
Low-latency mix networks for
anonymous communication

Ania M. Piotrowska

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
of

University College London.

Department of Computer Science
University College London

2020

2

3

I, Ania M. Piotrowska, confirm that the work presented in this thesis is my
own. Where information has been derived from other sources, I confirm that this
has been indicated in the work.

To George

Abstract

Every modern online application relies on the network layer to transfer information,
which exposes the metadata associated with digital communication. These distinc-
tive characteristics encapsulate equally meaningful information as the content of the
communication itself and allow eavesdroppers to uniquely identify users and their
activities. Hence, by exposing the IP addresses and by analyzing patterns of the
network traffic, a malicious entity can deanonymize most online communications.
While content confidentiality has made significant progress over the years, existing
solutions for anonymous communication which protect the network metadata still
have severe limitations, including centralization, limited security, poor scalability,
and high-latency. As the importance of online privacy increases, the need to build
low-latency communication systems with strong security guarantees becomes nec-
essary. Therefore, in this thesis, we address the problem of building multi-purpose
anonymous networks that protect communication privacy.

To this end, we design a novel mix network Loopix, which guarantees commu-
nication unlinkability and supports applications with various latency and bandwidth
constraints. Loopix offers better security properties than any existing solution for
anonymous communications while at the same time being scalable and low-latency.
Furthermore, we also explore the problem of active attacks and malicious infrastruc-
ture nodes, and propose a Miranda mechanism which allows to efficiently mitigate
them.

In the second part of this thesis, we show that mix networks may be used as
a building block in the design of a private notification system, which enables fast
and low-cost online notifications. Moreover, its privacy properties benefit from an
increasing number of users, meaning that the system can scale to millions of clients
at a lower cost than any alternative solution.

Impact statement

The results presented in this thesis make significant steps towards the design and
study of anonymous communication systems. More specifically, this dissertation
introduces novel designs for anonymous communication networks, techniques to
evaluate their privacy properties, as well as mechanisms to enhance them. More-
over, the presented research has set in motion the development of open-source soft-
ware and the deployment of a privacy infrastructure that allows users to control their
information about their online activities.

We have designed Loopix (Chapter 3), a novel design of a low-latency anony-
mous communication system based on mix networks, which offers stronger security
properties than the existing tools. Our design ensures metadata privacy even in the
presence of powerful adversaries, yet, thanks to its scalability and performance fea-
tures, is suitable for many real-time applications. Following the publication of this
work in USENIX Security ’17, PANORAMIX adopted Loopix as its core infrastruc-
ture design for an anonymous low-latency messaging system, the Katzenpost free
software project.1 Along with the project partners and developers, we released the
open access specifications of the Katzenpost design and it’s open-source implemen-
tation.2,3 Furthermore, we showed how Loopix can be used to add network-level
privacy for privacy focussed cryptocurrencies like Zcash in [1], which was later also
added to Katzenpost [2].

We have also designed, in collaboration with the Bar-Ilan University and the
University of Connecticut, the Miranda mechanism (Chapter 4), inspired during
the development of Loopix, which aims to tackle a common problem in anony-
mous communications systems, i.e. how to detect and exclude malicious infrastruc-
ture mixes. Miranda allows the system users to detect and isolate active malicious
mixes in an efficient and scalable way, without the need for computationally expen-
sive cryptographic techniques. Our work introduces also interesting ideas for more

1PANORAMIX European project was a joined initiative of leading academic centres and indus-
trial partners, whose aim was to develop an infrastructure for secure communications based on mix
networks (https://panoramix.me/).

2https://katzenpost.mixnetworks.org/docs/specs.html
3https://github.com/katzenpost/

https://panoramix.me/
https://katzenpost.mixnetworks.org/docs/specs.html
https://github.com/katzenpost/

iv Impact statement

efficient detection of corrupted nodes using community detection techniques, and
opens practical research questions that are likely to lead to further improvements.
The result of our work was presented in USENIX Security ’19.

The last technical chapter of this work introduces AnNotify (Chapter 5), a
novel private notification system, which scales to millions of users at a low band-
width and performance cost. Therefore, AnNotify can be used as an alternative to
traditional PIR or privacy-preserving presence systems like DP5. This work was a
result of collaboration with Bar-Ilan University and was presented in WPES ’17.

The work presented in this thesis and development of Katzenpost is now fur-
ther adopted and continued by the Nym Technologies company.4 As part of Nym
Technologies team, I have a chance to apply my academic and industrial experience
by contributing to both research and development of the decentralized and incen-
tivized privacy-enhancing infrastructure.

4https://nymtech.net/

https://nymtech.net/

Acknowledgements

This PhD has been a truly life-changing experience and it would not have been
possible to do without the support and guidance that I received from many people.

First of all, I would like to thank my supervisor George Danezis for his time
and guidance over the past years, and all of his advice. I am especially thankful for
always encouraging me to explore new challenges, even those outside my comfort
zone, and for teaching me to be an independent professional.

I would also like to extend my gratitude to Sarah Meiklejohn and Steven Mur-
doch, for their guidance and advice which helped me to significantly improve my
research, and to my viva examiners, Emiliano De Cristofaro and Paul Syverson, for
their precious feedback on my dissertation.

I want to also thank my previous teachers, in particular, Marek Klonowski
and Michal Morayne, for giving me the opportunity to join great research projects,
having confidence in me, sharing research knowledge and for encouraging me to
pursue the PhD path.

Throughout my PhD years, I was very fortunate to work with amazing re-
searchers and industrial partners. In particular, I would like to thank those who
have spent some of their valuable time collaborating with me: Tariq Elahi, Jamie
Hayes, Sebastian Meiser, Hemi Leibowitz, Amir Herzberg and Nethanel Gelernter.

Thank you also to Google DeepMind and Chainalysis, who gave me an oppor-
tunity to join top-notch teams as an intern. Those internships taught me many new
interesting topics and allowed me to gain a lot of experience. Thank you to every-
one with whom I had an opportunity to work there for making it such an amazing
experience. In particular, I would like to thank Ben Laurie for his guidance and
always having time for fascinating research conversations.

I would also like to express my gratitude to a wonderful group of colleagues
from the InfoSec group, who had influenced my research and made my everyday
work at UCL so pleasant. Thank you also to all my friends in London and beyond,
for their friendship, kind words, the time we have spent together and beautiful mem-
ories.

This PhD journey would never happen without Asia, who always has been

vi Acknowledgements

a role model for me. Thank you for your love, friendship and encouragement. I
would also like to express my gratitude to my parents and my family, for their
support and enthusiasm. Especially to my aunt Iwonka for her love, kindness and
support. Thank you to my Grandma Halinka and Wanda, who never knew about this
adventure but were with me every step along the way. I would never study Computer
Science if not amazing men in my family - My Grandpas Mietek and Stanislaw,
and my uncles Gienek, Zdzisiek, Irek and Maciek. Their passionate stories about
history, science and travels encouraged me to follow my dreams. Thank you for
believing in me, I hope I made you all proud.

A big thank you also to Mrs Christina and Mr Andreas, for such loving wel-
come in their family, and always being so supportive and enthusiastic about my
endeavours.

Last but not least, I would like to thank my George, for his love, support,
motivation, teaching me to never give up and for making me every day a better
person. This thesis, and my entire hard work, is dedicated to him.

Contents

Abstract i

Impact statment iv

Acknowledgements vi

Contents vii

List of Figures and Tables xii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 4
1.3 Contributions . 5
1.4 Organisation of the thesis . 7

2 Background and related works 9
2.1 Technical defnitions and measures 9

2.1.1 Information entropy . 9
2.1.2 Differential privacy . 10
2.1.3 Bloom filters . 10
2.1.4 Poisson and Exponential distribution 11
2.1.5 Memoryless property . 12

2.2 Anonymity . 12
2.2.1 Traffic Analysis and Active Attacks 13

2.3 Anonymous communication systems 15
2.3.1 Early designs for decentralized anonymous communication

systems . 15
2.3.2 Modern mix networks and DC-Nets designs 24
2.3.3 Other decentralized anonymity systems 30

2.4 Conclusion . 31

vii

viii Contents

I Anonymous communication systems resistant to traffic anal-
ysis and active attacks 33

3 The Loopix Anonymity System 35
3.1 Introduction . 35
3.2 The system high-level overview . 36
3.3 System model and security goals 37

3.3.1 System Setup . 38
3.3.2 Threat Model . 38
3.3.3 Security Goals . 39

3.4 The Loopix Architecture . 41
3.4.1 Message packet format . 41
3.4.2 Message sending and cover traffic 43
3.4.3 The Poisson Mix Strategy 46

3.5 Analysis of Loopix security properties 48
3.5.1 Passive attack resistance 48
3.5.2 Poisson mix security . 49
3.5.3 Active attack resistance . 55

3.6 End-to-End Anonymity Evaluation 56
3.6.1 Sender-Receiver Third-party Unlinkability 57

3.7 Performance Evaluation . 59
3.8 Comparison with Related Work . 64
3.9 Discussion . 67
3.10 Conclusion . 68

4 Detecting malicious mix nodes 71
4.1 Introduction . 71
4.2 Impact of Active Attacks on Anonymity 73

4.2.1 Security game . 74
4.2.2 Measurement of adversary’s advantage. 74

4.3 System model and security goals 80
4.3.1 General System Model . 81
4.3.2 Threat Model . 81
4.3.3 Security Goals of Miranda 82

4.4 The Big Picture . 83
4.5 Intra-Epoch Process . 84

4.5.1 Message Sending . 85
4.5.2 Processing of Received Packets 85

Contents ix

4.5.3 Loop Messages: Detect Stealthy Attacks 87
4.5.4 Handling missing receipts 91

4.6 Inter-Epoch Process . 92
4.6.1 Filtering Faulty Mixes . 92
4.6.2 Cascades Selection Protocol 94

4.7 Community-based Attacker Detection 96
4.7.1 Aggresive Pair Removal 96
4.7.2 Threshold Detection Algorithm 97
4.7.3 Community detection based on random walks 101

4.8 Analysis of Active Attacks . 102
4.8.1 Resisting Active Attacks 102
4.8.2 Fully Malicious Cascades Attacks 105
4.8.3 Security of Loop Messages 107

4.9 Evaluation of Community Detection Techniques 108
4.9.1 Community detection using Threshold Detection and Vir-

tual Pair Removal . 108
4.9.2 Community detection based on random walks 110

4.10 Discussion . 111
4.11 Conclusion . 113

II Applications of mix networks 115

5 Private Notification Service using Mix networks 117
5.1 Introduction . 117
5.2 System model and Goals . 118

5.2.1 High-level overview . 119
5.2.2 Security Goals . 119
5.2.3 Threat Model . 120

5.3 The Design of AnNotify . 120
5.3.1 The AnNotify Protocols 121

5.4 Security of AnNotify . 124
5.4.1 Game between the adversary and the AnNotify system . . . 124
5.4.2 The Security of AnNotify 126
5.4.3 Empirical adversary advantage 135
5.4.4 Other security arguments 136

5.5 Analytical Performance Evaluation 137
5.6 Experimental Evaluation . 138

5.6.1 Implementation & Infrastructure 138

x Contents

5.6.2 Performance Evaluation 139
5.6.3 Comparison to DP5 . 140

5.7 AnNotify Extensions . 143
5.8 Applications . 144
5.9 Conclusions . 146

6 Conclusions and Future work 147
6.1 Limitations and Future work . 149

Bibliography 153

List of Figures and Tables

2.1 Mix operations - decryption and mixing. 16

2.2 Mix cascade. 16

2.3 Simple DC-network paradigm. 18

2.4 Example of Tor onion routing circuit. 19

2.5 Example of a P2P network. 20

3.1 The Loopix Architecture. 42

3.2 Sending a single message between two users using the Loopix sys-
tem. The dotted line depicts retrieving of messages. 44

3.3 Message storage and retrival. 45

3.4 The Poisson Mix strategy mapped to a Pool mix strategy. 46

3.5 Observation on,k,l . 51

3.6 Entropy versus the changing rate of the incoming traffic for differ-
ent delays with mean 1

µ
. In order to measure the entropy we run a

simulation of traffic arriving at a single Loopix mix node. 53

3.7 Likelihood difference ε vs the delay parameter µ of mix nodes. We
use λ = 2, a topology of 3 layers with 3 nodes per layer and no
corruption. 59

3.8 Likelihood difference ε vs the number of layers of mix nodes with
3 mix nodes per layer. We use λ = 2, µ = 1, and no corruption. . . . 60

3.9 Likelihood difference ε vs the percentage of (passively) corrupted
mix nodes. We use λ = 2, µ = 1 and a topology of 3 layers with 3
nodes per layer. 60

3.10 Overall bandwidth and good throughput per second for a single mix
node. 62

3.11 Latency overhead of the system for rates λP = λL = λD = 10,λM =

10 per minute, and no additional delay added to the messages by the
senders. 63

xii

List of Figures and Tables xiii

3.12 End-to-end latency histogram measured through timing mix node
loops. The latency of the message is determined by the assigned
delay and fits the Gamma distribution with mean 1.93 and standard
deviation 0.87. 64

4.1 The precision of upper bound for δ presented in Theorem 3 for a
fixed ε = 0.2. 78

4.2 The comparison of amounts of leakage ε∞ for different values of λ . . 80

4.3 High-level overview of the process of isolating malicious mixes in
Miranda. 84

4.4 A diagram illustrating loop packets and isolation process. 90

4.5 An illustration of the simple malicious mix filtering (without com-
munity detection). 93

4.6 Probability of picking cascades as function of link losses, where
l = 4 and the adversary controls 30% of the mixes. 95

4.7 An illustration of how virtually removing mixes from G can expose
malicious mixes. Algorithm 2 refers to the graph in 4.7b as G1,
since it is the same graph G as in 4.7a but without M1 and without
M1’s neighbors. 97

4.8 A demonstration how Miranda’s community detection can signifi-
cantly improve the detection of malicious mixes using an example
graph G and f = nm +1. 99

4.9 The maximum probability of picking a fully malicious cascade as a
function of the cascade length and the power of the adversary. 105

4.10 The probability of picking particular classes of cascades after each
link loss. The parameters of the simulated mix network are l = 3,
n = 100 and nm = 30. 106

4.11 The costs and success probability of performing DoS [3] attacks
based on the fraction of cascades active in every epoch. 107

4.12 The effect of using community detection against malicious mixes. . 109

4.13 Effect of the community detection mechanism to detect semi-honest
links. 111

5.1 The AnNotify architecture. 119

5.2 The empirical adversary’s advantage for a single round, averaged
over 106 samples, as a function of the number of subscribers and
the number of shards. The advantage is presented on a log scale. . . 135

xiv List of Figures and Tables

5.3 AnNotify’s implementation evaluation summary. The system scales
perfectly for the increasing number of clients. Larger shards imply
higher bandwidth and cost per client. The cost evaluation was done
based on Amazon EC2 m4.large instances. 138

5.4 Security versus Bandwidth comparison for AnNotify and DP5/IT-PIR.142
5.5 Security versus CPU cost comparison for AnNotify and DP5/IT-PIR. 142

Chapter 1

Introduction

1.1 Motivation

The first packet sent over a computer network more than 40 years ago inaugurated
the era of a digital revolution. Since then, the network technology has attracted
millions of users, like no other communication system. The rapid growth of online
technologies in recent decades fundamentally transformed the way we exchange
information. The easily accessible Internet, even via pocket-sized phones, and a
myriad of applications and tools allow people thousands of miles apart to commu-
nicate and share information within a fraction of a second. As a result, online com-
munication became an inevitable part of our everyday lives. While the very digital
world became the main tool for information flow for millions of people, opening
thousands of possibilities and making our lives more convenient, it also became an
endless source of personal information about its users.

This in result has a profound impact on users’ privacy. The online world
changed the rules for information flow, and privacy is becoming harder to main-
tain as the world becomes more and more connected. Nowadays information about
individuals, can be easily collected by observing patterns of our online activities.
Every time we send a message, visit a website, make an online purchase, or pass
a cellphone tower we leave a digital trace. Those digital footprints reveal informa-
tion about our social networks, spending habits, credit scores, political and religious
orientations, location, or health status, and hence provide a detailed profile of indi-
viduals. Gathered data is often used to create a better user online experience and
building the users’ advertisement profiles. These are later used to make suggestions
about websites, online shops, apps, holiday destinations, movies or music which
we might like. It also allows getting in contact with social groups which share our
interests. However, even more often such data is sold between the worlds largest

2 Introduction

corporations and state-level actors, and exploited in a way which does not enable the
users to control or limit the amount of processed information about them [4, 5, 6].

The NSA documents [7, 8, 9] leaked in 2013 by Edward Snowden have sparked
a worldwide debate about how governments and companies misuse the data col-
lected from the records of our online activities. Earlier projects like Trailblazer [10],
which intended to track individuals by analysing communication networks, or the
Protect America Act of 2007 [11], a warrant-free wiretapping and electronic surveil-
lance law, were argued to target only those entities which might be a threat to na-
tional security. However, the uncovered documents about the PRISM program re-
vealed that NSA intercepts and collects massive sets of online activities and Internet
metadata of US and non-US citizens, even those who are not suspects of any crimes.
Similarly, in the UK, the Tempora program [12] allows extracting directly from the
fibre-optic cables large amounts of global Internet data, which later are shared and
analysed by GCHQ and the NSA.

An increasing number of such bombshell stories [4, 7, 13], regarding
widespread electronic surveillance of private communication and illicit harvesting
of personal data, resulted in a surge of private communication tools. In response to
the rising awareness of the fact that our daily online activities lack privacy, many
Internet users turned to services offering encryption to secure their communication.
Tools like PGP [14], TLS [15], WhatsApp [16], Signal [17], OTR [18, 19] etc.,
which offer encrypted messaging, provide an effective way to hide the content of
the communication from any unauthorized parties. However, encryption is only
the first step in the efforts to achieve privacy in the online world, since it can only
protect the confidentiallity of our communication content, but is not intended to
hide the distinctive characteristics associated with the communication, the so-called
metadata. This metadata alone contains a vast amount of sensitive information [20],
including the identity of the participants, duration of the communication, time, loca-
tion, frequency etc., which in result can provide a detailed profile of user’s interests
or associations. As research has shown that the metadata leakage undermines the
confidentiality properties provided by the use of encryption [21, 22, 23, 24].

Similar privacy breach happens in the context of private cryptocurrencies, like
Dash [25, 26], Zcash [27, 28, 29] or Monero [30]. Even though those coins apply ad-
vanced cryptographic techniques like zero-knowledge proofs [31, 32] or ring signa-
tures [33, 34] to offer privacy on chain, the users’ operations are still fully exposed
to the adversary who can monitor the whole or part of the peer-to-peer network,
and discover the IP addresses of users who broadcast particular transactions and so
identify them and easily correlate their actions [1]. Moreover, recent research un-
covered that the unsecured network layer creates opportunities for centralized third

1.1. Motivation 3

parties to monopolize the peer network and carry out large-scale attacks [35, 36].
Even the highest-rank officials acknowledge how precious the metadata is, in-

cluding General Micheal Hayden, former CIA and NSA Director, who asserted
’We kill people based on metadata’ [37] or NSA General Counsel Stewart Baker
who stated ’Metadata absolutely tells you everything about somebody’s life. If you
have enough metadata, you don’t really need content’ [38]. Therefore, in an era of
pervasive network monitoring, it is crucial to protect the metadata as much as the
communication content itself, in order to protect users’ privacy.

In response to the danger of tracking metadata of internet communication, ser-
vices like VPN (Virtual Private Network) [39, 40] gained popularity. VPNs mask
the users IP address and location from the receiving service provider by relaying
traffic via a protected encrypted tunnel and a centralized proxy server. Similarly,
tools like Anonymizer [41], forward traffic via anonymous rotating IP addresses to
provide anonymous web browsing. However, such centralized systems, even though
they shield our online activities, are ineffective in the presence of a powerful net-
work eavesdroppers, who can simply track the routed network traffic, and correlate
our IP address with the websites we are visiting. Moreover, the VPN provider acts
as a trusted proxy, and hence knows about all of the websites an individual is ac-
cessing. But such centralized systems can be legally compelled to reveal gathered
log information about their users or belong to the same handful of companies [42],
even though they appear to be run by independent corporations, therefore, in reality,
the anonymization offered by such services is weak.

In contrast to single proxy VPN, Tor builds upon a decentralized network of
nodes run by volunteers [43]. The connections are routed via multi-hop circuits,
hence none of the nodes in the circuit has visibility on both the sender and receiver
of the communication. Although Tor offers much stronger anonymity properties
than VPNs, Tor can be easily defeated by a global adversary performing traffic
analysis [44, 45, 46, 47, 48]. To protect users’ anonymity, we need a solution which
is resistant both against compulsion and traffic analysis attacks.

Therefore, in this thesis, we focus on building anonymous communication sys-
tems, which minimize the amount of information held by the system’s components
and protect users’ anonymity even against sophisticated adversaries. Moreover, our
goal is to ensure that the proposed designs can scale to millions of users and be
easily integrated with various everyday applications.

4 Introduction

1.2 Goals

The goal of this work is to propose designs for online communication systems,
which ensure strong confidentiality and anonymity properties for its users, by hiding
both the content and the metadata associated with the online communication, even
if the system is exposed to sophisticated surveillance techniques.

It has been almost four decades since David Chaum introduced the idea of
anonymous communication [49]. The research community has long recognised the
significant privacy risk caused by the network metadata exposure and developed
several system designs which tackle the problem of anonymous communication,
including the famous Tor project [43]. However, while all those systems make
great strides towards enhancing users privacy on the internet, there appear to remain
an unavoidable tradeoff in building anonymous communication networks - strong
anonymity can be achieved only at a cost of high performance and latency over-
head or poor scalability, while low-latency anonymous communication offers much
weaker security guarantees [50]. Therefore, current strong anonymous mechanisms
are limited to high-latency use cases or local-area settings, and are unsuitable for
many practical applications, like for example large scale instant messaging or cryp-
tocurrencies.

Another challenge in building anonymous communication systems is their re-
liability and resistance to active attacks, i.e., dropping or delaying packets, by ma-
licious infrastructure nodes. Neither mix networks nor onion routing have inherent
protection against such attacks. Onion routing systems, like Tor, do not offer any
resistance to such attacks, while current mix network designs which address this
drawback require complex and expensive proofs of correct shuffling which come at
a great cost and limiting systems assumptions.1 Such attacks, however, induce tim-
ing signatures which can be used to correlate the communicating users, thus have
severe repercussions for privacy and efficiency of the communication. Therefore, it
is important to design mechanisms which mitigate such active attacks.

Therefore, in this thesis, we propose a design of a communication system
which combines strong security guarantees of mix networks without sacrificing the
performance. We also focus on designing mechanisms which detect and prevent
active attacks in an efficient and performance-friendly way. Furthermore, we inves-
tigate how mix networks can be used in building privacy-enhancing technologies,
starting from originally proposed anonymous emails, to instant messaging, cryp-
tocurrencies and PIR alternatives.

Overall, the main goal of this work is to develop and study a secure anonymous

1Tor explicitly highlights that such attacks are out of scope of it’s threat model [43].

1.3. Contributions 5

communication system suitable for many modern applications.

1.3 Contributions

The main cotributions of this thesis can be summarized as follows:

• (Chapter 3) We develop Loopix, a new message-based anonymous communication
system, that allows for a tunable tradeoff between latency and genuine and cover
traffic volume to foil traffic analysis. Therefore, it combines security, performance
and scalability. Loopix offers resistance against a strong, global passive adversary.
Moreover, we show that it provides resistance against active attacks, such as trick-
ling and flooding. This is in contrast to the currently deployed solutions, like VPN,
Tor, or other peer-to-peer anonymity networks, which protect against adversaries
that monitor only a limited part of the network. We present the Poisson-mix and
provide novel theorems about its properties and ways to analyze it as a pool-mix.
Poisson mixing does not require synchronized rounds, can be used for low-latency
anonymous communication, and provides resistance to traffic analysis. We also
present a methodology to empirically estimate the security provided by particular
mix topologies and other security parameter values. We provide a full implemen-
tation of Loopix and measure its performance and scalability in a cloud hosting
environment. In addition to this implementation, we also present a mix network
discrete event simulator, which was developed to experimentally measure the mix
networks’ anonymity given different system requirements and parameters.

Part of this work was published in 26th USENIX Security Symposium 2017 [51] and
it is a joined work with George Danezis, Sebastian Meiser, Jamie Hayes and Tariq
Elahi. I am the main contributor of this work and provided most of the key ideas,
including design, theoretical security analysis, implementation and performance
evaluation. The sections which were not published are part of an ongoing work.

• (Chapter 4) We introduce Miranda, an efficient, low-cost and scalable novel design
that detects and mitigates active attacks. To protect against such attacks, we leverage
the reputation and local reports of faults. The Miranda design can be integrated
with other mix networks and anonymous communication designs. We extend the
traditional mix packet formats for verifiability, by proposing an encoding for secure
loop messages, that may be used to securely test the network for dropping attacks.
Moreover, we show how Miranda can take advantage of techniques like community
detection in a novel way, which further improves its effectiveness.

6 Introduction

This work was published in 28th USENIX Security Symposium 2019 [52] and it
is a joined work with Hemi Leibowitz, George Danezis and Amir Herzberg. I am
the main contributor to the theoretical analysis of the impact of active attacks on
systems’ anonymity. The remainder of the work was shared between the co-authors.

• (Chapter 5) We propose AnNotify, a new private, timely and scalable notification
system, based on anonymous communication and sharding, which guarantees rela-
tionship privacy at a low bandwidth and performance cost. We provide a rigorous
security analysis of AnNotify, delivering an upper bound on the information leak-
age, which can be applied to systems which security is based on sharding. We also
propose a number of extensions, such as generic presence and broadcast notifica-
tions, and applications, including notifications for incoming messages, in anony-
mous communications, updates to private cached web and Domain Name Service
(DNS) queries. We present an implementation of AnNotify as a web-server, which
can be scaled to millions of clients at a lower cost than alternatives.

This work was published in Proceedings of the 2017 on Workshop on Privacy in
the Electronic Society (WPES) [53] and it is a joined work with George Danezis,
Nethanel Gelernter, Jamie Hayes and Amir Herzberg. I have provided most of the
key design ideas and security analysis. The implementation and performance eval-
uation was done by Nethanel Gelernter. The remainder of the work was shared
between the co-authors.

Overall, the contributions of this thesis are novel designs and analysis techniques
for anonymous communication. The Loopix design (Chapter 3) is the first anony-
mous communication network, which combines strong security properties, scala-
bility, and support for different applications and services. While Loopix introduces
an idea to detect active trickling and flooding, the Miranda mechanism (Chapter 4)
further extends this idea to allow detecting malicious nodes and eventually remove
them from the network. The Miranda design can complement anonymous commu-
nication networks like Loopix to further strengthen the security they offer.

The proposed Loopix infrastructure and the Miranda mechanism provide an in-
frastructure for privacy-enhancing applications and services, including messaging,
cryptocurrencies, microblogging, etc. However, the Loopix mix network infrastruc-
ture can also be used to build a private publisher-subscriber system, like AnNotify
(Chapter 5), which is a scalable and efficient alternative to the currently existing
PIR solutions.

The presented research has set in motion the development of open-source software

1.4. Organisation of the thesis 7

and the deployment of a privacy infrastructure at Nym Technologies that allows
users to control their information about their online activities.2.

1.4 Organisation of the thesis

The rest of this thesis is organised as follows. In Chapter 2 we present the techni-
cal definition of anonymity and survey several attacking techniques which aim to
re-identify the system participants. Next, we review the background literature on
anonymous communication systems. The remainder of this thesis is divided into
two parts. Part I is dedicated to the design of modern mix network communica-
tion systems. In Chapter 3, we introduce a novel mix network design, which offers
strong security properties yet achieves better performance, comparing to previous
similar designs, and as a result makes mix networks feasible for both high and low
latency exchange of information. We present the security analysis of the design and
evaluate its performance using the implemented prototype. In Chapter 4, we focus
on the common problem of anonymous communication systems, namely malicious
infrastructure nodes which perform active dropping or delaying attacks. We start
by measuring what impact such attacks have on the capabilities of the adversary
to deanonymize network users. In order to do that, we define a security game and
quantify the information leakage associated with active attacks. Next, we present an
efficient and scalable mechanism to detect and penalize malicious nodes. We also
propose enhancements for the basic mechanism by applying community detection
techniques. Part II of this thesis focuses on applications of mix network systems.
In Chapter 5 we propose a design of a private notification system, which can be
used as a more efficient and scalable alternative for Private Information Retrieval
schemes. The main idea behind our design is based on the combination of informa-
tion sharding and anonymous channels. We also propose a technique which allows
quantifying the amount of information leakage, which can be applied to various se-
curity systems based on sharding. Finally, we conclude and discuss future lines of
research in Chapter 6.

2https://nymtech.net/

https://nymtech.net/

Chapter 2

Background and related works

Network layer metadata is associated with most of our daily activities and interac-
tions in the online world. The research community has long recognised the problem
of exposing metadata and the significant privacy risks it leads to. In this chapter, we
outline various existing systems designed as a response to an increasing need for
securing network layer information. We start by outlining technical primitives used
throughout this dissertation. Next, we define anonymity and reviewing the popular
attacking techniques against it in Section 2.2. Finally, we survey various types of
systems which aim to offer meta-data private communication in Section 2.3.

2.1 Technical defnitions and measures

2.1.1 Information entropy

Definition of Shannon entropy [54]. Let X be a discrete random variable over the
finite set X with probability mass function p(x) = Pr(X = x). The Shannon entropy
H(X) of a discrete random variable X is defined as

H(X) =−∑
x∈X

p(x) log p(x). (2.1)

Shannon’s entropy is one of the fundamental concepts in information theory.
Conceptually, information can be thought of as being stored in a variable and the
entropy of a variable is then the amount of information contained in that variable.
The amount of information defines how difficult it is to guess the information with-
out having to look at the variable. Thus, entropy measures the unpredictability (i.e.,
randomness) of the information content. The more certain or deterministic the event
is, the less information the variable contains. Hence, the increase in entropy is an

10 Background and related works

increase in uncertainty. Entropy is zero when one outcome is certain to occur, and
maximum when all event outcomes are equally probable.

2.1.2 Differential privacy

Definition of Differential privacy [55]. A randomized algorithmM with domain N|X |

is (ε ,δ)-differentially private, where ε ≥ 0 and δ ∈ [0,1], if for any database D ∈
N|X | and D′ ∈ N|X |, differing on at most one record, and for any possible output
S⊆ Range(M), the following in-equation holds

Pr[M(D) ∈ S]≤ eε ·Pr[M(D′) ∈ S]+δ , (2.2)

where the probability is taken over the randomness used byM.

Differential privacy is a rigorous mathematical definition of privacy. An algo-
rithm is differentially private if by looking at the output, one cannot tell whether
an individual’s data was included in the original dataset or not. Thus, differential
privacy allows collecting information about users without comprising the privacy of
an individual. ε is the maximum distance between a query on database D and D′.
Thus, ε is the metric of privacy leakage at a differential change in data, while δ is
the probability by which the leakage exceeds this ε .

The above definition is valid for a single query in the database and not for multi-
ple queries. However, the composition theorem of differential privacy allows for
cumulative analysis of privacy loss over sequential queries.

Composition theorem for Differential Privacy [55]. LetMi : N|X |→Ri be an (εi,δi)-
differentially private algorithm, where εi ≥ 0 , δi ∈ [0,1] and i ∈ {1, . . . ,k}. Then,
ifMk : N|X |→∏

k
i=1Ri is defined asMk(x) = (M1(x),M2(x), . . . ,Mk(x)), then

Mk is (∑k
i=1 εi,∑k

i=1 δi)-differentially private.

2.1.3 Bloom filters

Bloom filters [56] are space-efficient probabilistic data structures used for repre-
senting set membership. A Bloom filter is represented as a bit vector of ` bits, all
initially set to 0. Bloom filters do not store the elements themselves, but rather
the information whether the element is in the considered set S or not. In order
to do that, a Bloom filter uses k independent hash function H1, . . .Hk, such that
Hi : S→ {0, . . . `− 1}, (i.e., hashes each element xi ∈ S to one of the l array posi-
tions).

2.1. Technical defnitions and measures 11

Adding elements to a Bloom filter. To add element x into a Bloom filter we calculate
each Hi(x), and set the corresponding bits in the filter to 1. A particular bit can be
set to 1 multiple times, but only the first change has an effect.

Checking for an element in a Bloom filter. To check if an element x is in the set S
represented by the Bloom filter, we check whether all positions Hi(x) are set to 1.
If at least one of the bits at these positions is 0, the element is definitely not in the
set. If all bits are 1, then either the element is in the set, or the bits have been set
to 1 during the insertion of other elements, thus resulting in a false-positive. Thus,
a Bloom filter is a probabilistic data structure. The false-positive rate is a function
of the Bloom filter’s size `, the number m of inserted elements, and the number k of
the hash functions used [56, 57], given as

f (`,m,k) =
(

1− e
−km
`

)k
. (2.3)

Thus, for given filter length ` and number of elements m the number of hash values
which minimizes the false positive probability is k = `

n log2.

2.1.4 Poisson and Exponential distribution

Poisson distribution [57]. The Poisson distribution is a discrete distribution, model-
ing the number of times an event occurs in an interval of time. The probability mass
function of a random variable X ∼ Pois(λ) is given by

Pr(X = x) =
λ xe−λ

x!
(2.4)

where λ > 0 denotes the expected value of X (i.e., the mean of the distribution), as
well as the variance of X .

Exponential distribution [57]. The Exponential distribution is a continuous probabil-
ity distribution modeling the waiting time between events in a Poisson point process,
i.e., a process in which events occur continuously and independently at a constant
average rate. The probability mass function of a random variable X ∼ Exp(µ) is
given by

Pr(X = x) =

µe−µx, x≤ 0

0 x < 0
(2.5)

where µ is the rate parameter of the distribution. The expected value of X is given
by E[X] = 1

µ
.

12 Background and related works

The Poisson distribution provides a description of the number of occurrences
per interval of time, while the exponential distribution provides description of the
length of waiting time between occurrences. Thus, if the waiting times between
the events are independently exponentially distributed with parameter µ , then the
number of events in one unit of time has a Poisson distribution with parameters
λ = µ .

2.1.5 Memoryless property

Memorylessness is a property of a probability distribution, which means that the
past information does not give us any useful information about what will happen in
the future.

Definition of Memoryless property [57]. Let X be a random variable. The probability
distribution of X is memoryless if for any non-negative s and t, we have

Pr[X > s+ t|X > t] = Pr[X > s].

The memoryless property says that the probability of exceeding s+ t given t is the
same as the probability of originally exceeding s regardless of t. The exponential
and geometric distributions are the only probability functions that have the mem-
oryless property. Thus, since both of those distributions describe the waiting time
between events, it means that the waiting time until the next event does not depend
on how much time has elapsed already. Thus, the past has no bearing on the future.

2.2 Anonymity

Anonymity in the digital world can be defined as a property that allows users to hide
their relations to particular operations and maintain an indistinguishable identity
among other users performing similar actions. Such a set of users was defined by
Pfitzmann and Hansen [58] as an anonymity set. The larger the anonymity set, the
stronger the anonymity properties of the system. In the context of anonymous com-
munication the main goal is to hide the correspondence between the messages and
their senders or recipients, hence in result the information who is communicating
with whom, in various use-cases, including messaging, commerce or web browsing.

The anonymity set defined by Pfitzmann and Hansen is a common measure of
anonymity. However, how do we measure how large is the anonymity set? In [59]
the anonymity set size was measured as log2U , where U is the number of users in
the system. However, the first limitation of this approach is that the total number of

2.2. Anonymity 13

system users might not be known. Moreover, an adversary observing the mix nodes
for a while may assign different probabilities for each outgoing packet being linked
to the observed incoming packet. Different probabilities of different members of
the anonymity set reveal a lot of information to the attacker.

Therefore, the metrics proposed by [60] and [61] introduce the information the-
oretic anonymity metrics which applies the concept of Shannon entropy (see Sec-
tion 2.1.1), and thus allows us to reason about the information contained in the
probability distribution, thus takes into account the observed interactions between
flowing packets, and measures of the effective anonymity set size.

The above metric takes into account how the packets interact with each other
within the network, however, it does not consider any a priori knowledge an adver-
sary might have. Thus, in this work, we also use another metric to reason about
the anonymity, the sender-receiver third-party unlinkability, which quantifies the
expected difference in the likelihood that a message leaving the last mix node is
sent from one sender in comparison to another sender. This metric measures the
chances of the adversary to correctly correlate the communicating users if the ad-
versary has an a priori knowledge about the potentially communicating parties, i.e.,
already knows that either Alice or Bob are communicating with Eva.

We apply both the information theoretic anonymity metrics and the sender-
receiver third-party unlinkability to measure the anonymity of the Loopix
anonymity system presented in Chapter 3.

2.2.1 Traffic Analysis and Active Attacks

The main objective of an attacker of an anonymous communication system is to
link the entities exchanging information. Depending on the adversary’s capabilities
to control the network, we distinguish between two types of attacks: (1) passive
attacks and (2) active attacks.

Passive attacks

Passive attacks typically mean that the adversary is able to observe some or all net-
work traffic on the communication links, but does not interfere with the communi-
cation. Such adversary performing traffic analysis exploits the intercepted network
traffic in order to extract metadata information from the communication patterns, in-
cluding timing, size of the messages, frequency, the volume of traffic, identities of
the communicating parties etc. If the adversary is able to observe the entire network
infrastructure we refer to it as a global passive adversary. Traffic analysis attacks
have become more and more sophisticated over the years. The research commu-

14 Background and related works

nity has investigated the threat of traffic analysis from different perspectives, and
fundamental examples of such attack techniques include:
Intersection attacks [59] - are based on the observation that users usually repeatedly
communicate within small groups of contacts. Hence, if the adversary can observe
multiple rounds of communication from one sender to the same set of receivers, she
can infer with whom the user is communicating by intersecting the anonymity sets
of each of the sent messages.
Statistical disclosure attacks [62, 63] - assume a model, in which the target sender
communicates with a fixed set of contacts, while the other users communicate uni-
formly at random. By observing the sending patterns of the target user and using
statistical models, the adversary can infer with whom the target sender communi-
cates.
Traffic confirmation attacks [64] - rely on the observations of the ingress and egress
edges of the mix network, where the packets are injected and received. The adver-
sary next tries to correlate the incoming and outgoing streams of traffic, in order to
reveal the communicating parties.
Website fingerprinting attack [65, 66] - in which the adversary observing the traffic
creates fingerprints of streams of traffic, based on packets size, traffic volume or
timing. Such fingerprints can be later used to compare them with the traffic gener-
ated by the user.

Active attacks

In addition to the eavesdropping capabilities, active attacks entail the possibility
to actively inject, drop, delay and alter traffic packets on any link in the network.
Active attacks have severe repercussions for privacy, reliability and efficiency of the
system and significantly increase the adversary’s chances to correctly de-anonymize
users. Such attacks include for example:
Tagging attacks [67] - are performed by an active adversary that can tag (alter), a
target message entering the network, or reinject previously seen message with a
tag, in order to be able to trace it when it is forwarded to the recipient, and as a
result, uncover the communicating parties.
(n-1) attacks [68, 69] - in which the adversary floods an honest mix node with fake
messages alongside a single target message. The remaining genuine messages are
dropped or delayed. This allows the adversary to distinguish the target message and
trace it.
Denial-of-service attacks [3, 70] - in which the attacker disrupts the service, in order
to decrease the reliability of the system, and force the retransmission of messages
and hence present more opportunities for attack.

2.3. Anonymous communication systems 15

In addition to the passive and active attacks on the communication links, if
any of the system components are corrupted or malicious, we assume the full collu-
sion between all adversarial parties and that the adversary has access to all of their
internal states and operations.

2.3 Anonymous communication systems

The research on anonymous networking sparked in 1981 when David Chaum [49]
pioneered the idea of a mix network, a decentralized network of relays which al-
lows for unlinkable internet communication. The research community has since
built and analysed many new and improved designs and investigated a variety of
new attacks. In this section, we first revisit the designs of early anonymous com-
munication systems and their limitations, which allowed the privacy community to
better understand the needs and challenges of such systems. Further, we outline the
modern designs of such systems and their contributions.

2.3.1 Early designs for decentralized anonymous com-
munication systems

Mix networks
The principal concept of the Chaum’s anonymous communication network is the
source-routed decryption mix network in which all network traffic is relayed via a
set of special servers called a mix nodes. Each mix is represented by its RSA public
key, which the sender uses to locally encrypt traversing messages. Upon receiving
a message a mix strips the encryption using a matching private key. The decryption
reveals the header containing the address, where the packet should be forwarded
and the encrypted payload. This ensures that any third-party observer is not able to
correlate the incoming and outgoing packets based on their binary representation.
Despite bitwise unlinkability, an attacker can observe and correlate the timing of
encrypted packets on different links. Therefore, the mix node instead of forwarding
the received packets at the first-in, first-out order batches a certain threshold of
messages and shuffles the decrypted batch, following a secret permutation, before
sending it out. We refer to this operation as mixing. Mixing ensures that the timing
of the arrival and the departure of the packets from the mix node do not allow
correlating them. In order to guarantee strong anonymity, even if a fraction of mix
nodes are malicious, messages are relayed not by one mix, but by a sequence of

16 Background and related works

Figure 2.1: Mix operations - decryption and mixing.

Figure 2.2: Mix cascade.

independent mix nodes, called cascade. The sender locally decides on the complete
mix cascade that the message will traverse before reaching its final destination, and
layer encrypts it using the keys of selected mixes. Thanks to that, none of the mix
nodes knows the whole connection, they only know the previous and next hop,
therefore only the first mix knows who is the sender, and the last mix knows who is
the recipient. Hence, as long as at least a single mix in the cascade remains honest,
the anonymity should be protected. Chaum’s concept of a mix network is secure
against a passive adversary, who eavesdrops part or even all the communication in
the network and is not able to observe the reordering performed by honest mixes.

In addition to the sender anonymity, Chaum proposed the idea of untracable
return addresses thanks to which users can not only send but also receive messages
anonymously. If the user wishes to receive a response to the sent message while still
keeping her identity secret, she can construct the return address, the same way the
header of the forward message was created, and send it as part of her message. The
recipient can later include this return address as the header of the response message
and forward it through the network.

Even though the original design was proven to have flaws [71] in the following
decades after Chaum’s seminal paper many improved mix network designs were
implemented by systems like Babel [72], Mixmaster [73] and Mixminion [74], de-
signed to carry latency-tolerant communication. Mixmaster design supports sender
anonymity using messages encryption but does not ensure receiver anonymity, in
contrast to Babel. Following those designs, Mixminion tackles the problem of tag-

2.3. Anonymous communication systems 17

ging and reply attacks, as well as ensures forward anonymity, using link encryption
between nodes, and introduces the idea of single use reply blocks, which support
anonymous replies. As a defence against traffic analysis above designs delay in-
coming messages by collecting them in a pool that, if a fixed message threshold is
reached, is flushed every fixed period of time, however at the cost of high-latencies.
On the other side, ISDN [75], Real-time [76] and Web mixes [77] were designed to
accommodate real-time, low-latency high-volume streams communication, includ-
ing telecommunication (ISDN and Real-time mixes) or web browsing (Web mixes),
however, those designs are only practical in the context of fixed rate traffic, such as
streaming and VoIP.

The idea of traditional mix networks has evolved into a number of different
designs, among others, with respect to mixing strategy. Multiple ideas of syn-
chronous mixing techniques have been proposed, including α-mixing [78], flash
mixing [79, 80], and pool mixes [81]. Further research resulted in the design of
Stop-and-go mixes [82], which operate in a similar manner as classical mix nodes,
but instead of batching a fixed number of messages, it delays each packet indepen-
dently, hence allows operating the network in a continuous manner.

A long line of mix network research has focused on strengthening the orig-
inal design against malicious mixes, which might attempt to subvert the network
by dropping, modifying or duplicating packets. The literature on secure electronic
elections has been preoccupied with reliable mixing to ensure the integrity of elec-
tion results by using zero-knowledge proofs [83, 84, 85, 86, 87] of correct shuffling
to verify that the mixing operation was performed correctly. In such designs, when
a mix node shuffles the packets, it also generates a zero-knowledge proof that the
outputs form a valid permutation of the input packets, while still hiding the permu-
tation itself. However, those rely on computationally heavy primitives or require
re-encryption mix networks [88], which significantly increase their performance
cost and limits their applicability. On the other hand, the more ’efficient’ proofs
restrict the size of messages to a single group element that is too small for email or
even instant messaging.

An alternative approach for verifying the correctness of the mixing operation
were mix networks with randomized partial checking (RPC) [89]. This cut-and-
choose technique detects packet drops in both Chaumian and re-encryption mix
networks, however, it requires interactivity and considerable network bandwidth.
Moreover, the mix nodes have to routinely disclose information about their in-
put/output relations in order to provide evidence of correct operation, what was
later proven to be flawed [90].

18 Background and related works

Figure 2.3: Simple DC-network paradigm.

DC-networks

Another step towards untraceable communication was the idea of the multi-party
computation network called DC-nets [91], which allow a user anonymously share
a message with the fellow group members. This requires each group participant to
share a random binary secret with each of the remaining members. Next, each user
individually XORs all the secrets they share with others, producing an obfuscated
ciphertext. In order to share a message, the anonymous sender additionally XORs
in the message. At the end of the round, all group members broadcast their ci-
phertexts among each other and next XOR together all received values. Since each
binary secret is shared between exactly two participants all shared secrets cancel,
revealing the message while its sender remains anonymous. Classic DC-net based
designs offer strong anonymity properties but have severed practical limitations due
to scalability, easy disruption and long latency. The fact that all group members
have to communicate in order for the protocol to work correctly introduces signifi-
cant computation and communication load on the clients. Due to network churn or
disruptive clients, if any of the participants disconnects the whole protocol has to
be recomputed from the beginning, hence even a single slow user delays the entire
progress. Similarly, malicious participants can break the entire communication sim-
ply by broadcasting random bits. The high cost of the peer-to-peer DC-nets schemes
and lack of robustness make such schemas not suitable for modern interactive com-
munication. The later modifications of the classic protocol presented in [92], [93]
offer resistance against disruption, however, all of those designs are applicable only

2.3. Anonymous communication systems 19

Figure 2.4: Example of Tor onion routing circuit.

in local-area settings with low delay and ample bandwidth, but not in large-scale
global communication networks.

In order to improve the scalability of DC-nets Herbivore [94] divides users
into many small anonymity sets, that communicate within them using traditional
DC-nets. Moreover, to reduces the communication cost a single node collects and
combines all users’ ciphertexts. However, this approach does not allow to identify
the disruptors hence is vulnerable to denial of service attacks.

Onion routing

Early designs of the mix networks or DC-nets have not found wider adoption,
due to perceived higher latency that cannot accommodate real-time communica-
tions. Since mix network-based architectures have become unfashionable the idea
of onion routing was introduced. Onion rounting is designed as an overlay network,
based on circuit routing, enabling low-latency and bi-directional anonymous com-
munication for TCP-based applications, like web browsing. Each connected user
opens a circuit, and all communication flows down via this predetermined sequence
of relays in fixed-size cells. Onion relays in the circuit share a symmetric key with
the anonymous user, which key is used to layer encrypt, similarly as in mix net-
works, the sent packets. Upon receiving the packet, each relay decrypts one of the
onion layers and forwards the packet to the next node in the circuit. In comparison
to mix networks, onion routers forward the received packets in a first-in-first-out or-
der, without altering the timing characteristics of the traffic. Not mixing the traffic
however comes at a cost of privacy.

Since 2004, Tor [43], a practical manifestation of circuit-based onion routing,
has become the most popular anonymous communication tool, attracting almost 2

20 Background and related works

Figure 2.5: Example of a P2P network.

million users daily. Tor consists of thousands of volunteer servers, which allow it
to easily scale to support more users by simply adding more peers. Unlike mix
networks, onion routing systems are designed to defend against local adversaries,
that can only observe a fraction of the network, modify the traffic only on this
fraction, and control a fraction of the nodes. Thus, Tor’s threat model is defending
against websites that track the users, as well as enemies that can observe only a
small part of the network, such as the user’s ISP or a Tor exit node.

As research has shown, the security offered by Tor can be easily defeated by
a network adversary, who can monitor both the entry and exit points of the net-
work and perform end-to-end correlation of traffic flows [44, 45, 46, 47, 48, 95].
Moreover, even with limited capabilities, like access to the user’s local connections,
the adversary can identify the visited websites through website fingerprinting tech-
niques [46, 96, 97, 98, 99]. These weaknesses of Tor exist due to the fact that
even though onion encryption of the packets changes the binary representation of
the flowing packets, the distinctive patterns in web traffic remains unaltered, since
Tor does not add any timing obfuscation, link padding nor cover traffic. Its privacy
guarantees weaken further if the adversary has capabilities to launch active attacks.

P2P Anonymous Systems

Another group of designs are P2P anonymous communication systems, in which
participants act as both end users and relay nodes that route the data packets of
others. P2P networks scale better than the client-server architecture used by mix

2.3. Anonymous communication systems 21

networks or onion routing, since new users increase the overall network capacity.
However, P2P networks present also new challenges to anonymity, including the
ability to locate random relays for anonymous communication. Several designs for
P2P anonymous communication have been put forward, and we can broadly clas-
sify them based on their mechanism to locate peers. Designs like Crowds [100]
download the complete list of participating peers from a centralized directory ser-
vice, Tarzan [101], MorphMix [102] and Pisces [103] perform random walks to
find other relays, while Salsa [104], AP3 [105], NISAN [106] and Torsk [107] use
DHT [108] lookups to select random relays.

Crowds [100] is a system for anonymous web browsing, introduced in the late
90s. Crowds is a fully connected network which deploys hop-by-hop routing, mean-
ing that the sender only selects the first relay node, which in turn picks the second
node, and so on, until the message reaches its final destination. In Crowds, the
nodes are grouped into the so called crowds, and the nodes within the same crowd
group can communicate with each other to relay messages. Communication be-
tween peers is encrypted, however, each of intermediate peers can see the content
of passing messages and the address of the final destination. Paths through the
network are determined using a coin-flipping random walk technique, i.e., upon
receiving a request a peer tosses a biased coin and either forwards the request to
another randomly selected intermediate node, or directly to the intended recipi-
ent. The hop-by-hop routing makes Crowds vulnerable to route capture attacks, in
which a single malicious node chooses another hostile node as its successor, thus
the rest of the path will be hostile. In Crowds the sender privacy property is based
on the uncertainty of an intermediate relay whether its predecessor is the original
sender of the message or just another intermediate relay. Similarly, uncertainty on
whether a relay’s successor is the final destination (or just another intermediary) is
what provides privacy for the message recipient. However, as research has shown,
Crowds is vulnerable to the predecessor attack [109], which relies on the observa-
tion that clients repeatedly request particular resources, thus the corrupted node can
observe how many times each of its predecessors is accessing a particular resource,
and infer the peer corresponding to the most requests as the most likely initiator.
Also, Crowds relies on a centralized directory service to obtain the complete list of
participating peers. However, such centralized directories has serious implications,
both from the perspective of privacy, availability, and scalability of the system.

Another attempt at P2P anonymous communication systems is Tarzan [101].
Similarly as in Crowds the peer initiating the traffic stream routes it via an onion
encrypted circuit, however, in Tarzan the traffic is source-routed. In the original
Tarzan design each node was required to know only a random subset of other nodes

22 Background and related works

in the network. However, as Danezis et al. [110] showed such an approach makes
Tarzan vulnerable to node profiling attack, in which the attacker exploits the knowl-
edge of which nodes are known to the user in order to probabilistically identify
their traffic. Therefore, the final version of Tarzan requires each node to learn the
identity of all peers. Tarzan employs a gossip discovery protocol to find every other
peer in the network. However, this approach is believed to not scale beyond 10 000
nodes [104]. Moreover, in order to provide resilience against intermediate nodes
leaving the network, Tarzan introduces a route reconstruction protocol, in which in
order to rebuild a path the working peers are retained while the failed ones are re-
placed. However, as shown in [110] an attacker who can launch a denial of service
attack against the honest nodes, could cause them fail until eventually the replace-
ment node is one of the nodes he controlls.

In contrast to Tarzan, MorphiMix [102] requires each peer to know only a
small set of other peers. Although MorphMix uses a similar architecture as Tarzan,
the traffic is routed hop-by-hop. This type of routing is susceptible to route capture
attacks, in which the first malicious intermediate node chooses only other malicious
node to forward the traffic. In order to overcome this threat MorphMix includes the
collusion detection mechanism that monitors whether there are any cliques in the
selection of nodes in the path, thus avoids repeated connections with the same set of
nodes. However, Tabriz and Borisov [111] presented an attack against the collusion
detection mechanism, in which the adversary compromises a significant fraction of
all anonymous tunnels.

Similar design to Tarzan and MorphMix was also proposed by Pisces [103],
which leverages users’ social links to build circuits for onion routing in order to
considere trust relationships between the peers in the system, and thus improve
the system’s resilience to malicious nodes. Pisces uses random walks in the social
network graph with a bias away from highly connected nodes to prevent a few nodes
from dominating the circuits. Similar approch of leveraging social relationships
in P2P anonymity systems was proposed also in [112] and [113], however those
designs are limited in applicability to a honest-but-curious attacker model.

Another group of P2P anonymity systems are designs which rely on distributed
hash tables (DHT) to obtain information about other peers in the network. DHT is
a hash table, possessing key-value lookup functionality, with the index distributed
among peers in a group. Each peer maintains a small routing table of its neighbours,
and no single node hasthe complete list. This increases the scalability of the proto-
cols, and minimize the number of lookups upon querying for a resource. Althought
DHTs allow to avoid centralized point to manage the view of the network, they are
vulnerable to various attacks on the lookup mechanism that damage the privacy and

2.3. Anonymous communication systems 23

security of the network [114]. Moreover, the partially connected network topol-
ogy and the partical network view make DHT-based protocols less resilient against
the DoS attacks, as well as, route fingerprinting attacks [110] and route bridging
attacks [115].

An example of a system which relies on DHT lookups to locate random relays
is Salsa [104]. In Salsa, the peers for the circuit are selected at random from the
global pool of peers, although each node knows only a subset of nodes in the net-
work. This allows to protect against the intersection attack and enhances scalability.
However, the lookup mechanism used by Salsa is susceptible to information leak at-
tacks [116]. Moreover, Salsa is also vulnerable to the selective DoS attacks [3].

AP3 [105] also relies on secure DHT lookups to select nodes, and uses the
same routing strategy as Crowds. Similar to Salsa, the lookup mechanism used in
AP3 reveals a lot of information about the lookup initiator and the communication
destination, which can be used to attack the circuit construction mechanisms and
compromise user anonymity [116].

In order to address the vulnerabilities of Salsa and AP3, NISAN [106] and
Torsk [107] propose mechanisms specifically designed to mitigate information leak
attacks. NISAN focuses on adding anonymity into the DBT lookup mechanism,
while Torsk proposes the use of the so-called secret buddy node as a proxy to
anonymize the DHT lookup initiator. However, both NISAN and Torsk were shown
to be vulnerable to several passive and active attacks [117].

It is also worth mentioning other types of P2P anonymity systems. Rico-
chet [118] offers anonymous peer-to-peer instant messaging system that builds on
Tor hidden services, in an effort to maintain its users’ anonymity, however, their se-
curity properties are as good as security properties of Tor. Bitmessage [119, 120] is
a peer-to-peer protocol allowing encryption of communication and metadata hiding
from passive eavesdroppers, by broadcasting the encrypted messages to all users in
the network. P5 [121] also provides anonymous messaging by partitioning the peer-
to-peer network into anonymizing broadcast groups. Freenet [122] offers anony-
mous publication and retrieval of data. Internet Invisible Project (I2P) [123] is a
peer-to-peer low-latency anonymous network built on top of the Internet. I2P is
designed as a closed ecosystem and does not aim to enable anonymous access to
the normal Internet services. Rather than that, it is used to anonymously access hid-
den services integrated into the I2P network. I2P supports a variaty of applications:
emails, web browsing, file sharing, blogging, forums and chatting. Moreover, the
Kovri Project [124] aims to integrate I2P technology into Monero cryptocurrency to
hide the IP addresses of the users interacting with the Monero blockchain. However,
similarly to Tor, I2P defends only against local adversaries and is still vulnerable to

24 Background and related works

traffic analysis [125, 126, 127].
Overall, although P2P anonymous communication systems seem like a good

approch, since such networks scale better than the client-server architecture used by
mix networks or onion routing, such solutions present new challenges to anonymity,
and are vulnerable to various attacks inherent to peer-to-peer networks, including
DDoS [128], Eclipse attack [129], posioning attacks [130], Sybil attacks [131, 132]
and many more.

2.3.2 Modern mix networks and DC-Nets designs

During the last decade, there were significant efforts of the research community to
tackle the scalability, security and latency problems of the early designs anonymous
communication systems. Modern mix network based designs achieve better scala-
bility, lower latency, and improved reliability. In this section, we outline the most
important of modern designs.

Anonymous point-to-point communication
Vuvuzela [133] is a private point-to-point metadata-hiding communication system,
which goal is to combine strong privacy properties of mix networks with scala-
bility capabilities of Tor. Vuvuzela provides resistance to a powerful adversary
who can implement long term traffic analysis or block, delay and inject traffic on
the communication links, but uses a weaker form of privacy known as differen-
tial privacy [134]. Vuvuzela achieves privacy through a combination of constant-
bandwidth protocols, mix network and cover traffic. Vuvuzela is composed of a
fixed chain of mix servers and uses the idea of dead drops, virtual locations hosted
on the system’s servers, which users use to exchange messages. Vuvuzela is com-
posed of two protocols: (1) dialing protocol and (2) conversation protocol. The
dialing protocol allows users to signal to others that they want to communicate.
Hence, the users use the dialing protocol each time they want to start a conversa-
tion with a friend, even if they have talked to this friend before. In order for the
dialing and conversation protocols to be secure clients and servers have to generate
extensive amounts of cover traffic at a constant rate - as proposed in [133] each
invitation dead drop should have a roughly equal amount of real and cover invita-
tions/messages, which results in storing and retrieving megabytes of data. Despite
reporting good scalability at an acceptable latency, those properties come at a non-
trivial bandwidth cost, both for the servers and network users. Moreover, Vuvuzela
does not aim to prevent servers from tampering with the users’ messages, and as a

2.3. Anonymous communication systems 25

result, a malicious server can drop all but one honest user’s messages.

The problem of high load and malicious servers was studied by the follow-up
system Stadium [135], which investigates how to distribute workload across trust-
worthy servers and efficiently verify the correctness of the mixing. Stadium adopts
Vuvuzela’s dead-drop design and privacy goals, but instead of using traditional se-
quential mix cascade, where each node mixes all messages, it uses the idea of dis-
tributing the messages among parallel mix chain, where each server process only a
fraction of the overall traffic. Therefore, Stadium scales horizontally hence can be
deployed by incrementally adding more servers. In Vuvuzela each mix server adds
the total required amount of dummy messages, therefore the total processing cost
grows quadratically in the depth of the network since each server has to process
all the messages added by all previous servers. In contrast, Stadium uses the col-
laborative noise generation, where the servers collaborate prior to mixing to inject
noise messages which will be shuffled with all the traffic incoming in the round.
To ensure the correctness of mixing and that the cover messages are sent along
their pre-intended routes, Stadium uses the idea of verifiable shuffling techniques.
However, those techniques come at the cost of expensive zero-knowledge proofs.

Karaoke [136] tackles this problem by using Bloom filters to efficiently check
if any cover messages have been discarded: each server computes Bloom filter for
all messages they receive, broadcasts the filter to all other servers and the servers
check whether the cover messages they generated appear in the filter. Karaoke in-
herits the system architecture from Stadium and Vuvuzela, reusing the idea of dead
drops and parallel chains of mix servers. To target the problem of a large volume
of noise traffic that must be added in each round of previous systems, Karaoke de-
ploys the technique of optimistic indistinguishability, requiring the users to always
send two messages in a single round in order to simulate the appearance of an active
conversation at all time. However, this approach ensures security only when there
are no active attacks. An active attacker can discard user messages before they en-
ter the system, which might reveal which two users are communicating. To protect
against such scenarios Karaoke servers obscure the dead drops access patterns by
generating the noise messages, each to a random dead drop and route them through
a random sequence of servers. Karaoke ensures privacy with high probability by
transmitting the traffic through long chains of servers, which increases the end to
end latency of the communication.

AnonPop [137] is another approach towards mix network based anonymous
communication system, which refines the design of Vuvuzela. Similarly like in Vu-
vuzela, in AnonPop all traffic is related through a sequence of synchronous mix
nodes. AnonPop uses the idea of a special mailbox server, an equivalent to the dead

26 Background and related works

drops in [133], where users deposit and retrieve their messages. The communica-
tion with the mailbox servers is performed via a cascade of mixes. In comparison to
Vuvuzela, AnonPop prevents tagging attacks, supports offline storage, and allows
for efficient correspondence with multiple peers.

Similarly Pung [138], a system that aims to provide point-to-point and group
anonymous messaging, uses the idea of storage mailbox servers, which mediate
the exchange of messages between the communicating users, who can deposit and
retrieve messages from the server. Clients upload their encrypted messages di-
rectly into the key-value mailboxes, which recipients can later access by retriev-
ing the contents of the mailbox using computational PIR (Private Information Re-
trival) [139]. Pung hides all meta-data associated with user’s conversations, even
against adversaries who are capable to control all of the communication infras-
tructure. Hence, it withstands a stronger adversary than Vuvuzela, Stadium, or
AnonPop, however at the cost of performance, which grows superlinearly with the
number of users, and limited throughput, and in result suffers from high latency.

MCMix [140] is another system inspired by Vuvuzela, which provides a
bidirectional anonymous messaging channel but using multiparty computation
(MPC) [141]. MCMix achieves better performance than Vuvuzela, however un-
der a weaker threat model (i.e., in a prototype with three MPC servers only one of
the three can be malicious, and the system does not offer forward secrecy).

Cmix [142] is a new variant of fixed-cascade mixing network resistant to traffic
analysis and intersection attacks. Cmix avoids public key operations in the real-time
conversation phase by performing all computationally intensive public-key crypto-
graphic operations in the prior precomputation phase, which does not involve users.
Cmix scales linearly in the number of users and provides the sender anonymity,
however, it may leak how many messages each user received and is vulnerable to
tagging attacks and insider attacks [143].

Systems like Vuvuzela, Stadium or Karaoke use differential privacy to bound
the information leakage on the metadata. On the other hand, systems with a stronger
notion of cryptographic privacy like Pung rely on expensive cryptographic primi-
tives and hence suffer from limited adoption. XRD [144] is an anonymous messag-
ing system, that scales horizontally. However, so far there is no prototype imple-
mentation of such a system, which would allow comparing its overall performance
with other designs. XRD scales by distributing the workload across many paral-
lel small chains, where each chain contains at least one honest mix. Each user is
assigned to a unique mailbox. When the users want to communicate they pick a
number of random mix chains using a special XRD algorithm which ensures that
every pair of users intersects at one of the chains. Next, users send messages to

2.3. Anonymous communication systems 27

their own mailboxes to all chosen chains, except the chain which they both picked,
where instead they send messages to each other. XRD addresses the problem of
active attacks, where malicious servers tamper with some of the users’ messages by
using the idea of aggregate hybrid shuffle, which guarantees that an honest server
will either receive all honest users’ messages or detect that some other previous mix
server or users misbehaved. XRD has, however, two main drawbacks compared
to prior system designs. With a network of N mix servers, each user has to send
O(
√

N) messages in order to ensure that every pair of users intersects, which results
in high overhead for the users and increases significantly the workload of each mix
server. Hence, the cost of adding a single user to the system is expensive. More-
over, XRD is not as fast as previous designs, like Stadium or Karaoke, (3× and 25×
slower respectively), however, has stronger security guarantees.

Anonymous message broadcasting
The idea of DC-Net offers strong cryptographic privacy properties, however, suffers
from very high computation and communication costs hence scales only to hundreds
of users. This impacts the applicability but also the anonymity of the system, since
the more network participants are willing to use it the better the anonymity. A new
approach towards more efficient DC-Nets was introduced by Dissent [145]. Dissent
combines the peer-to-peer nature of DC-Nets with the client-server solution from
mix nets and onion routing. Clients are grouped and each group is assigned to a
single server. Each server has a secret shared with every client. Since now clients
do not share secrets with all other members of the network, but only a small fixed
number of servers, the computational overhead is significantly smaller. Communi-
cation efficiency is also substantially decreased since in traditional DC-Nets each
member has to transmit a quadratic amount of data. The client-server paradigm in
Dissent translates to DC-net multicast trees since each client transfers data to only a
single server. Servers collect the inputs from their clients, XOR them and exchange
the resulting ciphertexts with other servers, and again combine all the data together.
Finally, they distribute it downstream to the clients. Therefore, the communication
and processing cost is linear in the number of clients. As a result, Dissent scales to
thousands of clients.

Riposte [146] is another DC-Net inspired design for anonymous broadcasting
of messages, suitable for latency-tolerant applications with more readers than writ-
ers, like for example Twitter or Wikileaks microblogging. Riposte offers sender
anonymity by hiding the association between the users and their messages. In Ri-
post, similarly to Dissent [145], each participant sends in each epoch a fixed-length
message to the system. The system architecture is composed of a small number of

28 Background and related works

independent servers, which host and maintain the shares of an anonymous bulletin
board (i.e., database), which aggregates all users messages. To protect against traf-
fic analysis attacks Riposte leverages the primitive of write-PIR, allowing clients to
post messages on a shared bulletin board without revealing to the servers or other
clients which message was posted by a particular user. In order to increase the band-
width efficiency Riposte uses the distributed point function PIR technique. Instead
of submitting large amounts of data to each server, the client generates a set of keys
using the distributed point function. Next, the client sends a single key to each of the
servers, which stretch those keys into vectors of the size of the database and com-
bine them with their state of the database. This cryptographic trick allows reducing
the amount of transported data between the client and each server. At the end of
each epoch, the servers combine the write requests from the users, which results in
a bulletin board of all client’s messages. The Riposte system can be deployed using
two variants. The first variant is much more computationally efficient and scales to
millions of clients by using simple techniques like AES against traffic analysis and
inexpensive multi-party protocol to detect and exclude malformed requests. How-
ever, this variant requires three servers such that no two of these servers collude,
hence offers security under a much weaker threat model. The second variant relies
on the anytrust model, where all but one server are malicious, however, is orders of
magnitude much more computationally expensive since it requires for the write-PIR
technique usage of elliptic curve operations and client-produced zero-knowledge
proofs to protect against disruptive clients’ requests. Still, even the three-server
variant requires days to built an anonymity set of couple million users. Moreover,
Riposte requires each client to send a message proportional to the square root of all
the collection of all clients’ data.

A similar approach for anonymous microblogging was proposed by Rif-
fle [147]. Riffle offers sender and receiver anonymity in anytrust model, by combin-
ing PIR and verifiable shuffle mix network. In contrast to Riposte, Riffle uses the
multiserver PIR for downloading, while the uploading protocol of the shared post
consumes bandwidth proportional to only their messages rather than the number
of active clients like in [145]. Riffle system consists of a small number of servers.
The clients are evenly distributed among the servers, by assigning to each client
his or her primary server. Since the techniques used for verifiable shuffle come
at a large cost of expensive zero-knowledge proofs [148, 149], Riffle introduces
the idea of hybrid verifiable shuffle, which uses classic verifiable shuffle technique
to establish the symmetric keys between each client-server pair, but then uses au-
thenticated symmetric encryption for sending messages. The verifiable shuffling
of the keys guarantees that those keys originated from the legitimate clients, but

2.3. Anonymous communication systems 29

at the same time the servers cannot figure out which client sent which key thanks
to the zero-knowledge property of the shuffling. If the client wants to share a new
message, she onion encrypts it and uploads to a selected entry server. The server
authenticates and decrypts the packets gathered during the round using the estab-
lished shared keys and shuffles, before sending the result to the next server. The
last server simple broadcasts all of the messages to all network users, which al-
lows trivially to achieve receiver anonymity, however, this introduces a significant
bandwidth overhead per each message. To improve the receiving efficiency Rif-
fle replaces basic broadcast with the multi-server variant of PIR, which reduces
the amount of bandwidth between servers and clients. However, even though Riffle
uses the multi-server variant of PIR to improve download efficiency, each client still
must perform PIR every round, even if is not interested in any message, to remain
resistant to traffic analysis. Riffle protocol can be used not only for microblogging
but also for file sharing. In the use-case of file sharing, Riffle achieves an order of
magnitude better latency than Dissent [145] since the bandwidth overhead in [145]
grows linearly with the number of clients. In terms of the microblogging, uploading
a single Tweet-size post for a group of 100000 users takes on average 10 seconds,
and compared to previous designs like Riposte, it achieves better performance since
Riposte’s bandwidth requirement for clients grows linearly with the size of the bul-
letin board, while the bandwidth requirement of Riffle remains the same. Although
Riffle outperforms previous designs, it still leaves key challenges open. The system
is not applicable to point-to-point messaging since system users can communicate
only within their group, not with other network participants. Moreover, any changes
in the group (e.g., clients joining or leaving) require to repeat the expensive verifi-
able shuffle operations.

A different approach to anonymous microblogging was presented in
Atom [150]. Atom is an anonymous broadcasting schema suitable for short and
latency-tolerant messages, like in microblogging or dialing applications. The prin-
cipal idea of Atom is that servers are grouped into separate sets, hence each server
has to process only a small fraction of the overall traffic routed through the network.
Communicating users submit encrypted messages to a selected entry group. After
collecting a set of messages from the users, each group collectively shuffles mes-
sages, and next divides the set into several smaller equal-size batches and forwards
the re-encrypted batch to the neighbouring server. The shuffle-split-re-encrypt op-
erations are repeated multiple times before the servers can decrypt the processed
message ciphertexts and publish them on the bulletin board. Atom aims to protect
against a global passive adversary performing traffic analysis. Aggregating the
servers into groups allows the system to scale horizontally, meaning expanding

30 Background and related works

the network with more relays increases the overall capacity of the network. Be-
sides being resistant to traffic analysis, Atom defends also against active attacks
performed by malicious servers. However, Atom does not protect against more
sophisticated attack, like for example intersection attacks [59] or Byzantine server
faults [151]. Moreover, since Atom requires the shuffle operation to be repeated
multiple times by many servers, this leads to the high latency of minutes or even
hours, which make Atom unusable for many communication use-cases. Finally,
Atom employs expensive cryptographic primitives and requires messages to be
routed through hundreds of servers in series, thus incurs high latency in the order
of tens of minutes for a few million users.

Aqua [152] is a high-bandwidth anonymity system which aims to provide low-
latency and traffic analysis resistance for peer-to-peer file sharing applications, like
BitTorrent. Aqua implements constant-transmission-rate link padding to conceal
the underlying traffic patterns, and a rendezvous mechanism, which joins two sender
flows at a rendezvous mix, in order to ensure anonymity for senders and receivers.
Moreover, Aqua uses Tor-like infrastructure with mix nodes, where each client is
attached to one entry node, which are assumed to be uncompromised. Hence, Aqua
provides k-anonymity [153] among the k-honest clients connected to the same edge
mix as long as the adversary controlling the network colludes with only one end
of the path between the communicating clients. However, these assumptions result
in security problems similar to Tor, since adversaries controlling both ends of the
circuit can still deanonymize clients.

Herd [154], a traffic analysis resistant anonymous system for low-volume VoIP
communication, uses the same technique for link padding as Aqua, however, Herd
requires shorter mix paths than Aqua. It also adopts a hybrid of peer-to-peer and in-
frastructure based architecture, with mixes partitioned into trusted zones, and super-
peers to improve scalability and uses the idea of the rendezvous mechanism to main-
tain the anonymity of both ends of the conversation.

2.3.3 Other decentralized anonymity systems

Another line of decentralized anonymous communication research proposed the
idea of building anonymous protocols into the network layer, rather than imple-
menting them as overlays. Network layer anonymity systems incorporate anony-
mous communication as a service of network infrastructure in the Internet and next-
generation network architectures and the infrastructure routers participate in estab-
lishing the anonymous communication channels and forwarding the traffic. Rather
than routing the network packets via overlay networks, network-layer anonymity

2.4. Conclusion 31

systems use direct forwarding paths. Therefore, such systems achieve much better
scalability and high-throughput, however, this comes at a price of significantly de-
graded security guarantees in comparison to mix networks or onion routing. The
first designs for network-layer anonymous systems include LAP [155] and Dove-
tail [156], which conceal the location of the end hosts against remote tracking by
encrypting the forwarding information in the packet header. However, the binary
representation of the packets does not change between the routers, hence enabling
bit-pattern correlation at distinct points in the network and allowing the global ad-
versary to easily correlate the communicating parties. Later designs, like HOR-
NET [157] or TARANET [158] adopt ideas from onion routing and mixing in order
to offer payload protection and better resistance to traffic analysis, however, both of
those designs are still vulnerable to powerful attackers.

A new routing protocol called Low Latency Anonymous Routing Protocol
(LLARP) was recently proposed by Loki [159]. LLARP is a hybrid of Tor and I2P
designed exclusively for the Loki network, however, although it aims to anonymize
the IP traffic, it does not attempt to solve traffic patterns correlation or nation-state
network adversaries, hence it has similar security limitations as its predecessor.

Decentralized Virtual Private Networks (dVPNs), are a new VPN solution
based on P2P approch. There is no central authority in dVPN, but instead each
user acts as both a client and a proxy server, hence each participant offers a portion
of their bandwidth to carry traffic for others. With no central point of control and
failure, the dVPN system is naturally made fairer and more secure. Example of
dVPNs include Orchid [160], VPN0 [161], Sentinel [162] and Mysterium [163].

2.4 Conclusion

In this chapter, we have defined what anonymity means and gave an overview of
classes of attacks against it, which have prompted a long line of research exploring
how to ensure users privacy online. We outlined early designs, which pioneered
the field of anonymous communication systems, and discussed in detail the mod-
ern designs. Despite all those efforts and several promising designs, the modern
state-of-the-art designs of anonymous communication systems have several limita-
tions which reduce their applicability. In the next chapters, we present a novel mix
network based communication systems which aims to solve the trilemma of cur-
rent anonymous networks designs: scalability, latency, reliability and security [50].
Further in this thesis, in selected chapters, we present additional overviews of other
research works alongside our own work, to which it is related.

Part I

Anonymous communication
systems resistant to traffic
analysis and active attacks

33

Chapter 3

The Loopix Anonymity System

In this chapter, we introduce Loopix, a novel, scalable anonymous communication
network. Loopix provides anonymous communication even against powerful global
network adversaries without sacrificing the system performance, by allowing for a
tunable tradeoff between latency and the volume of traffic. Importantly, an increas-
ing number of active users in the Loopix network allows lowering the end-to-end
latency and the amount of cover traffic while still offering high levels of anonymity.
As a result, Loopix is the first anonymous communication network which combines
strong anonymity, scalability and performance to support a large user-base and ap-
plications with various latency constraints.

3.1 Introduction

The increasing awareness of the importance of private communication motivated a
renewed interest in the development of anonymous communication systems. Cur-
rent state-of-the-art designs make great strides towards building private online com-
munication systems, however, none of them can simultaneously achieve all three
main goals of building a modern anonymous network, scalability, latency and se-
curity. As we have seen, systems which scale to millions of users [133, 135, 138],
require large volumes of noise messages and incur perceived high latency that can-
not accommodate real-time communications. On the other hand, the designs which
offer low-latency [43, 152, 154] either do it at a cost of weaker anonymity or poor
scalability limited to local-networks.

For this reason, we reexamine and reinvent mix-based architectures, in the
form of the Loopix anonymity system. Loopix provides bi-directional anonymous
communication resistant to powerful global adversaries who are capable of observ-
ing all communications and perform powerful active attacks. This is in contrast to

36 The Loopix Anonymity System

the currently deployed solutions, like VPN, Tor, or other peer-to-peer anonymity
networks, which protect against adversaries that can monitor only a limited part of
the network. Loopix offers strong security properties without sacrificing the system
performance by allowing for a tunable tradeoff between latency and the volume of
traffic to foil traffic analysis. Moreover, Loopix scales horizontally, hence adding
more servers into the network increases its overall capacity. In comparison to pre-
vious designs, the system does not require a constant volume of cover traffic, but
instead allows adjusting the amount of noise traffic depending on the deployment
requirements. We demonstrate that such a mix-based architecture can support low-
latency communications that can tolerate small delays, at the cost of using some
extra bandwidth for cover traffic. Therefore, this system can be deployed in vari-
ous applications like anonymous emails, microblogging, instant messaging or cryp-
tocurrencies, in order to protect the anonymity at the network layer. Loopix design
offers the solution for an eternal question - can we build an anonymous commu-
nication system, which combines strong security properties of mix networks with
performance and scalability feasible for modern online communication.

Chapter outline: This chapter is organized as follows. In Section 3.2 we outline
the high-level overview of Loopix and define our security goals and threat model.
In Section 3.4, we detail the design of Loopix and describe Poisson mixes, upon
which Loopix is based and introduce their properties. In Section 3.5, we present
the analysis of Loopix’s security properties and discuss the resistance against traf-
fic analysis and active attacks. In Section 3.7, we discuss the implementation of
Loopix and evaluate its performance. In Section 3.8, we survey related works and
compare Loopix with recent designs of anonymity systems. In Section 3.9, we dis-
cuss remaining open problems and possible future work. Finally, we conclude in
Section 4.11.

3.2 The system high-level overview

Loopix is a mix network-based architecture allowing users, distinguished as senders
and receivers, to route messages anonymously to each other using an infrastructure
of mix servers, acting as relays. Loopix follows the stratified topology [164], where
mix servers are grouped into a fixed number of layers, to ensure both horizontal
scalability and a sparse topology that concentrates traffic on a few links [165]. Each
mix, at any given time, is assigned to one specific layer i, and connected with every
mix in layers i− 1 and i+ 1. The stratified topology has been shown optimal for
anonymity, scalability and ease of analysis [166, 167]. A similar network topology

3.3. System model and security goals 37

was also used in [168], however, in this design each node in layer i had to send one
copy of every packet it receives to each node in the next layer. In Loopix packets
are source-routed, meaning that the sender of the message selects the full route for
the packet by picking a single node at random from each layer.

Loopix adopts and leverages an architecture by which users of the system are
associated with service providers that mediate their access to the mix network, act-
ing as the entry-exit point. Each provider has a long-term relationship with its
users and may authenticate them, potentially bill them, or discontinue their access
to the network. Each provider is connected to each mix in the first layer, in order
to inject packets into the mix network, and also to every mix in the last layer, to
receive egress packets. The provider not only serves as an access point but also acts
as an always-online storage proxy, where users’ incoming messages can be stored
when they are offline. This architecture brings a number of potential benefits, such
as resistance to Sybil attacks, enabling anonymous blacklisting [169] and payment
gateways [170].

In contrast to previous anonymous messaging designs [74, 133, 146], Loopix
does not operate in deterministic rounds but runs as a continuous system. This
means that incoming messages can be retrieved at any time, hence users do not have
to worry about lost messages when they are off-line. Additionally, Loopix uses the
Poisson mixing technique that is based on the independent delaying of messages,
instead of batching, which makes the timings of packets unlinkable. This approach
does not require the synchronization of client-provider rounds and does not degrade
the usability of the system for temporarily off-line clients.

Moreover, Loopix introduces different types of cover traffic to foil de-
anonymization attacks: loop cover traffic and drop cover traffic. Mix nodes and
clients self-monitor and protect against active attacks via self-injected loops of traf-
fic. Those loop packets also serve as cover traffic to provide stronger anonymity
and a measure of sender and receiver unobservability. The amount of the cover
traffic used is not constant and can be adjusted depending on the system parameters
and requirements, like a number of clients, volume of communication, scalability
or latency demands.

3.3 System model and security goals

Before describing the Loopix system in detail, we first define the adversary model
and the security goals, which our system aims to achieve.

38 The Loopix Anonymity System

3.3.1 System Setup

The Loopix system consists of a set of mix nodes, N, and providers, P. We consider
a population of u users communicating through Loopix, each of which can act as
sender and receiver, denoted by indices Si, Ri, where i ∈ {1, . . . ,U} respectively.
We denote the set of all the u users as U. Each entity of the Loopix infrastructure
has its unique public-private key pair (sk, pk). In order for a sender Si, with a key
pair (skSi , pkSi), to send a message to a receiver R j, with a key pair (skR j , pkR j), the
sender needs to know the receiver’s Loopix network location, i.e., the IP address of
the user’s provider and an identifier of the user, as well as the public encryption key
pkR j . We assume that this information can be made available through a privacy-
friendly lookup or introduction system for initiating secure connections [171].

3.3.2 Threat Model

Loopix assumes sophisticated, strategic, and well-resourced adversaries concerned
with linking users to their communications and/or their communication partner(s).
As such, Loopix considers adversaries with three distinct capabilities, that are de-
scribed next.

Global passive adversary. Firstly, a global passive adversary is able to observe
all network traffic between users and providers and between mix servers. This ad-
versary is able to observe the entire network infrastructure, launch network attacks
such as BGP re-routing [172], or conduct indirect observations such as load mon-
itoring and off-path attacks [173]. Thus, the GPA is an abstraction that represents
many different classes of adversaries able to observe some or all information be-
tween network nodes.

Malicious infrastructure. Secondly, the adversary can observe all of the internal
states of some corrupted or malicious mix relays. The adversary may inject, drop, or
delay messages. She also has access to, and leverages, all secrets of those compro-
mised parties. Furthermore, such corrupted nodes may deviate from the protocol, or
inject malformed messages. A variation of this ability is where the mix relay is also
the provider node meaning that the adversary additionally knows the mapping be-
tween clients and their mailboxes. When we say that a provider node is corrupt, we
restrict that node to being honest but curious. In Loopix, we assume that a fraction
of mix/provider relays can be corrupted or are operated by the adversary.

Malicious users. Finally, the adversary has the ability to participate in the Loopix
system as a compromised user, who may also deviate from the protocol. We assume

3.3. System model and security goals 39

GPA Corrupt
mixes

Corrupt
provider Insider

Sender-Recipient Third-Party unobservability X X X X

Sender unobservability X X X N/A

Sender anonymity X X X X

Receiver unobservability X X 7 N/A

Receiver anonymity X X 7 N/A

Table 3.1: The summary of Loopix’s security properties against different threats.

that the adversary can control a limited number of such users—effectively excluding
Sybil attacks [132] from the Loopix threat model—since we assume that honest
providers are able to ensure that at least a large fraction of their users base are
genuine users faithfully following all Loopix protocols. Thus, the fraction of users
controlled by the adversary may be capped to a small known fraction of the user
base. We further assume that the adversary can control a compromised user in a
conversation with an honest user, and become a conversation insider.

3.3.3 Security Goals

The Loopix system aims to provide resistance against both passive and active at-
tacks — including end-to-end correlation and (n−1) attacks. These properties are
inspired by the formal definitions from AnoA [174]. All security notions assume a
strong adversary with information on all users, with up to one bit of uncertainty. We
note, that AnoA framework provides a snapshot anonymity but does not consider
long-term intersection attacks, or other attacks in which the adversary is assumed
to observe the system over time [175, 176]. We start by defining the notion used
throughout this thesis. Next, we define the security goals which our system aims to
provide, summarized also in Table 3.1.

Notation
Throughout this thesis, we use the following notation. As {S → R} we denote
a communication from the sender S to the receiver R, {S→} denotes that there
is a communication from S to any receiver and {S 6→} denotes that there is no
communication from S to any receiver, however, S may still send cover messages.
Analogously, we write {→ R} to denote that there is a communication from any
sender to the receiver R and {6→ R} to denote that there is no communication from
any sender to R, however, R may still receive cover messages.

Definition of security goals
Sender-Receiver Third-party Unlinkability. The senders and receivers should be

40 The Loopix Anonymity System

unlinkable by any unauthorized party. Thus, we consider an adversary that wants
to infer whether two users are communicating. We define sender-receiver third
party unlinkability as the inability of the adversary to distinguish whether {S1→R1,
S2 → R2} or {S1 → R2,S2 → R1} for any online honest senders S1,S2 and honest
receivers R1,R2 of the adversary’s choice.

Loopix provides strong sender-receiver third-party unlinkability against the GPA
even in collaboration with corrupt mix nodes. We refer to Section 3.5.2 for our anal-
ysis of the unlinkability provided by individual mix nodes, Section 3.6 for a quan-
titative analysis of the sender-receiver third-party unlinkability of Loopix against
the GPA and honest-but-curious mix nodes, and Section 3.5.3 for our discussion on
malicious mixes performing active attacks.

Sender unobservability. Whether or not senders are communicating should be
hidden from an unauthorized party. We define sender unobservability as the inabil-
ity of an adversary to decide whether a specific online sender S is communicating
with any receiver {S→} or not {S 6→}, for any concurrently online honest sender S
of the adversary’s choice.

Loopix provides strong sender online unobservability against the GPA and even
against a corrupt provider. We refer to Section 3.5.1 for our analysis of the latter.

Note, that sender online unobservability directly implies the notion of sender
anonymity where the adversary tries to distinguish between two possible senders
communicating with a target receiver. Even if the receiver is under control of
the adversary, the sender’s anonymity is protected. Formally, {S1 → R,S2 6→} or
{S1 6→,S2→ R} for any concurrently online honest senders S1 and S2 and any re-
ceiver of the adversary’s choice. Loopix provides sender anonymity even in light of
a conversation insider, i.e., against a corrupt receiver.

Receiver unobservability. Whether or not receivers are communicating should be
hidden from an unauthorized party. We define receiver unobservability as the inabil-
ity of an adversary to decide whether any sender is communicating with a specific
receiver R {→ R} or not {6→ R}, for any online or offline honest receiver R of the
adversary’s choice.

Loopix provides strong receiver unobservability against the GPA, under the condi-
tion of an honest provider. We show in Section 3.5.1 how an honest provider assists
the receiver in hiding received messages from third party observers.

Note, that receiver unobservability directly implies the notion of receiver anonymity
where the adversary tries to distinguish between two possible receivers in commu-

3.4. The Loopix Architecture 41

nication with a target sender. Formally, {S→ R1, 6→ R2} or {6→ R1,S→ R2} for
any concurrently online honest sender S and any two honest receivers R1,R2 of the
adversary’s choice. 1

Non-Goals. Loopix provides anonymous unreliable datagram transmission and fa-
cilities replying to sent messages (through add-ons). This choice allows for flexible
traffic management, cover traffic, and traffic shaping. On the downside, higher-level
applications using Loopix need to take care of reliable end-to-end transmission and
session management. In Section 3.9, we discuss how the follow-up works on Loopix
offer reliable end-to-end transmission.

The provider-based architecture supported by Loopix aims to enable managed ac-
cess to the network, anonymous blacklisting to combat abuse [169], and payments
for differential access to the network [170]. However, we do not discuss these as-
pects of Loopix in this work and concentrate instead on the core anonymity features
and security properties described above.

3.4 The Loopix Architecture

In this section, we present detailed description of the Loopix system, depicted on
Figure 3.1.

3.4.1 Message packet format

All messages in Loopix are end-to-end encrypted and encapsulated into packets to
be processed by the mix network. We use the Sphinx packet design [177], to ensure
that intermediate mixes learn no additional information beyond some routing infor-
mation. All messages are padded to the same length, which hides the path length
and the relay position and guarantees unlinkability at each hop of the messages’
journey over the network. The Sphinx packet format allows for detection of tagging
attacks and replay attacks.

Each message wrapped into the Sphinx packet consists of a concatenation of
two separate parts: a header, carrying the layered encryption of meta-data for each
hop, and the encrypted payload, which allows for confidential message exchange.
The header provides each mix server on the path with confidential meta-data, which
is necessary to verify packet integrity and correctly process the packet. The structure

1If the receiver’s provider is honest, Loopix provides a form of receiver anonymity even in light
of a conversation insider: a corrupt sender that only knows the pseudonym of a receiver cannot learn
which honest client of a provider is behind the pseudonym.

42 The Loopix Anonymity System

Figure 3.1: The Loopix Architecture.

of the header consists of (I) a single element of a cyclic group that is re-randomized
at each hop, (II) an onion-encrypted vector, with each layer containing the routing
information for one hop, and (III) the message authentication code MACi, which
allows header integrity checking. The payload is encrypted using the LIONESS
cipher [178], which guarantees that in case the adversary modifies the payload in
transit, any information contained in it becomes irrecoverable. Thanks to the mes-
sage authentication code in the header and the LIONESS encryption the Sphinx
packet format thus allows for detection of tagging attacks.

We extend the Sphinx packet format to carry additional routing information in
the header to each intermediate relay, including a delay and additional flags.

Sphinx packet generation The sender, given the public keys of the recipient and
the nodes in the path, computes the sequence of shared secrets and blinded group el-
ements. Next, the sender encrypts with the derived secret keys the vector of routing
information and corresponding message authentication codes. The sender concate-
nates the computed header and onion-encrypted payload encapsulating confidential
message to send to the recipient.

Sphinx packet processing Each node after receiving the packet proceeds as fol-
lows. First, it computes a shared key using the group element included in the packet
header and its private key. Next, using the computed shared key, the node validates
the integrity of the packet by computing the hash of the encrypted routing infor-
mation vector and comparing it with the received MAC. If the MAC is correct, the

3.4. The Loopix Architecture 43

node, using the obtained key, strips off a single layer of encryption from the routing
information and payload. The decryption operation returns the routing commands,
including address of the next hop, and a new packet, which should be forwarded to
the next hop.

3.4.2 Message sending and cover traffic

Path selection. In Loopix messages are routed through l layers of mix nodes,
assembled in a stratified topology [164, 165]. Each mix node is connected only
with all the mix nodes from adjacent layers. This ensures that few links are used,
and those few links are well covered in traffic, since stratified topologies mix well
in few layers [164]. As opposed to circuit-based onion routing, in Loopix the com-
munication path for every single message is chosen independently, even between
the same pair of users. Hence, each packet injected into the mix network traverses
an independent path of relays, which prevents the correlation of streams of traffic.
To compose a new path the client picks a single mix node at random from each
layer. Providers act as the first and last layer of mix servers, hence are attached at
the beginning and end of the random selected path.

Preparing message for sending. To send a message, the sender generates a
random path, as described above. For each hop in the path the sender samples a ran-
dom delay from an exponential distribution (Exp(·)) with parameter µ , and includes
it in the vector of routing commends, together with any other auxiliary information,
to the corresponding relay. Only the authrorized mix relay can reveal the routing
commands encapsulated in particular encryption layer. Given the message, recipi-
ent, path and routing commends the client encapsulates them into a Sphinx packet
format.

Sending messages and cover traffic. Users and mix servers continuously
generate a bed of real and cover traffic that is injected into the network. Our de-
sign guarantees that all outgoing traffic sent by users can by modeled by a Poisson
process.
• Message sending. To send a message, a user packages their message into

a mix packet and places it into their buffer—a first-in-first-out (FIFO) queue that
stores all the messages scheduled to be sent. Each sender periodically checks, fol-
lowing the exponential distribution with parameter 1

λP
, whether there is any sched-

uled message to be sent in their buffer. If there is a scheduled message, the sender
pops this message from the buffer queue and sends it, otherwise a drop cover mes-

44 The Loopix Anonymity System

Figure 3.2: Sending a single message between two users using the Loopix system. The
dotted line depicts retrieving of messages.

sage is generated, in the same manner as a regular message, and sent (depicted as
the four middle blue, solid arrows in Figure 3.1). Drop cover messages are routed
through the sender’s provider and a random chain of mix nodes to a random desti-
nation provider. The destination provider detects the message is cover based on the
special drop flag encapsulated into the packet header, and drops it. Thus, regardless
of whether a user actually wants to send a message or not, there is always a stream
of messages being sent according to a Poisson process Pois(λP).

• Independent streams of cover traffic. Moreover, independently from the
above, all users emit separate streams of special indistinguishable types of cover
messages, each of them following an independent Poisson process. The first type of
cover messages are Poisson distributed loops emitted at rate λL. These are routed
through the network and looped back to the senders (the upper four red arrows in
Figure 3.1), by specifying the sending user as the recipient. These “loops” inspire
the system’s name. We denote the Poisson process responsible for loop cover mes-
sages as Pois(λL). Users also inject a separate stream of drop cover messages,
defined as before, following the Poisson distribution Pois(λD).

Each mix also injects its own loop cover traffic, drawn from a Poisson process with
rate Pois(λM), into the network. Mix servers inject mix packets that are looped
through a path, made up of a subset of other mix servers and one randomly selected
provider, back to the sending mix server, creating a second type of “loop”. This
loop originates and ends in a mix server (shown as the lower four green arrows in
Figure 3.1).

In Section 3.5 we examine how the loops and the drop cover messages help protect
against passive and active attacks.

3.4. The Loopix Architecture 45

Figure 3.3: Message storage and retrival.

Processing messages. Upon receiving a packet, each node, i.e., each mix and
provider, performs the operation of processing the Sphinx packet. While processing
the packet, the server recomputes the shared secret and checks the MAC’s correct-
ness. If this integrity test fails, the packet is dropped. Otherwise, the unwrapping
function returns the replay detection tag and the vector of routing commands, as
well the new packet. The vector of routing commands includes, among others, the
routing flag, the address of the next hop and the delay. After unwrapping the packet,
the node checks whether the returned replay detection tag has been already seen and
if so, drops the packet. This allows for detection and protection against replay at-
tacks. Otherwise, the node saves the tag in a data structure that stores previously
observed tags. Next, it checks whether the routing flag is set to Relay or Dest. The
Dest flag means that the received message is a loop message transferred back to the
node. In the case of the Relay flag, we consider two scenarios depending on whether
the processing node is a mix or a provider. In the case of a mix, the decrypted new
packet is send to the next hop, specified by address, after the delay has elapsed. In
the case of a provider, the new packet is either forwarded as before or saved in the
inbox of one of the provider’s clients specified by the address.

Message storage and retrival. Providers do not forward the incoming mix
packets to users but instead buffer them in clients’ inboxes. Users, when online,
poll providers at a fixed frequency or register their online status to download a fixed
subset of stored messages, allowing for the reception of the off-line messages. Re-
call that cover loops are generated by users and traverse through the network and
come back to the sender. Cover loops serve as a cover set of outgoing and incoming

46 The Loopix Anonymity System

Figure 3.4: The Poisson Mix strategy mapped to a Pool mix strategy.

real messages. Whenever a user requests messages, their provider responds with a
constant number of messages, which includes their cover loop messages and real
messages. If the inbox of a particular user contains fewer messages than this con-
stant number, the provider generates and sends dummy messages, indistinguishable
from other type of messages, to the sender up to that number, see Figure 3.3.

3.4.3 The Poisson Mix Strategy

Loopix leverages cover traffic to resist traffic analysis while still achieving low- to
mid-latency. To this end Loopix employs a mixing strategy that we call a Pois-
son Mix, to foil observers from learning about the correspondences between in-
put and output messages. The Poisson Mix is a simplification of the Stop-and-go
mix strategy [82]. A similar strategy has been used to model traffic in onion rout-
ing servers [179]. In contrast, recall that in Loopix each message is source routed
through an independent route in the network.

The Poisson Mix functions as follows: mix servers listen for the incoming
mix packets and received messages are checked for duplication and decoded using
the mix node’s private keys. The detected duplicates are dropped. Next, the mix
node extracts a subsequent mix packet. Decoded mix packets are not forwarded
immediately, but each of them is delayed according to a source pre-determined
delay di. Honest clients chose these delays, independently for each hop, from an
exponential distribution with a parameter µ that is assumed to be public and the
same for all mix nodes. This parameter determines how long the message is queued
in the mix. Thus, the end-to-end latency of the messages depends on the selected
parameter µ .

Mathematical model of a Poisson Mix. Honest clients and mixes generate
drop cover traffic, loop traffic, and messaging traffic following a Poisson process.
Aggregating Poisson processes results in a Poisson process with the sum of their
rates, therefore we may model the streams of traffic received by a Poisson mix as a

3.4. The Loopix Architecture 47

Poisson process. It is the superposition of traffic streams from multiple clients. It
has a rate λn depending on the number of clients and the number of mix nodes.

Since this input process is a Poisson process and each message is indepen-
dently delayed using an exponential distribution with parameter µ , the Poisson Mix
may be modeled as an M/M/∞ queuing system – for which we have a number of
well known theorems [180]. We know that output stream of messages is also a Pois-
son process with the parameter λn as the the input process. We can also derive the
distribution of the number of messages within a Poisson Mix in a steady state [57].
By the steady state we mean the state of the system in which all entities have al-
ready generated and processed messages for some reasonable period of time. By
the convergence of the system to the equilibrium, this guarantees that the observed
traffic closely follows the assumed distribution.

Lemma 1. The mean number of messages in the Poisson Mix with input Poisson
process Pois(λ) and exponential delay parameter µ at a steady state follows the
Poisson distribution Pois(λ/µ).

These characteristics, which give the Poisson Mix its name, allow us to calcu-
late the mean number of messages perfectly mixed together at any time, as well as
the probability that the number of messages falls below or above certain thresholds.

The Poisson Mix, under the assumption that it approximates an M/M/∞ queue
is a stochastic variant of a pool mixing strategy [81]. Conceptually, every message
sent or received leads to a pool within which messages are indistinguishable due
to the memoryless property of the exponential delay distribution (described in Sec-
tion 2.1). Intuitively, any two messages in the same pool are emitted next with
equal probability – no matter how long they have been waiting. As illustrated in
Figure 3.4, the receiving event i−1 leads to a pool of messages i−1, until the send-
ing event i. From the perspective of the adversary observing all inputs and outputs,
all messages in the pool i−1 are indistinguishable from each other. Only the pres-
ence of those messages in the pool is necessary to characterize the hidden state of
the mix (not their delay so far). Relating the Poisson mix to a pool mix allows us
to compute easily and exactly the entropy metric for the anonymity it provides [60]
within a trace (used in Section 3.5.2). It also allows us to compute the likelihood that
an emitted message was any specific input message used in our security evaluation.

Synchronous variant of Loopix. While Loopix operates asynchronously by
design, we now also consider synchronous Loopix variant that operates in discrete
rounds and thus cannot use the exponential mixing strategy, where delays attached
to the packets are drawn from a continuous distribution. In a single round of the

48 The Loopix Anonymity System

synchronous system, the mixes gather packets, thus creating pools of packets. At
the time of forwarding, the mix takes a number of packets from the pool and for-
wards them to the next destination. All the messages gathered in the pool during a
single round are indistinguishable from each other, and each message has an equal
probability of being sent. Hence, this mixing strategy leads to a geometric distri-
bution [57], which similarly to exponential distribution is memoryless. Hence, the
security analysis of mixing we present next can be applied both in the asynchronous
and synchronous design. However, in contrast to the asynchronous Poisson mixes
we presented, the synchronous variant of Loopix is vulnerable to the sleeper at-
tacks [181].

3.5 Analysis of Loopix security properties

In this section we present the analytical and experimental evaluation of the security
of Loopix and argue its resistance to traffic analysis and active attacks.

3.5.1 Passive attack resistance

Message Indistinguishability. Loopix relies on the Sphinx packet for-
mat [177] to provide bitwise unlinkability of incoming and outgoing messages
from a mix server; it does not leak information about the number of hops a single
message has traversed or the total path length; and it is resistant to tagging attacks.

For Loopix, we make minor modifications to Sphinx to allow auxiliary meta-
information to be passed to different mix servers. Since all the auxiliary infor-
mation is encapsulated into the header of the packet in the same manner as any
meta-information was encapsulated in the Sphinx design, the security properties
are unchanged. An external adversary and a corrupt intermediate mix node or a cor-
rupt provider will not be able to distinguish real messages from cover messages of
any type. Thus, the GPA observing the network cannot infer any information about
the type of the transmitted messages, and intermediate nodes cannot distinguish real
messages, drop cover messages or loops of clients and other nodes from each other.
Providers are able to distinguish drop cover message destined for them from other
messages, since they learn the drop flag attached in the most inner header of the
packet. Each mix node learns the delay chosen by clients for this particular mix
node, but all delays are chosen independently from each other.

Client-Provider unobservability. We now argue the sender and receiver un-
observability against different adversaries in our threat model. Users emit payload

3.5. Analysis of Loopix security properties 49

messages following a Poisson distribution with parameter λP. All messages sched-
uled for sending by the user are placed within a first-in-first-out buffer. According
to a Poisson process, a single message is popped out of the buffer and sent, or a
drop cover message is sent in case the buffer is empty. Thus, from an adversar-
ial perspective, there is always traffic emitted modeled by Pois(λP). Since clients
send also streams of cover traffic messages with rates λL for loops and λD for drop
cover messages, the traffic sent by the client follows Pois(λP +λL +λD). Thus, we
achieve perfect sender unobservability, since the adversary cannot tell whether a
genuine message or a drop cover message is sent.

When clients query providers for received messages, the providers always
send a constant number of messages to the client. If the number of messages in
client’s inbox is smaller than a constant threshold, the provider generates additional
dummy messages. Thus, the adversary observing the client-provider connection
cannot learn how many messages were in the user’s inbox. Note that, as long as the
providers are honest, the protection and receiver unobservability is perfect and the
adversary cannot learn any information about the inbox and outbox of any client.

Corrupt providers. We distinguish the sender’s and recipient’s providers by
calling them the ingress and egress providers respectively. If the ingress provider is
compromised, all security properties of the Loopix system are still preserved, since
the ingress provider observes a rate of traffic shaped by the Poisson distribution
coming from the client and cannot distinguish whether the received packets carry
real, loop or drop messages.

If the egress provider is malicious it can reveal to the adversary whether a
particular client is receiving messages or not since the provider is responsible for
managing the clients’ inboxes. However, even an egress provider is still uncertain
whether a received message is genuine or the result of a client loop – this cannot be
determined from their bit pattern alone. Further statistical attacks may be possible,
and we leave quantifying the exact information leakage against this threat model as
future work. Thus, Loopix does not guarantee perfect receiver unobservability in
the presence of a corrupted egress provider.

3.5.2 Poisson mix security

We continue our analysis of passive attacks by showing that a single honest Poisson
mix provides a measure of sender-receiver unlinkability. From the properties of
Poisson mix presented in Section 3.4.3, we know that the number of messages in
the mix server at a steady state depends on the ratio of the incoming traffic (λ) and

50 The Loopix Anonymity System

the delay parameter (µ). The number of messages in each mix node at any time
will on average be λ

µ
. However, an adversary observing the messages flowing into

and out of a single mix node could estimate the exact number of messages within a
mix with better accuracy – hindered only by the mix loop cover traffic.

3.5.2.1 Case 1: No mix loop cover traffic

We first consider, conservatively, the case where a mix node is not generating any
loops and the adversary can count the exact number of messages in the mix. Let
us define on,k,l as an adversary A observing an empty mix in which n messages
arrive and are mixed together. The adversary then observes an outgoing set of n−k
messages and can infer that there are now k < n messages in the mix. Next, l
additional messages arrive at the mix before any message leaves, and the pool now
mixes k + l messages, see Figure 3.5. The adversary then observes exactly one
outgoing message m and tries to correlate it with any of the n+ l messages which
she has observed arriving at the mix node.

The following lemma is based on the memoryless property of the Poisson mix.
It provides an upper bound on the probability that the adversary A correctly links
the outgoing message m with one of the previously observed arrivals in observation
on,k,l .

Theorem 1. Let m1 be any of the initial n messages in the mix node in scenario
on,k,l , and let m2 be any of the l messages that arrive later. Then

Pr(m = m1) =
k

n(l + k)
,

Pr(m = m2) =
1

l + k
.

(3.1)

Note that the last l messages that arrived at the mix node have equal probabili-
ties of being the outgoing message m, independently of their arrival times. Thus, the
arrival and departure times of the messages cannot be correlated, and the adversary
learns no additional information by observing the timings. Note that 1

l+k is an upper
bound on the probability that the adversary A correctly links the outgoing message
to an incoming message. Thus, continuous observation of a Poisson mix leaks no
additional information other than the number of messages present in the mix. We
leverage those results for a single Poisson Mix to simulate the information propa-
gated withing a the whole network observed by the adversary (c.f. Section 3.6).

3.5. Analysis of Loopix security properties 51

Figure 3.5: Observation on,k,l

Quantifying mix node anonymity using entropy metric. A common mea-
sure of anonymity is the anonymity set, which reflects the size of the set of other
packets with which our message can be confused by the attacker. However, an
adversary observing a mix for a while may assign different probabilities for each
outgoing packet being linked to the observed incoming packet. Different proba-
bilities of different members of the anonymity set reveal a lot of information to
the attacker. Therefore, we quantify the anonymity of messages empirically, using
the concept of Shannon entropy, an information theory based metric introduced by
Danezis et al. [60, 61], which allows us to reason about the information contained
in the probability distribution.

Definition of Shannon entropy. Let X be a discrete random variable over the finite
set X with probability mass function p(x) = Pr(X = x). The Shannon entropy H(X)

of a discrete random variable X is defined as

H(X) =−∑
x∈X

p(x) log p(x). (3.2)

In a nutshell, entropy measures the unpredictability (randomness) of informa-
tion content [54]. The information entropy H(X) is the average amount of infor-
mation conveyed by an event when considering an entire probability distribution of
a discrete random variable. The more certain or deterministic the event is, the less
information the variable contains. Hence, the increase in entropy is an increase in
uncertainty. Entropy is zero when one outcome is certain to occur, and maximum
when all event outcomes are equally probable.

In this section, we measure the entropy of a single mix node, while in Sec-
tion 3.6 we study the end-to-end anonymity. In order to empirically measure the
entropy, we record the traffic flow for a single mix node and compute the distribu-
tion of probabilities that the outgoing message is the adversary’s target message.
Given this distribution we compute the value of Shannon entropy, a measure of

52 The Loopix Anonymity System

unlinkability of incoming to outgoing messages.

Let on,k,l be an observation as defined earlier for a mix pool at time t. We note
that any outgoing message will have a distribution over being linked with past input
messages, and the entropy Ht of this distribution is our anonymity metric. Ht can be
computed incrementally given the size of the pool l (from previous mix rounds) and
the entropy Ht−1 of the messages in this previous pool, and the number of messages
k received since a message was last sent:

Ht = H
({

k
k+ l

,
l

k+ l

})
+

k
k+ l

logk+
l

k+ l
Ht−1, (3.3)

for any t > 0 and H0 = 0. Thus for sequential observations we can incrementally
compute the entropy metric for each outgoing message, without remembering the
full history of the arrivals and departures at the Poisson mix. We use this method
to compute the entropy metric illustrated in Figure 3.6. For the computation we
simulate the mix using the simpy package in Python. All data points are averaged
over 50 simulations.

Simulation results. Figure 3.6 depicts the change of entropy against an increasing
rate of incoming mix traffic λ . We simulate the dependency between entropy and
traffic rate for different mix delay parameter µ (note, that EX = 1

µ
) by recording the

traffic flow and changing state of the mix node’s pool. As expected, we observe that
for a fixed delay, the entropy increases when the rate of traffic increases. The higher
delay also results in an increase in entropy, denoting a larger potential anonymity
set, since more messages are mixed together. The simulation shows how the rate of
incoming traffic and assigned delay influence the entropy. Therefore, depending on
the application we can adjust those parameters accordingly.

3.5.2.2 Case 2: Mix generates loop cover traffic

In case the mix node emits loop cover traffic, the adversary with observation on,k,l ,
tries to estimate the probability that the observed outgoing message is a particular
target message she observed coming into the mix node. An outgoing message can
be either input message or a loop message generated by the mix node – resulting in
additional uncertainty for the adversary.

Theorem 2. Let m1 be any of the initial n messages in the mix node in scenario
on,k,l , and let m2 be any of the l messages that arrive later. Let λM denote the rate

3.5. Analysis of Loopix security properties 53

Figure 3.6: Entropy versus the changing rate of the incoming traffic for different delays with
mean 1

µ
. In order to measure the entropy we run a simulation of traffic arriving

at a single Loopix mix node.

at which mix node generates loop cover traffic. Then,

Pr(m = m1) =
k
n
· µ

(l + k)µ +λM
,

Pr(m = m2) =
µ

(l + k)µ +λM
.

Proof. Let us assume, that in mix node Mi there are n′ messages at a given moment,
among which is a target message mt . Each message has a delay di drawn from
the exponential distribution with parameter µ . The mix node generates loops with
distribution Pois(λM). The adversary observes an outgoing message m and wants
to quantify whether this outgoing message is her target message. The adversary
knows, that the output of the mix node can be either one of the messages inside the
mix or its loop cover message. Thus, for any message mt , the following holds

Pr [m = mt] = Pr [m 6= loop] ·Pr [m = mt |m 6= loop] (3.4)

We note that the next message m is a loop if and only if the next loop message is
sent before any of the messages within the mix, i.e., if the sampled time for the next
loop message is smaller than any of the remaining delays of all messages within the
mix. We now leverage the memoryless property of the exponential distribution to
model the remaining delays of all n′ messages in the mix as fresh random samples

54 The Loopix Anonymity System

from the same exponential distribution.

Pr [m 6= loop] = 1−Pr [m = loop]

= 1−Pr [X < d1∧X < d2∧ . . .∧X < dn′]

= 1−Pr [X < min{d1,d2, . . .dn′}]

(3.5)

We know, that di ∼ Exp(µ) for all i ∈ {1, . . . ,n′} and X ∼ Exp(λM). Moreover, we
know that the minimum of n independent exponential random variables with rate
µ is an exponential random variable with parameter ∑

n′
i µ . Since all the delays di

are independent exponential variables with the same parameter, we have for Y =

min{d1,d2, . . .dn′}, Y ∼ Exp(n′µ). Thus, we obtain the following continuation of
Equation (3.5).

Pr [m 6= loop] = 1−Pr [X < Y] = 1−
∫

∞

0
Pr [X < Y |X = x]Pr [X = x]dx

= 1−
∫

∞

0
Pr [x < Y]λMe−λMxdx

= 1−
∫

∞

0
e−n′µx

λMe−λMxdx

(3.6)

= 1− λM

λM +nµ
=

n′µ
n′µ +λM

Since the probability to send a loop depends only on the number of messages in a
mix, but not on which messages are in the mix, this probability is independent of the
probability from Theorem 1. Theorem 2 follows directly by combining Theorem 1
and Equation (3.7), with n′ = k+ l. We get for messages m1 that previously were in
the mix,

Pr [m = m1] = Pr [m 6= loop] ·Pr [m = m1|m 6= loop]

=
(k+ l)µ

(k+ l)µ +λM
· k

n(k+ l)
=

k
n
· µ

(k+ l)µ +λM
.

(3.7)

Analogously, we get for m2,

Pr [m = m2] = Pr [m 6= loop] ·Pr [m = m2|m 6= loop]

=
(k+ l)µ

(k+ l)µ +λM
· 1

k+ l
=

µ

(k+ l)µ +λM
.

(3.8)

This concludes the proof.

We conclude that the loops generated by the mix node obfuscate the adver-

3.5. Analysis of Loopix security properties 55

sary’s view and decrease the probability of successfully linking input and output of
the mix node. In Section 3.5.3, we next show that those types of loops also protect
against active attacks.

3.5.3 Active attack resistance

Lemma 1 in Section 3.4.3 gives the direct relationship between the expected num-
ber of messages in a mix node, the rate of incoming traffic, and the delay induced
on a message while transiting through a mix. By increasing the rate of cover traf-
fic, λD and λL, users can collectively maintain strong anonymity with low message
delay. However, once the volume of real communication traffic λP increases, users
can tune down the rate of cover traffic in comparison to the real traffic, while main-
taining a small delay and be confident their messages are mixed with a sufficient
number of messages.

In the previous section, we analyze the security properties of Loopix when the
adversary observes the state of a single mix node and the traffic flowing through it.
We show, that the adversary’s advantage is bounded due to the indistinguishability
of messages and the memoryless property of the Poisson mixing strategy. We now
consider an attack at a mix node where an adversary blocks all but a target message
from entering in order to follow the target message when it exits the mix node. This
is referred to as an (n-1) attack [68].

A mix node needs to distinguish between an active attack and loop messages
dropped due to congestion. We assume that each mix node chooses some public
parameter r, which is a fraction of the number of loops that are expected to return. If
the mix node does not see this fraction of loops returning they alter their behaviour.
In extremis such a mix could refuse to emit any messages – but this would escalate
this attack to full denial-of-service. A gentler approach involves generating more
cover traffic on outgoing links [182].

To attempt an (n-1) attack, the adversary could simply block all incoming mes-
sages to the mix node except for a target message. The Loopix mix node can notice
that the self-loops are not returning and deduce it is under attack. Therefore, an
adversary that wants to perform a stealthy attack has to be judicious when blocking
messages, to ensure that a fraction r of loops return to the mix node, i.e. the adver-
sary must distinguish loop cover traffic from other types of traffic. However, traffic
generated by mix loops is indistinguishable from other network traffic and they can-
not do this better than by chance. Therefore given a threshold r = λM

s ,s ∈ R>1 of
expected returning loops when a mix observes fewer returning it deploys appropri-
ate countermeasures.

56 The Loopix Anonymity System

We analyze this strategy: since the adversary cannot distinguish loops from
other traffic the adversary can do no better than block traffic uniformly such that a
fraction R = λ

s = λR+λM
s enter the mix, where λR is the rate of incoming traffic that

is not the mix node’s loops. If we assume a steady state, the target message can
expect to be mixed with λR

s·µ messages that entered this mix, and λM
µ

loop messages
generated at the mix node. Thus, the probability of correctly blocking a sufficient
number of messages entering the mix node so as not to alter the behaviour of the
mix is:

Pr(x = target) =
1

λR/s ·µ +λM/µ
=

sµ

sλM +λR

Due to the stratified topology, providers are able to distinguish mix loop mes-
sages sent from other traffic, since they are unique in not being routed to or from
a client. This is not a substantial attack vector since mix loop messages are evenly
distributed among all providers, of which a small fraction are corrupt and providers
do not learn which mix node sent the loop to target it.

3.6 End-to-End Anonymity Evaluation

So far we presented how a single mix node in the Loopix system ensures unlinka-
bility of incoming and outgoing messages by measuring the entropy of information
inferred by the observing adversary, or how the loop packets allow the mix nodes,
as well the clients, detect active (n− 1) attacks. Analysing a single mix node is
equivalent to analysing a mix network as a black box. However, a global adversary
can observe the entire network traffic and the intermediate links between nodes, and
hence see all incoming and outgoing traffic in every layer, or when users send and
receive messages. Therefore, in this section, we focus on the analysis of end-to-end
anonymity offered by Loopix.

In order to do that, we build a mix network discrete simulator, which given
different configuration parameters of the network topology, number of users or
latency-overhead demands, allows to empirically evaluate the anonymity and per-
formance properties of Loopix. Our simulator realizes the Loopix system design
presented in Section 3.4.2 It is implemented in Python3, and the interaction be-
tween the different network components (e.g., clients, mixes) is simulated using the
discrete-event Simpy framework. In general, our simulator allows analysing how
anonymity, latency, and bandwidth overhead are affected by various scenarios of

2The code of the simulator is currently in a private Git repository but can be shared with readers,
who should contact the author if interested.

3.6. End-to-End Anonymity Evaluation 57

deployment of such networks, like volume of traffic or throughput, latency require-
ments, packet size or network topology.

The information-theoretic anonymity metric presented in section Section 3.5.2
can be also used to measure the end-to-end anonymity offered by Loopix. However,
the limitation of this metric is that it allows computing anonymity per single packet
in one run of the system, hence it does not give us any insight about the information
leaked by long-term patterns occurring during repeated uses of the system. There-
fore, we introduce a novel approach for measuring the end-to-end anonymity of
anonymous communication systems, the sender-receiver third-party unlinkability
metric, which allows easy analysis of cumulative privacy loss over multiple rounds.

3.6.1 Sender-Receiver Third-party Unlinkability

We evaluate the sender-receiver third-party unlinkability of the full Loopix system
through an empirical analysis of the propagation of messages in the network. Our
key metric is the expected difference in likelihood that a message leaving the last mix
node is sent from one sender in comparison to another sender. We use this metric
to measure the chances of the adversary correctly correlating the communicating
users if the adversary is given more information in advance, meaning - the adversary
already knows that either Alice or Bob are communicating with Eva. This is a large
(but realistic) advantage for the adversary, and we want to investigate how much
such information impacts the anonymity offered by the network.

To quantify the sender-receiver third-party unlinkability we consider the fol-
lowing security experiment. The adversary selects two target senders, S0 and S1,
and a target recipient R. One of those senders, selected secretly by the challenger,
will send messages to the target recipient. The adversary observing the network
traffic tries to infer, who of those two senders communicates with the target recipi-
ent. Given two probabilities p0 = Pr[S0] and p1 = Pr[S1] that the message was sent
by senders S0 and S1, respectively, we calculate

ε = |log(p0/p1)| . (3.9)

Intuitively, we can think about ε as the maximum leakage the adversary can
learn from observing the system and both the events S0 and S1 (so how much the
events differ). As δ we define the probability by which this leakage exceeds ε (small
ε and δ values are better).

58 The Loopix Anonymity System

Experimental Evaluation. To approximate the probabilities p0 and p1, we pro-
ceed as follows. We simulate U = 100 senders that generate and send messages
(both payload and cover messages) with a rate λ = 2. Among them are two chal-
lenge senders S0 and S1 that send payload messages at a constant rate, i.e, they add
one messages to their sending buffer every time unit.

Whenever a challenge sender S0 or S1 sends a payload message from its buffer,
we tag the message with a label S0 or S1, respectively. All other messages, including
messages from the remaining 98 clients and the cover messages of S0 and S1 are
unlabeled. At every mix we track the probability that an outgoing message is labeled
S0 or S1, depending on the messages that entered the mix node and the number of
messages that already left the mix node, as in Theorem 1. Thus, messages leaving a
mix node carry a probability distribution over labels S0, S1, or ‘unlabeled’. Corrupt
mix nodes, assign to outgoing messages their input distributions. The probabilities
naturally add up to 1. For example, a message leaving a mix can be labeled as
{S0 : 12%,S1 : 15%,unlabeled : 73%}.

In a burn-in phase of 2500 time units, the 98 senders without S0 or S1 com-
municate. Then we start the two challenge senders and then simulate the network
for another 100 time units, before we compute the expected difference in likelihood
metric. We pick a final mix node and using probabilities of labels S0 and S1 for any
message in the pool we calculate ε as in Equation (3.9).

This is a conservative approximation: we tell the adversary which of the mes-
sages leaving senders S0 and S1 are payload messages; and we do not consider
mix or client loop messages confusing them3. However, when we calculate our
anonymity metric at a mix node we assume this mix node to be honest.

Results. We compare our metric for different parameters: depending on the de-
lay parameter µ , the number of layers in our topology l and the percentage of cor-
rupt mix nodes in the network. All simulations are averaged over 100 repetitions
and the error bars are the standard deviation.
Delay. Increasing the average delay (by decreasing parameter µ) with respect to
the rate of message sending λ immediately increases anonymity (decreases ε) (Fig-
ure 3.7). For µ = 2.0 and λ/µ = 1, Loopix still provides a weak form of anonymity.
As this fraction increases, the log likelihood ratio grow closer and closer to zero.
We consider values λ/µ ≥ 2 to be a good choice in terms of anonymity.

Number of layers. By increasing the number of layers of mix nodes, we can fur-

3The soundness of our simplification can be seen by the fact that we could tell the adversary
which messages are loops and the adversary could thus ignore them. This is equivalent to removing
them, as an adversary could also simulate loop messages.

3.7. Performance Evaluation 59

Figure 3.7: Likelihood difference ε vs the delay parameter µ of mix nodes. We use λ = 2,
a topology of 3 layers with 3 nodes per layer and no corruption.

ther strengthen the anonymity of Loopix users. As expected, using only one or two
layers of mix nodes leads to high values of adversary advantage ε . For a increasing
number of layers, ε approaches zero (Figure 3.8). We consider a number of 3 or
more layers to be a good choice. We believe the bump between 5–8 layers is due to
messages not reaching latter layers within 100 time units. Results from experiments
with increased duration do not display such a bump.

Corruption. Finally, we analyze the impact that corrupt mix nodes have on the ad-
versary advantage ε (Figure 3.9). We assume that the adversary randomly corrupts
mix nodes. Naturally, the advantage ε increases with the percentage of corrupt mix
nodes in the network. In a real-world deployment we do not expect a large fraction
of mix nodes to be corrupt. While the adversary may be able to observe the entire
network, to control a large number of nodes would be more costly.

3.7 Performance Evaluation

Implementation. We implement the Loopix system prototype in 4000 lines of
Python2.7 code for mix nodes, providers and clients, including unit-tests, deploy-
ment, and orchestration code. Loopix source code is available under an open-source
license.4 We use the Twisted15.5.0 network library for networking; as well as the
Sphinx mix packet format and the cryptographic tools from the petliblibrary.5,6 We

4https://github.com/UCL-InfoSec/loopix
5http://sphinxmix.readthedocs.io/en/latest/
6http://petlib.readthedocs.org

https://github.com/UCL-InfoSec/loopix
http://sphinxmix.readthedocs.io/en/latest/
http://petlib.readthedocs.org

60 The Loopix Anonymity System

Figure 3.8: Likelihood difference ε vs the number of layers of mix nodes with 3 mix nodes
per layer. We use λ = 2, µ = 1, and no corruption.

Figure 3.9: Likelihood difference ε vs the percentage of (passively) corrupted mix nodes.
We use λ = 2, µ = 1 and a topology of 3 layers with 3 nodes per layer.

modify Sphinx to use NIST/SEGS-p224 curves and to accommodate additional
information inside the packet, including the delay for each hop and auxiliary flags.
We also optimize the Sphinx implementation leading to processing times per packet
of less than 1ms.

The most computationally expensive part of Loopix is messages processing
and packaging, which involves cryptographic operations. Thus, we implement
Loopix as a multi-thread system, with cryptographic processing happening in a
thread pool separated from the rest of the operations in the main thread loop. To
recover from congestion we implement active queue management based on a PID

3.7. Performance Evaluation 61

controller and we drop messages when the size of the queue reaches a (high) thresh-
old.

Experimental Setup. We present an experimental performance evaluation of
the Loopix system running on the AWS EC2 platform. All mix nodes and providers
run as separate instances. Mix nodes are deployed on m4.4xlarge instances run-
ning EC2Linux on 2.3 GHz machines with 64 GB RAM memory. Providers, since
they handle more traffic, storage and operations, are deployed on m4.16xlarge in-
stances with 256 GB RAM. We select large instances to ensure that the providers
are not the bottleneck of the bandwidth transfer, even when users send messages at
a high rate. This reflects real-world deployments where providers are expected to
be well-resourced. We also run one m4.16xlarge instance supporting 500 clients.
We only show results for 500 clients, due to limitations of our experimental hard-
ware setup such as ports and memory. A real world deployment of Loopix would
scale to a larger client base. We believe that our empirical analysis is a more ac-
curate assessment of real-world performance than those reported by other works,
e.g. [133, 135], which depend on simplish extrapolation. In order to measure the
system performance, we run six mix nodes, arranged in a stratified topology with
three layers, each layer composed of two mix nodes. Additionally, we run four
providers, each serving approximately 125 clients. The delays of all the messages
are drawn from an exponential distribution with parameter µ , which is the same for
all mix servers in the network. All measurements are taken from network traffic
dumps using tcpdump.

Bandwidth. First, we evaluate the increase of bandwidth of mix nodes by mea-
suring the rate at which a single mix node processes messages, for an increasing
overall rate at which users send messages. We set up the fixed delay parameter
µ = 1000 (s.t. the average delay is 1ms). We have 500 clients actively sending
messages at rate λ each, which is the sum of payload, loop and drop rates, i.e.,
Pois(λ)=Pois(λL+λD+λP). We start our simulation with parameters λL = λD = 1
and λP = 3 messages per minute for a single client. Mix nodes send loop cover traf-
fic at rate starting from λM = 1. Next, we periodically increase each Poisson rate by
another 2 messages per minute. Each packet sent through the network has a size of
a few kilobytes only, but this size is a parameter that can, of course, be increased to
fit the needs of a particular application. In order to measure the overall bandwidth,
i.e. the number of all messages processed by a single mix node, we use the network
packet analyzer tcpdump. Since real and cover message packets are indistinguish-
able, we measure the good throughput by encapsulating an additional, temporary,

62 The Loopix Anonymity System

Figure 3.10: Overall bandwidth and good throughput per second for a single mix node.

typeFlag in the packet header for this evaluation, which leaks to the mix the mes-
sage type—real or cover—and is recorded. Knowing the parameters λP, λL, and
λD the adversary can try to estimate how many messages on average in the outgo-
ing stream are real, loop or drop messages. However, the average estimation does
not give the adversary any significant information, since the outgoing traffic may
contain various numbers of each type of message which an adversary is not able to
distinguish between.

Figure 3.10 illustrates the number of total messages and the number of payload
messages that are processed by a single mix node versus the overall sending rate λ

of a single user. We observe that the bandwidth of the mix node increases linearly
until it reaches around 225 messages per second. After that point the performance
of the mix node stabilizes and we observe a much smaller growth. We highlight
that the amount of real traffic in the network depends on the parameter λP within
λ . A client may chose to tune up the rate of real messages sent, by tuning down the
rate of loops and drop messages – at the potential loss of security in case less cover
traffic is present in the system overall. Thus, depending on the size of the honest
user population in Loopix, we can increase the rate of goodput.

Latency Overhead & Scalability End-to-end latency overhead is the cost of
routing and decoding relayed messages, without any additional artificial delays. We
run simulations to measure its sensitivity to the number of users participating in the
system. We measure the time needed to process a single packet by a mix node,
which is approximately 0.6ms. This cost is dominated by the scalar multiplication
of an elliptic curve point and symmetric cryptographic operations. For the end-to-

3.7. Performance Evaluation 63

Figure 3.11: Latency overhead of the system for rates λP = λL = λD = 10,λM = 10 per
minute, and no additional delay added to the messages by the senders.

end measurement, we run Loopix with a setup where all users have the same rates
of sending real and cover messages, such that λP = λD = λL = 10 messages per
minute and mix servers generate loops at rate λM = 10 messages per minute. All
clients set a delay of 0.0 seconds for all the hops of their messages – to ensure we
only measure the system overhead, not the artificial mixing delay.

Figure 3.11 shows that increasing the number of online clients, from 50 to 500,
raises the latency overhead by only 0.37ms. The variance of the processing delay
increases with the amount of traffic in the network, but more clients do not signifi-
cantly influence the average latency overhead. Neither the computational power of
clients nor mix servers nor the communication between them seem to become bot-
tlenecks for these rates. Those results show that the increasing number of users in
the network does not lead to any bottleneck for our parameters. The measurements
presented here are for a network of 6 mix nodes, however we can increase the sys-
tem capacity by adding more servers. Thus, Loopix scales well for an increasing
number of users.

We also investigate how increasing the delays through Poisson Mixing with
µ = 2 affects the end-to-end latency of messages given setup where λP = λL = λD =

60 per minute and λM = 60 per minute.. We measure this latency through timing
mix heartbeat messages traversing the system. Figure 3.12 illustrates that when the
mean delay 1/µ sec. is higher than the processing time (∼ 1ms−2ms), the end-to-
end latency is determined by this delay, and follows the Gamma distribution with
parameter being the sum of the exponential distribution parameter over the number
of servers on the path. The good fit to a gamma distribution provides evidence that
the implementation of Loopix is faithful to the queuing theory models our analysis
assumes.

64 The Loopix Anonymity System

Figure 3.12: End-to-end latency histogram measured through timing mix node loops. The
latency of the message is determined by the assigned delay and fits the
Gamma distribution with mean 1.93 and standard deviation 0.87.

3.8 Comparison with Related Work

In Section 2.3, we presented a detailed survey of the literature on decentralized
anonymous communication systems. In this section, we outline the main differ-
ences, both in terms of the security properties and performance capabilities, be-
tween Loopix and the designs described in Section 2.3. A summary is provided
in Table 3.2.

Low Low Communication Scalable Asynchronous Active Offline Resistance
Latency Overhead Deployment Messaging† Attack Resistant Storage* to GPA

Loopix X X X X X X X

(1) Dissent [145] 7 7 7 7 X 7 X

(2) Vuvuzela [133] 7 7 X 7 X 7 X

(3) Riposte [146] 7 7 X 7 X 7 X

(4) Atom [150] 7 X X 7 X 7 X

(5) Riffle [147] X X 7 7 X 7 X

(6) AnonPoP [137] 7 X X 7 7 X X

(7) Pung [138] 7 7 7 7 X X X

(8) Tor [43] X X X X 7 7 7

(9) Aqua [152] X X X X 7 7 7

(10) Stadium [135] 7 X X 7 X 7 X

(11) Karaoke [136] 7 X X 7 X 7 X

(12) XRD [144] 7 7 7 7 X 7 X

Table 3.2: Comparison of Loopix and modern anonymous communication systems.7

We start our comparison with Tor [43], as it is the most popular low-latency
anonymity system, with almost 2 million users daily. While Tor offers low-latency

3.8. Comparison with Related Work 65

and scalability, its security properties are limited to the local adversaries. As stated
in the Tor paper ’Tor does not claim to completely solve end-to-end timing or inter-
section attacks’, hence Tor can be easily defeated by a network adversary who can
monitor both the entry and exit points of the network and perform end-to-end cor-
relation of traffic flows, or has a global view on the network [44, 45, 46, 47, 48]. Its
privacy guarantees weaken further if the adversary has capabilities to launch active
attacks. In comparison, Loopix resists both traffic analysis and active attacks, yet
similarly to Tor scales horizontally, and can be also used for low-latency communi-
cation.

Likewise Loopix, Vuvuzela [133] protects against both passive adversaries
and active attacks on communication links as long as there is one honest mix node.
Since Vuvuzela operates in rounds, offline users lose the ability to receive messages.
Loopix does not operate in rounds, thus the end-to-end latency can be significantly
smaller than in Vuvuzela, depending on the delay parameter the senders choose.
Moreover, Loopix allows off-line users to receive messages and uses parallel mix
nodes to improve the scalability of the network. In Vuvuzela on the other hand,
all messages must traverse a single chain of relay servers, however, this comes at
a non-trivial bandwidth cost, both for the servers and network users. Moreover,
Vuvuzela does not aim to prevent servers from tampering with the users’ messages,
and as a result, a malicious server can drop all but one honest user’s messages (hence
perform (n-1) attack). Such attack cannot occur in Loopix thanks to the loop cover
traffic.

Stadium [135] and AnonPop [137] refine Vuvuzela; both operating in rounds
making the routing of messages dependent on the dynamics of others. To increase
its scalability in Stadium mixing is parallelized, i.e., each mix receives only a frac-
tion of the overall traffic, mixes those messages, and then again splits the messages
among other servers - this is a similar approach to the use of Stratified topology
proposed earlier in Loopix. Stadium lacks also offline storage, while AnonPop does
not protect against active attacks. Loopix provides both properties, and because it
operates continuously it avoids user synchronization issues.

Cmix [142] resists traffic analysis and intersection attacks, similarly to Loopix.
However, all traffic is relayed via a fixed-cascade, hence Cmix does not scale hor-
izontally. Moreover, to allow for low-latency communication, it requires long pre-
computation phase. Furthermore, Cmix leaks information about how many mes-

7By *, we mean if the design intentionally incorporates provisions for delivery of messages
when a user is offline, perhaps for a long period of time. By †, we mean that the system operates
continuously and does not depend on synchronized rounds for its security properties and users do
not need to coordinate to communicate together.

66 The Loopix Anonymity System

sages each user received and is vulnerable to tagging attacks and insider attacks.

XRD [144] is an anonymous messaging system, that scales horizontally, by
distributing the workload across many parallel mix chains, similarly to Loopix.
XRD offers strong security properties, by ensuring that every pair of users inter-
sects at one of the chains. However, to guarantee that each user has to send O(

√
N)

messages given the network of N mix servers. This imposes a high overhead for the
users and increases significantly the workload of each mix server. Therefore, the
cost of adding a single user to the system is expensive, which is a large limitation
for deployment. Hence, XRD has, two main drawbacks compared to Loopix; it
does not scale well with the increasing user base and introduces significant latency
overheads. At the time of writing this work, there is also no implementation of
XRD, which would allow comparing its overall performance.

Although Riposte [146], which is based on a write PIR scheme in which users
write their messages anonymously into a database, enjoys low communication-
overhead and protects against traffic analysis and denial of service attacks, it re-
quires long epochs and a small number of clients writing into the database simul-
taneously. In contrast to Loopix, it is suitable only for high-latency applications.
Additionally, Riposte imposes a large overhead on the clients, who must send a
message proportional to the square root of all the collection of all clients’ data, and
requires days to build a strong anonymity set.

Dissent [91], based on DC-networks [91], offers resilience against a GPA and
some active attacks, but at significantly higher delays than Loopix and scales to only
several thousand clients, while our system can scale to millions of users.

Riffle [147] proposes a new verifiable shuffle technique to achieve sender
anonymity. Using PIR, Riffle guarantees receiver anonymity in the presence of an
active adversary, as well as both sender and receiver anonymity, but it cannot sup-
port a large user base. Riffle also utilizes rounds to protect against traffic analysis
attacks, which introduce synchronization issues. Moreover, unlike Loopix, Riffle is
not designed for Internet-scale anonymous communication, but for only supporting
intra-group communication.

Atom [150] combines a number of novel techniques to provide mid-latency
communication, strong protection against passive adversaries and uses zero-
knowledge proofs between servers to resist active attacks. Unlike Loopix, Atom
is designed for latency tolerant uni-directional anonymous communication appli-
cations with only sender anonymity in mind. Besides being resistant to traffic
analysis, Atom defends also against active attacks performed by malicious servers.
However, Atom does not protect against more sophisticated attack, like for exam-
ple intersection attacks [59], which Loopix does. In terms of latency Loopix also

3.9. Discussion 67

outperforms Atom, which due to expensive cryptographic primitives and routing
the messages through hundreds of servers in series, introduces latency overheads in
the order of tens of minutes for a few million users. In contrast, Loopix’s latency
overhead decreases when the number of users increases, since the exponential delay
per mix can be tunned down up to seconds or even milliseconds.

Pung [138] hides all meta-data associated with user’s conversations, even
against adversaries who are capable to control all of the communication infras-
tructures, hence offers a stronger privacy notion that our Loopix. However, this is
achieved at the cost of performance, which grows superlinearly with the number of
users, and limited throughput. This results in high latency.

Aqua [152], on the other hand, aims to provide low-latency and traffic anal-
ysis resistance for peer-to-peer file sharing applications, however, it offers only
k−anonymity security. Therefore, it suffers from similar security problems to Tor,
in which adversaries controlling both ends of the circuit can easily deanonymize
clients.

While the literature on anonymous communication offers a wide range of sys-
tem designs, with different security or performance properties, as we saw in this
section, Loopix is the first mix network design which ensures strong privacy prop-
erties of online communication, yet at the same time scales to millions of users, and
allows to low-latency communication. In Loopix, the increasing number of system
users does not only contribute to better privacy, as the anonymity set grows, but also
makes the system faster, as less additional delays need to be added to anonymize
the traffic, and the volume of cover traffic can be tunned down. This is a property
which was not offered by any of the previous designs.

3.9 Discussion

Deployment of Loopix system. The Loopix design became the core mix net-
work design for the deployment of anonymous communication infrastracture de-
veloped by the PANORAMIX project [183]. Loopix achieves its stated security
and performance goals. However, there are many other facets of the design space
that have been left for future work, for instance, reliable message delivery, ses-
sion management. Therefore, Loopix was further enhanced and deployed in the
PANORAMIX Katzenpost mix network, including the (1) mechanism for reliable
message delivery using Single-use Reply Blocks (SURB) [177] to send acknowl-
edgements, (2) integration with email client, (3) message fragmentation and retrans-
mission protocol, (4) public key infrastructure etc. The specification of Katzenpost

68 The Loopix Anonymity System

mix network can be found in the following open-source repositories:

• Katzenpost Mix Network End-to-end Protocol Specification [184]
• Katzenpost Mix Network Specification [185]
• Katzenpost Mix Network Public Key Infrastructure Specification [186]
• Sphinx Mix Network Cryptographic Packet Format Specification [187]

Moreover, the Loopix design is also adopted by the Nym Technologies [188] com-
pany, which is building an open-source, permissionless, and incentivized infrastruc-
ture for a privacy-enhanced internet. At the time of writing this thesis, the Nym’s
testnet around 900 mix nodes running.

Reply messages Loopix currently allows two methods if the receiver does not
already know the sender a priori: we either attach the address of the sender to each
message payload, or provide a single-use anonymous reply block [74, 177], which
enables different use-cases. We leave the analysis of replies to messages as future
work.

Secure lookup system It is also apparent that an efficient and secure private
lookup system, one that can deliver network state and keying information to its
users, is necessary to support modern anonymous communications. Proposals of
stand-alone ‘presence’ systems such as DP5 [189] and MP3 [190] provide efficient
lookup methods, however, we anticipate that tight integration between the lookup
and anonymity systems may bring mutual performance and security benefits, which
is another avenue for future work.

Anonymity trillema in practice [50] As shown in Section 3.5.1, the secu-
rity of Loopix heavily depends on the ratio of the rate of traffic sent through the
network and the mean delay at every mix node. Optimization of this ratio is ap-
plication dependent. For applications with small number of messages and delay
tolerance, a small amount of cover traffic can guarantee security. Therefore, it is
important to understand how the volume of traffic and network parameters influ-
ence the anonymity and performance of the communication.

3.10 Conclusion

We have described Loopix, a mix network-based communication system which ex-
plores the design space frontiers of low-latency mixing. We presented how Loopix
balances cover traffic and message delays to achieve a tunable tradeoff between real

3.10. Conclusion 69

traffic and cover traffic, and between latency and good anonymity. Low-latency in-
centivizes early adopters to use the system, as they benefit from good performance.
Moreover, the cover traffic introduced by both clients and mix servers provides se-
curity in the presence of a smaller user-base size. In turn, this promotes growth
in the user-base leading on one hand to greater security [191], and on the other a
tuning down of cover traffic over time.

Loopix is the first system to combine a number of best-of-breed techniques:
we provide definitions inspired by AnoA [174] for our security properties; improve
the analysis of simplified variants of stop-and-go-mixing as a Poisson mix [82]; use
restricted topologies to promote good mixing [164] and deploy modern active at-
tack mitigations based on loops [182]. We also use modified modern cryptographic
packet formats, such as Sphinx [177], for low information leakage. The result of
composing these different techniques – previously explored as separate and abstract
design options – is a design that is strong against global network level adversaries
without the very high-latencies traditionally associated with mix systems [73, 74].
Thus, Loopix revitalizes message-based mix systems and makes them competitive
once more against onion routing [192] based solutions that have dominated the field
of anonymity research since Tor [43] was proposed in 2004.

Chapter 4

Detecting malicious mix nodes

In this chapter, we introduce Miranda, an efficient reputation-based mechanism that
detects and isolates active malicious mixes, performing active dropping or delyaing
attacks to support the adversary’s efforts to deanonymize the users. Miranda com-
bines packet receipts and loop traffic, with a novel approach of examining links
between mix nodes, instead of focusing on the mixes themselves. Moreover, in this
chapter we present the first systematic analysis using quantitative and composable
measure of security against dropping attacks.

4.1 Introduction

In the previous chapter, we presented a modern design of mix network based anony-
mous communication system, which guarantees resistance against powerful traffic
analysis attacks and (n−1) active attacks. In Loopix, the core idea for detecting the
active attacks is to deploy a special type of loop messages generated by both clients
and the infrastructure mix nodes. However, this idea is limited to detecting only
aggressive (n−1) attacks, while the mix nodes systematically dropping or delaying
single packets can operate undetected. Such active attacks have severe repercus-
sions for privacy and efficiency of mix networks. For example, in the disclosure
attack [193] the adversary tries to uncover with whom a target sender is communi-
cating by observing the recipients corresponding to sender’s messages and infering
the ultimate recipient by identifying the mutually disjoint sets of them. Such disclo-
sure attack in which a rogue mix strategically drops packets from a specific sender
can be more effective as it allows the attacker to infer with whom the sender is
communicating by observing which recipient received fewer packets than expected.
Similarly, the Denial-of-Service (DoS) attacks reduce anonymity and can be used
to enhance de-anonymization [3]. As showed by Borisov et al. [3] the system under

72 Detecting malicious mix nodes

a selective DoS attack, in which the adversary affects only the selected parts of the
network, becomes much more vulnerable to the deanonymization attacks, than a
reliable system under traditional attacks.

Therefore, reliability has a significant impact on the security of the system, and
it is important to ensure reliability against adversaries, and not just random failures.
In this section, we further study the idea of client-generated loop packets to propose
a mechanism which allows detecting malicious mix nodes performing active attacks
and enhance reliability of the network.

It is challenging to identify and penalize malicious mixes while retaining
strong anonymity and high efficiency. Trivial strategies for detecting malicious
mixes are fragile and may become vectors for attacks. Rogue mixes can either hide
their involvement or worse, make it seem like honest mixes are unreliable, which
leads to their exclusion from the network. The literature on secure electronic elec-
tions has been preoccupied with reliable mixing to ensure the integrity of election
results by using zero-knowledge proofs [83, 84, 85] of correct shuffling to verify that
the mixing operation was performed correctly. However, those rely on computation-
ally heavy primitives and require re-encryption mix networks, which significantly
increase their performance cost and limits their applicability. On the other hand, the
more ‘efficient’ proofs restrict the size of messages to a single group element that
is too small for email or even instant messaging. An alternative approach for veri-
fying the correctness of the mixing operation were mix networks with randomized
partial checking (RPC) [89]. This cut-and-choose technique detects packet drops
in both Chaumian and re-encryption mix nets, however, it requires interactivity and
considerable network bandwidth. Moreover, the mix nodes have to routinely dis-
close information about their input/output relations in order to provide evidence of
correct operation, what was later proven to be flawed [90].

In this chapter, we revisit the problem of making decryption mix networks
robust to malicious mixes performing active attacks. We start in Section 4.2 by
performing a theoretical analysis of the impact of selective dropping attacks on
the adversary’s capabilities to correlate communicating users. Further, we propose
Miranda, an efficient reputation-based mechanism, that detects and isolates active
malicious mixes, which attempt to drop packets to support the adversary’s efforts
to deanonymize the users. The architectural building blocks behind Miranda, such
as packet receipts and loop traffic, have been studied by previous research (see Sec-
tion 4.10), but we combine them with a novel approach of examining inter-mix
links, instead of focusing on the mixes themselves.

Chaum’s original mix network design [49] included a system of signed re-
ceipts, which ensure that each mix correctly processed received messages. This

4.2. Impact of Active Attacks on Anonymity 73

idea inspired a branch of research itself, focusing on the verifiable properties of the
mix networks (see Chapter 2). In Chaum’s design each participant obtains a signed
receipt for packets they submit to the entry mix. Each mix signs the output batch
as a whole, therefore the absence of a single packet can be detected. The detection
that a particular mix failed to correctly process a packet relies on the fact that the
neighbouring mixes can compare their signed inputs and outputs. Additionally, [49]
uses the untraceable return addresses to provide end-to-end receipts for the sender.

Miranda takes advantage of detecting a failure of inter-mix links in addition to
the direct detection of corrupt mixes, to disconnect corrupt mixes and ensure that
each dropped packet penalizes the adversary. This allows Miranda to mitigate active
attacks, without requiring expensive computations, and hence strengthen decryption
mix networks and improve their reliability.

Chapter outline: The rest of this chapter is organised as follows. In Section 4.2,
we analyze the impact of active attacks on successful deanonymization of commu-
nicating parties. In Section 4.3, we explain the system model and define the threat
model and security goals. In Section 4.4, we present the high-level overview of Mi-
randa, and Section 4.5 and Section 4.6 detail its core mechanisms, which detect and
penalize active attacks. In Section 4.7, we describe the community based protocols
which allow to further enhance the detection of malicious mixes. In Section 4.8,
we evaluate the security properties of Miranda against active attacks. The compar-
ison between our design and related work is outlined in Section 4.10. Finally, we
conclude in Section 4.11.

4.2 Impact of Active Attacks on Anonymity

Active attacks, like dropping messages, can result in a catastrophic advantage
gained by the adversary in linking the communicating parties. Therefore, it is im-
portant to understand what impact on users deanonymization such attacks may im-
pose. To motivate our work, we first quantify how active attacks threaten anonymity
in mix networks. We start by defining a security game. Following it, we present a
qualitative and composable measure of security against dropping attacks. To our
knowledge, this is the first analysis of such attacks. Our results support the findings
of previous works on statistical disclosure attacks [193] and DoS-based attacks [3],
arguing that the traffic analysis advantage gained from dropping messages is signif-
icant.

74 Detecting malicious mix nodes

4.2.1 Security game

We define a game in which an adversary is trying to correlate communicating sender
and recipients, by observing the network and performing packet dropping. Our
security game is defined as follows. The challenger chooses a target mix path Px

and gives it to the adversary. The adversary chooses two target senders S0,S1 and
two target recipients R0,R1 who communicate using cascade Px, and observes the
system over multiple rounds. Note, that in reality, the adversary might not have
such knowledge about S0,S1,R0,R1 a priori and might have to consider a larger set
of potential senders and receipients.

We assume that a set of other clients also communicate using cascade Px. We
call their packets cover traffic. In one of the rounds the challenger selects a secret
bit b at random. If b = 0 then S0 sends a challenge message to R0 and S1 sends a
challenge message to R1, what we denote, as in previous chapter, as S0→ R0 and
S1→ R1. Otherwise, if b = 1, S0→ R1 and S1→ R0. During the challenge round,
the adversary drops a single message of S0 or S1 and observes the system. The
adversary guesses the value of bit b′, and sends b′ to the challenger. The adversary
wins the game if b = b′.

4.2.2 Measurement of adversary’s advantage.

The adversary observes the volume of traffic injected to the cascade by S0 and S1

and the volume of traffic received by R0 and R1. Let xS0 ,xS1 denote the volume
of traffic sent by S0 and S1 respectively. Similarly, let xR0 ,xR1 denote the observed
volume of traffic incoming to recipient R0 and R1, which can be either from S0 or
S1 or cover packets. The adversary examines how the volume of traffic received by
R0 and R1 is affected by the active attack, and uses it to increase the probability of
correctly guessing b′.

We use a differential privacy metric [55] (described in Section 2.1) to bound the
likelihood ratio of the observation (xR0 , xR1) conditioned on the adversary’s guess
b′ using an ε ≥ 0 and a 0 ≤ δ ≤ 1. Although applying the DP measurement in the
context of anonymous channels deviates from its traditional meaning, it is a good
measure when we want to investigate the indistinguishability bound on two events
observed by the adversary. Intuitively, ε defines the maximal leakage the adversary
can learn from observing both the events (so how much those events differ), whereas
δ is the probability by which the leakage exceeds this ε (small ε and δ values are
better for security).

We also consider that the volume of cover traffic (the traffic generated by non-
target clients) is injected according to the Poisson distribution with parameter λ . We

4.2. Impact of Active Attacks on Anonymity 75

choose the Poisson distribution since sending can be modeled only by a positive dis-
tribution. Moreover, Poisson models have been widely used in computer networks
and telecommunications literature [194] since it offers attractive analytical proper-
ties. The Poisson distribution is appropriate if the arrivals are from a large number
of independent sources, like in networks with many clients and nodes. The super-
position of multiple independent Poisson processes results in a Poisson process.
Moreover, based on Palm’s Theorem [195] we know that under suitable conditions
a large number of independent multiplexed streams approach a Poisson process as
the number of processes grows. Finally, the memoryless property of the Poisson
process allows simplifying queuing problems involving Poisson arrivals. However,
we highlight that the analysis could be done using other distributions as well.

Now, let us define Y0,Y1 as random variables, such that Y0 ∼ Pois(λ0) and
Y1 ∼ Pois(λ1), which denote the number of cover packets received by R0 and R1

respectively (λ0,λ1 denote the expected value of the Poisson distribution). We de-
fine the following theorem.

Theorem 3. Given an observation O = (xR0 ,xR1) resulting from a single observa-
tion of the adversary performing a dropping attack on a single packet sent by Sb,
the relationship of the likelihoods of the observations conditioned on the secret bit
b becomes:

Pr[Y0 = xR0 ,Y1 = xR1−1|b = 0]≤ eε Pr[Y0 = xR0−1,Y1 = xR1 |b = 1]+δ

for δ = 1−

(
∞

∑
i=1

CDFY1 [(1+ ε) · i] · λ
ie−λ

i!

)
,

where CDF denotes the cumulative distribution function of the cover Poisson dis-
tribution with rate parameter λ .

Proof. Given the observation O=(xR0 ,xR1) we consider two cases conditioned by the
events that either b = 0, i.e., S0→ R0 and S1→ R1, or b = 1, i.e., S0→ R1,S1→ R0.
Without the loss of generality, we consider a scenario in which the adversary targets
sender S0. We define a differentially private dependency

Pr[Y0 = xR0 ,Y1 = xR1−1|b = 0]≤ eε Pr[Y0 = xR0−1,Y1 = xR1|b = 1]+δ . (4.1)

Thus, we compute

Pr[Y0 = xR0 ,YR1 = xR1−1|b = 0]
Pr[Y0 = xR0−1,YR1 = xR1 |b = 1]

=
λ

xR0 e−λ

xR0!
λ

xR1−1e−λ

(xR1−1)!

/
λ

xR0−1e−λ

(xR0−1)!
λ

xR1 e−λ

xR1!
=

xR1

xR0

,

76 Detecting malicious mix nodes

Given that, we calculate the values of δ , defined as δ = Pr[Y1 ≥ eεY0], using the law
of total probability and the cumulative distribution function:

Pr[Y1 ≥ eεY0] =
∞

∑
i=1

Pr[Y1 ≥ eεY0|Y0 = i]Pr[Y0 = i] =
∞

∑
i=1

Pr[Y1 ≥ eε i]Pr[Y0 = i]

=
∞

∑
i=1

CDFY1[e
ε i] · λ

ie−λ

i!
.

Next, we also provide a loose, but analytic, bound on δ as a function of ε and λ .

Theorem 4. The value of δ from Theorem 3 for sufficiently large values of param-
eter λ can be bound as:

δ ≤

(
e−ε/2

(1− ε/2)(1−ε/2)

)λ

+

(
eε/2

(1+ ε/2)(1+ε/2)

)λ

+

 e
ε

2−
ε2
2

(1+ ε

2 −
ε2

2)
(1+ ε

2−
ε2
2)

λ

.

Proof. As before, we start by applying the law of total probability and we note, that
for small values of ε we can approximate eε ≈ 1+ ε . Hence,

Pr[Y1 ≥ (1+ ε)Y0] =
∞

∑
i=1

Pr[Y1 ≥ (1+ ε)Y0|Y0 = i]Pr[Y0 = i]

=
∞

∑
i=1

Pr[Y1 ≥ (1+ ε)i]Pr[Y0 = i].
(4.2)

Thus, we can split the infinite sum into three separate cases as follows

Pr[Y1 ≥ (1+ ε)Y0]≤
(1− ε

2)λ

∑
i=0

Pr[Y0 = i]Pr[Y1 ≥ (1+ ε)i]︸ ︷︷ ︸
(I)

+
∞

∑
i=(1+ ε

2)λ

Pr[Y0 = i]Pr[Y1 ≥ (1+ ε)i]

︸ ︷︷ ︸
(II)

(4.3)

+
(1+ ε

2)λ

∑
i=(1− ε

2)λ

Pr[Y0 = i]Pr[Y1 ≥ (1+ ε)i]

︸ ︷︷ ︸
(III)

.

Note, that for large values of λ the tails of Poisson distribution in parts (I) and (II)

4.2. Impact of Active Attacks on Anonymity 77

are ’heavy’, i.e., accumulate a large probability mass. Thus, we can bound those
tails by 1 without overestimation. Hence, we obtain

Pr[Y1 ≥ (1+ ε)Y0] =
(1− ε

2)λ

∑
i=0

Pr[Y0 = i]+
∞

∑
i=(1+ ε

2)λ

Pr[Y0 = i]

+
(1+ ε

2)λ

∑
i=(1− ε

2)λ

Pr[Y0 = i]Pr[Y1 ≥ (1+ ε)i].

(4.4)

We note that Pr[Y1 ≥ (1+ε)i] in the sum over i = {
(
1− ε

2

)
λ , . . . ,

(
1+ ε

2

)
λ} can be

bounded as

Pr[Y1 ≥ (1+ ε)i]≤ Pr[Y1 ≥ (1+ ε)
(

1− ε

2

)
λ]. (4.5)

Following this, we have

Pr[Y1 ≥ (1+ ε)Y0] = Pr[Y0 ≤
(

1− ε

2

)
λ]+Pr[Y0 ≥

(
1+

ε

2

)
λ]

+Pr[Y1 ≥ (1+ ε)
(

1− ε

2

)
λ]

(1+ ε

2)λ

∑
i=(1− ε

2)λ

Pr[Y0 = i]
(4.6)

Since Y0 is a Poisson distributed variable, and we sum up the probabilities of inde-
pendent events we can bound the whole sum by 1. Hence,

Pr[Y1 ≥ (1+ ε)Y0]≤ Pr[Y0 ≤
(

1− ε

2

)
λ]+Pr[Y0 ≥

(
1+

ε

2

)
λ]

+Pr[Y1 ≥ (1+ ε)
(

1− ε

2

)
λ]

(4.7)

Now by applying the Chernoff inequality [57] we can derive a final form of our
upper bound for δ 1:

δ ≤

(
e−ε/2

(1− ε/2)(1−ε/2)

)λ

+

(
eε/2

(1+ ε/2)(1+ε/2)

)λ

+

 e
ε

2−
ε2
2(

1+ ε

2 −
ε2

2

)(1+ ε

2−
ε2
2

)

λ

.

Comparison. We compare the above bound (Theorem 4), and the exact calcula-
tion of δ from Theorem 3, computed using the importance sampling technique, for

1Note, that the above bound can be made even a little bit tighter, by doing two more precise
steps in Equation 4.7.

78 Detecting malicious mix nodes

101 102 103 104 105

Parameter

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
io

n
of

Exact value
Chernoff bound

Figure 4.1: The precision of upper bound for δ presented in Theorem 3 for a fixed ε = 0.2.

different values of λ and a fixed leakage ε = 0.2 in Figure 4.1. As illustrated the
below bound is tight for large values of λ , however, for small values of λ it does not
give us any significant information. Therefore, for small values of λ the formula
from Theorem 3 is better for computing a good approximation of leakage δ .

Leakage (ε,δ) for multiple rounds. The adversary can observe the system
over multiple rounds. Therefore, we quantify now how much information the adver-
sary can infer in such a scenario. The advantage of the (ε ,δ) leakage quantification
presented in Theorem 3 is that it composes under R multiple rounds of dropping and
observations. Given the set of observations O = (o1,o2, . . . ,on), where each single
observation in round i is defined as oi = (xi

R0
,xi

R1
)., we compute

Pr[(x1
R0

,x1
R1
), . . . ,(xR

R0
,xR

R1
)|b = 0]

Pr[(x1
R0

,x1
R1
), . . . ,(xR

R0
,xR

R1
)|b = 1]

=
R

∏
i=1

Pr[(xi
R0

,xi
R1
)|b = 0]

Pr[(xi
R0

,xi
R1
)|b = 1]

=
R

∏
i=1

xi
R1

xi
R0

(4.8)

From the composition theorem of differential privacy (see Section 2.1) we
know that given the value of ε ,δ for a single round, the likelihood ratio of multiple
observations will follow a similar (εR,δR) relation, with εR = R · ε and δR = R ·δ .

However, this estimation of leakage for multiple observations can also be
shown to be tragically loose and pessimistic – since it assumes that the worst-case
occurs in every round. In reality, the adversary cannot attain such a significant ad-
vantage except with negligible probability. Therefore, we focus on analyzing the
average case, for which we simulate several observations (xi

R0
,xR1

i) and compute

4.2. Impact of Active Attacks on Anonymity 79

the estimator of the average leakage as

eRε̂ =
R

∏
i=1

xi
R1

xi
R0

=⇒ log
(

eRε̂

)
= log

(
R

∏
i=1

xi
R1

xi
R0

)
=⇒ ε̂ =

1
R

R

∑
i=1

log

(
xi

R1

xi
R0

)
. (4.9)

This allows us to derive the average case value of the leakage which the adver-
sary can gain after multiple concrete observations (xi

R0
,xi

R1
). From the law of large

numbers [196] we know, that as R grows, the obtained estimator tends closer to its
expected value. And thus:

ε∞ = lim
R→∞

ε̂ = E[logY/X] for X ,Y ∼ Poisson+(λ) (4.10)

where Poisson+ denotes the Poisson distribution truncated to only its strictly
positive range. The quantity ε∞ represents the expected per-round leakage and thus
after R observations we expect the total leakage to be

ε = R · ε∞ (4.11)

However, we note, that if xR0 or xR1 is 0 the adversary can successfully distin-
guish who was communicating with whom immediately – representing a catas-
trophic event for which we cannot bound the leakage under any ε . We therefore
need to compute the probability of such an event after R observations and fold it
within the probability δ . The probability that a Poisson distribution yields zero is
δ0 = Pr[x = 0] = e−λ and δ0 ∈ [0,1]. Thus after R observed rounds the probability
that any such event has occurred is:

δ = 1− (1−δ0)
2R (4.12)

Since R is unbounded, the best estimation we can get for δ is 1. Therefore, we
should always compute it directly.

Equation 4.11 and Equation 4.12 conclude our direct estimation of the (ε ,δ)
for multiple observations. These represent a different trade-off between the two
parameters than in the single round analysis: the new δ only represents the catas-
trophic probabilities any observation is zero – and not the cases where epsilon may
be too large as in the single round case.

Evaluating multi-round leakage. Figure 4.2 shows the values of the leakage estima-
tor ε∞ (estimated using Monte Carlo integration using 10,000 samples), versus the
values of λ . We note that, as the rate of cover traffic (we remind that the cover traf-
fic here means the traffic of other users, both real and dummy) λ grows, the leakage

80 Detecting malicious mix nodes

102 103 104 105 106 107 108 109

Values of

10 7

10 6

10 5

10 4

10 3

10 2

Le
ak

ag
e

Figure 4.2: The comparison of amounts of leakage ε∞ for different values of λ .

significantly decreases. For example, for cover traffic rates of λ = 100, the rate of
leakage ε∞ = 10−2, and thus after R = 100 observations we expect a total leakage
of ε = 1 (following Equation 4.11). Meanwhile δ0 = e−100 and overall δ < e−94

(from Equation 4.12) which is tiny.2

The fact that as the volume of cover traffic increases, the probability δ of a
catastrophic event becomes extremely small is comforting. On the other hand, we
note that the value of ε does grow linearly, and there is a direct inverse relationship
(see Figure 4.2) between the rate of cover traffic each user receives and the rate of
round leakage. The value of ε that can be tolerated in reality depends on the prior
belief of the adversary: in the simple cryptographic game proposed the adversary
assigns a 50:50 prior likelihood to b = 0 or b = 1. In a real de-anonymization
setting, that prior belief may instead be much lower: for example if the adversary
tries to guess which of 100 potential recipients a target sends a message to, the prior
belief is as low as 1/100.

In this section, we showed what impact active dropping attacks have on suc-
cesfully deanonymization of communicating parties. In next sections, we present a
mechanism to detect and exclude malicious nodes from the network.

4.3 System model and security goals

In this section, we outline the general system design, define the threat model, and
summarize the security goals of Miranda.

2As tiny as breaking a cryptographic key

4.3. System model and security goals 81

4.3.1 General System Model

To describe the system, we use the same notation as throughout Chapter 3. We con-
sider an anonymous communication system consisting of a set U (|U| = u) of users
communicating over the decryption mix network. As before, we denote by N the set
of all mixes building the anonymous network. Depending on the path constraints,
the topology may be arranged in separate cascades or a stratified network [164]. We
assume that the set of mixes N is fixed (no churn), and we discuss the limitations and
challenges of such assumption in Section 4.11. Following [74], we also deploy the
idea of secure and decentralized directory authrorities. The directory authorities, a
set D of semi-trusted servers, maintain a list of available mixes and available links
between them. We assume that the set of directory authorities is fixed and known to
all clients.

In this chapter, we assume a synchronous mixnet design, in which time is bro-
ken into rounds. Mixes receive packets within a particular round, denoted by r,
decode a successive layer of encoding and shuffles all packets randomly. At the end
of the round, each mix forwards all packets to their next hops.

Messages traversing the network are end-to-end layer encrypted into a cryp-
tographic packet format by the sender, and the recipient performs the last stage of
decryption. Similarly, to the previous chapter, we use the Sphinx cryptographic
packet format [177].3 As before, we also assume the existence of public key infras-
tructure (PKI) providing an authoritative mapping between mixes and their public
keys.

4.3.2 Threat Model

We consider an adversary whose goal is to de-anonymize packets travelling through
the mix network. Our adversary acts as a global observer, eavesdropping on all
traffic exchanged among the entities in the network, and also, knows the rate of
messages that particular users send/receive. We emphasize that this is a non-trivial
adversarial advantage. In reality, the adversary might not know users’ rate, and
therefore might be more limited regarding de-anonymization attacks.

Moreover, all malicious entities in the system collude with the adversary, giv-
ing access to their internal states and keys. The adversary may control many par-
ticipating entities, but we assume a majority of honest mixes and directory servers.
We allow arbitrary number of malicious clients but assume that there are also many

3However, other packet formats can be used, as long as they fulfil certain properties. The mes-
sages encoded should be of constant length and indistinguishable from each other at any stage in the
network. Moreover, the encryption should guarantee duplicates detection, and eliminate tampered
messages (tagging attacks).

82 Detecting malicious mix nodes

honest clients - enough to ensure that any first-mix in a cascade, will receive a ‘suffi-
cient’ number of messages in most rounds - say, 2ω , where ω is sufficient to ensure
reasonable anonymity, for one or few rounds.

In addition, Miranda assumes reliable communication between any pair of hon-
est participants and ignores the time required for computations - hence, also any
potential for Miranda-related DoS. In particular, we assume that the adversary can-
not arbitrarily drop packets between honest parties nor delay them for longer than
a maximal period. This restricted network adversary is weaker than the standard
Dolev-Yao model, and in line with more contemporary works such as XFT [197]
that assumes honest nodes can eventually communicate synchronously. It allows
for more efficient Byzantine fault-tolerance schemes, such as the one we present.
In practice, communication failures will sometimes occur, we discuss this and other
practical challenges in Chapter 6.

We denote by n the total number of mixes in the network (|N| = n), nm of
which are malicious and nh are honest (n = nm +nh). We refer to mix paths where
all mixes are malicious as fully malicious. Similarly, as fully honest we refer to
cascades where all nodes are honest, and semi-honest to the ones where only some
of the mixes are honest. A link between an honest mix and a malicious mix is
referred to as a semi-honest link.

Similarly, we denote as d the total number of directory authorities. We assume
that a number dm of authorities can be malicious and collude with the adversary
or deviate from the protocol, in order to break the security properties. By dh we
denote the number of honest authorities (d = dm + dh), which follow the protocol
truthfully.

4.3.3 Security Goals of Miranda

As defined in Chapter 2 the main goal of a mix network is to hide the correspon-
dence between senders and recipients of the messages in the network. Hence, the
Miranda design aims to provide protection which is indistinguishable from the pro-
tection provided by an ‘ideal mix’, i.e., a single mix node which is known to be hon-
est. As we presented in Section 4.2 long term dropping attacks have a significant
impact on anonymity through traffic analysis. Therefore, the key goals of Miranda
relate to alleviating and discouraging such active attacks. This is achieved through
the detection and exclusion of misbehaving mixes. We summarize the protections
against active attacks offered by Miranda as follows:

Detection of malicious nodes. Every active attack by a corrupt mix is detected with
non-negligible probability, by at least one entity.

4.4. The Big Picture 83

Separation of malicious nodes. Every active attack by a rogue mix results, with a
non-negligible probability, in the removal of at least one link connected to the rogue
mix - or even the removal of the rogue mix itself.

Reducing attacks impact over multiple epochs. Repeated application of Miranda
lowers the overall prevalence and impact of active attacks by corrupt mixes across
epochs, limiting the ability of the adversary to drop or delay packets.

4.4 The Big Picture

In Miranda, as in other synchronous mixnet designs, time is broken into rounds. In
addition, rounds are collected into epochs, denoted by E, which are used to manage
Miranda. The beginning of each epoch includes the announcement of the set of
cascades to be used in this epoch, after a selection process that involves avoidance
of mixes detected as corrupt, and of links between two mixes, where one or both
of the mixes reported a problem. The process of selecting the set of cascades for
each epoch, is called the inter-epoch process, and is performed by the decentralized
directory authorities.

We represent the connectivity of the network as a graph of trust. If two mix
nodes trust each other, they share a link in the graph. At the beginning of the system,
we assume that this graph is fully connected (see Figure 4.3 (a)). During each epoch,
there are multiple rounds where users communicate over the mix network, and both
users and mixes report any misbehavior they encounter to the directory authorities.
Each active attack – including dropping packets – leads to reduced connectivity
for corrupt mixes and reduces their ability to attack, and, eventually, to the detec-
tion of corrupt mixes. We refer to the mechanisms that operate during an epoch
in order to detect active attacks as intra-epoch operations. Miranda disconnects
corrupt mixes by carefully gathering reports of their misbehavior, from both clients
and mixes, resulting in the removal of links which are misused by the adversary
(see Figure 4.3 (b)). The directory authorities process these reports, and, before the
beginning of a new epoch, they select a set of cascades available in that epoch. The
newly generated cascades will reflect all reported misbehaviors. Namely, cascades
exclude links between mixes that were reported. Repeated misbehaviors result in
the complete exclusion of the misbehaving mixes from the system. We denote the
number of reports which marks a mix as dishonest and causes its exclusion from
the network as f and emphasize that f is cumulative over rounds and even epochs.
We simply use f = nm + 1, which suffices to ensure that malicious mixes cannot

84 Detecting malicious mix nodes

(a) Connectivity graph in the
beginning. All mixes are
willing to communicate with
each other.

(b) Miranda detects active attacks
and removes the links between
the honest and dishonest nodes.

(c) Miranda applies community
detection to further detect dis-
honest nodes and disconnect
them from the honest nodes.

Figure 4.3: High-level overview of the process of isolating malicious mixes in Miranda.

cause Miranda to exclude honest mixes.4 However, we find it useful to maintain f
as a separate value, to allow the use of larger value for f to account for a number of
failures of honest mixes or links between honest mixes, when the Miranda design is
adopted by a practical system. On top of disconnecting the faulty links or excluding
malicious nodes based on the first-hand evidence, Miranda also applies the commu-
nity detection techniques to enhance the effectiveness of the detection mechanism,
see Figure 4.3 (c).

Significant, although not prohibitive, processing and communication is in-
volved in the intra-epoch process, which motivates the use of longer epochs. On
the other hand, during an entire epoch, we use a fixed set of cascades, which may
reduce due to failures; and clients may not be fully aware of links and mixes de-
tected as faulty. This motivates the use of shorter epochs. These considerations
would be balanced by the designers of an anonymous communication system, as
they incorporate the Miranda design.

4.5 Intra-Epoch Process

In this section, we present the mechanisms that operate during an epoch to deter ac-
tive attacks, including dropping attacks. We start by describing how active attacks
are detected and how this deters malicious behavior. Next, we discuss nodes who
refuse to cooperate. Note that in this section, as in the entire Miranda design, we as-
sume reliable communication between any pair of honest participants [198]. As we
explain in Section 4.3.2, a practical system deploying Miranda should use a lower-
layer protocol to deal with, even severe, packet losses, or introduce a threshold of
acceptable losses.

4Of course, f can be much higher than nm. In general, the number of malicious nodes nm will
not be known exactly, and the value of f implemented by the mechanism impacts how efficient the
removal of maliocious nodes will be. A precise analysis of which value of f should be selected in
practise we leave as a future work.

4.5. Intra-Epoch Process 85

4.5.1 Message Sending

At the beginning of each epoch, clients acquire the list of all currently available
cascades from the directory authorities. Note, that also a Stratfied topology (as
define is Section 3.2 in previous chapter) can be represented as a set of cascades.
When Alice wants to send a message, her client filters out all cascades containing
mixes through which she does not wish to relay messages. We denote the set of
cascades selected by Alice as CA. Next, Alice picks a random cascade from CA,
which she uses throughout the whole epoch, and encapsulates the message into the
packet format. For each mix in the cascade, we include in the routing information
the exact round number during which the mix should receive the packet and during
which it should forward it. Next, the client sends the encoded packet to the first mix
on the cascade. In return, the mix sends back a receipt, acknowledging the received
forward packet.

4.5.2 Processing of Received Packets

After receiving a packet, the mix decodes a successive layer of encoding and verifies
the validity of the expected round r and well-formedness of the packet. At the end
of the round, the mix forwards all valid packets to their next hops. Miranda requires
mixes to acknowledge received packets by sending back receipts. A receipt is a
digitally signed [199] statement confirming that a packet p was received by mix Mi.
Receipts must be sent and received by the preceding mix within the same round in
which packet p was sent.

Generating receipts. We denote a receipt for a single packet p as

receipt← Sign(p || receivedFlag = 1),

where Sign(·) is a secure digital signature algorithm, and Verify(·) is its matching
verification function.5 However, generating receipts for each packet individually
incurs a high computational overhead due to costly public key signature and verifi-
cation operations.

To reduce this overhead, mixes gather all the packets they received during
round r in Merkle trees [200] and sign the root of the tree once. Clients’ pack-
ets are grouped in a single Merkle tree TC and packets from mix Mi are grouped in
a Merkle tree TMi . Mixes then generate two types of receipts: (1) receipts for clients

5Although Sign and Verify use the relevant cryptographic keys, we abuse notations and for
simplicity write them without the keys.

86 Detecting malicious mix nodes

and (2) aggregated receipts for mixes. Each client receives a receipt for each mes-
sage she sends. Client receipts are of the form: receipt = (σC,Γp,r), where: σC is
the signed root of TC, Γp is the appropriate information needed to verify that packet
p appears in TC, and r is the round number. Similarly, each mix, except the last
one, receives a receipt in response to all the packets it forwarded in the last round.
However, unlike client receipts, mixes expect back a single aggregated receipt for
all the packets they sent to a specific mix. An aggregated receipt is in the form of:
receipt = (σi,r), where: σi denotes the signed root of TMi and r is the round num-
ber. Since mixes know which packets they forwarded to a particular mix, they can
recreate the Merkle tree and verify the correctness of the signed tree root using a
single receipt. Once a mix sent an aggregated receipt, it expects back a signed con-
firmation on that aggregated receipt, attesting that it was delivered correctly. Mixes
record the receipts and confirmations to prove later that they behaved honestly in
the mixing operation.

Lack of a receipt. If a mix does not receive an aggregated receipt or does not
receive a signed confirmation on an aggregated receipt it sent within the expected
time slot, the mix disconnects from the misbehaving mix.6 The honest mix detaches
from the faulty mix by informing the directory authorities about the disconnection
through a signed link disconnection receipt. Note, that the directories cannot iden-
tify which of the disconnecting mixes is the faulty one merely based on this mes-
sage, because the mix who sent the complaint might be the faulty one trying to
discredit the honest one. Therefore, the directory authorities only disconnect the
link between the two mixes. The idea of disconnecting links was earlier investi-
gated in various Byzantine agreement works [201], however, to our knowledge, this
approach was not yet applied to the problem of mix network reliability.

Anonymity loves company [191]. Note, however, that this design may fail
even against an attacker who does not control any mix, if a cascade receives less
than the minimal anonymity set size ω . We could ignore this as a very unlikely
event, however, Miranda ensures anonymity also in this case - when the first mix is
honest. Namely, if the first mix receives less than ω messages in a round, it would
not forward any of them and respond with a special ‘under-ω receipt’ explaining
this failure. To prevent potential abuse of this mechanism by a corrupt first mix,
which receives over ω messages yet responds with under-ω receipt, these receipts
are shared with the directories, allowing them to detect such attacks.

6Recall that we operate in a synchronous setting, where we can bound the delay of an acknowl-
edgement.

4.5. Intra-Epoch Process 87

4.5.3 Loop Messages: Detect Stealthy Attacks

In a stealthy active attack, a mix drops a message - yet sends a receipt as if it
forwarded the message. To deter such attacks, clients periodically, yet randomly,
send loop messages to themselves (see Section 3.4.2). In order to construct a loop
message, the sender S, chooses a unique random bit-string KS. Loop messages are
encoded in the same manner as the regular messages and sent through the same
cascade C selected for the epoch, making them indistinguishable from other mes-
sages at any stage of their routing. The loop message is encapsulated into the packet
format as follows:

pK← Pack(path = C, routingInfo = routing, rnd = H(KS)

recipient = S,message = ”loop”)

The tuple (S,KS,C, routing) acts as the opening value, which allows recomputing
pK as well as all its intermediate states piK that mix Mi should receive and emit.
Therefore, revealing the opening value convinces everyone that a particular packet
was indeed a loop message and that its integrity was preserved throughout its pro-
cessing by all mixes. Moreover, the construction of the opening value ensures that
only the creator of the loop packet can provide a valid opening value, and no third
party can forge one. Similarly, nobody can reproduce an opening value that is valid
for a non-loop packet created by an honest sender.

If a loop message fails to complete the loop back, this means that one of the
cascade’s mixes misbehaved. The sender S queries all the mixes in the cascade
for evidence whether they have received, processed and forwarded the loop packet.
This allows S to isolate the cascade’s problematic link or misbehaving mix which
caused the packet to be dropped. S then reports the isolated link or mix to the direc-
tory authorities and receives a signed confirmation on her report. This confirmation
states that the link will no longer be used to construct future cascades. We detail the
querying and isolation process in Section 4.5.3.1.

When to send loop messages? The sending of loop messages is determined
according to α , which is the required expected probability of detection - a param-
eter to be decided by the system designers. Namely, for every message, there is
a fraction α chance of it being a loop message. To achieve that, if Alice sends β

messages in round r, then d α·β
1−α
e additional loop messages are sent alongside the

genuine messages.

This may seem to only ensure α in the context of the messages that Alice
sends but not against an attack on messages sent to Alice. However, notice that if

88 Detecting malicious mix nodes

a corrupt mix Mi drops messages sent to Alice by an honest sender Bob, then Mi

faces the same risk of detection - by Bob.

If Alice can sample and estimate an upper bound γ on the number of messages
that she will receive in a particular round, then she can apply additional defense.
Let x be the number of rounds that it takes for a loop message to come back, and let
r denote the current round. Let’s assume that Alice knows bound γ on the maximal
number of messages from honest senders, that she will receive in round r+x. Then,
to detect a mix dropping messages sent to her with probability α , it suffices for Alice
to send d α·γ

1−α
e loop messages in round r. More precisely, given that Alice sends β

messages in round r, in order for the loop messages to protect both messages sent in
that round and messages received in round r+ x she should send dα·max(β ,γ)

1−α
e loop

messages in round r.

Within-round timing. If the Miranda senders would send each message immediately
after receiving the message from the application, this may allow a corrupt first mix
to distinguish between a loop message and a ‘regular’ message. Namely, this would
occur if the attacker knows the exact time at which the application calls the ‘send’
function of Miranda to send the message. To foil this threat, in Miranda, messages
are always sent only during the round following their receipt from the application,
and after being shuffled with all the other messages to be sent during this round.

4.5.3.1 Isolating corrupt mixes with loop messages

Since clients are both the generators and recipients of the attack-detecting loop mes-
sages, they know exactly during which round r the loop should arrive back. There-
fore, if a loop message fails to complete the loop back to the sender as expected,
the client initiates an isolation process, during which it detects and isolates the spe-
cific problematic node or link in the cascade. The isolation process starts with the
client querying each of the mixes on the cascade to establish whether they received
and correctly forwarded the loop packet. During the querying phase, the client first
reveals to the respective mixes the packet’s opening value, in order to prove that it
was indeed a loop packet. Next, the client queries the mixes for the receipts they re-
ceived after they delivered that packet. When clients detect a problematic link or the
misbehaving mix, they report it to the directory authorities, along with the necessary
proofs that support its claim. This is in fact a broadcasting task in the context of the
well-known reliable broadcast problem and can be solved accordingly [202]. Each
directory authority that receives the report verifies its validity, and if it is correct,
stores the information to be used in future cascade generation processes. Then, the
client chooses another cascade from the set of available cascades and sends future

4.5. Intra-Epoch Process 89

packets and loop messages using the new route.
When a client asks an honest mix to prove that it received and correctly for-

warded a packet, the mix presents the relevant receipt. However, if a mix did not
receive this packet, it attests to that by returning an appropriate signed response to
the client. If a loop message did not complete the loop because a malicious mix
dropped it and did not send a receipt back, the honest preceding mix would have
already disconnected from the misbehaving mix. Thus, the honest mix can present
the appropriate disconnection receipt it received from the directory authorities as an
explanation for why the message was not forwarded (see Figure 4.4c).

The malicious mix can attempt the following actions, in order to perform an
active attack.

Naive dropping. A mix which simply drops a loop packet after sending a re-
ceipt to the previous mix can be detected as malicious beyond doubt. When the
client that originated the dropped loop packet queries the preceding mix, it presents
the receipt received from the malicious mix, proving that the packet was delivered
correctly to the malicious node. However, the malicious mix is unable to produce
a similar receipt, showing that the packet was received by the subsequent mix, or a
receipt from the directories proving that it reported disconnection from the subse-
quent mix. The malicious mix may simply not respond at all to the query. However,
the client will still report to the directories, along with the proofs from the previous
and following mixes, allowing the directories to resolve the incident (contacting the
suspected mix themselves to avoid any possible ‘framing’) (see Figure 4.4b).

Blaming the neighbors. Malicious mixes performing active dropping attacks
would prefer to avoid complete exclusion. One option is to drop the packet, and
not send a receipt to the previous mix. However, this causes the preceding mix to
disconnect from the malicious one at the end.

Alternatively, the corrupt mix may drop the packet after it generates an appro-
priate receipt. To avoid the risk of its detection as a corrupt mix, which would hap-
pen if it was a loop message, the corrupt mix may disconnect from the subsequent
mix - again losing a link. Therefore, a corrupt mix that drops a packet either loses a
link, or risks being exposed (by loop message) and removed from the network.

Delaying packets. A malicious mix can also delay a packet instead of dropping
it, so that the honest subsequent mix will drop that packet. However, the honest
subsequent mix still sends a receipt back for that packet, which the malicious mix
should acknowledge. If the malicious mix acknowledges the receipt, the malicious

90 Detecting malicious mix nodes

(a) Successful loop packet pk
sent during round i and re-
ceived during round i + 3.
Each mix Mi sends back re-
ceipt Ri.

(b) Example of naive dropping
of loop message pk by M2,
which drops pk yet sends
back a receipt.

(c) Loop packet fails to com-
plete the loop due to non-
responding mix.

Figure 4.4: A diagram illustrating loop packets and isolation process.

mix is exposed when the client performs the isolation process. The client can obtain
a signed receipt proving that the malicious mix received the packet on time, and also
the acknowledged receipt from the honest mix that dropped the delayed packet. The
latter contains the round number when the packet was dropped, which proves the
malicious mix delayed the packet and therefore should be excluded. Otherwise, if
the malicious mix refuses to sign the receipt, the honest mix disconnects from the
malicious one. Therefore, the delaying attack also causes the mix to either lose a
link or to be expelled from the system.

Example. Figure 4.4 illustrates the loop packets and the isolation process. We denote
receipt from mix Mi as Ri, and the response as Ai. Figure: (a) presents a succesfull
loop trap packet. (b) depicts an example of naive packet dropping by M2. Since
pk did not come back the client queries all mixes during round i+ 5 for the proof
of forwarding. M2 either claims that it did not receive pk (A2), thus providing the
client a proof that conflicts with the receipt R2, or M2 does not cooperate (⊥). In
both cases the directory authority verifies received Ai’s and excludes malicious M2.
(c) shows an example of non-responding mix, where M1 did not receive receipt from
M2 on round i+2 and issues a disconnection in round i+3. The client performs the
query phase on round i+5 and receives the proof of disconnection. The result: M2

failed to send a receipt to M1, and thus lost the link to it.

Note that both in (b) and (c) the entire query and report phases occur during
round i+ 5, but it could also be spanned across several rounds, as long as it has a

4.5. Intra-Epoch Process 91

bounded time-frame. For example, if desired, answering the query for pk could be
done in round i+6 instead of limiting it to the same round

The combination of packet receipts, link disconnection notices, the isolation
process and loop messages, forces malicious mixes to immediately lose links when
they perform active attacks. Failure to respond to the preceding mix or to record
a disconnection notice about the subsequent mix in a timely manner creates poten-
tially incriminating evidence, that would lead to a complete exclusion of the mix
from the system. This prevents malicious mixes from silently attacking the system
and blaming honest mixes when they are queried in the isolation mechanism. The
mere threat of loop messages forces malicious mixes to drop a link with an honest
mix for each message they wish to suppress, or risk exposure.

4.5.4 Handling missing receipts

Malicious mixes might attempt to circumvent the protocol by refusing to cooperate
in the isolation procedure. Potentially, this could prevent clients from obtaining the
necessary proofs about problematic links, thus preventing them from convincing di-
rectory authorities about problematic links. If malicious mixes refuse to cooperate,
clients contact a directory authority and ask it to perform the isolation process on
their behalf. Clients can prove to the directory authorities that the loop packet was
indeed sent to the cascade using the receipt from the first mix. If all mixes cooper-
ate with the directory authority, it is able to isolate and disconnect the problematic
link. Otherwise, if malicious mixes do not cooperate with the directory authority, it
excludes those mixes from the system.

We note that a malicious client may trick the directory authorities into per-
forming the isolation process on its behalf repeatedly, against honest mixes. In that
case, directory authorities conclude that the mix is honest, since the mix can provide
either a receipt for the message forwarded or a disconnection notice. However, this
is wasteful for both directory authorities and mixes. Since clients do not have to be
anonymous vis-a-vis directory authorities, they may record false reports and even-
tually exclude abusive clients. Furthermore, the clients have to send proofs from the
following mix of not having received the packet, which cannot be done if there was
no mix failure.

Malicious entry mix. If a first mix does not send a receipt, the client could have
simply chosen another cascade; however, this allows malicious mixes to divert traf-
fic from cascades which are not fully malicious, without being penalized, increasing
the probability that clients would select other fully malicious cascades instead. To

92 Detecting malicious mix nodes

avoid that, in Miranda, clients force the first mix to provide a receipt, by relaying
the packet via a trusted witness. A witness is just another mix that relays the packet
to the misbehaving first mix. Now, the misbehaving node can no longer refuse to
produce a receipt, because the packet arrives from a mix, which allows the isolation
process to take place. Note that since a witness sends messages on behalf of clients,
the witness relays messages without the ω constraint (as if it was a client).

If the witness itself is malicious, it may also refuse to produce a receipt (other-
wise, it loses a link). In that case, the client can simply choose another witness; in
fact, if desired, clients can even send via multiple witnesses concurrently to reduce
this risk - the entry mix can easily detect the ‘duplicate’ and handle only one mes-
sage. This prevents malicious mixes from excluding semi-honest cascades without
losing a link. Moreover, although the refused clients cannot prove to others that
they were rejected, they can learn about malicious mixes and can avoid all future
cascades that contain them, including fully malicious cascades, which makes such
attacks imprudent.

4.6 Inter-Epoch Process

In this section, we discuss the inter-epoch operations, taking place toward the end of
an epoch; upon its termination, we move to a new epoch. The inter-epoch process
selects a new random set of cascades to be used in the coming epoch, avoiding the
links reported by the mixes, as well as any mixes detected as corrupt. Until the
inter-epoch terminates and the mixes move to the new epoch, the mixes continue
with the intra-epoch process as before; the only difference is that newly detected
failures, would be ‘buffered’ and handled only in the following run of the inter-
epoch process, to avoid changing the inputs to the inter-epoch process after it has
begun. Further in this chapter, we detail the steps of the inter-epoch process.

4.6.1 Filtering Faulty Mixes

Directory authorities share amongst themselves the evidences they received and use
them to agree on the set of faulty links and mixes. The evidences consist of the
reports of faulty links from mixes, clients or authorities performing the isolation
process. The directory authorities exchange all new evidences of faulty links and
mixes, i.e., not yet considered in the previous inter-epoch computation process. Ev-
ery directory can validate each evidence it received and broadcast it to all other
directories. Since we assume majority of honest directories and synchronous oper-
ation, we can use known broadcast/consensus protocols, and after a small number

4.6. Inter-Epoch Process 93

Graph G Graph G (f = nm +1)

M1

M2
Detected

M1

M2

M1

DetectedRemove M2

Deg(M1)< f (= 3)

Deg(M2)≥ f (= 3)
Deg(M1)≥ f (= 2)

Figure 4.5: An illustration of the simple malicious mix filtering (without community detec-
tion).

of rounds, all honest directory authorities have exactly the same set of faulty links.
Note, that only links connected to (one or two) faulty mixes are ever discon-

nected. Hence, any mix which has more than f links disconnected must be faulty
(due to the assumption that f > nm), and hence the directories exclude that mix
completely and immediately. Since the directory authorities share exactly the same
set of faulty links, it follows that they also agree on exactly the same set of faulty
mixes.7 We call this exclusion process a simple malicious mix filtering step. In Sec-
tion 4.7, we discuss more advanced filtering techniques, based on community detec-
tion.

Simple malicious mix filtering technique. To perform the simple malicious
mix filtering, each directory authority can build a graph that represents the con-
nectivity between mixes. Namely, consider an undirected graph G = (V,E) where
the vertices map to the mixes in the system (V = N), and an edge (Mi,M j) ∈ E

means that the link between mixes Mi and M j was not dropped by either mix. Let
G = (V,E) be the complement graph of G and let DegG(Mi) denote the degree of
the vertex Mi in graph G. In the beginning, before any reports of faults have arrived
at the directory authorities, G is a complete graph and G is an empty graph. As
time goes by, G becomes sparser as a result of the links being dropped, and propor-
tionally, G becomes more dense. The filtering mechanism removes all mixes that
lost f links or more, i.e., {Mi | ∀Mi ∈ G : DegG(Mi)≥ f}, where f = nm +1. The
filtering mechanism checks the degree DegG(Mi) in graph G, since the degree in G

represents how many links Mi lost. We emphasize that when such malicious mix is
detected and removed, the number of malicious mixes in the system is decreased by
one (nm = nm−1) and proportionally so does f (f = f −1). As a result, whenever
the mechanism removes a malicious mix it repeats the mechanism once again, to

7This is a known problem of distributed systems, therefore we assume that 2/3 of the directory
authorities are honest or one of the consensus protocols is implemented.

94 Detecting malicious mix nodes

see whether new malicious mixes can be detected according to the new f value. An
illustration of this process is depicted in Figure 4.5.

4.6.2 Cascades Selection Protocol

After all directory authorities have the same view of the mixes and their links, they
select and publish a single set of cascades, to be used by all clients during the
coming epoch. To allow clients to easily confirm that they use the correct set of
cascades, the directory authorities collectively sign the set that they determined for
each epoch, using a threshold signature scheme [203, 204]. Hence, each client can
simply retrieve the set from any directory authority and validate that it is the correct
set (using a single signature-validation operation).

The cascades selection protocol allows all directory authorities to agree on a
random set of cascades for the upcoming epoch. The input to this protocol, for each
directory authority, includes the set of mixes N, the desired number of cascades to
be generated nc, the length of cascades ` and the set of faulty links FL ⊂ N×N. For
simplicity, N, nc and ` are fixed throughout the execution.

The goal of all directory authorities is to select the same set of cascades C ⊆
N`, where C is uniformly chosen from all sets of cascades of length `, limited to
those which satisfy the selected legitimate cascade predicates, which define a set
of constraints for building a cascade. Given a specific legitimate cascade predicate,
the protocol selects the same set of cascades for all directory authorities, chosen
uniformly at random among all cascades satisfying this predicate. This is somewhat
challenging, since sampling is normally a random process, which is unlikely to
result in exactly the same results in all directory authorities. One way of ensuring
correct sampling and the same output, is for the set of directories to compute the
sampling process jointly, using a multi-party secure function evaluation process,
e.g., [141]. However, this is a computationally-expensive process, and therefore,
we present a much more efficient alternative. Specifically, all directories run exactly
the same sampling algorithm and for each sampled cascade validate it using exactly
the same legitimate cascade predicate. To ensure that the results obtained by all
honest directory authorities are identical, it remains to ensure that they use the same
random bits as the seed of the algorithm. To achieve this, while preventing the
faulty directory authorities from biasing the choice of the seed bits, we can use a
coin-tossing protocol, e.g., [205], among the directory authorities.8

8Note, that we only need to generate a small number of bits (security parameter), from which
we can generate as many bits as necessary using a pseudo-random generator.

4.6. Inter-Epoch Process 95

0 20 40 60 80 100

Percent of link losses (%)

0

20

40

60

80

100

Pe
rc

en
t o

f c
as

ca
de

s (
%

)

ValidNeighbors:

ValidNodes:

Fully-honest

Fully-honest

Semi-honest

Semi-honest

Fully-malicious

Fully-malicious

Figure 4.6: Probability of picking cascades as function of link losses, where l = 4 and the
adversary controls 30% of the mixes.

Legitimate-Cascade Predicates. The path selection protocol can use several
constraints, defined by the legitimate cascade predicates, to generate a set C of
valid cascades. Below, we propose a set of such predicates, which validate whether
a cascade is legitimate and can be included in C. Depending on the considered
predicate, it can either be co-applied jointly with other ones, to eliminate more
undesired cascades, or individually. We propose a set of predicates, defined as
Legit : N` → {0,1}, which given a cascade c ∈ N` output whether the cascade is
valid or not.

• UniqueInCascade(c) = {∀Mi,M j ∈ c : i 6= j}
Each mix is used only once in a particular cascade c.

• NonFaulty(c) = {∀Mi ∈ c : Mi 6∈ FM}
Each mix in cascade c is selected only from the set of non-faulty mixes.

• OnlyInOneCascade(c) = {∀Mi ∈ c∧∀ c′ ∈ C : Mi 6∈ c′}
Any two cascades should not have a common mix.

• ValidNeighbor(c) = {∀Mi,Mi+1 ∈ c : (Mi,Mi+1) 6∈ FL}
For each pair of directly connected mixes in cascade c, this pair should not be
listed in the set of faulty links FL.

• ValidNodes(c) = {∀Mi,M j ∈ c : (Mi,M j) 6∈ FL}
No two mixes in cascade c can have a faulty link between them.

Other predicates can be defined, however it is important to balance their effect
on the system, both in terms of performance and security. Predicates also affect

96 Detecting malicious mix nodes

the penalization factor, i.e., the price that an adversary pays for losing a link. Con-
sider predicates ValidNeighbor and ValidNodes, where a single link loss excludes a
different number of cascades in each approach. In ValidNeighbor, all cascades that
contained a dropped link are no longer valid, while in ValidNodes, on top of those
cascades, any other cascade that has any two mixes who disconnected from one an-
other is no longer valid. The rationale is that if two mixes are unwilling to directly
communicate, they are unwilling to communicate indirectly as well. Therefore, the
price that an adversary pays for losing a link significantly increases, as presented
in Figure 4.6, yet increases the chances of choosing a fully-malicious cascade, as
presented further in Section 4.8.2.

4.7 Community-based Attacker Detection

So far, the discussion focused on the core behaviour of Miranda and presented what
Miranda can do and how it is done. Interestingly, Miranda’s mechanisms open a
doorway for advanced techniques, which can significantly improve the detection of
malicious mixes. In this section, we discuss several techniques that can leverage Mi-
randa’s faulty links identification into a powerful tool against malicious adversaries.
Among others, we use community detection techniques. Community detection has
been used in previous works to achieve Sybil detection based on social or intro-
duction graphs [131, 206]. However, we assume that the problem of Sybil attacks
is solved through other means, such as admission control or resource constraints.
Encouragingly, many other techniques can be employed; yet, we hope that the fol-
lowing algorithms will be also useful in other applications where applicable, e.g.,
where community detection is needed.

4.7.1 Aggresive Pair Removal

From our assumption that honest mixes never fail, we define the following observa-
tion.

Observation 1. For every two mixes Mi,M j that have an edge in (Mi,M j) ∈ E, at
least one of them is a malicious mix.

Therefore, a dropped link must be between either an honest mix and a mali-
cious mix or between two malicious mixes. Following this observation, one pos-
sible strategy is aggressive pair removal, i.e., remove both mixes, if one or both
of them report failure of the link connecting them. This strategy seems to provide
some benefits - the adversary seems to ‘lose more’, however it comes at an excess

4.7. Community-based Attacker Detection 97

(a) Graph G, the simple malicious mix filtering tech-
nique cannot detect M2 because DegG(M2) =
2 < 3 = f .

(b) An execution of the T hresholdDetection on the
same G graph virtually removes M1 and M5
which decreases f , resulting in DegG(M2) = 2≥
2 = f and detection of M2 as a malicious mix.

Figure 4.7: An illustration of how virtually removing mixes from G can expose malicious
mixes. Algorithm 2 refers to the graph in 4.7b as G1, since it is the same graph
G as in 4.7a but without M1 and without M1’s neighbors.

cost of possible exclusion of honest nodes. Therefore, we focus on less aggressive
techniques that exclude malicious mixes without excluding also honest ones.

4.7.2 Threshold Detection Algorithm

Since the aggressive removal of both mixes connected by the failed link from G is
not efficient, we adopt the idea of virtual removal of the conflicting pair. By vir-
tually we mean that virtually removed mixes are not classified as malicious and
they are only removed from G for the duration of the algorithm’s execution, and not
from G nor N. We present the ThresholdDetection technique in Algorithm 1. The
algorithm takes as input graph G = (V,E), where an edge (Mi,M j) ∈ E represents
the disconnected link between Mi and M j. The algorithm starts by invoking the
SimpleMaliciousFiltering procedure (described in Section 5.1) on the graph G (line
12).

Next, the algorithm invokes the VirtualPairRemoval procedure on G to virtu-
ally remove a pair of mixes from G (line 14). Following observation 1, at least
one malicious mix was virtually removed, thus the virtual threshold f ′ value is de-
creased by 1 (line 15). We use the f ′ variable to keep track of the virtually removed
malicious mixes and the global f value is decreased only when a malicious mix was
actually detected (line 4), and the rest only change the virtual threshold f ′. After
that, the algorithm invokes the procedure SimpleMaliciousFiltering again on the up-
dated G graph, i.e., without the pair of mixes that were virtually removed by the
VirtualPairRemoval procedure. The algorithm repeats lines 14-16 as long as there
are edges in G. For an illustration why the ThresholdDetection algorithm is better
than the original simple malicious mix filtering see Figure 4.7.

98 Detecting malicious mix nodes

Algorithm 1: ThresholdDetection(G = (V,E))
1 Function SimpleMaliciousFiltering (G, f ′):
2 for every Mi ∈ G : DegG(Mi)≥ f ′ do
3 Mi is malicious (remove from G,G,ms);
4 f ← f −1;
5 f ′← f ′−1;

6

7 Function VirtualPairRemoval (G):
8 Pick an edge (Mi,M j) ∈ E;
9 Remove mixes Mi,M j from G.

10

11 f ′← f ;
12 Invoke SimpleMaliciousFiltering(G);
13 while E 6=∅ do
14 Invoke VirtualPairRemoval(G);
15 f ′← f ′−1;
16 Invoke SimpleMaliciousFiltering(G);

Next, we improve upon the ThresholdDetection algorithm, while still never re-
moving honest mixes. Our improvement is based on Observation 2 below. But first,
we define the following notation, which can be applied to any undirected graph.

Notation. Let G0 = (V0,E0) be an arbitrary undirected graph. A sequence {G j}µ

j=0

of subgraphs of G0 is a removal sequence of length µ ≥ 1 of G0, if for every j : µ ≥
j≥ 1, G j = G j−1−v j. Namely, G j is the same as G j−1, except for removal of some
node v j ∈ G j−1, and of all edges connected to v j. A removal sequence is legitimate
if every removed node v j has at least one edge.

Let us define the graph Gi to be the resulting graph after removing from G the node
Mi together with all its neighbors, denoted as N(Mi).

Observation 2. If Gi has a legitimate removal sequence of length µi, then there are
at least µi malicious nodes in Gi.

We use Observation 2 to identify malicious mixes, using the following claim.

Claim 1. Every node Mi that satisfies DegG(Mi)> nm−µi is a malicious node.

Proof. Assume to the contrary, that there exists a mix Mi such that DegG(Mi) >

nm− µi but Mi is an honest mix. Since there are nm malicious mixes in N, and µi

of them are not neighbors of Mi, then the maximum number of malicious mixes

4.7. Community-based Attacker Detection 99

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4 (e) Step 5

Figure 4.8: A demonstration how Miranda’s community detection can significantly improve
the detection of malicious mixes using an example graph G and f = nm +1.

that can be also neighbors of Mi is nm−µi, since Mi is honest. But if DegG(Mi) >

nm− µi, then at least one of the neighbors of Mi is also honest, which contradicts
the assumption that honest links never fail. Therefore, if DegG(Mi)> nm−µi then
Mi must be a malicious mix.

Example. Figure 4.7b depicts the graph G1. By observing G1, we know that at least
one of the mixes M2,M3 are malicious (since they share an edge), therefore, µi ≥ 1
since we successfully identified a malicious mix which is not in {M1 ∪N(M1)}.
Alternatively, the same argument can be made regarding M2 and M4 instead of the
pair M2 and M3. Since after removing M2,M4 from G1 there are no edges left in G1,
then µ1 = 1.

Algorithm 2 presents the CommunityDetection algorithm, which leverages Claim 1
to detect malicious mixes.

Notice that the algorithm only examines nodes with a degree larger than 1 (line
3). The reason is that if DegG(Mi) = 0 then Mi did not perform an active attack yet,
thus it cannot be detected, and if DegG(Mi) = 1 then Mi cannot be classified based
on its neighbors. Therefore, an execution of the CommunityDetection might not
be able to detect all malicious mixes that exposed themselves, e.g., mixes with a
degree that equals to 1. If desired, there is always the opportunity to execute the
aggressive pair removal technique after the CommunityDetection algorithm to po-
tentially remove more malicious mixes (with price of possible removal of an honest
mix). Also, randomly picking a pair of mixes that share an edge in G might not
always be the optimal strategy. In small graphs, the algorithm can exhaust all possi-
ble removal variations, but this is a time-consuming option in large graphs. A more
sophisticated picking strategy might yield better results; however, when we experi-
mented with some possible strategies, we did not notice a significant improvement
over the random picking strategy.

An illustration of the operation of algorithm 2 is demonstrated in Figure 4.8.

100 Detecting malicious mix nodes

Algorithm 2: CommunityDetection(G = (V,E))

1 n′m← nm;
2 while E 6=∅ do
3 f lag← 0;
4 for each Mi ∈ V : DegG(Mi)> 1 do
5 Construct Gi = (Vi,Ei) from G;
6 µi← 0;
7 while Ei 6=∅ do
8 Invoke VirtualPairRemoval(Gi);
9 µi← µi +1;

10 if DegG(Mi)> n′m−µi then
11 Mi is malicious (remove from G,G,mixes);
12 nm← nm−1, n′m← n′m−1;

13 if E 6=∅ then
14 Invoke VirtualPairRemoval(G);
15 n′m← n′m−1;

As depicted in Figure 4.8a ∀Mi : DegG(Mi) < f , simple malicious mix filtering
technique does not detect malicious mixes. However, we can deploy the community
based algorithm to improve the detection of malicious nodes. First, we focus on M2

(Figure 4.8b). When we observe G2, i.e., G after the removal of M2 and N(M2),
two scenarios are possible. In the first scenario, if M1 and M9 are removed first
then µ2 = 3, thus DegG(M2) = 2 > 1 = nm− µ2, and therefore M2 is detected as
malicious. In the second scenario, if M1 and M6 (or M5) are removed first then
µ2 = 2, thus DegG(M2) = 2 ≤ 2 = nm− µ2, and therefore M2 is not detected as
malicious (yet). A similar situation occurs with M3 when observing G3.

On the other hand, when we observe G6 (Figure 4.8c), two malicious mixes
can be identified, thus µ6 = 2. As a result, since DegG(M6) = 2≤ 2 = nm−µ6, M6

is not classified as malicious (nor should it be). Note that even if M3 was removed
in (b), then DegG(M6) = 1 and therefore the algorithm cannot classify it based on
its neighbors. The same explanations apply to the rest of the honest mixes.

When we observe G1 (Figure 4.8d), only one malicious mix can be identified,
thus µ1 = 1. As a result, since DegG(M1) = 4 is larger than nm− µ1 = 3, M1 is
detected as malicious.

If M2 and M3 were not detected as malicious as explained in 4.8b, then after
the removal of M1 in 4.8c they will be detected, because the removal of M1 causes
nm = 4→ nm = 3. Since the algorithm runs in a loop, when the algorithm will
re-check G2, it will discover that µ2 = 2 and thus DegG(M2) = 2 > 1 = nm− µ1,

4.7. Community-based Attacker Detection 101

which results in removal of M2. The same goes for M3. After the removal of M1,M2

and M3, the algorithm cannot classify M4 as malicious based on its neighbors, since
M4 only dropped one link. However, the algorithm has the option to aggressively
remove both M4,M5.

4.7.3 Community detection based on random walks

In this section, we propose an alternative approach towards community detection,
based on random walks inspired by SybilInfer [206]. We define a Markov chain
on the graph G as a set of probabilistic transitions for all nodes Mi → M j, that
we borrow from [206]. We define as Deg(Mi) the degree of vertice Mi and the
probability of transiting from two vertices Mi→M j as

Pr[M j|Mi] =

{
min

{
1

Deg(Mi)
, 1
Deg(M j)

}
if(Mi,M j) ∈ E

0 otherwise

and call the matrix of all those transition probabilities Π, while the remaining proba-
bility mass from each node is assigned to a self-loop. This transition matrix ensures
that the stationary distribution of the Markov walk is uniform across all nodes in
connected components of G, as shown in [206]. However, a short random walk, of
O(logn) steps, will not converge to the stationary distribution for sparser G since
the walks will tend to remain within regions of high capacitance. Similar to the
insight underpinning Sybil defenses, the random walks starting from honest nodes
tend to remain within the (fully connected) regions of the graph, and the missing
links between honest and malicious mixes act as a barrier to those walks escaping
in malicious regions of the graph. Therefore, since we assume that faulty links can
only concern links between the honest and malicious set of nodes, they separate the
sub-graph into those two types of mixes. Moreover, even if the adversary attempts
to drop his own links between the malicious nodes, he cannot force the algorithm to
wrongly exclude the honest mixes, since the attacker is only decreasing the degree
(·) of his own malicious nodes. Hence, from the definition of Pr[M j|Mi], the ran-
dom walk will tend to move towards the nodes with higher degree, i.e., the honest
nodes.

We leverage this insight to bias cascade construction. We define K = dk · logne
where k is a small system constant. Then we compute the transition probability
matrix Π∗ = ΠK of a random walk using transitions Π after a short number of steps
K. Using the matrix Π∗ we can extract the probability that a walk starting at node
Mi ends up in any node M j which we denote as π∗i [j]. All directory authorities
may compute those distributions deterministically and use the information to infer

102 Detecting malicious mix nodes

further faulty links: for any node Mi, we denote as cutoff the smallest probability
within πi. Then for any node M j such that π∗i [j] < cutoff the directory authorities
remove the link between Mi and M j thus further pruning the graph used to build
cascades.

Summary. The techniques discussed in this section provide Miranda a signifi-
cant advantage, since malicious mixes can be detected even if they do not pass f .
We can augment the inter-epoch process, by performing an additional step of filter-
ing nodes and propagating the reports of faults to more links and nodes – through
a community detection algorithm. Overall, community detection techniques can
be used to extract more information from reports of faulty links and mixes, and
tilt the choice of cascades towards honest mixes earlier. Merely the threat of such
techniques is significant in deterring active attacks.

In Section 4.9, we analyze the security of the mechanisms discussed here and
evaluate them empirically.

4.8 Analysis of Active Attacks

In this section, we analyze the impact of active attacks in the presence of Mi-
randa. We first analyze Miranda against traditional and non-traditional active at-
tacks, including attacks designed to abuse the protocol to increase the chances of
clients choosing fully malicious cascades. We continue by examining the security
of loop messages and conclude this section by evaluating how community detection
strengthens Miranda.

4.8.1 Resisting Active Attacks

As discussed in Section 4.5, a malicious mix that drops a packet sent from a pre-
ceding mix or destined to a subsequent mix, loses at least one link; in some cases,
the malicious mix gets completely excluded. Hence, the adversary quickly loses
its attacking capabilities, before any significant impact is introduced. However, the
adversary might try other approaches in order to link the communicating users or
gain advantage in the network, as we now discuss.

Delaying packets. A malicious first mix can refuse clients’ packets; however,
such attack is imprudent, since clients can migrate to other cascades. Furthermore,
clients can force the malicious mix to relay their packets, using a witness. Similarly,
it is ineffective for the last mix of a cascade to drop all packets it receives, since

4.8. Analysis of Active Attacks 103

clients learn through isolation that the dropped loop packets successfully arrived at
the last mix. Although clients cannot prove the mix maliciousness, they avoid future
cascades containing the malicious mix, including fully malicious cascades.

Instead of directly dropping packets, adversaries can cause a packet to be
dropped by delaying the packet. However, such attack is also detected.

Claim 2. A malicious mix that delays a packet, is either expelled from the system
or loses a link.

Argument. When an honest mix receives a delayed packet, it drops it. However,
the honest mix still sends a receipt back for that packet. If the malicious mix ac-
knowledges the receipt, the malicious mix is exposed when the client performs the
isolation process: the client can obtain a signed receipt proving that the malicious
mix received the packet on time, and also the acknowledged receipt from the honest
mix that dropped the delayed packet. The latter contains the round number when
the packet was dropped, which proves the malicious mix delayed the packet and
therefore should be excluded. Otherwise, if the malicious mix refuses to sign the
receipt, the honest mix disconnects from the malicious mix.

Injecting malformed packets. Notice how the honest mix that dropped the
delayed message still sends back a receipt for it. The reason is that the dropping
mix cannot be sure that the previous mix did delay the message. Instead, this can
be the result of an adversary that crafts a packet with the same round number in two
successive layers.

Claim 3. An adversary cannot craft a loop message that causes a link loss between
two honest mixes.

Argument. Any loop message has to be well-formed in order for directory authori-
ties to accept it. An adversary can craft a message with invalid round numbers in the
packet’s routing information, which would cause the honest mix to drop the packet.
However, although the honest mix drops the packet, it still sends back a receipt for
that packet. Otherwise, the preceding mix, which has no way of knowing that the
next layer is intentionally malformed, would disconnect from the subsequent mix.
While the adversary can obtain a proof showing that a loop message was dropped,
it cannot prove that the loop message was well-formed.

Aggressive active attacks. In order to de-anonymize the network users, the
adversary can choose a more aggressive approach and drop a significant number
of packets. For example, in the (n− 1) attack [68] applied to the full network, the

104 Detecting malicious mix nodes

adversary tracks a target packet from Alice by blocking other packets from arriving
to an honest mix, and instead injecting their own packets. Another example is the
intersection attack [59], where the adversary tries disconnecting target clients. If the
adversary cannot directly disconnect a client with a targeted attack, it can disconnect
a client by dropping an entire batch of packets where one of them belongs to the
client (the adversary simply does not know which). However, it is important to note,
that if an adversary can engineer a scenario where a single target packet is injected
and mixed with only messages that the adversary controls, any mix-based system
is vulnerable. Nevertheless, we argue that Miranda inflicts serious penalties on the
adversary who attempts to perform an aggressive dropping of packets.

Claim 4. Miranda deters aggressive active attacks.

Argument. Aggressive active attacks require the ability to drop many packets. In
Miranda, a malicious mix that drops any packet from another mix without send-
ing back a receipt, loses a link (see Section 4.5 and Figure 4.4). Alternatively, if
the malicious mix drops packets but does send receipts for these dropped packets,
clients can prove that the malicious mix received their (loop) packets and did not
forward them, which results in the exclusion of the malicious mix (see Figure 4.4).
A malicious entry mix may drop packets from clients, since losing a link to a client
is not a serious ‘penalty’; but in Miranda, clients then use a witness mix (see Sec-
tion 4.5.4) – forcing the mix to either relay their packets, or - lose a link to a mix or
risk discovery, as discussed above.

Miranda enforces a minimum number of ω packets for mixing by the entry
mix. This is designed to protect the rare cases where a client sends via an entry mix
which is used only by few (or no) other clients, which could allow an eavesdropper
attack; we now explain why this cannot be abused to facilitate an active attack (by
the first mix).

Recall, that in this case, as in our entire analysis of corrupt-mix attacks, we
assume that at least 2ω honest clients send packets to the (possibly corrupt) entry
mix; and, as mentioned above, the mix cannot simply ‘drop’ these (since clients
will use witness and then the corrupt mix will lose - at least - a link).

Instead, the corrupt mix could send to these clients, or most of them, the special
‘under-ω receipt’, claiming (incorrectly) that it didn’t receive ω messages during
this round. However, senders report these (rare) under-ω receipts to the directories,
who would quickly detect that this mix is corrupt.

4.8. Analysis of Active Attacks 105

10 15 20 25 30 35 40
Percent of malicious mixes (%)

0

5

10

15

20

25

30
M

ax
im

um
 p

ro
ba

bi
lit

y
to

 p
ick

 a

 fu
lly

-m
al

ici
ou

s c
as

ca
de

 (%
)

 Tight bound
cascade length

3
4
5
6

 Loose bound
cascade length

3
4
5
6

Figure 4.9: The maximum probability of picking a fully malicious cascade as a function of
the cascade length and the power of the adversary.

4.8.2 Fully Malicious Cascades Attacks

If the packets are relayed via a fully malicious cascade, an adversary can trivially
track them. Consequently, adversaries would like to divert as much traffic as possi-
ble to the fully malicious cascades. Attackers can try to maximize their chances by:
(1) increasing the probability that fully malicious cascades are included in the set
C produced by the directory authorities during the inter-epoch process, and/or (2)
increasing the probability that clients pick a fully malicious cascade from C during
an epoch.

Because cascades are chosen uniformly over all valid cascades, the only way
the adversary can influence the cascades generation process is by excluding semi-
honest cascades. However, they can only exclude cascades by dropping links they
are a part of, therefore, the adversary cannot exclude any honest links or honest
mixes, meaning they cannot exclude any fully honest cascades.9 However, adver-
saries are able to disconnect semi-honest cascades by disconnecting semi-honest
links and thereby increase the probability of picking a fully malicious cascade. In-
terestingly, we found that such an attack only slightly increases the chance of select-
ing a fully malicious cascade – while significantly increasing the chance of selecting
a fully honest cascade (see Claim 5). Further, this strategy makes it easier to detect
and eliminate sets of connected adversarial domains (see Section 4.7).

Claim 5. Let CAdv denote a set of fully malicious cascades. The maximum prob-
ability to pick a fully malicious cascade during cascades generation process, after

9Even if all adversarial mixes disconnect from an honest mix, it is still not enough for exclusion,
since f > nm.

106 Detecting malicious mix nodes

0 20 40 60 80 100
Percent of link losses (%)

0

20

40

60

80

100

Pe
rc

en
t o

f c
as

ca
de

s (
%

)

Fully-honest
Semi-honest
Fully-malicious

Figure 4.10: The probability of picking particular classes of cascades after each link loss.
The parameters of the simulated mix network are l = 3, n = 100 and nm = 30.

the semi-honest cascades were excluded by the adversary is

Pr(c ∈CAdv)≤

(
nm

nh− l +1

)l

.

Argument. Initially, the probability that a randomly selected cascade is fully-
adversarial is Pr(c ∈CAdv) =

nm!(n−l)!
n!(nm−l)! . After the adversary disconnects all semi-

honest cascades, the total number of all possible permutations of cascades is
nm!

(nm−l)! +
nh!

(nh−l)! . Since each cascade is selected uniformly at random the proba-
bility of picking a fully-adversarial cascade is defined as

Pr(c ∈CAdv) =
nm!

(nm− l)!

/(nm!
(nm− l)!

+
nh!

(nh− l)!

)
≤

(
nm

nh− l +1

)l

Figure 4.9 and Figure 4.10 present the probability of picking a fully malicious
cascade depending on the number of mixes colluding with the adversary and the
percentage of lost links.

Once nc cascades are generated, the adversary could try to bias the probability
of clients choosing a fully malicious cascade. To do so, the adversary can sabotage
semi-honest cascades [3] through dropping messages, and in an extreme case, ex-
clude them all. We illustrate in Figure 4.11 the attack cost, expressed as the number
of links the adversary must affect in order to achieve a certain probability of success
in shifting clients to a fully malicious cascade. Note, that the larger the number of
cascades nc, the more expensive the attack, and the lower the probability of success.

4.8. Analysis of Active Attacks 107

0.01 0.05 0.1 0.2 0.3 0.4 0.5 1.0 2.0 3.0 5.0 10.0
Fraction ξ of cascades in an epoch, as percent from total possible cascades

20

40

60

80

100
Pr

ob
ab

ilit
y

of
 c

ho
os

in
g

a
fu

lly
-m

al
ici

ou
s c

as
ca

de
af

te
r t

he
 a

tta
ck

 (%
)

probability

0

100

200

300

400

500

Nu
m

be
r o

f l
in

ks
 to

 d
ro

p
to

 a
ch

ie
ve

 a
tta

ck

cost

Figure 4.11: The costs and success probability of performing DoS [3] attacks based on the
fraction of cascades active in every epoch.

4.8.3 Security of Loop Messages

Since loop messages are generated and processed in the same way as genuine mes-
sages, the binary pattern does not leak any information. However, adversaries can
still seek ways to predict when loop messages are sent; for example, by observing
the timing pattern and the rate of sent messages.

Detecting loop messages. Adversaries can try to guess whether a particular
message is a loop message or not. A successful guess allows the adversary to drop
non-loop messages without being detected, while still sending receipts for them to
the previous mix. We formulate the following claim:

Claim 6. Assume that an adversary that does not control the last mix in the cascade,
drops a packet. The probability of this message being a loop message sent by a non-
malicious client is at least α .

Argument. It suffices to consider packets sent by non-malicious clients. When a
non-last mix receives such packets, it does not know the destination. Furthermore,
as described in section 4.5.3, loop packets are sent by non-malicious clients accord-
ing to the rate defined by α of genuine traffic and are bitwise indistinguishable from
genuine packets. Hence, even if the mix would know the identity of the sender, e.g.,
by being the first mix, the packet can still be a loop message with probability at least
α .

Note that a malicious non-last mix that drops a loop message, yet sends a receipt for
it and remains connected to the next mix, would be proven malicious and excluded

108 Detecting malicious mix nodes

from the network. On the other hand, if such mix does not send a receipt, then it
loses a link.

Malicious last mix. Claim 6 does not address the last mix. There are two rea-
sons for that: first, in contrast to mixes, clients do not send receipts back to mixes.
Therefore, a last mix cannot prove it actually delivered the packets. Secondly, the
last mix may, in fact, identify non-loop messages in some situations. For example,
if a client did not send packets in round r, then all the packets it is about to receive
in round r+x (where x is the number of rounds it takes to complete a loop) are gen-
uine traffic sent by other clients. Therefore, these messages can be dropped without
detection.

However, dropping of messages by the last mix can also be done against the
ideal mix (see Section 4.3.3), e.g., by a man-in-the-middle attacker. In fact, similar
correlation attacks can be performed even without dropping packets, if clients have
specific sending patterns. Therefore, mitigating this attack is beyond Miranda goals,
and should be handled by the applications adopting Miranda.10

4.9 Evaluation of Community Detection Tech-
niques

The discussion in Section 4.7 presented several community detection techniques
to leverage Miranda’s reported links information into a detection tool that removes
malicious mixes from the system. We now argue that the contribution of these
mechanisms is both important and secure.

4.9.1 Community detection using Threshold Detection
and Virtual Pair Removal

We implemented the ThresholdDetection (Algorithm 1) and CommunityDetection

(Algorithm 2) algorithms described in Section 4.7, and evaluated them as follows.
We generated a complete graph of n = 100 mixes where nm = 33 of them are ma-
licious. We modeled a random adversary by randomly dropping a fraction of the
semi-honest links, making sure that any mix does not drop more than or equal to
f = nm + 1 links. Figure 4.12 demonstrates the effectiveness of the algorithms.

10For example, Loopix, presented in Chapter 3, uses fixed sending rate (thus, foiling the attack).
A concerned client can simply make sure to send additional loop packets in every round where no
genuine traffic is relayed.

4.9. Evaluation of Community Detection Techniques 109

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Percent of ranodmly dropped semi-honest links out of the

 total number of semi-honest links (%)

0

20

40

60

80

100

Pe
rc

en
t o

f m
al

ici
ou

s m
ix

es
 d

et
ec

te
d

(%
)

Threshold detection Community detection

Figure 4.12: The effect of using community detection against malicious mixes.

The ThresholdDetection algorithm starts to become effective when roughly 10%
of the semi-honest links are reported and improves as the number of reports in-
creases. In comparison, the CommunityDetection algorithm presents significantly
better results, starting when 4% of the semi-honest links are dropped and after 8%
the algorithm is able to expose all possible malicious mixes. Considering that the
CommunityDetection algorithm can only operate on malicious mixes that dropped
more than one link, these results show that the algorithm effectively mitigates the
non-strategic adversary.

4.9.1.1 Security Analysis

In essence, both the ThresholdDetection algorithm and the CommunityDetection

algorithm do the same thing: they both remove malicious mixes from the system.
Therefore, the only way for a strategic adversary to abuse these algorithms is to
strategically drop links in a way that causes these algorithms to wrongfully remove
honest mixes from the system, due to misclassification of honest mixes as malicious.
We now argue that the ThresholdDetection and CommunityDetection algorithms are
secured against such attack.

Claim 7. An honest mix Mi ∈ G never satisfies DegG(Mi)≥ f .

Proof. Assume to the contrary that there exists an honest mix Mi ∈ G that satisfies

110 Detecting malicious mix nodes

Deg(Mi) ≥ f . However, if this is the case, then DegG(Mi) ≥ f , which implies
DegG(Mi)≤ n− f ≤ nh−1, which means that at least one honest mix disconnected
from Mi, contradicting the assumption that honest links never fail.

Claim 8. The ThresholdDetection algorithm never removes honest mixes.

Proof. According to the implementation of ThresholdDetection, the algorithm only
removes mix Mi ∈ G that satisfies Deg(Mi) ≥ f . However, following Claim 7, this
cannot happen for honest mixes.

Claim 9. The CommunityDetection algorithm never removes honest mixes.

Proof. According to the implementation of CommunityDetection, the algorithm
only removes mix Mi ∈ G that satisfies Deg(Mi) > nm− µi, which according to
Claim 1 never happens for honest mixes.

4.9.2 Community detection based on random walks

We also empirically evaluate the community detection approach based on random
walks presented in Section 4.7.3 through simulations. Given a fraction of reported
faulty links, we apply our community detection and pruning, and estimate three
figures of merit: (1) the fraction of total semi-honest links that are excluded; (2) the
fraction of malicious mixes that are detected by pruning those with degree smaller
than n/2; and (3) the fraction of non-semi-honest links (links connecting two honest
nodes, or two malicious ones) that are being removed. The last figure represents the
‘false positive’ rate of our approach.

We consider a model system with n = 100 mixes, out of which 33 are mali-
cious. We perform random walks of length 7, which is the ceiling of the natural
logarithm of n. We remove at random a fraction φ of distinct reported faulty links,
perform community detection, prune links and nodes, and compute the figures of
merit above. We consider values for φ between 0% and 10% of semi-honest links.
The results are illustrated on Figure 4.13, and each data point is the mean of 20
experiments – error bars are negligible.

We observe that the fraction of semi-honest links ultimately detected by com-
munity detection is a large multiple of the faulty links originally reported to the
directory authorities: for 1% or originally reported faulty links we can prune about
20% of semi-honest links; for 4% reported we prune over 90% of semi-honest links.
Similarly, the number of mixes detected as outright malicious increases very rapidly
in the number of reported faulty links, once that information has been enhanced
greatly by our community detection: for 2% of reported faulty links we detect over

4.10. Discussion 111

0 1 2 3 4 5 6
Fraction of faulty reports (%)

0

20

40

60

80

100

Pe
rc

en
t (

%
)

% of Honest-dishonest links removed
% of Non-honest-dishonest links removed
% of Malicious mixes removed

Figure 4.13: Effect of the community detection mechanism to detect semi-honest links.

20% of malicious nodes; for fewer than 4% of reported faulty links we detect over
90% of the malicious nodes. On the other hand, the fraction of honest links mis-
categorized and removed first increases with the number of reported faulty links (up
to a peak of less than 30% for 1.5% reported links) but then quickly decreases.

Integrated Evaluation. It is worth contextualizing these results in terms of absolute
numbers: 6% of reported faulty links – leading to nearly perfect identification of all
semi-honest links and malicious nodes – represent merely 270 reports for a network
of 100 mixes, out of which 33 are malicious. Achieving the same effect with the
simple filtering strategy would require 1122 reports. This is in absolute terms a very
small number of loop packets that need to be dropped and isolated until the network
can be rid of malicious nodes entirely. For example, Miranda requires senders to
inject 1% of loop packets to act as a credible detection threat. Taking the scenario
we considered in the Section 4.2 where each observation of the attacker yields an
ε∞ = 10−2, the attacker has a total attack budget of ε = 2.70 to expend on attacking
clients before all malicious nodes are discovered and eliminated – this is rather
small. Even in the case λ = 10 the total attack budget would be ε = 27 across all
users.

4.10 Discussion

The architectural building blocks behind Miranda, such as packet receipts and trap
messages, have been studied by previous research. In the work by Dingledine et
al. [207], receipts are used to verify a mix failure and rank their reputation in order

112 Detecting malicious mix nodes

to identify the reliable mixes and use them for building cascades. The proposed
design uses a set of trusted global witnesses to prove the misbehaviour of a mix. If
a mix fails to provide a receipt for any packet, the previous mix enlists the witnesses,
which try to send the packet and obtain a receipt. Witnesses are the key part of the
design and have to be engaged in every verification of a failure claim, which leads
to a trust and performance bottleneck. In comparison, Miranda does not depend
on the witnesses, and a single one is just used to enhance the design. Moreover,
in this design, a failure is attributed to a single mix in a cascade, which allows the
adversary to easily obtain a high reputation and misuse it to de-anonymize clients.
Miranda rather than focusing on a single mix, looks at the link between the mixes.

In the extended reputation system proposed by Dingledine et al. in [208] the
reputation score is quantified by decrementing the reputation of all nodes in the
failed cascade and incrementing of all nodes in the successful one. Such strong
penalty for dropping packets is imposed due to the fact that in contrast to Miranda,
this design assumes that honest mixes can accidentally report each other. In order to
detect misbehaviours of malicious nodes, the nodes send test messages and verify
later via a snapshot from the last mix, whether it was successfully delivered. Since
the test messages are indistinguishable, dishonest mixes risk being caught if they
drop any message. However, the penalty for dropping is very strong – if a single
mix drops any message, the whole cascade is failed. Therefore, because a single
mix’s behaviour affects the reputation of all mixes in the cascade, the malicious
nodes can intentionally fail a cascade to incriminate honest mixes. This design also
proposed the delivery receipts, which the recipient returns to the last mix in the
cascade in order to prove that the message exited the network correctly. If the last
mix is not able to present the receipt, then the sender contacts a random node from
the cascade, which then asks the last mix to pass the message and attempts to deliver
the message.

Similarly, the idea of using trap messages to test the reliability of the network
was discussed in many works. The original DC-network paper [91] suggested us-
ing trap messages, which include a safety contestable bit, to detect message dis-
ruption. In contrast, the flash mixing [79] technique, which was later proved to be
broken [80], introduces two dummy messages that are included in the input, and
are later de-anonymized after all mixes have committed to their outputs. This al-
lows the participants to verify whether the mix operation was performed correctly
and detect tampering. However, both of those types of trap messages are limited to
these particular designs.

The RGB-mix [182] mechanism uses heartbeat loop messages to detect the (n-
1) attacks [68]. Each mix sends heartbeat messages back to itself, and if the (n-1)

4.11. Conclusion 113

attack is detected the mix injects cover traffic to confuse the adversary. However, the
key assumption of the proposed mechanism is limited only for anonymity among
mix peers. Similarly, Mixmaster [73] and Mixminion [74] employed an infrastruc-
ture of pingers [209], special clients sending probe traffic through the different paths
in the mix network and recording publicly the observed reliability of delivery. The
users of the network can use the obtained reliability statistics to choose which nodes
to use. The Atom [150] design as well uses trap messages to detect misbehaving
servers. The sender submits trap ciphertext with the ciphertext of a message, and
later uses it to check whether the relaying server modified the message. However,
the trap message does not detect which mix failed. Moreover, Atom does not de-
scribe any technique to exclude malicious servers, and a failed trap only protects
against releasing the secret keys.

Miranda combines packet receipts and loop messages with a novel approach of
examining inter-mix links, instead of focusing on the mixes themselves. Thanks to
that any malicious behaviour in the network are detected and penalized, hence the
adversary cannot silently attack the system and blame honest mixes.

4.11 Conclusion

In this chapter, we revisited the problem of protecting mix networks against ac-
tive attacks. The analysis performed showed that active attacks can significantly
increase the adversary’s chances to correctly de-anonymize users. Our mechanism
achieves much better efficiency than previous designs, but at the same time quickly
detects and mitigates active adversaries. We deploy previously studied techniques
such as packet receipts and loop traffic alongside novel techniques to ensure that
each dropped packet penalizes the adversary. We also take a new approach of
focusing on problematic links between mixes, instead of mixes themselves. The
combination of packet receipts, link disconnection, and loop messages, forces ma-
licious mixes to immediately loose links when they perform active attacks, and in
result separates the malicious mix nodes from the honest ones. Further, we also
investigated how community detection enhances our mechanism effectively. While
our mechanism allows to effectively detect and exclude malicious nodes, it raises
also practical open problems which we discuss in Chapter 6. The overall contribu-
tion presented in this chapter is an efficient and scalable detection and mitigation of
active attacks.

Part II

Applications of mix networks

115

Chapter 5

Private Notification Service using
Mix networks

In this chapter, we introduce AnNotify, a private publish-subscribe notification sys-
tem, leveraging an anonymous communication network. Simple and fast crypto-
graphic techniques allow AnNotify to be efficient and scale to millions of users
while providing rigorous privacy guarantees. Thus, PIR schemes inspired by the
AnNotify design can be a great competition to those proposed so far.

5.1 Introduction

In Part I of this thesis, we introduce a novel design of mix network based anony-
mous communication system and a mechanism which allows mitigating active at-
tacks performed by malicious mix servers. In this part of our work, we study the
applications of the mix network systems. The main use-case for the deployment of
mix networks is messaging, including emails and instant messaging. However, the
proposed designs are not limited to only such use and can be also integrated into
other systems, which we discuss in the next chapters.

In this chapter, we show that mix networks may be important building blocks
to implement privacy-friendly schemes, such as notifications, that are not entirely
related to messaging per se. A number of on-line applications require timely noti-
fications. Mail delivery protocols notify users when a new email can be retrieved,
social networking and instant messaging applications send updates of presence, and
broadcast notifications carry updates of DNS or cached web records. Traditionally,
notification services provide no privacy vis-à-vis the notification service itself, that
can observe the routing of notifications from the publisher of the event to the sub-

118 Private Notification Service using Mix networks

scriber. The fact, that particular consumers are subscribed to a particular publisher
or larger groups of publishers can reveal sensitive private information about them.
Thus, the privacy-preserving systems, such as anonymous communication systems,
or private presence systems [189], rely on private notifications: an adversary should
not be able to observe what events a user subscribes to. In this chapter we present
AnNotify, a private notification service, leveraging an anonymous communication
system, based on simple cryptographic constructions. The AnNotify system is de-
signed for efficiency. Subscribers only retrieve small parts of the event database,
to which we refer to as shards. Simple and fast cryptographic techniques, allow
AnNotify to scale well, while providing rigorous privacy guarantees.

AnNotify has numerous applications. Some only require private notification to
signal the availability of a service or a peer (e.g., in instant-messaging systems), or
events such as alerts. Other applications, e.g., blacklists, require public notifications
with multiple subscribers. Broadcast notifications may signal when a cached value
changes - this is especially important for privacy-preserving storage mechanisms
such as Oblivious RAM [210, 211] and PIR [139], where each access involves sig-
nificant overhead. Beyond these, the broadcast notifications can improve the privacy
of web and DNS caches, and significantly improve the performance of such caches
when they are queried over anonymizing networks such as Tor, see [212, 213, 214].

Chapter outline. This chapter is organized as follows. In Section 5.2 we out-
line the system model by defining the threat model and security goals, and present
the high-level overview of AnNotify. We detail the AnNotify design in Section 5.3.
In Section 5.4, we formulate the security definition of a private notification sys-
tem, define the key security theorems of AnNotify and present its security analysis.
In Section 5.5 and Section 5.6, we discuss the costs of AnNotify and compare it to
PIR / DP5 [189]. We then discuss possible extensions of AnNotify in Section 5.7.
In Section 5.8 we propose a set of applications for our design. Finally, we conclude
in Section 5.9.

5.2 System model and Goals

AnNotify is a service connecting notification publishers with specific notification
subscribers that query for notifications. We start this section by presenting the high-
level overview of the idea. Next, we define both the threat model and security goals
of our system. We describe the system for a single subscriber per notification first
and extend it later to broadcast to multiple subscribers.

5.2. System model and Goals 119

Figure 5.1: The AnNotify architecture.

5.2.1 High-level overview

The AnNotify system consists of multiple shards that are managed by a single un-
trusted server. Shards store information about the presence of the notifications up-
loaded by the publishers, which subscribers can then query from the system. AnNo-
tify operates in epochs. Each epoch publishers, who want to notify the subscriber,
connect directly to the system to upload the notifications, whereas the subscribers,
in order to subscribe or query for notifications, connect with the servers through the
anonymous channels, as illustrated in Figure 5.1. AnNotify uses anonymous chan-
nels for communications, and leverages them to increase the efficiency of private
queries from a database of notifications. We consider these channels to be perfect,
namely to hide all meta-data about senders and receivers of messages, and also the
length of messages, as for example Loopix (see Chapter 3).

5.2.2 Security Goals

The AnNotify system provides a number of privacy properties:

Subscriber privacy. Third parties, including the notifier and the infrastructure, can-
not tell whether a subscriber sought a notification from a particular publisher.

Epoch unlinkability. An adversary cannot tell whether queries across epochs were
initiated by the same subscriber or concern the same notification.

120 Private Notification Service using Mix networks

Broadcast privacy. When multiple subscribers are authorized to receive the same
notification, corrupt subscribers cannot discover that other honest subscribers are
subscribed to the same notification as they are.

5.2.3 Threat Model

The AnNotify design assumes a global passive adversary, who may observe any part
or the whole network and tries to infer the relationships between publishers and sub-
scribers. Additionally, we assume that all servers that manage shards may be mali-
cious and work with the adversary. Moreover, AnNotify considers that a fraction of
users are malicious: they collude with the eavesdropping adversary, servers or other
users to try to break the privacy properties of the system or reveal some information
about other users. However, we assume that a large number of concurrent AnNo-
tify users (publishers and subscribers) are honest, and follow the protocol faithfully.
We also assume, that the adversary has a partial knowledge about the relationships
among publishers and subscribers , and that the adversary may chose to some extent
which honest users participate in the protocols at different times. We justify those
assumptions further in the paper.

All communications among the requesting subscribers and the servers go
through a secure anonymity network. We assume that this system is immune to
traffic analysis. Namely, from the point of view of the adversary, it provides a per-
fect secret permutation between its input and output messages.

5.3 The Design of AnNotify

In this section, we present the detailed description of AnNotify. We first start with
sketching the straw-man design based on trivial Private Information Retrieval (PIR),
which allows a client to retrieve privately a single record from a remote public
database, and argue informally for its security but also its inefficiency. We then
present the detailed description of AnNotify. Private information retrieval (PIR)
allows a client to retrieve privately a single record from a remote public database.
The naive solution retrieves all records from the database, but PIR protocols are
more efficient in terms of bandwidth [139, 215, 216].

Straw-man Design

A single server acts as the infrastructure for storing notifications. Publishers and
subscribers privately agree on a secret random identifier for a specific notifica-
tion event. When a publisher wishes to send a notification, she transmits the pre-

5.3. The Design of AnNotify 121

arranged random identifier to the server which stores it forever. Subscribers of
notifications access the single server, and periodically download the full database
of stored notification identifiers, looking for identifiers they recognise as events.
This naı̈ve design is secure: since subscribers always download the full database,
an adversary at the server cannot distinguish the notification they seek. However,
performance is poor: since the database grows continuously, and downloading the
full database becomes very expensive. Even using PIR [139], for more efficient
private download causes a scalability bottleneck and has performance limitations,
as the DP5 presence service [189] illustrates (more in Section 5.6.2). AnNotify pro-
vides an efficient and scalable solution to this problem, at the cost of some privacy
leakage, which we evaluate carefully.

5.3.1 The AnNotify Protocols

In this section, we detail the design of AnNotify. Figure 3 presents the concrete
algorithms of AnNotify, which we discuss informally below.

System setup. We consider a population of u users, distinguished as publishers
and subscribers, using the AnNotify system to exchange notifications. We denote
nS as the number of shards used by AnNotify for sharing notifications, and each
shard is denoted as si, i ∈ {0, . . . ,nS−1}. To increase the capacity and scalability of
the system, the shards can be distributed among multiple untrusted servers, however,
the number of servers does not impact security. Thus, we consider a single untrusted
server managing all shards.

AnNotify uses Bloom filters [56], an efficient data structure used for repre-
senting set membership, in order to compress the representation of the shards (for
details see Section 2.1). We note that Bloom filters are not used in AnNotify as
privacy mechanism, and could be replaced by any other (succinct or not) data repre-
sentation. As N .GenSystem(u,nS,κ ,∆) we denote the system setup procedure, ran
by the server to initialize all parameters of the system, where κ ∈ 1∗, ∆ > 0 are the
security parameters.

A publisher who wishes to send a notification to a subscriber, simply pro-
vides them with a secret channel key (ck) – either directly or derived through a
public key cryptographic scheme. We denote the channel establishment procedure
as N .GenChannel(π), where π is the public information.

For publishing and querying notifications clients use a cryptographic Pseudo-
Random Function (PRF : {0,1}∗×{0,1}∗→{0,1}∗) that is indistinguishable from
a true random function to a computationally bound adversary not knowing the secret

122 Private Notification Service using Mix networks

Algorithm 3: The concrete instantiation of all algorithms of AnNo-
tify.
1 Function N .GenSystem (u,nS,κ ,∆):
2 Choose packet length l;
3 for i = 0, . . . , nS−1 do
4 s0

i ← [];

5 . σ is the state of the system;
6 σ ←{s0

0,s0
1, . . .s0

nS−1};
7 π ←{u,nS,κ};
8 return σ , l,π;

9

10 Function N .GenChannel (π):
11 ck R←− {0,1}κ ;
12 return ck;

13

14 Function N .Notify (cki, t):
15 µ ← PRFcki(t) ;
16 return (i, µ);

17

18 Function N .ProcNotify (µ , t,σ):
19 i← µ mod π .nS ;
20 if st

i not in σ then
21 st

i← [];
22 σ ′← σ ∪{st

i};
23 Add string µ to Bloom filter st

i;
24 return σ ′;

25

26 Function N .Query (cki, t,π):
27 µ ← PRFcki(t);
28 φ ← µ mod π .nS;

29 φ ′
$←{0, . . . ,π .nS};

30 return {φ ,φ ′};
31

32 Function N .ProcQuery (φ , t,σ ,sk):
33 ρ ← (φ ,st

φ
from σ);

34 return ρ;

35

36 Function N .ProcResponse (ρ ,ck, t):
37 µ ← PRFck(t);
38 φ ← µ mod π .nS;
39 φ ′′,s← ρ;
40 if µ in s and φ = φ ′′ then
41 return True;
42 else
43 return False;

5.3. The Design of AnNotify 123

key [217]. The AnNotify system operates in sequential epochs, like Apres [218],
denoted by t for time. For simplicity we assume that the length of all notifications,
queries and responses, is always a fixed value `.

Publishing notifications. To publish a notification the publisher runs
N .Notify which derives an epoch specific notification identifier IDt

ck for a particular
event using a PRF. For each single notification the publisher computes the event no-
tification identifier for epoch t using the shared channel key ck as IDt

ck = PRFck(t).
The publisher then computes the index of shard si in which the notification should
be stored as i← IDt

ck mod S. Finally, the publisher sends IDt
ck directly to the server

managing shard si. This process spreads different notifications across shards. The
server may optionally perform some authentication and authorization of publishers
before accepting to store the notification. Our scheme does not impede this, but
details around authenticity are outside the scope of this work.

Storing notifications. The server manages a set of shards, modeled as Bloom
filters, for a given time epoch t. Upon receiving a notification IDt

ck at epoch t server
runs procedure N .ProcNotify, which adds the notification to a Bloom filter Bi,t for
shard si, which includes all received notifications for a particular epoch. The server
makes all shards available for download in the next epoch.

Querying for notifications. To check for notifications, subscribers repeatedly
poll, in every epoch, the server for notifications by downloading the shards of in-
terest via an anonymous network. At the beginning of epoch t +1 each subscriber
reconstructs the epoch event identifier IDt

ck for the notifications they wish to check
for the previous period t by computing IDt

ck = PRFck(t). Next, they recompute
the shard identifier i ← IDt

ck mod S, in which IDt
ck might be stored. We denote

this querying procedure as N .Query. Alongside the query for the ‘real’ shard of
interest each honest user anonymously sends a ‘dummy’ indistinguishable and un-
linkable query to a random shard. These dummies ensure that no matter what side
information is available to the adversary, each honest user contributes some uncer-
tainty to the pattern of queries for the epoch. The notification service runs next the
N .ProcQuery in order to process the received queries and returns the obtained re-
sults to the subscribers. Each subscriber then anonymously, through a mix network,
downloads the Bloom filter Bi,t for shard si.

Processing the reponse. Upon receiving a response from the server, the sub-
scriber triggers the procedureN .ProcResponse(ρ ,ck, t), which checks whether IDt

ck

124 Private Notification Service using Mix networks

is present in the filter or not. This procedure may yield a false positive match, mis-
leading the subscriber into thinking that a particular notification was present when it
was not. However, selecting proper Bloom filter parameters relative to the number
of notifications allows us to minimize the error probability [219].

5.4 Security of AnNotify

In this section, we first discuss an Indistinguishable-Notification Experiment, a
challenge game between an adversary and the system, which we use to measure
security. Next, we construe the security definition resulting from it, to quantify
the privacy properties guaranteed by the notification systems. Finally, we present
the main security theorem of our system and the degree of security obtained for
concrete parameters.

5.4.1 Game between the adversary and the AnNotify sys-
tem

In this section, we describe an Indistinguishable-Notification Experiment
(IndNotExp), defined in details in Figure 4, addressing the threats identified in Sec-
tion 5.2. In this experiment, the adversary Advr observes the system over many
epochs. There exists a target subscriber, that may be subscribed to one of two
publishers (A or B) that are controlled by the adversary. The goal of the adversary
is to infer to which publisher a target user is subscribed.

At the beginning of time, the experiment flips a bit b at random, and decides
which of the two publishers the target subscriber subscribes to. Over multiple
epochs the adversary schedules multiple notifications and queries to be executed,
and has a full control over which honest publishers notify and which honest sub-
scribers query for their respective notifications. We assume, that at least uh hon-
est subscribers query every epoch. Advr observes the query patterns of the sub-
scribers, including the target subscriber requesting the target notifications, pos-
sibly over multiple epochs, and tries to guess b. The threat model captured by
the Indisitinguishable-Notification Experiment is very generous to the adversary:
Advr has a full visibility into the processing of all notifications and all query requests
at all shards of the system for as many epochs as they wish. The adversary is also
assumed to know the relationship between all honest publishers-subscriber pairs1

1It is inevitable to model a private notification system that leaks information. Since the adversary
may observe the system for a polynomial number of past epochs she may learn all other mappings
except the challenge one.

5.4. Security of AnNotify 125

Algorithm 4: The Indistinguishable-Notification Experiment.
1 Function IndNotExp (N ,Advr,u,nS,κ ,∆,uh):
2 (σ ,`,π)←N .GenSystem(u,nS,κ ,∆);
3 . Generate two challenge Publishers ;
4 ckA←N .GenChannel(π);
5 ckB←N .GenChannel(π);
6 Advr(ckA,ckB,u,nS,κ ,∆,π);

7 b $←{0,1};
8 ckT ← (if b = 0 then ckA else ckB);
9 . Generate all other Publishers & Subscribers;

10 for i = 0, . . . ,u do
11 cki←N .GenChannel(π);

12 . Perform many rounds of the protocols;
13 for t = 0, . . . do
14 Ψt ,Φt ←{},{};
15 . Trigger some Publishers;
16 for i ∈ {0, . . . ,u}∪{A,B} do
17 . Advr chooses notifications;
18 if Advr(i, t, ‘Notify?′) = 1 then
19 µi←N .Notify(cki, t);
20 σ ←N .ProcNotify(µi, t,σ);
21 Ψt ←Ψt ∪{(i, µi,σ)};

22 . Advr sees all notifications and server state. Advr(t,Ψt);
23 . Trigger at least uh honest Subscribers;
24 Qt ←{};
25 Ut ← Advr(t,uh, ‘GetSubscribers?′);
26 Ut ←Ut ∩{0, . . . ,n};
27 if |Ut |< uh then
28 return 0;

29 . Challenge the target Subscriber;
30 if Advr(t, ‘TargetQuery?′) = 1 then
31 Ut ←Ut ∩{T};
32 for each j ∈Ut do
33 Qt ←Qt ∪N .Query(ck j, t,π);

34 for each φ j ∈Qt do
35 ρ j,σ ←N .ProcQuery(φ j, t,σ);
36 Φt ←Φt ∪{(φ j,ρ j,σ)};
37 . Advr sees all queries and server state;
38 Advr(t,Φt);

39 return Advr(‘Guess?′) = b;

126 Private Notification Service using Mix networks

and is given the secrets associated with the notifications of the two potential target
notifications, modelling corrupt notifiers or other subscribers in a broadcast group.
Figure 4 illustrates the detailed IndNotExp experiment as a game in which the ad-
versary controls, for a number of epochs, notifications (Advr(i, t, ‘Notify?‘) = 1) and
queries (Advr(t,u, ‘GetSubscribers?‘)) from users. The adversary is given all the
above information including the challenge notification keys ckA and ckB (through
invocations to Advr(·)). In r rounds, the adversary may chose to trigger the target
subscriber to query by setting Advr(t, ‘TargetQuery?‘) to 1. Finally, the adversary
tries to guess a challenge bit b with Advr(‘Guess?‘), i.e., tries to decide which target
notification was queried by the target subscriber in the protocol run with full knowl-
edge of the secrets it shares with notifiers. The game returns 1 if the adversary
guessed correctly.

Based on the challenge experiment presented, we now define a ∆−private no-
tification system.

Definition 1. A notification system N is (uh,u,∆)-private if for any PPT adversary
Advr holds:

Pr [IndNotExp(N ,Advr,u,nS,κ ,∆,uh) = 1]≤ 1
2
+∆+negl(κ)

The probability is taken over all coin tosses, including uniform choice of bit b, and
where negl(·) is a negligible function; the inequality should hold for sufficiently
large security parameter κ and depends on the number of epochs r the target sub-
scriber was activated to query. For simplicity, we call such a system ∆-private.
Intuitively, ∆ defines the advantage of the adversary, in successfully guessing which
notification the target subscriber repeatedly queried, over a random guess. If the
adversary would be guessing randomly, she has a 50% chances of a correct guess.
Thus, ∆ quantifies how much additional information the observed system leaks to
Advr.

This definition ensures that AnNotify provides privacy even when the adver-
sary knows the shared key – allowing notification privacy even when the notifier or
another subscriber in a broadcast group, is dishonest and working with the adver-
sary.

5.4.2 The Security of AnNotify

In this section, we present the security theorem showing AnNotify to be a
secure ∆-private notification system, as defined in Definition 1 (Section 5.4.1). We
highlight, that the presented security theorem is very general, thus is not limited

5.4. Security of AnNotify 127

to the AnNotify system but also can be applied to other systems, which distribute
information among many entities and base their security properties on an set of
honest participants. Examples of such systems are presented in Section 5.7.

We recall, that S denotes the number of shards, uh denotes the minimum num-
ber of honest subscribers querying in every epoch and r denotes the number of
epochs the adversary observes the target subscriber querying for a notification.

In order to quantify the security properties of AnNotify, we want to compute
the advantage of the adversary in winning the IndNotExp game, thus the chances
to break the privacy of a target subscriber. We start by proving a differentially pri-
vate [134] security bound ε for the privacy loss in IndNotExp, where the target
subscriber only sends a single query (see Section 2.1). Let us first define the fol-
lowing notation

Definition 2. Let

A = {(xA,xB) :Pr[XA = xA,XB = xB|IA]≤ eε Pr[XA = xA,XB = xB|IB]}

We say that Pr[XA,XB|IA]≤ eε Pr[XA,XB|IB] holds for ε > 0 with probability at least
1−δ to mean that Pr[(XA,XB) ∈ A]≥ 1−δ .

In the following lemma, we quantify all the possible scenarios in which the
queries sent by the subscribers are distributed among shards in such a way, that the
adversary can easily link the target subscriber to the notification.

Lemma 2. Let XA, XB denote the query volumes observed by the adversary at shards
sA, sB in a single round assuming that queries map to shards following uniform
multinomial distribution, and let IA, IB define events when a particular challenge
notification is queried in the final round. An (ε ,δ)-differential privacy bound by
which:

Pr[XA,XB|IA]≤ eε Pr[XA,XB|IB]

holds for ε > 0 with probability at least 1−δ , where

δ ≤ exp
(
−(uh−1)

4S

)
+ exp

(
−(uh−1)

2S
tanh2

(
ε

2

))
. (5.1)

The probabilities are taken over all coin flips of honest notification not observed by
the adversary.

Proof. We define as SA, SB the events that either shard sA or sB was queried. For a
mapping function F , which maps the notifications identifiers to the storing shards,
such that F(A) = sA, we have

Pr[XA = xA,XB = xB|IA] = Pr[XA = xA,XB = xB|IA,SA]. (5.2)

128 Private Notification Service using Mix networks

Using Lemma 3 defined below and (5.2) we obtain:

Pr[XA = xA,XB = xB|IA,SA] = Pr[XA = xA,XB = xB|SA]

⇓
Pr[XA = xA,XB = xB|IA] = Pr[XA = xA,XB = xB|SA].

(5.3)

Now, we can prove that the events when either notification A or B is requested
in the challenge is (ε ,δ) - differentially private, so the adversary who wants to
infer which notification is queried is not able to distinguish this two events with
significant probability.

We define k = xA + xB− 1. The probabilities that either notification A or B is
request are denoted as

Pr[XA = xA,XB = xB|SA] =

(
uh−1

k

)(
2
S

)k(S−2
S

)uh−k−1

·
(

k
xA−1

)(
1
2

)xA−1(1
2

)k−xA+1

Pr[XA = xA,XB = xB|SB] =

(
uh−1

k

)(
2
S

)k(S−2
S

)uh−k−1

·
(

k
xB−1

)(
1
2

)xB−1(1
2

)k−xB+1

.

(5.4)

The above equality results from the binomial distribution2. Thus, we have

Pr[XA = xA,XB = xB|SA]

Pr[XA = xA,XB = xB|SB]
=

xA

xB
. (5.5)

We would like to ensure, that xA
xB
≤ eε , which implies xB ≥ e−εxA.

We remind that the expected value of the binomial distribution Bin(n, p) is
E[X] = np. Thus, the expected value of queries sent to shard SA and SB is E[X] =
2(uh−1)

S . If the number of queries destined to SA and SB is smaller than the expected
value, the adversary observes very sparse hiding set for the target query and has
bigger chances to guess correctly if either notification from A or B was queried.
Thus, we define C = 2(uh−1)

S − γ , where γ = τ · 2(uh−1)
S and τ ∈ (0,1). We define the

value of δ (related to the events when it is easy to distinguish the two observations

2The probability distribution function of the binomial distribution Bin
(

n, 1
p

)
is Pr[X = k] =(n

k

)(1
p

)k(
1− 1

p

)n−k
.

5.4. Security of AnNotify 129

in our challenge) as below

δ =
(I)

Pr[XA +XB ≤C]︸ ︷︷ ︸
Bin(uh−1, 2

S)

+
(II)

Pr[XB ≤ e−εXA|XA +XB ≥C]︸ ︷︷ ︸
Bin(C, 1

2)

Pr[XA +XB ≥C]︸ ︷︷ ︸
Bin(uh−1, 2

S)

δ =
(I)

Pr[XA +XB ≤C] +
(II)

Pr[XB ≤ e−εXA∧XA +XB ≥C]

(5.6)

We recall the Chernoff bound [57] for a random variable X , which is a sum of
independent variables with Bernoulli distribution, defined as

Pr[X ≤ (1−d)E[X]]≤ e
−E[X]d2

2 .

First, we estimate the part (I) of equation (5.6)

Pr [XA +XB ≤C]
X=XA+XB= Pr

[
X ≤ 2(uh−1)

S
− γ

]
= Pr

[
X ≤ (1− τ)

2(uh−1)
S

]
≤ exp

(
−(uh−1)τ2

S

)
.

(5.7)

Now, we compute part (II) of equation 5.6 by first deriving an upper bound using
the Hoeffding’s inequality [220].

Pr[XB ≤ e−εXA∧XA +XB ≥C] =
uh−1

∑
i=C

Pr[XB ≤ e−εXA∧XA +XB = i]

=
uh−1

∑
i=C

Pr[XB ≤ e−εXA|XA +XB = i]Pr[XA +XB = i]

≤
uh−1

∑
i=C

Pr[XB ≤ e−εXA|XA +XB =C]Pr[XA +XB = i]

= Pr[XB ≤ e−εXA|XA +XB =C]Pr[XA +XB ≥C]

(5.8)

Thus, XB ≤ e−ε(C− XB), which implies XB ≤ e−εC
1+e−ε . Applying the Hoeffding’s

inequality we obtain the following

Pr[XB ≤ e−εXA,XA +XB ≥C] = Pr[XB ≤
e−εC

1+ e−ε
]Pr[XA +XB ≥C]

≤ exp
(
− (uh−1)(1−τ)

S

(
1−2 e−ε

1+e−ε

)2
)
· (1−

C−1

∑
k=0

(uh−1
k

)(2
S

)k (
1− 2

S

)uh−1−k

︸ ︷︷ ︸
CDF[uh−1, 2

S ,C−1]

)

≤ exp
(
− (uh−1)(1−τ)

S

(
1−2 e−ε

1+e−ε

)2
)

. (5.9)

130 Private Notification Service using Mix networks

As CDF[n, p,x] we denote a cumulative distribution function of binomial dis-
tribution.
Taking these two equations together, we obtain the following bound for the value of
δ for τ = 1

2

δ ≤ exp
(
−(uh−1)

4S

)
+ exp

(
−(uh−1)

2S
tanh2

(
ε

2

))
(5.10)

The above bound gives us the estimation of the value of δ , which bounds the prob-
ability of very rare events which can blight our differential privacy guarantee. Note,
that we have a dependency between δ and ε in this equation, so we can select both
values to work the best for us.

The presented estimation is however a crude upper bound, thus we next present
the precise computation of the probability value, based on the cumulative distribu-
tion function.

Pr[XB ≤ e−εXA∧XA +XB ≥C] =
uh−1

∑
i=C

Pr[XB ≤
ie−ε

1+ e−ε
]Pr[XA +XB = i]

=
uh−1

∑
i=C

(
α

∑
k=0

(
i
k

)(
1
2

)i
)(

uh−1
i

)(
2
S

)i(
1− 2

S

)uh−1−i

=
uh−1

∑
i=C

CDF

[
i,

1
2

,α
](

uh−1
i

)(
2
S

)i(
1− 2

S

)uh−1−i

where α = ie−ε

1+e−ε . Hence, we obtain the following value of δ ,

δ =CDF

[
uh−1,

2
S

,C
]
+

uh−1

∑
i=C

CDF

[
i,

1
2

,α
](

uh−1
i

)(
2
S

)i(
1− 2

S

)uh−1−i

.

(5.11)

We can now show, that we can derive the definition of (ε ,δ) - differential
privacy from the above result. Let us denote Z = [XA,XB|IA]. Thus, from the law of
total probability we have that

Pr[Z] = Pr[Z|G]Pr[G]+Pr[Z|N]Pr[N]

where as G we denote events, when values drawn for XA,XB satisfy the inequality
Pr[XA,XB|IA]≤ eε Pr[XA,XB|IB] and as N we denote otherwise. Thus, since we know,
that Pr[N]≤ δ and both Pr[G] and Pr[Z|N] can be upper bounded by 1, using above
result we obtain

Pr[Z]≤ eε Pr[XA,XB|IB]+δ ,

Pr[XA,XB|IA]≤ eε Pr[XA,XB|IB]+δ .

5.4. Security of AnNotify 131

Lemma 3. For random variables XA,XB and events IA, IB,SA,SB defined as in
Lemma 2 we have the following dependency

Pr[XA,XB|IA,SA] = Pr[XA,XB|SA].

Proof. From conditional probability properties3 and the fact that Pr[SA] =
1
2 ,

Pr[IA,SA]> 0 we can write that

∑
i
(Pr[XA,XB|i,SA] ·Pr[i|SA]) = Pr[XA,XB|SA].

The sum of the probabilities over requested notifications can be considered as a
sum of the probabilities for the notification i which map to shard sA and those who
do not. As NA we denote a set of notifications whose identifiers map to shard sA.
Following this, we can present the previous equation as

∑
i∈NA

Pr[XA,XB|i,SA]Pr[i|SA]+ ∑
i/∈NA

Pr[XA,XB|i,SA]Pr[i|SA] = Pr[XA,XB|SA].

Because Pr[i|SA] = 0 for each i /∈ NA we have

Pr[XA,XB|IA,SA] · ∑
i∈NA

1
|NA|

= Pr[XA,XB|SA]

⇒ Pr[XA,XB|IA,SA] = Pr[XA,XB|SA].

Intuitively, in the presented lemma, ε is a measure of a flexible leakage, and δ

sums up the probabilities of scenarios in which the adversary is easily winning the
challenge game.

Since we know how to quantify δ , we need additionally to compute the amount
of leakage due to ε . To derive the adversary advantage for r observed queries we use
a generic composition theorem. In the following lemma we derive an overall bound
of adversary’s advantage, in guessing to whom the target user subscribes, after r
rounds when the adversary sees the target subscriber querying for the notification.
As Sb=0,Sb=1 we denote the events that the subscriber queries a particular shard,
where the target notification was uploaded. As Oi = (X i

A,X i
B) we denote the obser-

vation of the number of queries observed coming to shard sA and sB respectively in
round i.

Lemma 4. Let Oi be an (ε ,δ)-differentially private observation in round i, on two
private inputs Sb=0 and Sb=1, for which Pr[Oi|Sb=0]≤ eε Pr[Oi|Sb=1] with probabil-
ity at least 1−δ .

3Pr[A|C,B] ·Pr[C|B] = Pr[A,C|B] =⇒ ∑C (Pr[A|C,B] ·Pr[C|B]) = Pr[A|B], for the events A,B,C,
such that Pr[C,B]> 0,Pr[B]> 0.

132 Private Notification Service using Mix networks

If the adversary Advr is provided with a set of observations over r rounds
denoted as Ō = (O1, . . . ,Or) resulting from either Sb=0 or Sb=1, and tries to guess
the input bit b, she succeeds with probability:

Pr
[
Advr(Ō,Sb=0,Sb=1) = b | Ō

]
≤ 1

2
+

1
2

tanh
(rε

2

)
+ rδ +negl(κ),

where
adv(Ō,Sb=0,Sb=1) denotes the guess of the adversary.

Proof. From Lemma 2 we know, that a differentially private bound for a single
round holds for the probability an adversary observes volumes of the shards result-
ing from events Sb=0,Sb=1 (with some probability 1− δ). From the fact, that the
observations in each round are independent we obtain

Pr[O1,O2, . . . ,Or|Sb=0] =
r

∏
i=1

Pr[Oi|Sb=0],

r

∏
i=1

Pr[Oi|Sb=0]≤ erε
r

∏
i=1

Pr[Oi|Sb=1],

On the basis that sincePr[Sb=0] = Pr[Sb=1] =
1
2

r

∏
i=1

Pr[Oi|Sb=0]Pr[Sb=1]≤ erε
r

∏
i=1

Pr[Oi|Sb=1]Pr[Sb=0],

r

∏
i=1

Pr[Sb=0|Oi]≤ erε
r

∏
i=1

Pr[Sb=1|Oi],

Pr[Sb=0|O1, . . . ,Or]≤ erε Pr[Sb=1|O1, . . . ,Or]

Following this, we obtain

1
2
+∆ε ≤ erε

(
1
2
−∆ε

)
∆ε ≤

erε −1
2(erε +1)

=
1
2

tanh
(rε

2

)
.

Given value of ∆ε , we can compute the adversary’s overall advantage after r rounds.
The total value of ∆, which is the adversary’s overall advantage of guessing success-
fully is bounded as

∆≤

(
1−

r

∑
i=1

δ

)
· 1

2
tanh

(rε

2

)
+

r

∑
i=1

δ . (5.12)

since the differential privacy holds in each round with probability 1− rδ or oth-
erwise, if in at least one round (rδ) the distribution of query volumes does not
guarantee the differential privacy, we can assume that the adversary automatically

5.4. Security of AnNotify 133

can guess correctly. Since (1− rδ)≤ 1 we loosen the bound of ∆ by

∆≤ 1
2

tanh
(rε

2

)
+ rδ

Value of ∆ is the advantage of the adversary in successfully guessing the value of
bit b over a random guess.

Based on the above lemmas we derive the security theorem, proving that An-
Notify is a ∆-private notification system.

Security Theorem 1. The AnNotify system is a ∆-private notification system, for
∆ > 0 satisfying the following inequality. For any ε > 0,

∆≤ 1
2

tanh
(rε

2

)
+ r exp

(
−(uh−1)

4S

)
+ r exp

(
−(uh−1)

2S
tanh2

(
ε

2

))
Proof. To prove the main security theorem, and ultimately show that AnNotify is
∆-private, we need to show that the adversary can only win the Indisitinguishable-
Notification game, showed in Figure 4 with an advantage ∆, defined in Definition 1,
over a random guess. We do so by first arguing that the adversary learns noth-
ing new4 from rounds not including the target subscriber, and then computing the
advantage given the information about the rounds when the target subscriber was
active.

We proceed through a sequence of hybrid games, with slight modifications over
the initial security Definition 1, including the IndNotExp experiment (Game0). We
first note that in the concrete protocols N .Notify and N .Query act on notification
IDs generated using a pseudo-random function (PRF) keyed with an unknown key
to the adversary and the epoch number (IDt = PRFck(t)). Thus, from the adversaries
point of view, the IDs and the shards selection look random and the adversary cannot
learn the notification or shard number of any other entity. Hence, we can replace
all instances of the first invocation of the PRF by true random functions (Game1).
Thus, the adversary can only distinguish between the original experiment Game0

and Game1 with negligible advantage due to the properties of secure PRFs.
In Game1 the information within each epoch not including the target subscriber

is statistically independent from the challenge b. Based on this observation, we
define Game2, that consists only of rounds in which the target subscriber is activated
to query. Thus, the advantage of the adversary winning Game2 is equal to winning
Game1.

In each of the remaining rounds of Game2 the security definition dictates that
a number uh of honest users (including the target subscriber), query for their sought

4Remember that the adversary already is assumed to know the correspondence between honest
subscriber-publisher pairs, besides the target query in the challenge round.

134 Private Notification Service using Mix networks

notification and a dummy shard.
In Game2 the adversary can observe the IDt for all notifications that have been

seen in each epoch. However there remain u′h queries (uh ≤ u′h ≤ 2uh) for which the
adversary does not know the corresponding IDt . These are indistinguishable from a
random string, and the corresponding queries are distributed uniformly among the
shards S. Thus, we define Game3 in which we simply remove all notifications and
queries for which the adversary knows the IDt from all epochs – and that does not
increase the adversary advantage.

Following this, Game3 consists of epochs within which the uncertainty of the
adversary is whether notification A or notification B was queried (depending on the
challenge bit b), and the volumes of at least uh randomly distributed queries across
all shards. Thus, for every epoch, the adversary knowing the secret keys ckA,ckB

now has to decide on the basis of the query volumes XA and XB observed in the
shard sA,sB corresponding to µA and µB respectively, what the challenge b was.

We compute the adversary advantage in Game3 directly. We denote as SA,SB

the events that the target user queried shards sA,sB corresponding to notifications
A,B. Lemma 2 then shows that in a single epoch given two known shards and uh−1
queries to uniformly random shards we can find ε ,δ such that for notifications A and
B and all query volumes observed by the adversary: Pr[XA,XB|IA]≤ eε Pr[XA,XB|IB]

with probability at least 1−δ . Lemma 4 then concludes the proof by showing this
differentially private property can be translated to a concrete adversary advantage ∆

gained by observing many epochs.

Security Theorem 1 presents a bound on ∆ that provides insight about the ad-
versary’s advantage based on the security parameters of the system. The bound for
∆ depends proportionaly on the ratio uh−1

S and ε .5 However, this bound is very
loose. A tighter bound on ∆ is less elegant.

Lemma 5. The AnNotify system is a ∆-private notification system for

∆≤ 1
2

tanh
(rε

2

)
+ rCDF

[
uh−1,

2
S

,C
]

+ r
uh−1

∑
i=C

CDF

[
i,

1
2

,α
](

uh−1
i

)(
2
S

)i(
1− 2

S

)uh−1−i

,

where ε > 0.

where CDF[n, p,x] is the cumulative distribution function for a binomially dis-
tributed variable. We can compute this bound on ∆ using Monte-Carlo integration

5Note, that the upper bound on δ in Lemma 2 is constant as long as the ratio uh−1
S is constant.

In Theorem 1, because δ depends on ε , we obtain a uniform bound for ∆ for all values of δ , when ε

is fixed.

5.4. Security of AnNotify 135

Figure 5.2: The empirical adversary’s advantage for a single round, averaged over 106

samples, as a function of the number of subscribers and the number of shards.
The advantage is presented on a log scale.

though importance sampling.

5.4.3 Empirical adversary advantage

Our security theorems bound the advantage ∆ of the adversary through a number
of upper bounds and a generic composition theorem. This upper bound is correct
but extremely loose: it assumes that in each round the worst possible observation
will occur; it discounts totally cases where the adversary observes too few queries
to target shards – even though they may hide information; and takes a number of
loose upper bounds to yield an insightful expression. To get a more accurate view
of ∆̂, the advantage of the adversary, we compute it empirically through sampling.

For fixed parameters uh and nS we draw a large number of samples from a
Multinomial(θ ,n) distribution with parameter vector θ = [(nS− 2)/nS,1/nS,1/nS]

and n = uh−1, each in effect simulating a single observed epoch. We denote as ~xA

and ~xB the sample values falling in the second and third bucket respectively. With-
out loss of generality, we assume that bucket A always gets at least one message.
We first compute an empirical δ̂ as the fraction of values in ~xB that are zero, thus
allowing the adversary to perfectly win the IndNotExp experiment. Given the se-
curity parameters used in the evaluation this condition is very rare and has never
occurred. Next, we estimate ε̂ as the mean leakage the adversary observes for all

136 Private Notification Service using Mix networks

samples with positive ~xB:

ε̂ =
1
I
·∑

i
log

xA[i]
xB[i]

,

where I denotes the number of samples. This is the log of the Geometric mean
of the leakage for each epoch. From the Law of Large numbers [196], we know
that for a large number of repeated experiments, the average of the results is close
to the expected value, and the more trials we run, the closer the expeted value we
are. Hence, the computed value of ε̂ for a large number of samples I quantifies the
expected leakage of an observed round. The overall advantage after r epochs can
then be computed as:

∆̂ = tanh(rε̂/2)/2+ rδ̂

This empirical advantage is the mean advantage of the adversary after observing a
very large number of AnNotify epochs. And given low leakage in every round it is
a more accurate depiction of the security of the system under multiple observations
than the bound from our theorems. Figure 5.2 depicts the empirically computed
adversarial advantage for a single round, over the AnNotify system composed of
102,103,104 shards and a varying number of subscribers querying for notifications.

Further in the work, we use the empirical evaluation to accurately compare
security and performance with DP5.

5.4.4 Other security arguments

Our main proof of security of AnNotify concerns the subscriber privacy property,
under a very strong threat model. We argue informally in this section that other
security properties also hold.

The epoch unlinkability property ensures that queries in different epochs can-
not be linked with each other or a specific subscriber. It is a simple result of the use
of keyed pseudo-random function to derive unlikable identifiers within each epoch.

The broadcast privacy property ensures that a malicious subscriber, with
knowledge of the notification key, is not able to determine whether another query
(or subscriber) is querying the same known notification. This property is implied by
the very strong INDNOTEXP definition and game. Since the adversary in this game
has knowledge of the notification shared key they are exactly in the same position
as another subscriber of the same notification, and thus they both enjoy at most the
same advantage.

5.5. Analytical Performance Evaluation 137

5.5 Analytical Performance Evaluation

Bandwidth. We evaluate the bandwidth cost of multi-shard AnNotify against the
naı̈ve design using a multi-server IT-PIR [139] scheme inspired by DP5 [189]. IT-
PIR is a multiple server PIR variant, where each server stores a replicated copy of
the database. IT-PIR guarantees perfect privacy, as long as one server is honest,
but requires all servers to process each query and operate on the whole database,
which increases both the computational and communication costs. A variant of
IT-PIR with reduced computational cost was proposed in [221], by allowing some
information leakage. However, the key difference between [221] and our work is
that AnNotify servers are entirely untrusted and it wholy relies on the anonymity
system for privacy.

Let the number of shards in AnNotify be S, and the number of servers in the
PIR scheme be S′. Since in AnNotify all shards are of equal size, denoted as l,
the number of bits transferred is nl ·mx where n is the number of subscribers that
downloaded the Bloom filter and mx is the cost of using a mix network to transport
data (to be fair we assume mx = S′). For the IT-PIR scheme the cost is nS′

√
v, where

v is the number of bits in the server’s database.

Additionally, since AnNotify may yield false positives, we must consider the
bandwidth cost of a subsequent action of a subscriber given that they received a
notification, which we denote as a. We intentionally do not specify what this action
is, as AnNotify could be used in a variety of applications. Let k ≤ n be the number
of subscribers who received a notification and f be the error rate of the Bloom filter.
Then h = n f subscribers will incorrectly think they have received a notification.
Hence the cost of performing actions in AnNotify is a(k+ h), whereas in the PIR
scheme the cost is ak since no false positives occurs.

The total cost of AnNotify is nl ·mx +a(k+h) = nl ·mx +a(k+n f). The total
cost of the PIR scheme is nS′

√
v+ ak. We want to estimate the cutoff cost a for

AnNotify to be less expensive than a PIR scheme, hence we require nl ·mx +a(k+
n f)< nS′

√
v+ak. This gives a < S′

√
v−(l·mx)

f .

We note that the false positive rate f and the size of the Bloom filter l are related
by f ≈ (1/2)l log2/m, where m is the number of messages in the filter, that we assume
is approximately N/S where N is the total number of notifications. Similarly, the
database in an IT-PIR system would need at least v = N logN bits to store a list
of up to N distinct notifications. Thus, it is preferable to use the AnNotify system
over IT-PIR when the cost of an action a is lower than the following threshold:
a < (S′

√
N logN− (l ·mx))2

lS
N log2.

138 Private Notification Service using Mix networks

(a) Yearly cost (cents) per client
for different shard sizes

(b) Yearly bandwidth (MB) per
client for different shard sizes

(c) Yearly cost (cents) per client
using 10Kb (circles) and
100Kb (triangles) shards, for
different numbers of clients

Figure 5.3: AnNotify’s implementation evaluation summary. The system scales perfectly
for the increasing number of clients. Larger shards imply higher bandwidth and
cost per client. The cost evaluation was done based on Amazon EC2
m4.large instances.

Latency. In the AnNotify system, a notification sent by a publisher in epoch ei

becomes available to a subscriber in epoch ei+1. The time between a notification
being sent and when it can be read is |e|+ t, where t is the round trip time taken
by the notification to be routed through the mix network and |e| denotes the server
epoch length. Note, that this time t is dependent on the amount of traffic passing
through the mix network, and the mix networks flushing mechanism.

Refresh rate, epoch length, cost and privacy. In AnNotify system pub-
lishers and subscribers must decide on an epoch length, based on which their
notification identifiers will change. There is a clear trade-off: shorter epochs
mean shorter waiting times but result in the subscribers requesting more often.
Publisher-subscriber epoch lengths are entirely context dependent, for example a
social network presence notification system will likely have much shorter publisher-
subscriber epoch lengths than a storage system.

5.6 Experimental Evaluation

Three key advantages of AnNotify over previous works [139, 189] are efficiency,
extremely low infrastructure cost (even at large scale), and ease of implementation.
In this section, we describe a prototype implementation of AnNotify, based on web
technologies for the server components, and Tor as an anonymity system. Next, we
compare it with DP5.

5.6.1 Implementation & Infrastructure

We implement AnNotify as a web-server that subscribers may easily access through
the most popular anonymity network today, Tor [43]. We note, that even though we

5.6. Experimental Evaluation 139

use Tor, the anonymous channels might be implemented using other designs, for
example Loopix (Chapter 3). We are aware that Tor only provides anonymity prop-
erties against a local or limited passive adversary, and thus the experimental system
inherits this limitation. Since we are concerned with performance we focus on sup-
porting as many clients as possible, and decreasing the connection time between the
client and the server.

Our implementation of AnNotify consists of two servers: a front-end server
with whom the clients communicate to download shards, and a back-end server
that maintains the Bloom filters. We design AnNotify so that queries are served
as requests for a static resource: since those only need to retrieve the Bloom filter
corresponding to a previous epoch. The task of the front-end server is simply to
serve medium to large static resources; since servers are untrusted, caching and
content distribution network may be used to speed this up – and this is a feature of
AnNotify. We expect the size of the Bloom filter served to be similar to the size of
an image, between several kilobytes to a few megabytes.

To perform a query and retrieve the Bloom filter, AnNotify clients just send an
HTTP GET requests to the front-end server. To optionally register a notification,
the clients can additionally send the notification identifier for the current epoch as
a parameter to the HTTP request. The front-end server immediately responds with
the relevant current Bloom filter, that is stored as a static file, and forwards the
request to the back-end server to update the next filter. At the beginning of every
epoch, the back-end server sends the next Bloom filters, one for each shard, to the
front-end server, and the front-end server replaces the current Bloom filter with it.

We used Nginx6 for the front-end server due to its high performance in serving
static resources. We implemented the back-end server in Java, relying on Netty7,
a non-blocking I/O (NIO) client-server framework. We relied on Google Guava’s
implementation of Bloom filter8. The front-end implementation simply consists of
the Nginx configuration file, and the back-end is 300 lines of Java code.

5.6.2 Performance Evaluation

To evaluate AnNotify, we run an AnNotify server on a single Windows 7 OS, 8GB
RAM machine. The back-end and the front-end servers run as two processes. From
another machine, we run our client program from several processes to simulate
100K requests in epochs of 5 minutes. We tested the system for shards from 10Kb to

6The NGINX Web Server https://www.nginx.com/
7The Netty Framework http://netty.io/
8Guava: Google Core Libraries for Java https://github.com/google/guava

https://www.nginx.com/
http://netty.io/
https://github.com/google/guava

140 Private Notification Service using Mix networks

100Kb. Larger shards imply larger Bloom filters to retrieve and higher bandwidth.

A single machine served 100K clients when the shard size was up to 30Kb. For
larger shards we encountered sporadic failures for some clients, and had to add ad-
ditional servers to handle some shards. The design of AnNotify allows distributing
the shards among several machines without overhead. The yearly cost of an Ama-
zon EC2 m4.large instance (in April 2016), which is equivalent to the machine we
used, is $603. Dividing the cost of additional machine by 100K clients implies min-
imal additional cost of less than a single cent per client. Our measurements indicate
an additional server is required for each 30Kb increase of the shard size.

We estimated the cost of running AnNotify in the Amazon cloud. The main
factor in the cost calculation was the bandwidth that increases linearly as a function
of the shard size. However, the bandwidth cost per byte decreases as the system
consumes more bandwidth, e.g., for larger shards and for more clients. Figure 5.3
illustrates our costs estimation, extrapolated from measurements using our exper-
imental setup, for a full year of operation in the Amazon cloud. The costs are
illustrated in monetary values, on the basis of the cost of an Amazon EC2 m4.large
instances. The results show that AnNotify is indeed very efficient, and extremely
cheap to operate in the real world. Figure 5.3(a) shows that the yearly cost per client
ranges from a few cents (shards of 10Kb) to less than a quarter (shards of 100Kb).
Figure 5.3(b) shows the linear growth in the yearly bandwidth used by AnNotify
client as a function of a shard size. However, as depicted by Figure 5.3(c), the An-
Notify scales perfectly in the number of clients, such that the cost per client even
decreases as there are more clients in the system. For a shard of size 10Kb, yearly
costs per client is around 3 cents for both 100K and 1 milion users. In comparison,
in DP5 the monthly cost per-user for bandwidth is about 0.05 cent, which results in
60 cents per year for 100K users, and around 120 cents for 1 milion users.

5.6.3 Comparison to DP5

Social applications require private presence notifications. Traditional implemen-
tations of presence give a central server the social graph of users. Protocols like
Apres [218] and DP5 [189] offer privacy-preserving notification services. Apres
splits the time into epochs and hides the correlation between the connectivity of the
clients in every two epochs. DP5 offers stronger privacy guarantees, however this
design uses multi-server IT-PIR to look up other users presence without revealing
information about the social graph. In this section, we compare our work with DP5
in our evaluation section.

Compared to the thousands of lines of C++ and Python used to build

5.6. Experimental Evaluation 141

DP5 [189], AnNotify was significantly easier to implement and does not require
PIR services or Pairing-friendly libraries, however it requires an anonymous chan-
nel. Despite being implemented in Java, it efficiently supports a hundred thou-
sand clients, and can be parallelized to scale to millions of clients easily (see Fig-
ure 5.3(c)) with significantly lower yearly cost than DP5, of a few cents per client.

Given the different threat models and functionality it is delicate to provide a
fair comparison between DP5 and AnNotify calibrated in terms of security. To do
so we compare the second phase of DP5, with each user having a single friend,
and the status communicated being a single bit notification. Thus, for u users DP5
would have to serve through PIR a database of at least u bits using IT-PIR over `
servers, acting as the security parameter. We configure AnNotify to also serve a
database of u bits over S shards, using a mix network with path length `. Both ` and
S < u are the security parameters of AnNotify for a fixed number of users u. We do
not use Bloom filters to avoid making assumption on notification utilization, thus
presenting a very costly variant of AnNotify.

We consider that either IT-PIR servers or mix servers may be corrupt with a
fixed probability f . In that case the advantage of the adversary in DP5 is f `, namely
the probability that all PIR servers are corrupt. For AnNotify the advantage of the
adversary is the leakage ∆, that we compute empirically (to get a tight estimate, see
appendix 5.4.3), added to the probability f ` that all mix-servers are corrupt.

Bandwidth. Figure 5.4 illustrates the trade-off between security and bandwidth
for AnNotify compared to DP5 using the above configuration, for differing security
parameters S (shards) and ` (mix or PIR servers). We vary S ∈ {103, . . . ,108} and
` ∈ {2, . . . ,11}. The measurements are for one billion notifications (u = 109) and
a fraction f = 10% of corrupt servers. We observe that AnNotify requires many
orders of magnitude (log scale x axis) lower bandwidth per query than DP5 for
moderate adversary advantage (e.g., e−5 . . .e−11). This advantage is comparable to
using ` ≤ 5 PIR servers. For each value of S we observe that at first the advan-
tage is dominated by the probability of the mix network failing (for low `) before
stabilizing and being dominated by the leakage of AnNotify.

Processing. We implement the DP5 second phase IT-PIR scheme using 64 bit
numpy matrix multiplication, to compare the CPU costs of AnNotify versus DP5.
We note that IT-PIR is CPU bound, while the untrusted servers of AnNotify are
purely network bound, since no processing takes place on them aside from serving
static shards of data. However, the anonymity network used by AnNotify may be-
come a CPU bottleneck. To estimate this cost we measured the total CPU overhead

142 Private Notification Service using Mix networks

Figure 5.4: Security versus Bandwidth comparison for AnNotify and DP5/IT-PIR.

Figure 5.5: Security versus CPU cost comparison for AnNotify and DP5/IT-PIR.

per mix message using the Sphinx9 packet format [177] for appropriate payload
sizes and path lengths `.

Figure 5.5 illustrates the total CPU costs for u = 109 queries and f = 10% for
both DP5/IT-PIR and AnNotify. We vary S ∈ {103, . . . ,108} and ` ∈ {2, . . . ,11}.

9Using the Python sphinxmix package.

5.7. AnNotify Extensions 143

We observe that for equivalent security levels the CPU cost of mixing messages in
AnNotify is always orders of magnitude (log scale x axis) lower than the equivalent
CPU cost of processing IT-PIR queries in DP5.

5.7 AnNotify Extensions

AnNotify as a presence system. AnNotify can be used as a privacy-friendly
presence system, to transmit a small amount of information from the publisher to
the subscriber. A presence system allows users to indicate their online presence. For
example, when a single user connects to the network the presence system informs
which friends are online.

In this variant, each shard stores the received notifications as a list within each
shard, instead of Bloom filter. Two users who would like to use AnNotify share a
secret channel key ck. Alice wants to notify Bob of message m on this channel. To
do so, she computes the value of a pseudo random function keyed with ck based on
the current time stamp as IDt = PRFck(t) and the shard index i = PRFck(t) mod S.
She then encrypts the selected message with an Authenticated Encryption Scheme
with Associated Data (AEAD) (such as AES-GCM) with a secret key ck to obtain
the ciphertext ct = AEADck(ID

t ;m). In order to notify, Alice sends the tuple (IDt ,c)
to the corresponding shard si based on IDt . The server adds it to the stored values
within that shard.

At the beginning of the next epoch, Bob queries the servers for shard si and
downloads the full set of values stored within it. To check for the presence notifi-
cations, the subscriber searches in the list the tuple with the identifier PRFck(t), and
checks and decrypts the attached ciphertext and tag using secret key ck in order to
recover the notification message m.

We note that the shard compression achieved through Bloom filters is sacrificed
in order to transmit the message m. However, the subscriber-publisher privacy of
Alice and Bob are maintained. A rigorous proof of this would have to adapt the
security definition based on the IndNotExp experiment to provide the adversary
with the IDt

A and IDt
B identifiers for the target messages instead of the raw keys

ckA and ckB to preserve the secrecy of the message. However, the rest of the proof
and Security Theorem 1 do not need major modification to show query privacy and
message secrecy.

We note this scheme is in effect a leaky PIR scheme [221], based on a secure
anonymity infrastructure, and untrusted servers holding shards. Given our evalua-
tion results, relating the adversary advantage to performance, such designs may be

144 Private Notification Service using Mix networks

a competitive alternative for other PIR related applications.

Broadcast AnNotify. The Security definitions and IndNotExp security game
assumes that the adversary knows the notification key used by a target subscriber.
Yet, they are still unable to determine whether they seek a specific notification. As
a result, AnNotify can be extended to support broadcast notifications to a group,
without difficulties.

In a broadcast scheme, the notifier distributes the secret notification key
amongst a group of subscribers. Access control is required when publishing a no-
tification to ensure it is genuine. This may be achieved using any authentication or
non-repudiation scheme, since notifiers are not anonymous. All subscribers in the
group share that key, and query each epoch on the basis of it.

Due to the security guarantees of Security Theorem 1, even if one of the sub-
scribers in the group is corrupt – and shares the key with the adversary – they are
not able to break subscriber privacy of another target user with greater advantage
than the one-on-one AnNotify design.

5.8 Applications

Notification-only Applications. The first application is a privacy-preserving
version of event-notification services, such as the popular Yo application [222]. Yo
and similar applications allow one user to send a content-free notification to peer(s).
In Yo, the receiving applications notify the user by transmitting the word “Yo”, in
text and audio. Such event notification services can be used for social purposes, as
well as to provide simple information about events, e.g., Yo was used to warn Israeli
citizens of missile strikes [223].

As each message is only a single bit, applying Bloom filter is ideal for this kind
of communication. The Anonymous Yo server will maintain a Bloom filter, and an
anonymous Yo message will be sent by turning on a few bits according to the shared
keys. The client side application will periodically retrieve the Bloom filter and will
prompt Yo from another client, if this client turned on the relevant bits.

The second application is Anonymous Presence Services. The goal of anony-
mous presence services is to allow users to indicate their ‘presence’, i.e., availability
for online communication to their peers. It is one of the functionalities usually pro-
vided by social networks such as Skype and Facebook. A privacy-preserving pres-
ence protocol, providing presence indications to users while hiding their relation-
ships, was presented in [189]. Their solution relies on expensive cryptography and

5.8. Applications 145

is rather complex to implement, whereas AnNotify provides an easier-to-implement
and more efficient solution.

The third application is privacy-preserving blacklists, e.g., of phishing domain
names. The goal is to allow a relying party, e.g., a browser or email server, to
check if a given domain name (or other identifier) is ‘blacklisted’, without expos-
ing the identity of the domain being queried. In particular, all major browsers use
some ‘safe browsing’ blacklist to protect users from phishing and malware web-
sites. Google Safe Browsing (GSB) alone accounts for a billion users to date [224].
To protect users privacy, clients do not lookup the suspect URL or domain-name,
instead the query is for a cryptographic hash of the domain-name or URL. However,
as already observed [225], providers can still identify the query. AnNotify provides
an alternative which strongly protects privacy, and with comparable overhead. We
note that Bloom filters are already widely used to improve efficiency of blacklists,
e.g., see [226, 227].

In all applications, AnNotify allows preserving the privacy of users, by hiding
the relationships between users and the notifications they receive. The use of An-
Notify is easy, and has insignificant performance overhead in addition to the use of
anonymous channels. However, notice that AnNotify exposes the total number of
clients currently connected to the system. We believe this is not a concern in many
applications. Indeed, many services publish an estimate of the number of online
clients, e.g., see Tor metrics [228].

Privacy-Preserving Caching and Storage Services. A classical use for
Bloom filters, is to improve the efficiency of caching and storage mechanisms, by
allowing efficient detection when cached items were updated (or not). In particular,
Bloom filters were used to improve the efficiency of web-caches [219, 229].

AnNotify can similarly improve the efficiency of caching and storage mech-
anisms, while also protecting privacy. This is especially important for privacy-
preserving storage mechanisms such as Oblivious RAM [210, 211] and PIR [139],
where each access involves significant overhead, hence avoiding unnecessary re-
quests has a large impact on performance.

Due to its high efficiency, AnNotify can also be used to improve the privacy
of web and DNS caches. In particular, web-users may use AnNotify to improve
the efficiency of anonymous-browsing mechanisms such as Tor [228] and the use
of AnNotify seems to offer significant performance improvements compared to ex-
isting proposals for protecting privacy of DNS users, see [212, 213, 214].

146 Private Notification Service using Mix networks

5.9 Conclusions

In this chapter, we have described AnNotify, design of an efficient and scalable
private notification system, as an alternative for previous approaches like DP5 [189]
that struggles to scale past 1 million users. AnNotify benefits from a mass of users:
its key security parameters depend on the number of shards and anonymity set size
of the underlying anonymity system. These may be tuned to provide meaningful
privacy protection despite some leakage.

AnNotify lowers the quality of protection to achieve scalability but does so in
a controlled and well-understood manner: the concrete security theorems presented
indicate the advantage of the adversary. The tighter bounds and empirical estimates
of leakage under repeated queries provide even stronger evidence that AnNotify can
provide strong protection. This is particularly relevant for large-scale deployments
and applications requiring notifications, that today benefit from no protection at all.

We showed that PIR schemes inspired by the AnNotify design and anonymous
channels may be more competitive in terms of performance than those proposed
so far, despite leakage and required large anonymity set. Pursuing this research
direction would allow the wider deployment of private querying in general.

Chapter 6

Conclusions and Future work

The main goal of this thesis was to investigate and analyse how we can design and
build real-world systems supporting anonymous online communication using mix
networks. Working in this direction, we proposed a novel design of a mix network
(Chapter 3), which offers better security guarantees than any existing solution for
anonymous communications, yet without the very high-latencies traditionally asso-
ciated with mix systems. Loopix is the first mix network design which combines
strong anonymity, scalability, and performance, and can accommodate various real-
time communications. Hence, it is suitable for many daily applications, including
emails, instant messaging, cryptocurrency transactions etc.

Loopix resists both the powerful and sophisticated adversaries capable of ob-
serving all communications as well as those performing active attacks, such as trick-
ling and flooding. The combination of continuous-time mixes and tuneable cover
traffic allows determining the tradeoff between the expected end-to-end latency and
anonymity, hence Loopix can support applications with various latency and band-
width constraints. Moreover, the memoryless property of the exponential distribu-
tion used to sample the delays results in larger anonymity set in Loopix, comparing
to batch-and-reorder based mixes, because the anonymity set is asymptotically infi-
nite. Therefore, an increasing number of system users not only contributes to better
privacy, as the anonymity set grows, but also makes the system faster, as less addi-
tional exponential delay needs to be added to anonymize the traffic, and the volume
of cover traffic can be tunned down. This is a property that was not offered by any
of the previous designs.

Furthermore, the way Loopix generates cover traffic conceals the users’ com-
munication patterns. Hence, the adversary cannot infer when a client is actively
communicating or is just sending and receiving dummy packets. Hence, Loopix
protects against statistical disclosure attacks, thus even long-term conversations

148 Conclusions and Future work

cannot be exposed (previous mix network designs could not offer such protection).

While most of the existing systems’ designs offering strong anonymity scale
vertically, Loopix scales horizontally, hence its overall capacity increases by adding
more infrastructure nodes. This is crucial since anonymous communication systems
need to provide scalability in order to enable widespread adoption.

While Loopix offers strong security against passive attacks, an adversary can
exploit the open nature of such systems and run a large subset of nodes, which may
appear to run the protocol but in reality, are under full adversarial control. Such ma-
licious nodes might attempt to drop or delay processed packets to observe a changed
behaviour in the network and in result compromise users’ anonymity. Therefore,
in our thesis (Chapter 4) we further explore the idea of client-generated loop mes-
sages (introduced in Chapter 3) to study how to detect and penalize malicious nodes
performing active attacks. Although continuous loop cover messages have several
useful applications: (1) allow the clients to take anonymously measurements of the
network state, (2) detect (n− 1) attacks against clients or mixes, and (3) generate
bi-directional cover traffic, the loop messages on their own do not allow detecting
which of the infrastructure nodes misbehaved. Hence, sporadic active attacks per-
formed by the malicious network, nodes are difficult to detect and prove. Therefore,
we present the first systematic analysis using quantitative and composable measure
of security against dropping attacks. Along with our analysis, we propose an effi-
cient and scalable Miranda mechanism which allows the clients to check the quality
of service offered by the mix nodes and detect when malicious nodes perform drop
packets and gather evidence of their misbehaviour, which results in the exclusion of
the dishonest mixes from the network. Our design does not require any computa-
tionally expensive primitives, a considerable additional network bandwidth or any
disclosure of sensitive information about the processed traffic. In addition to the
Miranda mechanism, we also study various community detection techniques which
can be further explored to strengthen Miranda.

In the second part of this thesis, we focused on studying how mix networks
can be further used in building privacy-enhancing technologies. We proposed An-
Notify, a system for private notifications, which scales to millions of users at a low
bandwidth and performance cost, hence offers much better efficiency than other
approaches, like for example DP5 or traditional PIR. AnNotify’s performance eval-
uation shows that it is indeed very efficient, and extremely cheap to operate in the
real world, hence can be deployed within other systems in which private notifica-
tions are crucial. Moreover, AnNotify is not limited to just notifications, but can

6.1. Limitations and Future work 149

also be deployed as a privacy-preserving presence system, or extended to support
broadcast notifications to a group.

Using AnNotify as privacy-preserving storage mechanisms and private query-
ing alternative to Oblivious RAM or PIR is an interesting research direction. Simi-
larly, due to its high-efficiency AnNotify might also be used in the future to improve
the privacy of web and DNS caches, for example, in Tor.

6.1 Limitations and Future work

The Loopix design raises several interesting research questions, which were not
covered in the original Loopix design. During the work on the Katzenpost1 project
we already tackled several of those research questions including a mechanism for
reliable message delivery based on Single-Use Reply Blocks (SURBs), and mes-
sage fragmentation and retransmission protocol. Furthermore, we proposed how
Loopix can be used to add network-level privacy for cryptocurrencies like Zcash
in [1], which was later also added to Katzenpost [2]. However, there are still open
research questions remaining. The Loopix discrete simulator (presented in Sec-
tion 3.6 in Chapter 3) allows empirically measuring the anonymity and performance
of the network, given different configuration parameters of the topology, the num-
ber of users or latency-overhead demands. An interesting question is whether it is
possible to find dependency between those parameters in order to develop a method-
ology to optimally tune the trade-offs between parameters of the mix network under
real-world, non-ideal conditions, to obtain the best possible anonymity and perfor-
mance, and whether such parameters could be further adjusted dynamically in a
privacy-preserving manner.

Furthermore, Loopix assumes a fixed sending rate for all users (λP). While
good for privacy, it becomes restrictive if we want to adopt Loopix for various
applications. Thus, a potential solution is to have a set of several fixed rates (e.g.,
fast, medium, slow), which the users might pick depending on the application they
would like to use. Thus, the users’ distinctive communication patterns are still
hidden (among all the other users using the same rate) but at the same time, Loopix
becomes a generic communication infrastructure that can support a broad range of
applications and services, combining all the traffic into one large anonymity set. An
interesting question is what the fast, medium and slow rates should be, in order to
support a wide range of applications, but at the same time still protect users from
long term disclosure attacks. However, it is worth to note, that the independent

1Reminder: Katzenpost is the open-source Loopix based mix network implementation funded
by EU Panoramix project https://github.com/katzenpost/docs

https://github.com/katzenpost/docs

150 Conclusions and Future work

streams of loop and drop cover traffic allow the users to control their own privacy,
i.e., an individual can increase the volume of cover traffic arbitrarily to obfuscate
their communication pattern. On the other hand, if an individual user decides to turn
off the loop and drop cover traffic they risk exposing their communication patterns,
but they do not harm the privacy of other users who use the loop and drop cover
traffic.

Another research question is the idea of an incentivized mix network. Large
scale anonymous communication networks, like Tor or earlier mix network deploy-
ments Mixmaster and Mixminion, rely on a voluntaristic model, which leads to poor
scalability and performance. Strong anonymity against traffic analysis is based on
distributed trust, where the infrastructure consists of multiple independently con-
trolled relays that form a united network. Also, splitting the bandwidth among
many mixes allows avoiding performance bottlenecks. However, the cost of main-
taining these nodes for a long period is significant, considering the high volume of
bandwidth they have to handle and currently the only incentive for someone to do it
is the feeling of providing community service. Since the quality of the anonymity
service provided depends on the number of mixes and their incentive to operate
honestly, there is a strong need for giving economic incentives to people in order
to maintain such nodes. As an example, VPNs or cryptocurrencies (including Bit-
coin, Zcash, Monero, and cryptocurrency tumblers) show that users are willing to
pay for their privacy. On the other hand, the reward-based model used in cryptocur-
rencies incentivizes users to join the network and operate efficiently and honestly,
while the consensus algorithms like proof of stake make Sybil attacks impractical.
This research question inspired the Nym Technologies company to create the Nym
network, a permissionless and incentivised mix network infrastructure.

As mentioned in Chapter 3, the providers act as storage points for clients who
are offline or unreachable and mediate the users’ access to the mix network, acting
as the entry-exit gateway points. Each provider has a long-term relationship with its
users and may authenticate them, potentially bill them, or discontinue their access
to the network. This, as result, allows the providers to prevent congestions and DoS
attacks. We explore this idea further at Nym, by adding Coconut credentials [230],
which allow to bill the clients, and prevent abusive use of the network.

While the Miranda mechanism allows to effectively detect and exclude ma-
licious nodes, there still remain practical open problems concerning the exposure
of malicious nodes. The most significant simplifying assumption in Miranda are:
(1) fixed set of mixes, (2) majority of benign mixes, and (3) reliable communi-
cation and processing. Such assumptions are very limiting in terms of practical
deployment, and therefore should be considered as open research questions. Future

6.1. Limitations and Future work 151

work should try to avoid these assumptions while maintaining a thorough security
analysis and properties as done in Miranda, or identify any inherent trade-offs. In
practice, communication and processing failures will happen - in particular, as a
result of intentional DoS attacks. We believe that the future work may deal with
this significant challenge by both minimizing failures, by designing robust underly-
ing mechanisms such as a highly-resilient transport layer; and refined assumptions
and analysis, e.g., considering incentives and game-theory analysis, to ensure that
the system is robust to ‘reasonable’ levels of failures. These issues are significant
challenges for future research, essential towards the implementation of Miranda in
practical systems.

Moreover, a practical mixnet must allow a dynamic set of mixes, for both scal-
ability and churn - mixes joining and leaving over time. The system needs the
ability to naturally grow to allow scalability, while the infrastructure nodes in prac-
tice are not guaranteed to be available and might naturally join/leave the network
constantly. On the other hand, if the adversary can simply retire penalized mali-
cious nodes and replace them with new nodes that have an untarnished reputation,
then there is no real gain in even trying to penalize or expose the adversary, and it
becomes hard to argue why we can even assume most mixes are benign. Therefore,
further research must develop a reasonable model to allow nodes to join (or re-join)
without allowing the adversary to gain the majority by adding many mixes, as in
Sybil attacks, and to retain the impact of removing corrupt mixes. The mentioned
earlier incentives model might offer a solution for some of those questions.

Overall, the research presented in this thesis introduces novel designs and anal-
ysis towards better anonymous communications, which set in motion the develop-
ment of open-source software and the deployment of a privacy infrastructure which
is further continued by Nym Technologies company. While the Loopix mix network
was deployed by Nym Technologies, the ideas proposed in the Miranda mechanism
(i.e., using loop packets to verify honest behaviours of the nodes, combined with
the packet receipts) inspired the proof-of-mixing developed by Nym. As the Head
of Research at Nym Technologies, I have the opportunity to further extend this re-
search and be part of the large-scale development of mix network infrastructure.

Bibliography

[1] George Kappos and Ania M. Piotrowska. “Extending the Anonymity of
Zcash”. CoRR, abs/1902.07337, 2019. http://arxiv.org/abs/1902.07337.

[2] Using Zcash with Katzenpost, 2019. https://katzenpost.mixnetworks.org/

zcash.html.
[3] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz. “De-

nial of service or denial of security?” In Peng Ning, Sabrina De Capitani
di Vimercati, and Paul F. Syverson, editors, Proceedings of the 2007 ACM
Conference on Computer and Communications Security, CCS 2007, Alexan-
dria, Virginia, USA, October 28-31, 2007, pages 92–102. ACM, 2007.

[4] Carole Cadwalladr and Emma Graham-Harrison. “Revealed: 50 mil-
lion Facebook profiles harvested for Cambridge Analytica in major data
breach”. The Guardian. https://www.theguardian.com/news/2018/mar/17/

cambridge-analytica-facebook-influence-us-election.
[5] Issie Lapowsky. “Cambridge Analytica Took 50M Facebook Users’

Data—And Both Companies Owe Answers”. . https://www.wired.com/story/

cambridge-analytica-50m-facebook-users-data/.
[6] Issie Lapowsky. “Facebook Gave a Russian Internet Giant a Special Data

Extension”. . https://www.wired.com/story/facebook-gave-russian-internet-giant-

special-data-extension/.
[7] Glenn Greenwald and Ewen MacAskill. “NSA Prism program taps in

to user data of Apple, Google and others”. The Guardian. https://

www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data.
[8] “NSA slides explain the PRISM data-collection program”. The Washing-

ton Post. https://www.washingtonpost.com/wp-srv/special/politics/prism-collection-

documents/.
[9] Glenn Greenwald. “NSA collecting phone records of millions of Verizon

customers daily”. The Guardian. https://www.theguardian.com/world/2013/jun/

06/nsa-phone-records-verizon-court-order.
[10] Trailblazer Project. https://en.wikipedia.org/wiki/Trailblazer Project.
[11] Protect America Act. https://www.justice.gov/archive/ll/index.html.

https://katzenpost.mixnetworks.org/zcash.html
https://katzenpost.mixnetworks.org/zcash.html
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
https://www.wired.com/story/cambridge-analytica-50m-facebook-users-data/
https://www.wired.com/story/cambridge-analytica-50m-facebook-users-data/
https://www.wired.com/story/facebook-gave-russian-internet-giant-special-data-extension/
https://www.wired.com/story/facebook-gave-russian-internet-giant-special-data-extension/
https://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
https://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
https://www.washingtonpost.com/wp-srv/special/politics/prism-collection-documents/
https://www.washingtonpost.com/wp-srv/special/politics/prism-collection-documents/
https://www.theguardian.com/world/2013/jun/06/nsa-phone-records-verizon-court-order
https://www.theguardian.com/world/2013/jun/06/nsa-phone-records-verizon-court-order
https://en.wikipedia.org/wiki/Trailblazer_Project
https://www.justice.gov/archive/ll/index.html

154 Bibliography

[12] Kadhim Shubber. “A simple guide to GCHQ’s internet surveillance pro-
gramme Tempora”. Wired. https://www.wired.co.uk/article/gchq-tempora-101.

[13] Harry Davies. “Ted Cruz using firm that harvested data on millions of un-
witting Facebook users”. The Guardian. https://www.theguardian.com/us-news/

2015/dec/11/senator-ted-cruz-president-campaign-facebook-user-data.
[14] Open PGP. https://www.openpgp.org/.
[15] TLS Documentation. https://tools.ietf.org/html/rfc5246.
[16] WhatsApp. https://www.whatsapp.com/.
[17] Signal. https://signal.org/.
[18] Ian Goldberg and OTR Development Team. Off-the-record communication.

https://otr.cypherpunks.ca/.
[19] Nikita Borisov, Ian Goldberg, and Eric A. Brewer. “Off-the-record commu-

nication, or, why not to use PGP”. In Vijay Atluri, Paul F. Syverson, and
Sabrina De Capitani di Vimercati, editors, Proceedings of the 2004 ACM
Workshop on Privacy in the Electronic Society, WPES 2004, Washington,
DC, USA, October 28, 2004, pages 77–84. ACM, 2004.

[20] Chris Conley. “Metadata: Piecing together a privacy solution”. SSNR,
2014. https://papers.ssrn.com/sol3/papers.cfm?abstract id=2573962.

[21] Andrew M. White, Austin R. Matthews, Kevin Z. Snow, and Fabian Mon-
rose. “Phonotactic Reconstruction of Encrypted VoIP Conversations: Hookt
on Fon-iks”. In 32nd IEEE Symposium on Security and Privacy, S&P 2011,
22-25 May 2011, Berkeley, California, USA, pages 3–18. IEEE Computer
Society, 2011.

[22] Dawn Xiaodong Song, David A. Wagner, and Xuqing Tian. “Timing Analysis
of Keystrokes and Timing Attacks on SSH”. In Dan S. Wallach, editor, 10th
USENIX Security Symposium, August 13-17, 2001, Washington, D.C., USA,
2001.

[23] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton.
“Peek-a-Boo, I Still See You: Why Efficient Traffic Analysis Countermeasures
Fail”. In IEEE Symposium on Security and Privacy, SP 2012, 21-23 May
2012, San Francisco, California, USA, pages 332–346. IEEE Computer So-
ciety, 2012.

[24] Steven Englehardt, Dillon Reisman, Christian Eubank, Peter Zimmerman,
Jonathan R. Mayer, Arvind Narayanan, and Edward W. Felten. “Cookies
That Give You Away: The Surveillance Implications of Web Tracking”. In
Aldo Gangemi, Stefano Leonardi, and Alessandro Panconesi, editors, Pro-
ceedings of the 24th International Conference on World Wide Web, WWW
2015, Florence, Italy, May 18-22, 2015, pages 289–299. ACM, 2015.

https://www.wired.co.uk/article/gchq-tempora-101
https://www.theguardian.com/us-news/2015/dec/11/senator-ted-cruz-president-campaign-facebook-user-data
https://www.theguardian.com/us-news/2015/dec/11/senator-ted-cruz-president-campaign-facebook-user-data
https://www.openpgp.org/
https://tools.ietf.org/html/rfc5246
https://www.whatsapp.com/
https://signal.org/
https://otr.cypherpunks.ca/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2573962

Bibliography 155

[25] Zcash. https://z.cash.
[26] Evan Duffield and Daniel Diaz. “Dash: A PrivacyCentric CryptoCurrency”.

2015. https://github.com/dashpay/dash/wiki/Whitepaper.
[27] Dash. https://www.dash.org.
[28] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian

Miers, Eran Tromer, and Madars Virza. “Zerocash: Decentralized Anony-
mous Payments from Bitcoin”. In 2014 IEEE Symposium on Security and
Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 459–474.
IEEE Computer Society, 2014.

[29] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. “Zcash
protocol specification”. Technical report, Zerocoin Electric Coin Company,
2016.

[30] Monero. https://getmonero.org.
[31] Helger Lipmaa. “Succinct Non-Interactive Zero Knowledge Arguments from

Span Programs and Linear Error-Correcting Codes”. In Kazue Sako and
Palash Sarkar, editors, Advances in Cryptology - ASIACRYPT 2013 - 19th
International Conference on the Theory and Application of Cryptology and
Information Security, Bengaluru, India, December 1-5, 2013, Proceedings,
Part I, pages 41–60. Springer, 2013.

[32] Jens Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In
Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology -
EUROCRYPT 2016 - 35th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part II, pages 305–326. Springer, 2016.

[33] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. “1-out-of-N Sig-
natures from a Variety of Keys”. In Yuliang Zheng, editor, Advances in
Cryptology - ASIACRYPT 2002, 8th International Conference on the The-
ory and Application of Cryptology and Information Security, Queenstown,
New Zealand, December 1-5, 2002, Proceedings, pages 415–432. Springer,
2002.

[34] Shifeng Sun, Man Ho Au, Joseph K. Liu, and Tsz Hon Yuen. “RingCT
2.0: A Compact Accumulator-Based (Linkable Ring Signature) Protocol for
Blockchain Cryptocurrency Monero”. In Simon N. Foley, Dieter Goll-
mann, and Einar Snekkenes, editors, Computer Security - ESORICS 2017
- 22nd European Symposium on Research in Computer Security, Oslo, Nor-
way, September 11-15, 2017, Proceedings, Part II, pages 456–474. Springer,
2017.

[35] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. “Eclipse

https://z.cash
https://github.com/dashpay/dash/wiki/Whitepaper
https://www.dash.org
https://getmonero.org

156 Bibliography

Attacks on Bitcoin’s Peer-to-Peer Network”. In Jaeyeon Jung and Thorsten
Holz, editors, 24th USENIX Security Symposium, Washington, D.C., USA,
August 12-14, 2015, pages 129–144, 2015.

[36] Sergi Delgado-Segura, Surya Bakshi, Cristina Pérez-Solà, James Litton, An-
drew Pachulski, Andrew Miller, and Bobby Bhattacharjee. “TxProbe: Dis-
covering Bitcoin’s Network Topology Using Orphan Transactions”. In Ian
Goldberg and Tyler Moore, editors, Financial Cryptography and Data Se-
curity - 23rd International Conference, FC 2019, Frigate Bay, St. Kitts
and Nevis, February 18-22, 2019, Revised Selected Papers, pages 550–566.
Springer, 2019.

[37] Lee Ferran. “Ex-NSA Chief:‘We Kill People Based on Metadata’”. ABC
News Blogs, 2014. https://abcnews.go.com/blogs/headlines/2014/05/ex-nsa-

chief-we-kill-people-based-on-metadata.
[38] Bruce Schneier. “NSA doesn’t need to spy on your calls to learn your

secrets”. Wired, 2015. https://www.wired.com/2015/03/data-and-goliath-nsa-

metadata-spying-your-secrets/.
[39] Microsoft. Virtual Private Networking: An Overview. https:

//docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-

server/bb742566(v=technet.10).
[40] Andrew G Mason. Cisco secure virtual private networks. Cisco Press, 2001.
[41] Lance Cottrell. Anonymizer. https://www.anonymizer.com/.
[42] “The few behind many: hidden VPN owners unveiled”. https:

//vpnpro.com/wp-content/uploads/Infographic-VPNpro-97-VPN-products-run-

by-just-23-companies.pdf.
[43] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. “Tor: The

Second-Generation Onion Router”. In Matt Blaze, editor, Proceedings of
the 13th USENIX Security Symposium, August 9-13, 2004, San Diego, CA,
USA, pages 303–320, 2004.

[44] Paul F. Syverson, Gene Tsudik, Michael G. Reed, and Carl E. Landwehr.
“Towards an Analysis of Onion Routing Security”. In Hannes Federrath,
editor, Designing Privacy Enhancing Technologies, International Workshop
on Design Issues in Anonymity and Unobservability, Berkeley, CA, USA, July
25-26, 2000, Proceedings, pages 96–114. Springer, 2000.

[45] Steven J. Murdoch. “Hot or not: revealing hidden services by their clock
skew”. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimer-
cati, editors, Proceedings of the 13th ACM Conference on Computer and
Communications Security, CCS 2006, Alexandria, VA, USA, Ioctober 30 -
November 3, 2006, pages 27–36. ACM, 2006.

https://abcnews.go.com/blogs/headlines/2014/05/ex-nsa-chief-we-kill-people-based-on-metadata
https://abcnews.go.com/blogs/headlines/2014/05/ex-nsa-chief-we-kill-people-based-on-metadata
https://www.wired.com/2015/03/data-and-goliath-nsa-metadata-spying-your-secrets/
https://www.wired.com/2015/03/data-and-goliath-nsa-metadata-spying-your-secrets/
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/bb742566(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/bb742566(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/bb742566(v=technet.10)
https://www.anonymizer.com/
https://vpnpro.com/wp-content/uploads/Infographic-VPNpro-97-VPN-products-run-by-just-23-companies.pdf
https://vpnpro.com/wp-content/uploads/Infographic-VPNpro-97-VPN-products-run-by-just-23-companies.pdf
https://vpnpro.com/wp-content/uploads/Infographic-VPNpro-97-VPN-products-run-by-just-23-companies.pdf

Bibliography 157

[46] Lasse Øverlier and Paul F. Syverson. “Locating Hidden Servers”. In 2006
IEEE Symposium on Security and Privacy (S&P 2006), 21-24 May 2006,
Berkeley, California, USA, pages 100–114. IEEE Computer Society, 2006.

[47] Steven J. Murdoch and George Danezis. “Low-Cost Traffic Analysis of Tor”.
In 2005 IEEE Symposium on Security and Privacy (S&P 2005), 8-11 May
2005, Oakland, CA, USA, pages 183–195. IEEE Computer Society, 2005.

[48] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. “Touching
from a distance: website fingerprinting attacks and defenses”. In Ting Yu,
George Danezis, and Virgil D. Gligor, editors, the ACM Conference on Com-
puter and Communications Security, CCS’12, Raleigh, NC, USA, October
16-18, 2012, pages 605–616. ACM, 2012.

[49] David Chaum. “Untraceable Electronic Mail, Return Addresses and Digital
Pseudonyms”. In Dimitris Gritzalis, editor, Secure Electronic Voting, vol-
ume 7 of Advances in Information Security, pages 211–219. Springer, 2003.

[50] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate.
“Anonymity Trilemma: Strong Anonymity, Low Bandwidth Overhead, Low
Latency - Choose Two”. In 2018 IEEE Symposium on Security and Privacy,
SP 2018, Proceedings, 21-23 May 2018, San Francisco, California, USA,
pages 108–126. IEEE Computer Society, 2018.

[51] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George
Danezis. “The Loopix Anonymity System”. In Engin Kirda and Thomas Ris-
tenpart, editors, 26th USENIX Security Symposium, Vancouver, BC, Canada,
August 16-18, 2017, pages 1199–1216, 2017.

[52] Hemi Leibowitz, Ania M. Piotrowska, George Danezis, and Amir Herzberg.
“No Right to Remain Silent: Isolating Malicious Mixes”. In Nadia Heninger
and Patrick Traynor, editors, 28th USENIX Security Symposium, Santa Clara,
CA, USA, August 14-16, 2019, pages 1841–1858, 2019.

[53] Ania M. Piotrowska, Jamie Hayes, Nethanel Gelernter, George Danezis, and
Amir Herzberg. “AnNotify: A Private Notification Service”. In Bhavani M.
Thuraisingham and Adam J. Lee, editors, Proceedings of the 2017 on Work-
shop on Privacy in the Electronic Society, Dallas, TX, USA, October 30 -
November 3, 2017, pages 5–15. ACM, 2017.

[54] Claude E. Shannon. “A mathematical theory of communication”. Mo-
bile Computing and Communications Review, 5(1):3–55, 2001. URL https:

//doi.org/10.1145/584091.584093.
[55] Cynthia Dwork and Aaron Roth. “The Algorithmic Foundations of Differen-

tial Privacy”. Foundations and Trends in Theoretical Computer Science, 9
(3-4):211–407, 2014. URL https://doi.org/10.1561/0400000042.

https://doi.org/10.1145/584091.584093
https://doi.org/10.1145/584091.584093
https://doi.org/10.1561/0400000042

158 Bibliography

[56] Burton H. Bloom. “Space/Time Trade-offs in Hash Coding with Allowable
Errors”. Commun. ACM, 13(7):422–426, 1970. URL https://doi.org/10.1145/

362686.362692.
[57] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Ran-

domized Algorithms and Probabilistic Analysis. Cambridge University Press,
2005.

[58] Andreas Pfitzmann and Marit Köhntopp. “Anonymity, Unobservability, and
Pseudonymity - A Proposal for Terminology”. In Hannes Federrath, edi-
tor, Designing Privacy Enhancing Technologies, International Workshop on
Design Issues in Anonymity and Unobservability, Berkeley, CA, USA, July
25-26, 2000, Proceedings, pages 1–9. Springer, 2000.

[59] Oliver Berthold, Andreas Pfitzmann, and Ronny Standtke. “The Disadvan-
tages of Free MIX Routes and how to Overcome Them”. In Hannes Federrath,
editor, Designing Privacy Enhancing Technologies, International Workshop
on Design Issues in Anonymity and Unobservability, Berkeley, CA, USA, July
25-26, 2000, Proceedings, pages 30–45. Springer, 2000.

[60] Andrei Serjantov and George Danezis. “Towards an Information Theoretic
Metric for Anonymity”. In Roger Dingledine and Paul F. Syverson, edi-
tors, Privacy Enhancing Technologies, Second International Workshop, PET
2002, San Francisco, CA, USA, April 14-15, 2002, Revised Papers, pages
41–53. Springer, 2002.

[61] Claudia Dı́az, Stefaan Seys, Joris Claessens, and Bart Preneel. “Towards
Measuring Anonymity”. In Roger Dingledine and Paul F. Syverson, edi-
tors, Privacy Enhancing Technologies, Second International Workshop, PET
2002, San Francisco, CA, USA, April 14-15, 2002, Revised Papers, pages
54–68. Springer, 2002.

[62] George Danezis. “Statistical Disclosure Attacks”. In Dimitris Gritzalis, Sab-
rina De Capitani di Vimercati, Pierangela Samarati, and Sokratis K. Katsikas,
editors, Security and Privacy in the Age of Uncertainty, IFIP TC11 18th

International Conference on Information Security (SEC2003), May 26-28,
2003, Athens, Greece, pages 421–426. Kluwer, 2003.

[63] George Danezis and Andrei Serjantov. “Statistical Disclosure or Intersection
Attacks on Anonymity Systems”. In Jessica J. Fridrich, editor, Information
Hiding, 6th International Workshop, IH 2004, Toronto, Canada, May 23-25,
2004, Revised Selected Papers, pages 293–308. Springer, 2004.

[64] Paul F. Syverson, Michael G. Reed, and David M. Goldschlag. “Private
Web Browsing”. Journal of Computer Security, 5(3):237–248, 1997. URL
https://doi.org/10.3233/JCS-1997-5305.

https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.3233/JCS-1997-5305

Bibliography 159

[65] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. “Website
fingerprinting: attacking popular privacy enhancing technologies with the
multinomial naı̈ve-bayes classifier”. In Radu Sion and Dawn Song, editors,
Proceedings of the first ACM Cloud Computing Security Workshop, CCSW
2009, Chicago, IL, USA, November 13, 2009, pages 31–42. ACM, 2009.

[66] Andrew Hintz. “Fingerprinting Websites Using Traffic Analysis”. In Roger
Dingledine and Paul F. Syverson, editors, Privacy Enhancing Technologies,
Second International Workshop, PETS 2002, San Francisco, CA, USA, April
14-15, 2002, Revised Papers, pages 171–178. Springer, 2002.

[67] Jean-François Raymond. “Traffic Analysis: Protocols, Attacks, Design Is-
sues, and Open Problems”. In Hannes Federrath, editor, Designing Pri-
vacy Enhancing Technologies, International Workshop on Design Issues in
Anonymity and Unobservability, Berkeley, CA, USA, July 25-26, 2000, Pro-
ceedings, pages 10–29. Springer, 2000.

[68] Andrei Serjantov, Roger Dingledine, and Paul F. Syverson. “From a Trickle
to a Flood: Active Attacks on Several Mix Types”. In Fabien A. P. Petitcolas,
editor, Information Hiding, 5th International Workshop, IH 2002, Noordwi-
jkerhout, The Netherlands, October 7-9, 2002, Revised Papers, pages 36–52.
Springer, 2002.

[69] Luke O’Connor. “On Blending Attacks for Mixes with Memory”. In Mauro
Barni, Jordi Herrera-Joancomartı́, Stefan Katzenbeisser, and Fernando Pérez-
González, editors, Information Hiding, 7th International Workshop, IH 2005,
Barcelona, Spain, June 6-8, 2005, Revised Selected Papers, pages 39–52.
Springer, 2005.

[70] Matthew K. Wright, Micah Adler, Brian Neil Levine, and Clay Shields. “An
Analysis of the Degradation of Anonymous Protocols”. In Proceedings of
the Network and Distributed System Security Symposium, NDSS 2002, San
Diego, California, USA, pages 1–12. The Internet Society, 2002.

[71] Birgit Pfitzmann and Andreas Pfitzmann. “How to Break the Direct RSA-
Implementation of Mixes”. In Jean-Jacques Quisquater and Joos Vandewalle,
editors, Advances in Cryptology - EUROCRYPT ’89, Workshop on the Theory
and Application of of Cryptographic Techniques, Houthalen, Belgium, April
10-13, 1989, Proceedings, pages 373–381. Springer, 1989.

[72] Ceki Gülcü and Gene Tsudik. “Mixing Email with Babel”. In James T. Ellis,
B. Clifford Neuman, and David M. Balenson, editors, 1996 Symposium on
Network and Distributed System Security, NDSS ’96, San Diego, CA, USA,
February 22-23, 1996, pages 2–16. IEEE Computer Society, 1996.

160 Bibliography

[73] Ulf Möller, Lance Cottrell, Peter Palfrader, and Len Sassaman. Mixmaster
anonymous remailer, 2004. http://mixmaster.sourceforge.net/.

[74] George Danezis, Roger Dingledine, and Nick Mathewson. “Mixminion: De-
sign of a Type III Anonymous Remailer Protocol”. In 2003 IEEE Symposium
on Security and Privacy (S&P 2003), 11-14 May 2003, Berkeley, CA, USA,
pages 2–15. IEEE Computer Society, 2003.

[75] Andreas Pfitzmann, Birgit Pfitzmann, and Michael Waidner. “ISDN-MIXes:
Untraceable Communication with Small Bandwidth Overhead”. In Wolf-
gang Effelsberg, Hans Werner Meuer, and Günter Müller, editors, Kom-
munikation in Verteilten Systemen, Grundlagen, Anwendungen, Betrieb,
GI/ITG-Fachtagung, Mannheim, 20.-22. Februar 1991, Proceedings, pages
451–463. Springer, 1991.

[76] Anja Jerichow, Jan Müller, Andreas Pfitzmann, Birgit Pfitzmann, and
Michael Waidner. “Real-time mixes: a bandwidth-efficient anonymity pro-
tocol”. IEEE Journal on Selected Areas in Communications, 16(4):495–509,
1998. URL https://doi.org/10.1109/49.668973.

[77] Oliver Berthold, Hannes Federrath, and Stefan Köpsell. “Web MIXes: A Sys-
tem for Anonymous and Unobservable Internet Access”. In Hannes Feder-
rath, editor, Designing Privacy Enhancing Technologies, International Work-
shop on Design Issues in Anonymity and Unobservability, Berkeley, CA,
USA, July 25-26, 2000, Proceedings, pages 115–129. Springer, 2000.

[78] Roger Dingledine, Andrei Serjantov, and Paul F. Syverson. “Blending Dif-
ferent Latency Traffic with Alpha-mixing”. In George Danezis and Philippe
Golle, editors, Privacy Enhancing Technologies, 6th International Workshop,
PET 2006, Cambridge, UK, June 28-30, 2006, Revised Selected Papers,
pages 245–257. Springer, 2006.

[79] Markus Jakobsson. “Flash Mixing”. In Brian A. Coan and Jennifer L. Welch,
editors, Proceedings of the Eighteenth Annual ACM Symposium on Princi-
ples of Distributed Computing, PODC, ’99Atlanta, Georgia, USA, May 3-6,
1999, pages 83–89. ACM, 1999.

[80] Masashi Mitomo and Kaoru Kurosawa. “Attack for Flash MIX”. In Tat-
suaki Okamoto, editor, Advances in Cryptology - ASIACRYPT 2000, 6th In-
ternational Conference on the Theory and Application of Cryptology and In-
formation Security, Kyoto, Japan, December 3-7, 2000, Proceedings, pages
192–204. Springer, 2000.

[81] Andrei Serjantov and Richard E. Newman. “On the Anonymity of Timed Pool
Mixes”. In Dimitris Gritzalis, Sabrina De Capitani di Vimercati, Pierangela
Samarati, and Sokratis K. Katsikas, editors, Security and Privacy in the

http://mixmaster.sourceforge.net/
https://doi.org/10.1109/49.668973

Bibliography 161

Age of Uncertainty, IFIP TC11 18th International Conference on Informa-
tion Security (SEC2003), May 26-28, 2003, Athens, Greece, pages 427–434.
Kluwer, 2003.

[82] Dogan Kesdogan, Jan Egner, and Roland Büschkes. “Stop-and-Go-MIXes
Providing Probabilistic Anonymity in an Open System”. In David Aucsmith,
editor, Information Hiding, Second International Workshop, Portland, Ore-
gon, USA, April 14-17, 1998, Proceedings, pages 83–98. Springer, 1998.

[83] Masayuki Abe. “Mix-Networks on Permutation Networks”. In Kwok-Yan
Lam, Eiji Okamoto, and Chaoping Xing, editors, Advances in Cryptology -
ASIACRYPT ’99, International Conference on the Theory and Applications
of Cryptology and Information Security, Singapore, November 14-18, 1999,
Proceedings, pages 258–273. Springer, 1999.

[84] Stephanie Bayer and Jens Groth. “Efficient Zero-Knowledge Argument for
Correctness of a Shuffle”. In David Pointcheval and Thomas Johansson,
editors, Advances in Cryptology - EUROCRYPT 2012 - 31st Annual Inter-
national Conference on the Theory and Applications of Cryptographic Tech-
niques, Cambridge, UK, April 15-19, 2012. Proceedings, pages 263–280.
Springer, 2012.

[85] Markus Jakobsson and Ari Juels. “Millimix: Mixing in small batches”. Tech-
nical report, DIMACS, 1999.

[86] Jun Furukawa and Kazue Sako. “An Efficient Scheme for Proving a Shuffle”.
In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, 21st Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 19-23, 2001, Proceedings, pages 368–387. Springer, 2001.

[87] C. Andrew Neff. “A verifiable secret shuffle and its application to e-voting”.
In Michael K. Reiter and Pierangela Samarati, editors, CCS 2001, Proceed-
ings of the 8th ACM Conference on Computer and Communications Secu-
rity, Philadelphia, Pennsylvania, USA, November 6-8, 2001, pages 116–125.
ACM, 2001.

[88] Philippe Golle, Markus Jakobsson, Ari Juels, and Paul F. Syverson. “Uni-
versal Re-encryption for Mixnets”. In Tatsuaki Okamoto, editor, Topics in
Cryptology - CT-RSA 2004, The Cryptographers’ Track at the RSA Confer-
ence 2004, San Francisco, CA, USA, February 23-27, 2004, Proceedings,
pages 163–178. Springer, 2004.

[89] Markus Jakobsson, Ari Juels, and Ronald L. Rivest. “Making Mix Nets Ro-
bust for Electronic Voting by Randomized Partial Checking”. In Dan Boneh,
editor, Proceedings of the 11th USENIX Security Symposium, San Francisco,
CA, USA, August 5-9, 2002, pages 339–353, 2002.

162 Bibliography

[90] Shahram Khazaei and Douglas Wikström. “Randomized Partial Checking
Revisited”. In Ed Dawson, editor, Topics in Cryptology - CT-RSA 2013 -
The Cryptographers’ Track at the RSA Conference 2013, San Francisco,CA,
USA, February 25-March 1, 2013. Proceedings, pages 115–128. Springer,
2013.

[91] David Chaum. “The Dining Cryptographers Problem: Unconditional Sender
and Recipient Untraceability”. Journal of Cryptology, 1(1):65–75, 1988.
URL https://doi.org/10.1007/BF00206326.

[92] Michael Waidner and Birgit Pfitzmann. “The Dining Cryptographers in the
Disco - Underconditional Sender and Recipient Untraceability with Com-
putationally Secure Serviceability ”. In Jean-Jacques Quisquater and Joos
Vandewalle, editors, Advances in Cryptology - EUROCRYPT ’89, Workshop
on the Theory and Application of of Cryptographic Techniques, Houthalen,
Belgium, April 10-13, 1989, Proceedings, page 690. Springer, 1989.

[93] Philippe Golle and Ari Juels. “Dining Cryptographers Revisited”. In Chris-
tian Cachin and Jan Camenisch, editors, Advances in Cryptology - EURO-
CRYPT 2004, International Conference on the Theory and Applications of
Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceed-
ings, pages 456–473. Springer, 2004.

[94] Sharad Goel, Mark Robson, Milo Polte, and Emin Sirer. “Herbivore: A
scalable and efficient protocol for anonymous communication”. Technical
report, Cornell University, 2003. https://hdl.handle.net/1813/5606.

[95] Nicholas Hopper, Eugene Y. Vasserman, and Eric Chan-Tin. “How much
anonymity does network latency leak?” ACM Trans. Inf. Syst. Secur., 2010.

[96] Juan A. Elices and Fernando Pérez-González. “Fingerprinting a flow of mes-
sages to an anonymous server”. In 2012 IEEE International Workshop on In-
formation Forensics and Security, WIFS 2012, Costa Adeje, Tenerife, Spain,
December 2-5, 2012, pages 97–102. IEEE, 2012.

[97] Marc Juárez, Sadia Afroz, Gunes Acar, Claudia Dı́az, and Rachel Greenstadt.
“A Critical Evaluation of Website Fingerprinting Attacks”. In Gail-Joon
Ahn, Moti Yung, and Ninghui Li, editors, Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, Scottsdale,
AZ, USA, November 3-7, 2014, pages 263–274. ACM, 2014.

[98] Jamie Hayes and George Danezis. “k-fingerprinting: A Robust Scalable Web-
site Fingerprinting Technique”. In Thorsten Holz and Stefan Savage, editors,
25th USENIX Security Symposium, Austin, TX, USA, August 10-12, 2016,
pages 1187–1203, 2016.

[99] Juan A. Elices, Fernando Pérez-González, and Carmela Troncoso. “Finger-

https://doi.org/10.1007/BF00206326
https://hdl.handle.net/1813/5606

Bibliography 163

printing Tor’s hidden service log files using a timing channel”. In 2011 IEEE
International Workshop on Information Forensics and Security, WIFS 2011,
Iguacu Falls, Brazil, November 29 - December 2, 2011, pages 1–6. IEEE
Computer Society, 2011.

[100] Michael K. Reiter and Aviel D. Rubin. “Crowds: Anonymity for Web Trans-
actions”. ACM Trans. Inf. Syst. Secur., 1998.

[101] Michael J. Freedman and Robert Tappan Morris. “Tarzan: a peer-to-peer
anonymizing network layer”. In Vijayalakshmi Atluri, editor, Proceedings of
the 9th ACM Conference on Computer and Communications Security, CCS
2002, Washington, DC, USA, November 18-22, 2002, 2002.

[102] Marc Rennhard and Bernhard Plattner. “Introducing MorphMix: peer-to-
peer based anonymous Internet usage with collusion detection”. In Proceed-
ings of the 2002 ACM workshop on Privacy in the Electronic Society, 2002.

[103] Prateek Mittal, Matthew K. Wright, and Nikita Borisov. “Pisces: Anony-
mous Communication Using Social Networks”. In 20th Annual Network and
Distributed System Security Symposium, NDSS 2013, San Diego, California,
USA, February 24-27, 2013, 2013.

[104] Arjun Nambiar and Matthew K. Wright. “Salsa: a structured approach
to large-scale anonymity”. In Ari Juels, Rebecca N. Wright, and Sabrina
De Capitani di Vimercati, editors, Proceedings of the 13th ACM Confer-
ence on Computer and Communications Security, CCS 2006, Alexandria,
VA, USA, Ioctober 30 - November 3, 2006, 2006.

[105] Alan Mislove, Gaurav Oberoi, Ansley Post, Charles Reis, Peter Druschel,
and Dan S. Wallach. “AP3: cooperative, decentralized anonymous commu-
nication”. In Yolande Berbers and Miguel Castro, editors, Proceedings of the
11st ACM SIGOPS European Workshop, Leuven, Belgium, September 19-22,
2004, 2004.

[106] Andriy Panchenko, Stefan Richter, and Arne Rache. “NISAN: network in-
formation service for anonymization networks”. In Ehab Al-Shaer, Somesh
Jha, and Angelos D. Keromytis, editors, Proceedings of the 2009 ACM Con-
ference on Computer and Communications Security, CCS 2009, Chicago,
Illinois, USA, November 9-13, 2009, 2009.

[107] Jon McLachlan, Andrew Tran, Nicholas Hopper, and Yongdae Kim. “Scal-
able onion routing with torsk”. In Ehab Al-Shaer, Somesh Jha, and An-
gelos D. Keromytis, editors, Proceedings of the 2009 ACM Conference on
Computer and Communications Security, CCS 2009, Chicago, Illinois, USA,
November 9-13, 2009, 2009.

[108] Hari Balakrishnan, M. Frans Kaashoek, David R. Karger, Robert Tappan

164 Bibliography

Morris, and Ion Stoica. “Looking up data in P2P systems”. Commun. ACM,
2003.

[109] Matthew K Wright, Micah Adler, Brian Neil Levine, and Clay Shields. “The
predecessor attack: An analysis of a threat to anonymous communications
systems”. ACM Transactions on Information and System Security (TISSEC),
2004.

[110] George Danezis and Richard Clayton. “Route Fingerprinting in Anonymous
Communications”. In Alberto Montresor, Adam Wierzbicki, and Nahid
Shahmehri, editors, Sixth IEEE International Conference on Peer-to-Peer
Computing (P2P 2006), 2-4 October 2006, Cambridge, United Kingdom,
2006.

[111] Parisa Tabriz and Nikita Borisov. “Breaking the Collusion Detection Mech-
anism of MorphMix”. In George Danezis and Philippe Golle, editors, Pri-
vacy Enhancing Technologies, 6th International Workshop, PET 2006, Cam-
bridge, UK, June 28-30, 2006, Revised Selected Papers, 2006.

[112] George Danezis, Claudia Dı́az, Carmela Troncoso, and Ben Laurie. “Drac:
An Architecture for Anonymous Low-Volume Communications”. In Privacy
Enhancing Technologies, 10th International Symposium, PETS 2010, Berlin,
Germany, July 21-23, 2010. Proceedings, 2010.

[113] Shishir Nagaraja. “Anonymity in the Wild: Mixes on Unstructured Net-
works”. In Privacy Enhancing Technologies, 7th International Symposium,
PET 2007 Ottawa, Canada, June 20-22, 2007, Revised Selected Papers,
2007.

[114] Carmela Troncoso, Marios Isaakidis, George Danezis, and Harry Halpin.
“Systematizing Decentralization and Privacy: Lessons from 15 Years of Re-
search and Deployments”. Proceedings of Privacy Enhancing Technologies,
2017.

[115] George Danezis and Paul F. Syverson. “Bridging and Fingerprinting: Epis-
temic Attacks on Route Selection”. In Nikita Borisov and Ian Goldberg, ed-
itors, Privacy Enhancing Technologies, 8th International Symposium, PETS
2008, Leuven, Belgium, July 23-25, 2008, Proceedings, 2008.

[116] Prateek Mittal and Nikita Borisov. “Information Leaks in Structured Peer-
to-Peer Anonymous Communication Systems”. 2012.

[117] Qiyan Wang, Prateek Mittal, and Nikita Borisov. “In search of an anony-
mous and secure lookup: attacks on structured peer-to-peer anonymous com-
munication systems”. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly
Shmatikov, editors, Proceedings of the 17th ACM Conference on Computer

Bibliography 165

and Communications Security, CCS 2010, Chicago, Illinois, USA, October
4-8, 2010, 2010.

[118] John Brooks. Ricochet. https://ricochet.im/.
[119] Jonathan Warren. “Bitmessage: A peer-to-peer message authentication and

delivery system”. 2012. https://bitmessage.org/bitmessage.pdf.
[120] Bitmessage. https://github.com/Bitmessage.
[121] Rob Sherwood, Bobby Bhattacharjee, and Aravind Srinivasan. “P5: A Pro-

tocol for Scalable Anonymous Communication”. In 2002 IEEE Symposium
on Security and Privacy, Berkeley, California, USA, May 12-15, 2002, pages
58–70. IEEE Computer Society, 2002.

[122] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.
“Freenet: A Distributed Anonymous Information Storage and Retrieval Sys-
tem”. In Hannes Federrath, editor, Designing Privacy Enhancing Technolo-
gies, International Workshop on Design Issues in Anonymity and Unobserv-
ability, Berkeley, CA, USA, July 25-26, 2000, Proceedings, pages 46–66.
Springer, 2000.

[123] Bassam Zantout, Ramzi Haraty, et al. “I2P data communication system”. In
Proceedings of ICN, pages 401–409. Citeseer, 2011.

[124] The Kovri Project. https://gitlab.com/kovri-project/kovri/blob/master/

README.md.
[125] Juan Pablo Timpanaro, Chrisment Isabelle, and Festor Olivier. “Monitoring

the I2P network”. 2011.
[126] Christoph Egger, Johannes Schlumberger, Christopher Kruegel, and Gio-

vanni Vigna. “Practical Attacks against the I2P Network”. In Salvatore J.
Stolfo, Angelos Stavrou, and Charles V. Wright, editors, Research in At-
tacks, Intrusions, and Defenses - 16th International Symposium, RAID 2013,
Rodney Bay, St. Lucia, October 23-25, 2013. Proceedings, pages 432–451.
Springer, 2013.

[127] Adrian Crenshaw. “Darknets and hidden servers: Identifying the true
IP/network identity of I2P service hosts”. Black Hat DC, 201(1):1–
23, 2011. http://www.irongeek.com/i.php?page=security/darknets-i2p-identifying-

hidden-servers.
[128] Naoum Naoumov and Keith W. Ross. “Exploiting P2P systems for DDoS

attacks”. In Xiaohua Jia, editor, Proceedings of the 1st International Con-
ference on Scalable Information Systems, Infoscale 2006, Hong Kong, May
30-June 1, 2006, 2006.

[129] Miguel Castro, Peter Druschel, Ayalvadi J. Ganesh, Antony I. T. Rowstron,
and Dan S. Wallach. “Secure Routing for Structured Peer-to-Peer Over-

https://ricochet.im/
https://bitmessage.org/bitmessage.pdf
https://github.com/Bitmessage
https://gitlab.com/kovri-project/kovri/blob/master/README.md
https://gitlab.com/kovri-project/kovri/blob/master/README.md
http://www.irongeek.com/i.php?page=security/darknets-i2p-identifying-hidden-servers
http://www.irongeek.com/i.php?page=security/darknets-i2p-identifying-hidden-servers

166 Bibliography

lay Networks”. In 5th Symposium on Operating System Design and Imple-
mentation (OSDI 2002), Boston, Massachusetts, USA, December 9-11, 2002.
USENIX Association, 2002.

[130] Lin Wang. “Attacks against peer-to-peer networks and countermeasures”.
In T-110.5290 Seminar on Network Security, 2006.

[131] George Danezis, Chris Lesniewski-Laas, M. Frans Kaashoek, and Ross J.
Anderson. “Sybil-Resistant DHT Routing”. In Sabrina De Capitani di Vimer-
cati, Paul F. Syverson, and Dieter Gollmann, editors, Computer Security - ES-
ORICS 2005, 10th European Symposium on Research in Computer Security,
Milan, Italy, September 12-14, 2005, Proceedings, pages 305–318. Springer,
2005.

[132] John R. Douceur. “The Sybil Attack”. In Peter Druschel, M. Frans Kaashoek,
and Antony I. T. Rowstron, editors, Peer-to-Peer Systems, First International
Workshop, IPTPS 2002, Cambridge, MA, USA, March 7-8, 2002, Revised
Papers, pages 251–260. Springer, 2002.

[133] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich.
“Vuvuzela: scalable private messaging resistant to traffic analysis”. In
Ethan L. Miller and Steven Hand, editors, Proceedings of the 25th Sym-
posium on Operating Systems Principles, SOSP 2015, Monterey, CA, USA,
October 4-7, 2015, pages 137–152. ACM, 2015.

[134] Cynthia Dwork. “Differential Privacy”. In Michele Bugliesi, Bart Preneel,
Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages and
Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy,
July 10-14, 2006, Proceedings, Part II, pages 1–12. Springer, 2006.

[135] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zel-
dovich. “Stadium: A Distributed Metadata-Private Messaging System”. In
Proceedings of the 26th Symposium on Operating Systems Principles, Shang-
hai, China, October 28-31, 2017, pages 423–440. ACM, 2017.

[136] David Lazar, Yossi Gilad, and Nickolai Zeldovich. “Karaoke: Distributed
Private Messaging Immune to Passive Traffic Analysis”. In Andrea C.
Arpaci-Dusseau and Geoff Voelker, editors, 13th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA,
USA, October 8-10, 2018, pages 711–725, 2018.

[137] Nethanel Gelernter, Amir Herzberg, and Hemi Leibowitz. “Two Cents for
Strong Anonymity: The Anonymous Post-office Protocol”. In Srdjan Capkun
and Sherman S. M. Chow, editors, Cryptology and Network Security - 16th
International Conference, CANS 2017, Hong Kong, China, November 30 -
December 2, 2017, Revised Selected Papers, pages 390–412. Springer, 2017.

Bibliography 167

[138] Sebastian Angel and Srinath T. V. Setty. “Unobservable Communication
over Fully Untrusted Infrastructure”. In Kimberly Keeton and Timothy
Roscoe, editors, 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016,
pages 551–569, 2016.

[139] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. “Private
Information Retrieval”. J. ACM, 45(6):965–981, 1998. URL https://doi.org/

10.1145/293347.293350.
[140] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas

Zacharias. “MCMix: Anonymous Messaging via Secure Multiparty Com-
putation”. In Engin Kirda and Thomas Ristenpart, editors, 26th USENIX
Security Symposium, Vancouver, BC, Canada, August 16-18, 2017, pages
1217–1234, 2017.

[141] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to play any mental
game, or a completeness theorem for protocols with honest majority”. In
Oded Goldreich, editor, Providing Sound Foundations for Cryptography: On
the Work of Shafi Goldwasser and Silvio Micali, pages 307–328. ACM, 2019.

[142] David Chaum, Debajyoti Das, Farid Javani, Aniket Kate, Anna Krasnova,
Joeri de Ruiter, and Alan T. Sherman. “cMix: Mixing with Minimal Real-
Time Asymmetric Cryptographic Operations”. In Dieter Gollmann, Atsuko
Miyaji, and Hiroaki Kikuchi, editors, Applied Cryptography and Network
Security - 15th International Conference, ACNS 2017, Kanazawa, Japan,
July 10-12, 2017, Proceedings, pages 557–578. Springer, 2017.

[143] Herman Galteland, Stig Fr. Mjølsnes, and Ruxandra F. Olimid. “Attacks on
cMix - Some Small Overlooked Details”. IACR Cryptology ePrint Archive,
2016:729, 2016. URL http://eprint.iacr.org/2016/729.

[144] Albert Kwon, David Lu, and Srinivas Devadas. “XRD: Scalable Messaging
System with Cryptographic Privacy”. CoRR, abs/1901.04368, 2019. URL
http://arxiv.org/abs/1901.04368.

[145] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron John-
son. “Dissent in Numbers: Making Strong Anonymity Scale”. In Chandu
Thekkath and Amin Vahdat, editors, 10th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI 2012, Hollywood, CA, USA,
October 8-10, 2012, pages 179–182, 2012.

[146] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. “Riposte: An
Anonymous Messaging System Handling Millions of Users”. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-
21, 2015, pages 321–338. IEEE Computer Society, 2015.

https://doi.org/10.1145/293347.293350
https://doi.org/10.1145/293347.293350
http://eprint.iacr.org/2016/729
http://arxiv.org/abs/1901.04368

168 Bibliography

[147] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. “Riffle: An
Efficient Communication System With Strong Anonymity”. PoPETs, 2016(2):
115–134, 2016. URL https://doi.org/10.1515/popets-2016-0008.

[148] Jean-Jacques Quisquater, Myriam Quisquater, Muriel Quisquater, Michaël
Quisquater, Louis C. Guillou, Marie Annick Guillou, Gaı̈d Guillou, Anna
Guillou, Gwenolé Guillou, Soazig Guillou, and Thomas A. Berson. “How
to Explain Zero-Knowledge Protocols to Your Children”. In Gilles Bras-
sard, editor, Advances in Cryptology - CRYPTO ’89, 9th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 20-
24, 1989, Proceedings, pages 628–631. Springer, 1989.

[149] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

[150] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan Ford.
“Atom: Scalable Anonymity Resistant to Traffic Analysis”. CoRR,
abs/1612.07841, 2016. URL http://arxiv.org/abs/1612.07841.

[151] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. “The Byzantine
Generals Problem”. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.
URL http://doi.acm.org/10.1145/357172.357176.

[152] Stevens Le Blond, David R. Choffnes, Wenxuan Zhou, Peter Druschel,
Hitesh Ballani, and Paul Francis. “Towards efficient traffic-analysis resistant
anonymity networks”. In Dah Ming Chiu, Jia Wang, Paul Barford, and Srini-
vasan Seshan, editors, ACM SIGCOMM 2013 Conference, SIGCOMM’13,
Hong Kong, China, August 12-16, 2013, pages 303–314. ACM, 2013.

[153] Pierangela Samarati and Latanya Sweeney. “Protecting privacy when dis-
closing information: k-anonymity and its enforcement through generaliza-
tion and suppression”. Technical report, technical report, SRI International,
1998.

[154] Stevens Le Blond, David R. Choffnes, William Caldwell, Peter Druschel, and
Nicholas Merritt. “Herd: A Scalable, Traffic Analysis Resistant Anonymity
Network for VoIP Systems”. In Steve Uhlig, Olaf Maennel, Brad Karp, and Ji-
tendra Padhye, editors, Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, SIGCOMM 2015, London, United
Kingdom, August 17-21, 2015, pages 639–652. ACM, 2015.

[155] Hsu-Chun Hsiao, Tiffany Hyun-Jin Kim, Adrian Perrig, Akira Yamada,
Samuel C. Nelson, Marco Gruteser, and Wei Meng. “LAP: Lightweight
Anonymity and Privacy”. In IEEE Symposium on Security and Privacy, SP
2012, 21-23 May 2012, San Francisco, California, USA, pages 506–520.
IEEE Computer Society, 2012.

https://doi.org/10.1515/popets-2016-0008
http://arxiv.org/abs/1612.07841
http://doi.acm.org/10.1145/357172.357176

Bibliography 169

[156] Jody Sankey and Matthew K. Wright. “Dovetail: Stronger Anonymity in
Next-Generation Internet Routing”. In Emiliano De Cristofaro and Steven J.
Murdoch, editors, Privacy Enhancing Technologies - 14th International Sym-
posium, PETS 2014, Amsterdam, The Netherlands, July 16-18, 2014. Pro-
ceedings, pages 283–303. Springer, 2014.

[157] Chen Chen, Daniele Enrico Asoni, David Barrera, George Danezis, and
Adrian Perrig. “HORNET: High-speed Onion Routing at the Network
Layer”. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, Denver, CO, USA, October 12-16, 2015, pages 1441–1454.
ACM, 2015.

[158] Chen Chen, Daniele Enrico Asoni, Adrian Perrig, David Barrera, George
Danezis, and Carmela Troncoso. “TARANET: Traffic-Analysis Resistant
Anonymity at the Network Layer”. In 2018 IEEE European Symposium on
Security and Privacy, EuroS&P 2018, London, United Kingdom, April 24-
26, 2018, pages 137–152. IEEE, 2018.

[159] Loki Network. https://loki.network/.

[160] Orchid: A decentralized network routing market, 2019. https://

www.orchid.com/assets/whitepaper/whitepaper.pdf.

[161] Vpn0: A privacy-preserving distributed virtual private network, 2019. https:

//brave.com/vpn0-a-privacy-preserving-distributed-virtual-private-network/.

[162] Sentinel. https://sentinel.co/.

[163] Mysterium network project. https://mysterium.network/whitepaper.pdf.

[164] Roger Dingledine, Vitaly Shmatikov, and Paul F. Syverson. “Synchronous
Batching: From Cascades to Free Routes”. In David M. Martin Jr. and An-
drei Serjantov, editors, Privacy Enhancing Technologies, 4th International
Workshop, PET 2004, Toronto, Canada, May 26-28, 2004, Revised Selected
Papers, pages 186–206. Springer, 2004.

[165] George Danezis. “Mix-Networks with Restricted Routes”. In Roger Dingle-
dine, editor, Privacy Enhancing Technologies, Third International Workshop,
PET 2003, Dresden, Germany, March 26-28, 2003, Revised Papers, pages 1–
17. Springer, 2003.

[166] Claudia Dı́az, George Danezis, Christian Grothoff, Andreas Pfitzmann, and
Paul F. Syverson. “Panel Discussion - Mix Cascades Versus Peer-to-Peer:
Is One Concept Superior?” In David M. Martin Jr. and Andrei Serjantov,
editors, Privacy Enhancing Technologies, 4th International Workshop, PET
2004, Toronto, Canada, May 26-28, 2004, Revised Selected Papers, 2004.

https://loki.network/
https://www.orchid.com/assets/whitepaper/whitepaper.pdf
https://www.orchid.com/assets/whitepaper/whitepaper.pdf
https://brave.com/vpn0-a-privacy-preserving-distributed-virtual-private-network/
https://brave.com/vpn0-a-privacy-preserving-distributed-virtual-private-network/
https://sentinel.co/
https://mysterium.network/whitepaper.pdf

170 Bibliography

[167] Claudia Dı́az, Steven J. Murdoch, and Carmela Troncoso. “Impact of Net-
work Topology on Anonymity and Overhead in Low-Latency Anonymity Net-
works”. In Mikhail J. Atallah and Nicholas J. Hopper, editors, Privacy En-
hancing Technologies, 10th International Symposium, PETS 2010, Berlin,
Germany, July 21-23, 2010. Proceedings, 2010.

[168] Joan Feigenbaum, Aaron Johnson, and Paul F. Syverson. “Preventing Active
Timing Attacks in Low-Latency Anonymous Communication”. In Mikhail J.
Atallah and Nicholas J. Hopper, editors, Privacy Enhancing Technologies,
10th International Symposium, PETS 2010, Berlin, Germany, July 21-23,
2010. Proceedings, 2010.

[169] Ryan Henry and Ian Goldberg. “Thinking inside the BLAC box: smarter pro-
tocols for faster anonymous blacklisting”. In Ahmad-Reza Sadeghi and Sara
Foresti, editors, Proceedings of the 12th annual ACM Workshop on Privacy
in the Electronic Society, WPES 2013, Berlin, Germany, November 4, 2013,
pages 71–82. ACM, 2013.

[170] Elli Androulaki, Mariana Raykova, Shreyas Srivatsan, Angelos Stavrou, and
Steven M. Bellovin. “PAR: Payment for Anonymous Routing”. In Nikita
Borisov and Ian Goldberg, editors, Privacy Enhancing Technologies, 8th
International Symposium, PETS 2008, Leuven, Belgium, July 23-25, 2008,
Proceedings, pages 219–236. Springer, 2008.

[171] David Lazar and Nickolai Zeldovich. “Alpenhorn: Bootstrapping Secure
Communication without Leaking Metadata”. In Kimberly Keeton and Timo-
thy Roscoe, editors, 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016,
pages 571–586, 2016.

[172] Hitesh Ballani, Paul Francis, and Xinyang Zhang. “A study of prefix hijack-
ing and interception in the internet”. In Jun Murai and Kenjiro Cho, edi-
tors, Proceedings of the ACM SIGCOMM 2007 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications,
Kyoto, Japan, August 27-31, 2007, pages 265–276. ACM, 2007.

[173] Yossi Gilad and Amir Herzberg. “Spying in the Dark: TCP and Tor Traffic
Analysis”. In Simone Fischer-Hübner and Matthew K. Wright, editors, Pri-
vacy Enhancing Technologies - 12th International Symposium, PETS 2012,
Vigo, Spain, July 11-13, 2012. Proceedings, pages 100–119. Springer, 2012.

[174] Michael Backes, Aniket Kate, Praveen Manoharan, Sebastian Meiser, and
Esfandiar Mohammadi. “AnoA: A Framework for Analyzing Anonymous
Communication Protocols”. In 2013 IEEE 26th Computer Security Founda-

Bibliography 171

tions Symposium, New Orleans, LA, USA, June 26-28, 2013, pages 163–178.
IEEE Computer Society, 2013.

[175] Matthew K. Wright, Micah Adler, Brian Neil Levine, and Clay Shields.
“Passive-Logging Attacks Against Anonymous Communications Systems”.
ACM Trans. Inf. Syst. Secur., 2008.

[176] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul F. Syver-
son. “Users get routed: traffic correlation on tor by realistic adversaries”. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013, pages 337–348. ACM, 2013.

[177] George Danezis and Ian Goldberg. “Sphinx: A Compact and Provably Secure
Mix Format”. In 30th IEEE Symposium on Security and Privacy (S&P 2009),
17-20 May 2009, Oakland, California, USA, pages 269–282. IEEE Computer
Society, 2009.

[178] Ross J. Anderson and Eli Biham. “Two Practical and Provably Secure Block
Ciphers: BEARS and LION”. In Dieter Gollmann, editor, Fast Software En-
cryption, Third International Workshop, Cambridge, UK, February 21-23,
1996, Proceedings, pages 113–120. Springer, 1996.

[179] George Danezis. “The Traffic Analysis of Continuous-Time Mixes”. In David
M. Martin Jr. and Andrei Serjantov, editors, Privacy Enhancing Technolo-
gies, 4th International Workshop, PET 2004, Toronto, Canada, May 26-28,
2004, Revised Selected Papers, pages 35–50. Springer, 2004.

[180] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi.
Queueing Networks and Markov Chains - Modeling and Performance Eval-
uation with Computer Science Applications, Second Edition. Wiley, 2006.

[181] Paul Syverson. “Sleeping dogs lie in a bed of onions but wake when mixed”.
4th Hot Topics in Privacy Enhancing Technologies (HotPETs 2011), 2011.

[182] George Danezis and Len Sassaman. “Heartbeat traffic to counter (n-1) at-
tacks: red-green-black mixes”. In Sushil Jajodia, Pierangela Samarati, and
Paul F. Syverson, editors, Proceedings of the 2003 ACM Workshop on Pri-
vacy in the Electronic Society, WPES 2003, Washington, DC, USA, October
30, 2003, pages 89–93. ACM, 2003.

[183] Panoramix Project. https://panoramix.me/.

[184] Yawning Angel and George Danezis and Claudia Diaz and Ania Piotrowska
and David Stainton. Katzenpost Mix Network End-to-end Protocol Specifica.
https://github.com/katzenpost/docs/blob/master/specs/end to end.rst, .

[185] Yawning Angel and George Danezis and Claudia Diaz and Ania Piotrowska

https://panoramix.me/
https://github.com/katzenpost/docs/blob/master/specs/end_to_end.rst

172 Bibliography

and David Stainton. Katzenpost Mix Network Specification. https://

github.com/katzenpost/docs/blob/master/specs/mixnet.rst, .
[186] Yawning Angel and Claudia Diaz and Ania Piotrowska and David Stain-

ton. Katzenpost Mix Network Public Key Infrastructure Specification. https:

//github.com/katzenpost/docs/blob/master/specs/pki.rst.
[187] Yawning Angel and George Danezis and Claudia Diaz and Ania Piotrowska

and David Stainton. Sphinx Mix Network Cryptographic Packet Format
Specification. https://github.com/katzenpost/docs/blob/master/specs/sphinx.rst, .

[188] Nym Technologies. https://nymtech.net/.
[189] Nikita Borisov, George Danezis, and Ian Goldberg. “DP5: A Private Pres-

ence Service”. PoPETs, 2015(2):4–24, 2015. URL https://doi.org/10.1515/

popets-2015-0008.
[190] Rahul Parhi, Michael Schliep, and Nicholas Hopper. “MP3: A More Efficient

Private Presence Protocol”. In Sarah Meiklejohn and Kazue Sako, editors,
Financial Cryptography and Data Security - 22nd International Conference,
FC 2018, Nieuwpoort, Curaçao, February 26 - March 2, 2018, Revised Se-
lected Papers, pages 38–57. Springer, 2018.

[191] Roger Dingledine and Nick Mathewson. “Anonymity Loves Company: Us-
ability and the Network Effect”. In 5th Annual Workshop on the Economics
of Information Security, WEIS 2006, Robinson College, University of Cam-
bridge, England, UK, June 26-28, 2006, 2006.

[192] David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. “Onion
Routing”. Commun. ACM, 42(2):39–41, 1999. URL https://doi.org/10.1145/

293411.293443.
[193] Dakshi Agrawal and Dogan Kesdogan. “Measuring Anonymity: The Disclo-

sure Attack”. pages 27–34, 2003.
[194] Laisen Nie, Dingde Jiang, and Zhihan Lv. “Modeling network traffic for

traffic matrix estimation and anomaly detection based on Bayesian network
in cloud computing networks”. Annales des Télécommunications, 72(5-6):
297–305, 2017. URL https://doi.org/10.1007/s12243-016-0546-3.

[195] D.P. Heyman and M.J. Sobel. “Superposition of renewal processes”.
Stochastic Models in Operations Research: Stochastic Processes and Op-
erating Characteristics, 2004.

[196] William Feller. An introduction to probability theory and its applications:
volume I. John Wiley & Sons New York, 1968.

[197] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko
Vukolic. “XFT: Practical Fault Tolerance beyond Crashes”. In Kimberly
Keeton and Timothy Roscoe, editors, 12th USENIX Symposium on Operat-

https://github.com/katzenpost/docs/blob/master/specs/mixnet.rst
https://github.com/katzenpost/docs/blob/master/specs/mixnet.rst
https://github.com/katzenpost/docs/blob/master/specs/pki.rst
https://github.com/katzenpost/docs/blob/master/specs/pki.rst
https://github.com/katzenpost/docs/blob/master/specs/sphinx.rst
https://nymtech.net/
https://doi.org/10.1515/popets-2015-0008
https://doi.org/10.1515/popets-2015-0008
https://doi.org/10.1145/293411.293443
https://doi.org/10.1145/293411.293443
https://doi.org/10.1007/s12243-016-0546-3

Bibliography 173

ing Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016, pages 485–500, 2016.

[198] Christian Cachin, Rachid Guerraoui, and Luı́s E. T. Rodrigues. Introduction
to Reliable and Secure Distributed Programming (2. ed.). Springer, 2011.

[199] Don Johnson, Alfred Menezes, and Scott A. Vanstone. “The Elliptic Curve
Digital Signature Algorithm (ECDSA)”. Int. J. Inf. Sec., 1(1):36–63, 2001.
URL https://doi.org/10.1007/s102070100002.

[200] Ralph C. Merkle. “A Digital Signature Based on a Conventional Encryption
Function”. In Carl Pomerance, editor, Advances in Cryptology - CRYPTO
’87, A Conference on the Theory and Applications of Cryptographic Tech-
niques, Santa Barbara, California, USA, August 16-20, 1987, Proceedings,
pages 369–378. Springer, 1987.

[201] Danny Dolev and H. Raymond Strong. “Authenticated Algorithms for
Byzantine Agreement”. SIAM J. Comput., 12(4):656–666, 1983. URL
https://doi.org/10.1137/0212045.

[202] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[203] Victor Shoup. “Practical Threshold Signatures”. In Bart Preneel, editor,
Advances in Cryptology - EUROCRYPT 2000, International Conference on
the Theory and Application of Cryptographic Techniques, Bruges, Belgium,
May 14-18, 2000, Proceeding, pages 207–220. Springer, 2000.

[204] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. “Ro-
bust Threshold DSS Signatures”. In Ueli M. Maurer, editor, Advances in
Cryptology - EUROCRYPT ’96, International Conference on the Theory
and Application of Cryptographic Techniques, Saragossa, Spain, May 12-
16, 1996, Proceeding, pages 354–371. Springer, 1996.

[205] Mihir Bellare, Juan A. Garay, and Tal Rabin. “Distributed Pseudo-Random
Bit Generators - A New Way to Speed-Up Shared Coin Tossing”. In James E.
Burns and Yoram Moses, editors, Proceedings of the Fifteenth Annual ACM
Symposium on Principles of Distributed Computing, Philadelphia, Pennsyl-
vania, USA, May 23-26, 1996, pages 191–200. ACM, 1996.

[206] George Danezis and Prateek Mittal. “SybilInfer: Detecting Sybil Nodes using
Social Networks”. In Proceedings of the Network and Distributed System
Security Symposium, NDSS 2009, San Diego, California, USA, 8th February
- 11th February 2009. The Internet Society, 2009.

[207] Roger Dingledine, Michael J. Freedman, David Hopwood, and David Mol-
nar. “A Reputation System to Increase MIX-Net Reliability”. In Ira S.
Moskowitz, editor, Information Hiding, 4th International Workshop, IHW

https://doi.org/10.1007/s102070100002
https://doi.org/10.1137/0212045

174 Bibliography

2001, Pittsburgh, PA, USA, April 25-27, 2001, Proceedings, pages 126–141.
Springer, 2001.

[208] Roger Dingledine and Paul F. Syverson. “Reliable MIX Cascade Networks
through Reputation”. In Matt Blaze, editor, Financial Cryptography, 6th
International Conference, FC 2002, Southampton, Bermuda, March 11-14,
2002, Revised Papers, 2002.

[209] Peter Palfrader. Echolot: a pinger for anonymous remailers, 2002.
[210] Oded Goldreich and Rafail Ostrovsky. “Software Protection and Simulation

on Oblivious RAMs”. J. ACM, 43(3):431–473, 1996. URL https://doi.org/

10.1145/233551.233553.
[211] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling

Ren, Xiangyao Yu, and Srinivas Devadas. “Path ORAM: an extremely sim-
ple oblivious RAM protocol”. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, 2013 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages
299–310. ACM, 2013.

[212] Yanbin Lu and Gene Tsudik. “Towards Plugging Privacy Leaks in the Do-
main Name System”. In IEEE Tenth International Conference on Peer-to-
Peer Computing, P2P 2010, Delft, The Netherlands, 25-27 August 2010,
pages 1–10. IEEE, 2010.

[213] Haya Shulman. “Pretty Bad Privacy: Pitfalls of DNS Encryption”. In Gail-
Joon Ahn and Anupam Datta, editors, Proceedings of the 13th Workshop on
Privacy in the Electronic Society, WPES 2014, Scottsdale, AZ, USA, Novem-
ber 3, 2014, pages 191–200. ACM, 2014.

[214] Hannes Federrath, Karl-Peter Fuchs, Dominik Herrmann, and Christopher
Piosecny. “Privacy-Preserving DNS: Analysis of Broadcast, Range Queries
and Mix-Based Protection Methods”. In Vijay Atluri and Claudia Dı́az, ed-
itors, Computer Security - ESORICS 2011 - 16th European Symposium on
Research in Computer Security, Leuven, Belgium, September 12-14, 2011.
Proceedings, pages 665–683. Springer, 2011.

[215] Ian Goldberg. “Improving the Robustness of Private Information Retrieval”.
In 2007 IEEE Symposium on Security and Privacy (S&P 2007), 20-23 May
2007, Oakland, California, USA, pages 131–148. IEEE Computer Society,
2007.

[216] Casey Devet, Ian Goldberg, and Nadia Heninger. “Optimally Robust Private
Information Retrieval”. In Tadayoshi Kohno, editor, Proceedings of the 21th
USENIX Security Symposium, Bellevue, WA, USA, August 8-10, 2012, pages
269–283, 2012.

https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553

Bibliography 175

[217] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,
Second Edition. CRC Press, 2014.

[218] B. Laurie. “Apres-a system for anonymous presence”. Technical report,
2004. http://apache-ssl.securehost.com/apres.pdf.

[219] A. Broder and M. Mitzenmacher. “Network applications of Bloom filters: A
survey”. Internet mathematics, 2004.

[220] Wassily Hoeffding. “Probability inequalities for sums of bounded random
variables”. Journal of the American statistical association, 1963.

[221] Raphael R. Toledo, George Danezis, and Ian Goldberg. “Lower-Cost
epsilon-Private Information Retrieval”. CoRR, abs/1604.00223, 2016. URL
http://arxiv.org/abs/1604.00223.

[222] Yo App. https://en.wikipedia.org/wiki/Yo (app).

[223] “Yo App warns Israeli citizens of missile strikes”. https://www.bbc.co.uk/news/

technology-28247504.

[224] Google. “Google Transparency Report - Making the web safer”. Technical
report, 2014. https://bit.ly/1A72tdQ.

[225] Thomas Gerbet, Amrit Kumar, and Cédric Lauradoux. “A Privacy Analy-
sis of Google and Yandex Safe Browsing”. In 46th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks, DSN 2016,
Toulouse, France, June 28 - July 1, 2016, pages 347–358. IEEE Computer
Society, 2016.

[226] Sebastiano Di Paola and Dario Lombardo. “Protecting against DNS Reflec-
tion Attacks with Bloom Filters”. In Thorsten Holz and Herbert Bos, editors,
Detection of Intrusions and Malware, and Vulnerability Assessment - 8th In-
ternational Conference; DIMVA 2011, Amsterdam, The Netherlands, July
7-8, 2011. Proceedings, pages 1–16. Springer, 2011.

[227] Shahabeddin Geravand and Mahmood Ahmadi. “Bloom filter applications
in network security: A state-of-the-art survey”. Computer Networks, 57(18):
4047–4064, 2013. URL https://doi.org/10.1016/j.comnet.2013.09.003.

[228] Tor Metrics. https://metrics.torproject.org/.

[229] Li Fan, Pei Cao, Jussara M. Almeida, and Andrei Z. Broder. “Summary
cache: a scalable wide-area web cache sharing protocol”. IEEE/ACM
Transactions on Networking, 8(3):281–293, 2000. URL https://doi.org/

10.1109/90.851975.

[230] Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn, and
George Danezis. “Coconut: Threshold Issuance Selective Disclosure Cre-
dentials with Applications to Distributed Ledgers”. In 26th Annual Network

http://apache-ssl.securehost.com/apres.pdf
http://arxiv.org/abs/1604.00223
https://en.wikipedia.org/wiki/Yo_(app)
https://www.bbc.co.uk/news/technology-28247504
https://www.bbc.co.uk/news/technology-28247504
https://bit.ly/1A72tdQ
https://doi.org/10.1016/j.comnet.2013.09.003
https://metrics.torproject.org/
https://doi.org/10.1109/90.851975
https://doi.org/10.1109/90.851975

176 Bibliography

and Distributed System Security Symposium, NDSS 2019, San Diego, Cali-
fornia, USA, February 24-27, 2019. The Internet Society, 2019.

	Abstract
	Impact statment
	Acknowledgements
	Contents
	List of Figures and Tables
	Introduction
	Motivation
	Goals
	Contributions
	Organisation of the thesis

	Background and related works
	Technical defnitions and measures
	Information entropy
	Differential privacy
	Bloom filters
	Poisson and Exponential distribution
	Memoryless property

	Anonymity
	Traffic Analysis and Active Attacks

	Anonymous communication systems
	Early designs for decentralized anonymous communication systems
	Modern mix networks and DC-Nets designs
	Other decentralized anonymity systems

	Conclusion

	I Anonymous communication systems resistant to traffic analysis and active attacks
	The Loopix Anonymity System
	Introduction
	The system high-level overview
	System model and security goals
	System Setup
	Threat Model
	Security Goals

	The Loopix Architecture
	Message packet format
	Message sending and cover traffic
	The Poisson Mix Strategy

	Analysis of Loopix security properties
	Passive attack resistance
	Poisson mix security
	Active attack resistance

	End-to-End Anonymity Evaluation
	Sender-Receiver Third-party Unlinkability

	Performance Evaluation
	Comparison with Related Work
	Discussion
	Conclusion

	Detecting malicious mix nodes
	Introduction
	Impact of Active Attacks on Anonymity
	Security game
	Measurement of adversary's advantage.

	System model and security goals
	General System Model
	Threat Model
	Security Goals of Miranda

	The Big Picture
	Intra-Epoch Process
	Message Sending
	Processing of Received Packets
	Loop Messages: Detect Stealthy Attacks
	Handling missing receipts

	Inter-Epoch Process
	Filtering Faulty Mixes
	Cascades Selection Protocol

	Community-based Attacker Detection
	Aggresive Pair Removal
	Threshold Detection Algorithm
	Community detection based on random walks

	Analysis of Active Attacks
	Resisting Active Attacks
	Fully Malicious Cascades Attacks
	Security of Loop Messages

	Evaluation of Community Detection Techniques
	Community detection using Threshold Detection and Virtual Pair Removal
	Community detection based on random walks

	Discussion
	Conclusion

	II Applications of mix networks
	Private Notification Service using Mix networks
	Introduction
	System model and Goals
	High-level overview
	Security Goals
	Threat Model

	The Design of AnNotify
	The AnNotify Protocols

	Security of AnNotify
	Game between the adversary and the AnNotify system
	The Security of AnNotify
	Empirical adversary advantage
	Other security arguments

	Analytical Performance Evaluation
	Experimental Evaluation
	Implementation & Infrastructure
	Performance Evaluation
	Comparison to DP5

	AnNotify Extensions
	Applications
	Conclusions

	Conclusions and Future work
	Limitations and Future work

	Bibliography

