[17] D. Evans, Y. Huang, J. Katz, and L. Malka, “Efficient privacy-preserving
biometric identification,” in NDSS, 2011.

[18] M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R. Donida Labati,
P. Failla, D. Fiore, R. Lazzeretti, V. Piuri, F. Scotti, and A. Piva, “Privacy-
preserving fingercode authentication,” in MM&Sec. ACM, 2010, pp.
231–240.

[19] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and
T. Toft, “Privacy-preserving face recognition,” in PETS, ser. LNCS, vol.
5672. Springer, 2009, pp. 235–253.

[20] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg, “Efficient privacy-
preserving face recognition,” in ICISC, ser. LNCS, vol. 5984. Springer,
2010, pp. 229–244.

[21] F. D. Garcia and B. Jacobs, “Privacy-friendly energy-metering via
homomorphic encryption,” in STM, ser. LNCS, vol. 6710. Springer,
2011, pp. 226–238.

[22] R. Lu, X. Liang, X. Li, X. Lin, and X. S. Shen, “EPPA: An efficient
and privacy-preserving aggregation scheme for secure smart grid com-
munications,” IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 9, pp.
1621–1631, Sep. 2012.

[23] M. Jawurek and F. Kerschbaum, “Fault-tolerant privacy-preserving
statistics,” in PETS, ser. LNCS, vol. 7384. Springer, 2012, pp. 221–238.

[24] H. Li, L. Sun, H. Zhu, X. Lu, and X. Cheng, “Achieving privacy
preservation in WiFi fingerprint-based localization,” in INFOCOM.
IEEE, 2014, pp. 2337–2345.

[25] Z. Yang and K. Järvinen, “The death and rebirth of privacy-preserving
WiFi fingerprint localization with Paillier encryption,” in INFOCOM.
IEEE, 2018, pp. 1223–1231.

[26] R. Nieminen, “Privacy-preserving indoor localization with Paillier en-
cryption and garbled circuits,” Master’s thesis, Aalto University, 2018.

[27] X. Yi, A. Bouguettaya, D. Georgakopoulos, A. Song, and J. Willemson,
“Privacy protection for wireless medical sensor data,” IEEE Trans.
Depend. Sec. Comput., vol. 13, no. 3, pp. 369–380, 2016.

[28] R. Zhang, J. Zhang, Y. Zhang, J. Sun, and G. Yan, “Privacy-preserving
profile matching for proximity-based mobile social networking,” IEEE
J. Sel. Areas Commun., vol. 31, no. 9, pp. 656–668, 2013.

[29] P. Gasti and K. B. Rasmussen, “Privacy-preserving user matching,” in
WPES. ACM, 2015, pp. 111–120.

[30] A. O’Neill, “Definitional issues in functional encryption,” Cryptology
ePrint Archive, Report 2010/556, 2010.

[31] S. Agrawal, B. Libert, and D. Stehlé, “Fully secure functional encryption
for inner products, from standard assumptions,” in CRYPTO, ser. LNCS,
vol. 9816. Springer, 2016, pp. 333–362.

[32] M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu, “Multi-input
functional encryption for inner products: Function-hiding realizations
and constructions without pairings,” in CRYPTO, ser. LNCS, vol. 10991.
Springer, 2018, pp. 597–627.

[33] Q. Wang, M. He, M. Du, S. S. M. Chow, R. W. F. Lai, and Q. Zou,
“Searchable encryption over feature-rich data,” IEEE Trans. Depend.
Sec. Comput., vol. 15, no. 3, pp. 496–510, May 2018.

[34] A. C.-C. Yao, “How to generate and exchange secrets,” in SFCS. IEEE,
1986, pp. 162–167.

[35] S. D. Gordon, J. Katz, F.-H. Liu, E. Shi, and H.-S. Zhou, “Multi-input
functional encryption,” Cryptology ePrint Archive, Report 2013/774,
2013.

[36] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu,
A. Sahai, E. Shi, and H.-S. Zhou, “Multi-input functional encryption,”
in EUROCRYPT, ser. LNCS, vol. 8441. Springer, 2014, pp. 578–602.

[37] B. Waters, “A punctured programming approach to adaptively secure
functional encryption,” in CRYPTO, ser. LNCS, vol. 9216. Springer,
2015, pp. 678–697.

[38] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters,
“Candidate indistinguishability obfuscation and functional encryption
for all circuits,” SIAM J. Comput., vol. 45, no. 3, pp. 882–929, 2016.

[39] M. Abdalla, R. Gay, M. Raykova, and H. Wee, “Multi-input inner-
product functional encryption from pairings,” in EUROCRYPT, ser.
LNCS, vol. 10210. Springer, 2017, pp. 601–626.

[40] A. Bishop, A. Jain, and L. Kowalczyk, “Function-hiding inner product
encryption,” in ASIACRYPT, ser. LNCS, vol. 9452. Springer, 2015, pp.
470–491.

[41] J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval,
“Decentralized multi-client functional encryption for inner product,” in
ASIACRYPT, ser. LNCS, vol. 11273. Springer, 2018, pp. 703–732.

[42] P. Datta, R. Dutta, and S. Mukhopadhyay, “Functional encryption for
inner product with full function privacy,” in PKC, ser. LNCS, vol. 9614.
Springer, 2016, pp. 164–195.

[43] P. L. Montgomery, “Modular multiplication without trial division,” Math.
Comput., vol. 44, no. 170, pp. 519–521, 1985.

[44] T. Blum and C. Paar, “Montgomery modular exponentiation on recon-
figurable hardware,” in ARITH. IEEE, 1999, pp. 70–77.

[45] ——, “High-radix Montgomery modular exponentiation on reconfig-
urable hardware,” IEEE Trans. Comput., vol. 50, no. 7, pp. 759–764,
2001.

[46] P. L. Montgomery, “Speeding the Pollard and elliptic curve methods of
factorization,” Math. Comput., vol. 48, no. 177, pp. 243–264, 1987.

[47] H. Shacham and D. Boneh, “Improving SSL handshake performance
via batching,” in CT-RSA, ser. LNCS, vol. 2020. Springer, 2001, pp.
28–43.

[48] H. Orup, “Simplifying quotient determination in high-radix modular
multiplication,” in ARITH. IEEE, 1995, pp. 193–199.

[49] A. Rezai and P. Keshavarzi, “High-throughput modular multiplication
and exponentiation algorithms using multibit-scan–multibit-shift tech-
nique,” IEEE Trans. VLSI Syst., vol. 23, no. 9, pp. 1710–1719, 2014.

[50] I. San and N. At, “Improving the computational efficiency of modular
operations for embedded systems,” J. Syst. Architect., vol. 60, no. 5, pp.
440–451, 2014.

[51] G. D. Sutter, J.-P. Deschamps, and J. L. Imaña, “Modular multiplication
and exponentiation architectures for fast RSA cryptosystem based on
digit serial computation,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp.
3101–3109, 2010.

[52] T. Wu, S. Li, and L. Liu, “Fast, compact and symmetric modular expo-
nentiation architecture by common-multiplicand Montgomery modular
multiplications,” Integration, vol. 46, no. 4, pp. 323–332, 2013.

[53] D. Suzuki, “How to maximize the potential of FPGA resources for
modular exponentiation,” in CHES, ser. LNCS, vol. 4727. Springer,
2007, pp. 272–288.

[54] L. Rodrı́guez-Flores, M. Morales-Sandoval, R. Cumplido, C. Feregrino-
Uribe, and I. Algredo-Badillo, “Compact FPGA hardware architecture
for public key encryption in embedded devices,” PloS one, vol. 13, no. 1,
pp. 1–21, 2018.

[55] I. Damgård, M. Geisler, and M. Krøigaard, “Efficient and secure
comparison for on-line auctions,” in ACISP, ser. LNCS, vol. 4586.
Springer, 2007, pp. 416–430.

[56] ——, “A correction to “efficient and secure comparison for on-line
auctions”,” Cryptology ePrint Archive, Report 2008/321, 2008.

[57] C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay, “Practical func-
tional encryption for quadratic functions with applications to predicate
encryption,” in CRYPTO, ser. LNCS, vol. 10401. Springer, 2017, pp.
67–98.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

