702 research outputs found

    Performance and Security Improvements for Tor: A Survey

    Get PDF
    Tor [Dingledine et al. 2004] is the most widely used anonymity network today, serving millions of users on a daily basis using a growing number of volunteer-run routers. Since its deployment in 2003, there have been more than three dozen proposals that aim to improve its performance, security, and unobservability. Given the significance of this research area, our goal is to provide the reader with the state of current research directions and challenges in anonymous communication systems, focusing on the Tor network.We shed light on the design weaknesses and challenges facing the network and point out unresolved issues

    Mitigating Intersection Attacks in Anonymous Microblogging

    Full text link
    Anonymous microblogging systems are known to be vulnerable to intersection attacks due to network churn. An adversary that monitors all communications can leverage the churn to learn who is publishing what with increasing confidence over time. In this paper, we propose a protocol for mitigating intersection attacks in anonymous microblogging systems by grouping users into anonymity sets based on similarities in their publishing behavior. The protocol provides a configurable communication schedule for users in each set to manage the inevitable trade-off between latency and bandwidth overhead. In our evaluation, we use real-world datasets from two popular microblogging platforms, Twitter and Reddit, to simulate user publishing behavior. The results demonstrate that the protocol can protect users against intersection attacks at low bandwidth overhead when the users adhere to communication schedules. In addition, the protocol can sustain a slow degradation in the size of the anonymity set over time under various churn rates

    A Survey on Routing in Anonymous Communication Protocols

    No full text
    The Internet has undergone dramatic changes in the past 15 years, and now forms a global communication platform that billions of users rely on for their daily activities. While this transformation has brought tremendous benefits to society, it has also created new threats to online privacy, ranging from profiling of users for monetizing personal information to nearly omnipotent governmental surveillance. As a result, public interest in systems for anonymous communication has drastically increased. Several such systems have been proposed in the literature, each of which offers anonymity guarantees in different scenarios and under different assumptions, reflecting the plurality of approaches for how messages can be anonymously routed to their destination. Understanding this space of competing approaches with their different guarantees and assumptions is vital for users to understand the consequences of different design options. In this work, we survey previous research on designing, developing, and deploying systems for anonymous communication. To this end, we provide a taxonomy for clustering all prevalently considered approaches (including Mixnets, DC-nets, onion routing, and DHT-based protocols) with respect to their unique routing characteristics, deployability, and performance. This, in particular, encompasses the topological structure of the underlying network; the routing information that has to be made available to the initiator of the conversation; the underlying communication model; and performance-related indicators such as latency and communication layer. Our taxonomy and comparative assessment provide important insights about the differences between the existing classes of anonymous communication protocols, and it also helps to clarify the relationship between the routing characteristics of these protocols, and their performance and scalability

    Low-latency mix networks for anonymous communication

    Get PDF
    Every modern online application relies on the network layer to transfer information, which exposes the metadata associated with digital communication. These distinctive characteristics encapsulate equally meaningful information as the content of the communication itself and allow eavesdroppers to uniquely identify users and their activities. Hence, by exposing the IP addresses and by analyzing patterns of the network traffic, a malicious entity can deanonymize most online communications. While content confidentiality has made significant progress over the years, existing solutions for anonymous communication which protect the network metadata still have severe limitations, including centralization, limited security, poor scalability, and high-latency. As the importance of online privacy increases, the need to build low-latency communication systems with strong security guarantees becomes necessary. Therefore, in this thesis, we address the problem of building multi-purpose anonymous networks that protect communication privacy. To this end, we design a novel mix network Loopix, which guarantees communication unlinkability and supports applications with various latency and bandwidth constraints. Loopix offers better security properties than any existing solution for anonymous communications while at the same time being scalable and low-latency. Furthermore, we also explore the problem of active attacks and malicious infrastructure nodes, and propose a Miranda mechanism which allows to efficiently mitigate them. In the second part of this thesis, we show that mix networks may be used as a building block in the design of a private notification system, which enables fast and low-cost online notifications. Moreover, its privacy properties benefit from an increasing number of users, meaning that the system can scale to millions of clients at a lower cost than any alternative solution

    Guard Sets for Onion Routing

    Get PDF
    “Entry” guards protect the Tor onion routing system from variants of the “predecessor” attack, that would allow an adversary with control of a fraction of routers to eventually de-anonymize some users. Research has however shown the three guard scheme has drawbacks and Dingledine et al. proposed in 2014 for each user to have a single long-term guard. We first show that such a guard selection strategy would be optimal if the Tor network was failure-free and static. However under realistic failure conditions the one guard proposal still suffers from the classic fingerprinting attacks, uniquely identifying users. Furthermore, under dynamic network conditions using single guards offer smaller anonymity sets to users of fresh guards. We propose and analyze an alternative guard selection scheme by way of grouping guards together to form shared guard sets. We compare the security and performance of guard sets with the three guard scheme and the one guard proposal. We show guard sets do provide increased resistance to a number of attacks, while foreseeing no significant degradation in performance or bandwidth utilization

    Gathering Momentum: Evaluation of a Mobile Learning Initiative

    Get PDF

    The State of Open Data

    Get PDF
    It’s been ten years since open data first broke onto the global stage. Over the past decade, thousands of programmes and projects around the world have worked to open data and use it to address a myriad of social and economic challenges. Meanwhile, issues related to data rights and privacy have moved to the centre of public and political discourse. As the open data movement enters a new phase in its evolution, shifting to target real-world problems and embed open data thinking into other existing or emerging communities of practice, big questions still remain. How will open data initiatives respond to new concerns about privacy, inclusion, and artificial intelligence? And what can we learn from the last decade in order to deliver impact where it is most needed? The State of Open Data brings together over 60 authors from around the world to address these questions and to take stock of the real progress made to date across sectors and around the world, uncovering the issues that will shape the future of open data in the years to come

    Faculty Publications & Presentations, 2007-2008

    Get PDF

    Extended Abstracts of the Fourth Privacy Enhancing Technologies Convention (PET-CON 2009.1)

    Get PDF
    PET-CON, the Privacy Enhancing Technologies Convention, is a forum for researchers, students, developers, and other interested people to discuss novel research, current development and techniques in the area of Privacy Enhancing Technologies. PET-CON was first conceived in June 2007 at the 7th International PET Symposium in Ottawa, Canada. The idea was to set up a bi-annual convention in or nearby Germany to be able to meet more often than only once a year at some major conference

    Analysis and Design of Privacy-Enhancing Information Sharing Systems

    Get PDF
    Recent technological advancements have enabled the collection of large amounts of personal data of individuals at an ever-increasing rate. Service providers, organisations and governments can collect or otherwise acquire rich information about individuals’ everyday lives and habits from big data-silos, enabling profiling and micro-targeting such as in political elections. Therefore, it is important to analyse systems that allow the collection and information sharing between users and to design secure and privacy enhancing solutions. This thesis contains two parts. The aim of the first part is to investigate in detail the effects of the collateral information collection of third-party applications on Facebook. The aim of the second part is to analyse in detail the security and privacy issues of car sharing systems and to design a secure and privacy-preserving solution. In the first part, we present a detailed multi-faceted study on the collateral information collection privacy issues of Facebook applications; providers of third-party applications on Facebook exploit the interdependency between users and their friends. The goal is to (i) study the existence of the problem, (ii) investigate whether Facebook users are concerned about the issue, quantify its (iii) likelihood and (iv) impact of collateral information collection affecting users, (v) identify whether collateral information collection is an issue for the protection of the personal data of Facebook users under the legal framework, and (vi) we propose solutions that aim to solve the problem of collateral information collection. In order to investigate the views of the users, we designed a questionnaire and collected the responses of participants. Employing real data from the Facebook third-party applications ecosystem, we compute the likelihood of collateral information collection affecting users and quantify its significance evaluating the amount of attributes collected by such applications. To investigate whether collateral information collection is an issue in terms of users’ privacy we analysed the legal framework in light of the General Data Protection Regulation. To provide countermeasures, we propose a privacy dashboard extension that implements privacy scoring computations to enhance transparency towards collateral information collection
    • …
    corecore