13,955 research outputs found

    QoS Analysis for a Non-Preemptive Continuous Monitoring and Event Driven WSN Protocol in Mobile Environments

    Full text link
    Evolution in wireless sensor networks (WSNs) has allowed the introduction of new applications with increased complexity regarding communication protocols, which have to ensure that certain QoS parameters are met. Specifically, mobile applications require the system to respond in a certain manner in order to adequately track the target object. Hybrid algorithms that perform Continuous Monitoring (CntM) and Event-Driven (ED) duties have proven their ability to enhance performance in different environments, where emergency alarms are required. In this paper, several types of environments are studied using mathematical models and simulations, for evaluating the performance of WALTER, a priority-based nonpreemptive hybrid WSN protocol that aims to reduce delay and packet loss probability in time-critical packets. First, randomly distributed events are considered. This environment can be used to model a wide variety of physical phenomena, for which report delay and energy consumption are analyzed by means of Markov models. Then, mobile-only environments are studied for object tracking purposes. Here, some of the parameters that determine the performance of the system are identified. Finally, an environment containing mobile objects and randomly distributed events is considered. It is shown that by assigning high priority to time-critical packets, report delay is reduced and network performance is enhanced.This work was partially supported by CONACyT under Project 183370. The research of Vicent Pla has been supported in part by the Ministry of Economy and Competitiveness of Spain under Grant TIN2013-47272-C2-1-R.Leyva Mayorga, I.; Rivero-Angeles, ME.; Carreto-Arellano, C.; Pla, V. (2015). QoS Analysis for a Non-Preemptive Continuous Monitoring and Event Driven WSN Protocol in Mobile Environments. International Journal of Distributed Sensor Networks. 2015:1-16. https://doi.org/10.1155/2015/471307S1162015Arampatzis, T., Lygeros, J., & Manesis, S. (s. f.). A Survey of Applications of Wireless Sensors and Wireless Sensor Networks. Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005. doi:10.1109/.2005.1467103Ramachandran, C., Misra, S., & Obaidat, M. S. (2008). A probabilistic zonal approach for swarm-inspired wildfire detection using sensor networks. International Journal of Communication Systems, 21(10), 1047-1073. doi:10.1002/dac.937Misra, S., Singh, S., Khatua, M., & Obaidat, M. S. (2013). Extracting mobility pattern from target trajectory in wireless sensor networks. International Journal of Communication Systems, 28(2), 213-230. doi:10.1002/dac.2649Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660-670. doi:10.1109/twc.2002.804190Younis, O., & Fahmy, S. (s. f.). Distributed clustering in ad-hoc sensor networks: a hybrid, energy-efficient approach. IEEE INFOCOM 2004. doi:10.1109/infcom.2004.1354534Manjeshwar, A., & Agrawal, D. P. (s. f.). TEEN: a routing protocol for enhanced efficiency in wireless sensor networks. Proceedings 15th International Parallel and Distributed Processing Symposium. IPDPS 2001. doi:10.1109/ipdps.2001.925197Manjeshwar, A., & Agrawal, D. P. (2002). APTEEN: a hybrid protocol for efficient routing and comprehensive information retrieval in wireless. Proceedings 16th International Parallel and Distributed Processing Symposium. doi:10.1109/ipdps.2002.1016600Sharif, A., Potdar, V., & Rathnayaka, A. J. D. (2010). Prioritizing Information for Achieving QoS Control in WSN. 2010 24th IEEE International Conference on Advanced Information Networking and Applications. doi:10.1109/aina.2010.166Alappat, V. J., Khanna, N., & Krishna, A. K. (2011). Advanced Sensor MAC protocol to support applications having different priority levels in Wireless Sensor Networks. 2011 6th International ICST Conference on Communications and Networking in China (CHINACOM). doi:10.1109/chinacom.2011.6158175Alam, K. M., Kamruzzaman, J., Karmakar, G., & Murshed, M. (2012). Priority Sensitive Event Detection in Hybrid Wireless Sensor Networks. 2012 21st International Conference on Computer Communications and Networks (ICCCN). doi:10.1109/icccn.2012.6289220Raja, A., & Su, X. (2008). A Mobility Adaptive Hybrid Protocol for Wireless Sensor Networks. 2008 5th IEEE Consumer Communications and Networking Conference. doi:10.1109/ccnc08.2007.159Srikanth, B., Harish, M., & Bhattacharjee, R. (2011). An energy efficient hybrid MAC protocol for WSN containing mobile nodes. 2011 8th International Conference on Information, Communications & Signal Processing. doi:10.1109/icics.2011.6173629Lee, Y.-D., Jeong, D.-U., & Lee, H.-J. (2011). Empirical analysis of the reliability of low-rate wireless u-healthcare monitoring applications. International Journal of Communication Systems, 26(4), 505-514. doi:10.1002/dac.1360Deepak, K. S., & Babu, A. V. (2013). Improving energy efficiency of incremental relay based cooperative communications in wireless body area networks. International Journal of Communication Systems, 28(1), 91-111. doi:10.1002/dac.2641Yuan Li, Wei Ye, & Heidemann, J. (s. f.). Energy and latency control in low duty cycle MAC protocols. IEEE Wireless Communications and Networking Conference, 2005. doi:10.1109/wcnc.2005.1424589Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535-547. doi:10.1109/49.840210Wei Ye, Heidemann, J., & Estrin, D. (s. f.). An energy-efficient MAC protocol for wireless sensor networks. Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. doi:10.1109/infcom.2002.101940

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Two-Hop Routing with Traffic-Differentiation for QoS Guarantee in Wireless Sensor Networks

    Get PDF
    This paper proposes a Traffic-Differentiated Two-Hop Routing protocol for Quality of Service (QoS) in Wireless Sensor Networks (WSNs). It targets WSN applications having different types of data traffic with several priorities. The protocol achieves to increase Packet Reception Ratio (PRR) and reduce end-to-end delay while considering multi-queue priority policy, two-hop neighborhood information, link reliability and power efficiency. The protocol is modular and utilizes effective methods for estimating the link metrics. Numerical results show that the proposed protocol is a feasible solution to addresses QoS service differenti- ation for traffic with different priorities.Comment: 13 page

    Time Segmentation Approach Allowing QoS and Energy Saving for Wireless Sensor Networks

    Full text link
    Wireless sensor networks are conceived to monitor a certain application or physical phenomena and are supposed to function for several years without any human intervention for maintenance. Thus, the main issue in sensor networks is often to extend the lifetime of the network by reducing energy consumption. On the other hand, some applications have high priority traffic that needs to be transferred within a bounded end-to-end delay while maintaining an energy efficient behavior. We propose MaCARI, a time segmentation protocol that saves energy, improves the overall performance of the network and enables quality of service in terms of guaranteed access to the medium and end-to-end delays. This time segmentation is achieved by synchronizing the activity of nodes using a tree-based beacon propagation and allocating activity periods for each cluster of nodes. The tree-based topology is inspired from the cluster-tree proposed by the ZigBee standard. The efficiency of our protocol is proven analytically, by simulation and through real testbed measurements

    Reliable data delivery in wireless sensor networks

    Get PDF
    Wireless sensor networks (WSN) have generated tremendous interest among researchers these years because of their potential usage in a wide variety of applications. Sensor nodes are inexpensive portable devices with limited processing power and energy resources. Sensor nodes can be used to collect information from the environment, locally process this data and transmit the sensed data back to the user. This thesis proposes a new reliable data delivery protocol for general point-to-point data delivery (unicasting) in wireless sensor networks. The new protocol is designed that aims at providing 100% reliability when possible as well as minimizing overhead and network delay. The design of the new protocol includes three components. The new protocol adopts a NACK-based hop-by-hop loss detection and recovery scheme using end-to-end sequence numbers. In order to solve the single/last packet problem in the NACK-based approach, a hybrid ACK/NACK scheme is proposed where an ACK-based approach is used as a supplement to the NACK-based approach to solve the single/last packet problem. The proposed protocol also has a new queue management scheme that gives priority to new data. By introducing the idea of a Ready_Bit and newer packet first rule in the transmission queue, nodes can detect and recover lost packets in parallel with the normal data transmission process. The performance of the new protocol is tested in a Crossbow MicaZ testbed. Experimental results show that the new protocol performs well under various system and protocol parameter settings

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service
    • …
    corecore