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ABSTRACT 

Wireless sensor networks (WSN) have generated tremendous interest among 

researchers these years because of their potential usage in a wide variety of applications. 

Sensor nodes are inexpensive portable devices with limited processing power and energy 

resources. Sensor nodes can be used to collect information from the environment, locally 

process this data and transmit the sensed data back to the user.   

This thesis proposes a new reliable data delivery protocol for general point-to-point 

data delivery (unicasting) in wireless sensor networks. The new protocol is designed that 

aims at providing 100% reliability when possible as well as minimizing overhead and 

network delay. The design of the new protocol includes three components. The new 

protocol adopts a NACK-based hop-by-hop loss detection and recovery scheme using 

end-to-end sequence numbers. In order to solve the single/last packet problem in the 

NACK-based approach, a hybrid ACK/NACK scheme is proposed where an ACK-based 

approach is used as a supplement to the NACK-based approach to solve the single/last 

packet problem. The proposed protocol also has a new queue management scheme that 

gives priority to new data. By introducing the idea of a Ready_Bit and newer packet first 

rule in the transmission queue, nodes can detect and recover lost packets in parallel with 

the normal data transmission process.  

The performance of the new protocol is tested in a Crossbow MicaZ testbed. 

Experimental results show that the new protocol performs well under various system and 

protocol parameter settings.  
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CHAPTER 1 

INTRODUCTION 

A wireless sensor network (WSN) consists of a group of self-organizing, lightweight 

sensor nodes that are used to cooperatively monitor physical or environmental conditions. 

Commonly monitored parameters include temperature, sound, humidity, vibration, 

pressure and motion [40]. Each sensor node in a WSN is equipped with a radio 

transmitter, several sensors, a battery unit and a microcontroller. Although WSN research 

was initially motivated by military applications, wireless sensor networks are now used in 

many industrial and public service areas including traffic monitoring, weather conditions 

monitoring, video surveillance, industrial automation and healthcare applications [1]. 

Because of the size and cost constraints on sensor nodes, they are limited by energy, 

bandwidth, memory and other resources. Any protocol design for WSNs needs to 

consider the limitations of sensor nodes carefully. This thesis proposes a new hop-by-hop 

NACK-based reliable data delivery protocol that aims to provide high reliability with 

minimal delay and overhead. The rest of this chapter is organized as follows, Section 1.1 

and Section 1.2 provide overviews of WSNs and the reliable data delivery in WSNs, 

respectively. The motivation of this thesis is described in Section 1.3. Section 1.4 

describes the contributions. Section 1.5 presents the thesis organization.       

1.1  Wireless Sensor Networks Overview 

WSNs have generated tremendous interest among researchers these years because of 

their potential usage in a wide variety of applications. Sensor nodes are inexpensive 

portable devices with limited processing power and energy resources. Sensor nodes can 

be used to collect information from the environment, locally process this data and 

transmit the sensed data back to the user.   

Sensor nodes consist of five main components [17]: a computing unit, a 

communication unit, a sensing unit, a memory unit, and a power supply unit. The 
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computing unit consists of a microprocessor. The microprocessor is responsible for 

managing the communication protocols, processing collected data from the on-board 

sensors, and performing the power management. Each sensor node has a single 

communication unit that is able to transmit and receive packets. This unit combines the 

functionality of both transmitter and receiver. The communication frequencies of the 

sensor nodes are between 433 MHz (in some early generations of sensor nodes) and 2.4 

GHz (the most commonly used frequency) [2]. The communication unit has four 

operational states: transmit, receive, idle and sleep. A sensing unit is usually a sensor 

board that consists of one or more sensors. Sensors must have extremely low power 

consumption. Some commonly used sensors are temperature sensor, humidity sensor, 

light sensor, barometer, 2-axis accelerometer, microphone, and GPS receiver. There are 

two types of memory units based on different needs for storage in a sensor node. The 

microprocessor itself contains some on-chip memory used to store system software. 

There is also typically flash memory available where users can store their own 

applications and data. The power unit provides power to other four units described above. 

In the MicaZ mote, for example, it consists of two AA batteries, either rechargeable or 

non-rechargeable [2]. Although all sensing, computing and communication operations 

consume energy, data communication requires more energy than sensing and computing. 

Thus, reducing data communication between sensor nodes can improve the energy 

efficiency and extend the lifetime of sensor networks.   

As shown in Figure 1.1, typical wireless sensor networks consist of multiple sensor 

nodes deployed in the sensing field, and one or several sinks nodes at which data is 

collected and which have external network connectivity. Sensor networks in many 

applications are deployed without pre-defined structure and left unattended to perform 

multiple monitoring or tracking tasks. A WSN is able to self-configure its operation and 

manage its connectivity. A WSN is also able to tolerate malfunctioning nodes and 

integrate new nodes in the network since node failure is common in WSN applications 

[12]. Because of the limited power and transmission range in a large sensor network, the 

communication between sensor nodes must be multihop. Data from a source sensor node 

relayed by a number of intermediate nodes before it reaches the final destination. 

Collaboration between sensor nodes and in-network processing are necessary in sensor 
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networks since a single node may not have all the data concerning some event of interest 

[8] [13]. In-network processing can also reduce the number of packets transmitted in the 

network by aggregating similar data together and thus reducing the power consumption.  

 

 
 

Wireless sensor networks have great potential for many industrial applications. 

Typical WSN applications can be classified into two categories: monitoring and tracking 

[17]. Monitoring applications may involve periodic data collection or may be event-

driven. In an event-driven application, when a certain event occurs in the sensing field, 

sensor nodes collect the sensor readings of that certain event and transmit them back to 

the sink. Those applications usually employ a very strict power management strategy due 

to the limited power supply of sensor nodes and long lifetime requirement of the 

application [9] [23][25]. For example, sensor nodes may operate most of the time in sleep 

mode and are only woken up by a nearby sentry node (a node that is awake all the time 

and monitors the sensing field) when a certain event is detected [39]. Some common 

WSN monitoring applications include environmental monitoring, battlefield monitoring, 

health monitoring, water monitoring, and greenhouse monitoring [1]. Tracking 

applications have different requirements than monitoring applications in that the source 

of an event can be mobile. Of interest is the current location of the target. Real-time 

communication is usually desired in tracking applications [11]. Some common tracking 

Figure 1.1 Wireless Sensor Networks 
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applications include traffic control [33] and surveillance [10].  

1.2  Reliable Data Delivery Overview 

Reliable data transport is an important topic in wireless sensor networks. A reliable 

protocol in wireless sensor networks is a protocol that can reliably deliver packets from 

their sources to their destinations without packet loss. Many WSN applications require 

reliable data transport. For example, consider a sensor network deployed in a chemical 

plant to detect harmful gas. It is crucial for sensor nodes to reliably transport every sensor 

reading back to the sink. Other critical WSN applications such as biological monitoring, 

health care monitoring, and battlefield surveillance also require high end-to-end 

reliability. On the other hand, some applications may not require simple 100% guaranteed 

transmission of data packets [7]. The reason is that this guaranteed delivery is challenging 

and costly in terms of energy and bandwidth usage. In some circumstances, applications 

may only require data packets to be reliably delivered to or from a sub-region of the 

network or to or from a minimal number of sensor nodes that can cover the sensing area. 

Due to many unique characteristics and constraints of sensor nodes, providing 

reliability in wireless sensor networks can be challenging. As a microelectronic device, 

sensor node has very limited power resources. Sensor nodes can be deployed in many 

non-easily accessible areas or inhospitable conditions, which make replenishment of 

power resources impossible. Thus, energy consumption must be considered when 

designing a reliable data transport protocol in wireless sensor networks. A number of 

strategies can be implemented in the communication protocols to reduce energy 

consumption in sensor networks including: reduce the data transmitting frequency, reduce 

the protocol and system overhead, implement data compression and aggregation schemes, 

implement power management mechanisms, and eliminate the transmission of redundant 

data [1].  

Another challenge in designing a reliable protocol in wireless sensor networks is 

frequent node failure. Node failure in the sensor network can be the result of harsh 

environment, energy depletion, or system crashes. As a multihop self-organized network, 

malfunction of several sensor nodes can cause significant topology changes and disrupt 

the normal functioning of the reliable protocol in a wireless sensor network.  
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In order to detect and recover lost packets, a receiver feedback and sender 

retransmission mechanism is usually used in wireless sensor networks. There are two 

commonly used receiver feedback mechanisms: the ACK-based approach and the 

NACK-based approach. In an ACK-based approach, the receiver positively 

acknowledges receipt of data packets, while in a NACK-based approach, the receiver 

only returns feedback to the sender if it detects a packet loss. The NACK-based approach 

incurs less overhead than the ACK-based approach, but a common problem for the 

NACK-based approach is that it can not detect single/last packet loss, since packet loss 

detection is based on observing gaps in the packet flow. A detailed discussion of an ACK-

based approach and NACK-based approach are presented in Section 2.2.2.2.  

The solution of reliability can be provided in different communication layers in 

wireless sensor networks. Error detection in the physical layer can be helpful to achieve 

reliability. However, for MicaZ, a commonly-used sensor node testbed, it is hard, if not 

impossible to rewrite its physical layer since it has been hardcoded. The MAC layer can 

provide reliability mechanisms such as RTS/CTS handshake, MAC layer 

acknowledgement and randomized slot selection [27] [38]. RMST [29] is a good example 

of using a MAC layer protocol to achieve reliability. Reliability issues can also be 

addressed in the routing layer. One example is ReInForM [3], a reliable routing protocol 

that takes advantage of multipath routing to transmit redundant data packets to the 

receiver and thus provide reliability. Finally, reliability can be provided in the transport 

layer. Transport layer can implement a similar hop-by-hop error recovery scheme as in 

the data link layer. However, different from the data link layer, the quality and type of 

service provided in transport layer is negotiable. The design of a transport layer reliable 

protocol can be very flexible according to the specific reliability requirement of the 

application. Some existing transport layer reliable protocols include PSFQ [32], RBC 

[42], and DTSN [26]. 

1.3  Motivations 

General speaking, the design of a data transport protocol in wireless sensor networks 

is focused on providing end-to-end reliability, mitigating congestion, and achieving 

fairness in bandwidth allocation [17]. The reliability issue in the data transport protocol 
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usually involves loss recovery, congestion control, or both. Most of the reliable data 

transport protocols either use a retransmission-based loss recovery approach or a 

redundant data transmission method (sending multiple copies of a data packet into the 

network). A detailed discussion of reliable data transport is presented in Section 2.2. As in 

many other types of networks, congestion in wireless sensor networks can have a 

significant impact on quality of service. Large numbers of lost packets, increased network 

latency and poor energy efficiency can be direct consequences of congestion. Congestion 

control protocols in WSNs concern how to detect congestion and how to mitigate 

congestion. Several existing congestion control protocols are discussed in Section 2.4.2.  

After studying the design challenges of data transport protocols and existing reliable 

data transport protocols in wireless sensor networks, it was found that no existing 

protocol has all of the following characteristics: 

 Full reliability (100% reliable data delivery) is provided unless there are unavoidable 

packet drops due to buffer overflow. 

 Recovery from packet loss can be achieved with low system overhead and reduced 

communication cost and delay compared to conventional protocols.  

 Lost packets can be recovered as quickly as possible, while at the same time not 

interfering with normal data transmission.  

 A specified level of robustness can be provided. 

 The protocol is robust to node failure and route changes.  

 Fresh data has higher priority in the network and is able to be sent as soon as possible. 

 The protocol is scalable and easy to implement.   

It is the goal of this thesis to design, implement, and test such a protocol.  

1.4  Contributions 

This work proposes a new reliable data delivery protocol for general point-to-point 

data delivery (unicasting) in wireless sensor networks. The new reliable data transport 

protocol is designed that aims at providing 100% reliability when possible as well as 

minimizing overhead and network delay. The main contributions of this work are: 
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 A new negative acknowledgement (NACK) based reliable data transport protocol is 

proposed. The new protocol adopts a NACK-based hop-by-hop loss detection and 

recovery scheme using end-to-end sequence numbers.  

 In order to solve the single/last packet problem in the NACK-based approach, a 

hybrid ACK/NACK scheme is proposed. Conventional NACK-based approaches are 

efficient in loss detection and recovery but they cannot provide reliable delivery of 

single/last packets. In the proposed new protocol, an ACK-based approach is used as 

a supplement to the NACK-based approach to solve the single/last packet problem. 

 A new queue management scheme that gives priority to newer data is proposed. By 

introducing the idea of a ready bit and a newer packet first rule in the transmission 

queue, nodes can detect and recover lost packets in parallel with the normal data 

transmission process. Newer packets in the transmission queue don’t have to 

experience any extra delay and can be transmitted as quickly as possible.  

 A new protocol incorporating the above three schemes is implemented and tested. 

The new protocol is implemented and tested in a Crossbow MicaZ testbed under 

various system and protocol parameter settings. The performance of the new protocol 

is also studied and compared against four other protocols with different reliability 

schemes.  

1.5  Thesis Organization 

The rest of the thesis is organized as follows. Chapter 2 reviews background related 

to data transport protocols in wireless sensor networks. Chapter 3 presents the 

considerations and design of the proposed new protocol. Chapter 4 describes the 

performance evaluation methodology and experimental results from a protocol 

implementation. A summary of the contributions of this work and a discussion of possible 

future work are presented in Chapter 5.  
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CHAPTER 2 

BACKGROUND 

A larger number of wireless sensor network applications require reliable data 

delivery. However, due to the nature of sensor networks, designing a reliable data 

transport protocol faces many challenges, such as constrained energy, large number of 

nodes, data-centric networking, and small message size. This chapter presents an 

overview of general reliability issues in the data transport protocol for wireless sensor 

networks and discusses some recently proposed data transport protocols. Section 2.1 

discusses the general issues in data transport protocol design in WSN. Section 2.2 and 

Section 2.3 provide overviews of reliable data delivery and congestion control in WSN, 

respectively. Section 2.4 presents a survey of existing data transport protocols for 

wireless sensor networks. 

2.1  Data Transport Protocol Design in WSN 

Because of the unique features of wireless sensor networks, the design of a reliable 

data transport protocol for WSN can be very challenging. Unlike the traditional TCP/IP 

network, each sensor node in a WSN has very limited power, bandwidth and storage 

space and has to cope with a lossy wireless channel. The reliable data transport protocols 

that are widely used in the internet such as TCP and UDP are not suitable for wireless 

sensor networks [32]. The following two sections discuss the design considerations of a 

reliable data transport protocol in wireless sensor networks and some commonly used 

performance evaluation metrics.  

2.1.1  Design Considerations 

In general, reliable data transport protocols for wireless sensor networks should 

consider a number of factors. First, the reliable data transport protocol should be able to 
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provide robustness to the network and be able to adapt to different scenarios, such as 

node failure and route changes. The initiation process of the transport protocol should be 

as simple and as quick as possible. For example, consider a remote monitoring wireless 

sensor network application, in which sensor nodes spend most of their lifetime in idle or 

sleep mode, but should be able to switch to transmitting mode and start the reliable data 

transport in a very short period of time when an event occurs in the network [39].  

Second, since a WSN is an energy-constrained multi-hop network, a reliable data 

transport protocol should try to avoid any packet drop unless absolutely necessary. This is 

because data packets normally have to travel many hops before they reach their 

destinations. If a packet is dropped during the transmission, all the energy and bandwidth 

that have already been spent on the packet in the previous hops are completely wasted. 

However, there are cases where packet dropping is inevitable. Since sensor nodes have 

limited storage space, when the buffer is full of data packets and a new packet arrives, a 

data packet must be discarded. 

Finally, fairness may be another consideration in the reliable data transport protocol 

design. As a data collecting network, most of the data flows are transmitted from sensor 

nodes to the sink. Such a multihop many-to-one routing structure can often result in 

unfairness in the network, in that the packets from nodes far away from the sink have a 

higher possibility to get lost during transmission than packets from closer nodes. Such 

unfairness for different nodes can cause problems in some applications and thus may 

need to be considered when designing a reliable data transport protocol [7].             

2.1.2  Performance Evaluation Metrics 

Because of the unique features of wireless sensor networks, the data transport 

protocol in a WSN should be able to mitigate network congestion, minimize overhead, 

reduce packet loss, and improve overall end-to-end reliability. In general, the metrics 

used to evaluate the performance of a WSN data transport protocol can be categorized as 

reliability, QoS (Quality of Service), and energy efficiency [17].  

 Reliability: Reliability in wireless sensor networks can be examined from both the 

packet level and the event level. Packet level reliability refers to how many packets 

are successfully received at the final destination. An alternative way of measuring 
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packet level reliability is to calculate the overall end-to-end packet loss rate. The 

smaller the loss rate, the better the reliability of the network. Event level reliability 

refers to the delivery of certain data objects or events to the receiver. In this case, not 

all data packets need to be received by the receiver, rather, as long as a certain 

percentage of packets within a certain time period are delivered to the destination, 

the event level reliability is considered provided.  

 QoS: In general, quality of service includes metrics such as bandwidth usage, 

network latency, real-time/in-order delivery and system throughput. QoS 

requirements can vary widely for different wireless sensor network applications. For 

example, in a real-time monitoring application, the delivery of data in a timely 

manner is more important than other metrics. However, in a high-rate application 

such as imaging or acoustic localization, where concurrently transmitting a large 

volume of data from different nodes is required, efficient bandwidth usage is more 

crucial.     

 Energy efficiency: Since wireless sensor nodes are typically powered by battery and 

may be deployed in a remote rural area, the ability to collect data at a low energy cost 

is an important performance metric in wireless sensor networks. Energy efficiency 

can be examined by calculating the total energy spent in the network with a certain 

percentile of reliability. For example, with the STCP protocol, the energy cost for 

providing 100% reliability in a 100-node network for 100ms was 2.78 J, for 75% 

reliability was 1.06 J, and for 50% reliability was 0.77 J [16].    

2.2  Reliable Data Delivery  

Reliable data delivery is a critical issue in the application of wireless sensor networks. 

The requirement of reliability may vary from application to application. However, the 

fundamental issue of reliability is the same: how to detect packet loss and how to repair it. 

There are many design options for reliable data transport protocols in wireless sensor 

networks. For example, the protocol can run on an end-to-end or a hop-by-hop basis, the 

loss recovery scheme can be based on positive acknowledgment or negative 

acknowledgment, and the reliable data delivery can be provided from the direction of 

sensors-to-sink or the direction of sink-to-sensors. In Section 2.2.1, some of the general 
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issues in reliable data delivery protocol design are discussed. Section 2.2.2 presents 

several basic approaches of achieving reliability in wireless sensor networks from three 

different perspectives. 

2.2.1  Discussion of General Issues in Reliable Data Delivery 

In general, a reliable data transport protocol should cover the following dimensions: 

 Communication type: Reliable protocols should provide reliable delivery of a single 

packet, blocks of packets or streams of packets [17]. Streams of packets are a 

continuous data streams. Periodic event monitoring is an example application type 

using streams of packets. Blocks of packets are segments of a complete data stream. 

A block of packets consists of a fixed number of data packets. Reliably delivering a 

single packet can be very important for queries or highly aggregated data, while 

delivery of blocks of data is necessary for many WSN applications such as remote 

network reprogramming. The cases of delivering a single packet and delivering 

blocks of packets can use very different underlying protocol mechanisms. The 

primary approaches for single packet delivery are ACK-based retransmission and 

transmission of multiple redundant packets. A wider variety of options exist for 

reliable delivery of blocks of data or streams of data. NACK-based approaches and 

multi-paths approaches are commonly used in such protocols.      

 Reliability Requirement: Reliability requirements vary across different wireless 

sensor network applications. For sensors-to-sink delivery, the reliability requirement 

is either 100% guaranteed data delivery (or as close to this possible) or a percentage 

or probabilistic delivery requirement (for example 75% reliability). For sink-to-

sensors delivery, the reliability requirement can be classified into four categories: 1) 

delivery to the entire network; 2) delivery to sensor nodes in a sub-region of a 

network (location based delivery); 3) delivery to the core members of the network 

that are able to cover the entire sensing field; and 4) delivery to sensor nodes with a 

probabilistic reliability requirement [7]. 

 Upstream and downstream delivery: In wireless sensor networks, it can be assumed 

that most communications are not between arbitrary peer nodes. As a data collecting 

network, the data flow in wireless sensor networks is normally from sensor nodes 
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towards a single sink/gateway node. Most of the research in WSN reliability is 

dedicated to sensor-to-sink transmission, such as in the protocols RMST [29], RBC 

[42] and RCRT [21]. However, in some scenarios, a reliable protocol for downstream 

communication is also important. For example, if a network consists of 

reprogrammable sensor nodes, the sink may want to send out certain control codes 

such as upgrade commands or new code images to the nodes. In the sink-to-sensors 

communication, since there is only a single sender (the sink), the data transmission 

usually uses broadcasting rather than unicasting. Reliable downstream protocols 

include PALER [20], PSFQ [32], HRS [19] and GARUDA [22].     

2.2.2  Basic Approaches in Reliable Data Delivery 

In this section, basic approaches to achieving reliability in wireless sensor networks 

are discussed from three different perspectives.     

2.2.2.1  End-to-End vs Hop-by-Hop Error Recovery  

In order to achieve reliability, the reliable data delivery protocol should be able to 

recover the lost data when errors happen. In traditional IP networks, the commonly used 

error recovery mechanism uses end-to-end acknowledgments, in which the final 

destination node is responsible to detect lost data and request retransmission. There are 

two critical challenges for the end-to-end recovery to be applied in wireless sensor 

networks. Firstly, in sensor networks, the connectivity between sensor nodes is neither 

stable nor predictable. The high latency and frequent disconnects generate significant 

overhead and delay and thus may seriously compromise the effectiveness of end-to-end 

recovery. Secondly, since sensor networks rely heavily on multihop forwarding to 

transmit information, while the end-to-end recovery mechanism only detects loss at the 

last node, the probability of successful reception at the destination node may become 

quite low. Wan et al. illustrate this problem by giving a simple example: assume that the 

packet error rate of a wireless channel is p, then the probability of successfully receiving 

a packet transmitted from n hops away is only  (1 − 푝)  [32]. These two problems 

indicate that end-to-end recovery is not an ideal choice for reliable data transport in 

wireless sensor networks.  
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Hop-by-hop error recovery is used in protocols such as PSFQ [32] and has become a 

widely-accepted recovery mechanism in sensor networks. The basic design idea of hop-

by-hop error recovery is that the intermediate nodes, rather than just the final node, 

perform loss detection and recovery. To be specific, the whole multihop forwarding 

operation is divided into a series of single-hop processes. By ensuring reliable 

transmission between every two neighbor nodes in the transmission path, overall 

reliability can be achieved. The biggest advantages of hop-by-hop recovery are that 

recovery from packet loss can occur quickly, and progress made in early hops is not lost 

if a failure occurs in a later hop.  

However, hop-by-hop recovery also has some shortcomings, which should be 

carefully considered when designing a hop-by-hop based protocol. The most obvious 

problem is the accumulated delay during multihop transmission. Typical hop-by-hop 

recovery schemes check for packet loss with every transmission on every hop, even when 

the network situation is good and no packet loss exists. This can generate significant 

overhead and unnecessary delay. Another problem of hop-by-hop recovery is that, in 

order to recover lost packets, intermediate nodes have to buffer all the incoming packets. 

This is not always desirable. On one hand, when the network condition is good and 

retransmission does not happen very often, buffering all the packets is a waste of 

resources. On the other hand, if some events suddenly happen after a long quiet time, a 

large amount of data can be generated and fill all the buffer space of the intermediate 

nodes in a short period. In this case, the effectiveness of hop-by-hop recovery is 

compromised [32].     

2.2.2.2  ACK vs NACK  

ACK and NACK are two commonly used receiver feedback mechanisms in multi-

hop wireless networks. An ACK is the control packet sent by the receiver if it has 

successfully received the data packet from the sender. Normally, ACK-based loss 

recovery schemes are timer-driven. That is, if the sender doesn’t receive the ACK from 

the receiver within a predefined period, the sender will consider the data packet to be lost 

during the transmission and will resend the previous packet. NACK-based loss recovery 

schemes work in a different way. If the receiver doesn’t receive the data packet within a 
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given time, it will send back a NACK packet to the sender to request retransmission.  

ACK-based approaches seem to be more reliable than NACK-based approaches 

since they verify the transmission of every single packet. However, ACK-based schemes 

suffer from two major drawbacks when used in sensor networks. The first problem is that, 

considering the limited bandwidth and energy of sensor nodes, the overhead of sending 

an ACK for every data packet may be unacceptable, especially when the size of each data 

packet is relatively small. The second problem is the well-known ACK implosion 

problem [32]. That is, when a node is broadcasting data packets in a dense network, the 

requirement of sending an ACK in response to the receipt of a packet for all the receivers 

may cause serious channel congestion and packet collisions. NACK-based is more 

effective than ACK-based and can be a better option for sensor networks because it only 

generates an extra packet when data loss occurs. However, when designing a NACK-

based loss recovery scheme, several issues still need to be carefully considered. Similarly 

as with ACK-based schemes, there is a potential NACK implosion problem. When the 

network connectivity is poor and the sender is broadcasting to many receivers, the sender 

can be flooded with NACK packets. Retransmissions may lead to more serious 

congestion in the network, while ignoring errors can reduce overall network reliability. 

Another typical NACK problem is the loss of all data packets. In a NACK-based scheme, 

the receiver can detect and report packet loss only if it is aware of the incoming packet. 

Thus, a NACK-based scheme cannot handle the unique case where all packets in a 

communication are lost.  

2.2.2.3  Sender Retransmission vs Forward Error Correction 

Sender retransmission and the transmission of redundant data are the two basic ways 

of providing reliability for transport protocols. Automatic repeat request (ARQ) is the 

most commonly used sender retransmission method. In ARQ schemes, the sender will 

retransmit the packet if loss occurs and an acknowledgement (ACK) is not received prior 

to expiry of a retransmission timer [27].  

Forward error correction (FEC), in contrast to ARQ, provides reliability by 

transmitting redundant packets in a proactive manner. Block (n, k) codes are the most 
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commonly used FEC codes. In (n, k) FEC [35], an additional n-k packets are added to 

each group of k source packets. The successfully receipt at the receiver of any k packets 

out of the n transmitted packets enable the reconstruction of the original k packets. There 

are many different FEC codes. The XOR code is a simple (k+1, k) FEC. Each 

transmission group only adds one parity packet, which is the bitwise XOR of all the 

source packets in the group. The XOR code is relatively simple to implement, but can 

only repair one packet loss in the group. RS codes [35] are block (n, k) FEC codes that 

have multiple parity packets. RS codes are more flexible and can provide better 

protection against losses. However, they can result in high processing costs and 

additional memory space requirements. Tornado codes provide an alternative to RS codes 

[35]. Tornado codes require a few more than k encoded packets to recover k source 

packets, but they have lower computational complexity and smaller reception overhead 

than RS codes.  

Both ARQ and FEC are appealing approaches to achieving reliability. ARQ schemes 

are very effective and can always recover loss as long as the network is connected and 

there is sufficient node buffer space. However, if the error rate is high or link failure 

happens frequently, the cost of ARQ for loss detection and retransmission can be high. 

Using FEC can avoid the overhead generated by ARQ and prevent feedback implosion in 

large scale data transmission. However, FEC schemes should not be applied in congested 

networks. When the network is congested, adding redundant data will only aggravate the 

situation.  

From the discussion so far, both ARQ and FEC methods have their advantages and 

disadvantages when applied in wireless sensor networks. A natural idea is to combine 

these two schemes together. For example, a low-overhead FEC code can be applied for 

transmission of data packets, while uncorrected errors are handled using ARQ. Wang et al. 

[35] propose a new reliability scheme for network reprogramming that uses a hybrid of 

ARQ and FEC. Use of FEC provides an abstraction of a better transmission medium and 

an ARQ scheme is responsible for the remaining loss recovery.    
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2.3  Congestion Control 

Congestion can occur in wireless sensor networks due to several reasons: 

interference between concurrent data transmissions, the addition or removal of sensor 

nodes in the network, or bursts of messages because of the occurrence of some events [31] 

[41]. Congestion in the network can lead to two serious outcomes. As congestion spreads, 

buffer drops will increase quickly and become the dominant reason for packet loss. 

Significant delay can also be observed when congestion occurs. Another consequence of 

congestion is the growing expenditure of resources per packet. Fewer packets can be 

transmitted with the same amount of energy as before. Thus, alleviating congestion can 

be helpful in achieving reliable data delivery. The design and implementation of a 

congestion control protocol is challenging in the wireless sensor network domain due to 

the following reasons: firstly, the wireless channel itself is lossy and uncertain, which 

makes distributed data flow control a challenge; secondly, contention for the wireless 

channel can be observed at both the sender and receiver side; and finally, it is difficult to 

optimize channel utilization and fairness at the same time.    

For sensor networks with a single sink node, mitigating congestion is mainly done by 

employing passive approaches. Rate control is the most commonly-used method [36]. 

When congestion is detected in the network, sensor nodes limit their reporting rate and 

thus give opportunity for congested nodes to drain their queue. Many papers have studied 

such rate control methods and focused on how to dynamically adjust the reporting rate in 

the context of various congestion situations. Another method that can be used to alleviate 

congestion is packet dropping. When the receiver node has already used up all the buffer 

space due to congestion, it clearly has to drop either the newly-arrived packet or an old 

one. In this case, evaluating the importance of different packets becomes important in that 

it can help a node to make better dropping decisions to avoid wasting resources.    

2.3.1  Congestion Detection 

Two fundamental methods have been proposed so far to detect congestion in sensor 

networks. Based on the observation that congestion can result in excessive queueing, the 

first method is to compare the instantaneous buffer occupancy with a certain watermark. 
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If the water mark is exceeded, a congestion state is diagnosed. This method is simple to 

implement. However, its accuracy is questionable, especially when packets are already 

lost on the channel. Another way to detect congestion is through channel sampling. As 

used in CODA [34], when a packet is waiting to be sent, the sensor node samples the 

state of the channel at a fixed interval. Based on the number of times the channel is 

sensed busy, a utilization factor can be calculated to deduce the congestion level of the 

network.  

In wireless sensor networks, the sink is normally considered to have unlimited 

resources and able to have a more extensive view of the network behavior than a normal 

sensor node. Thus, in some protocols such as RCRT [21], the sink makes all the 

congestion detection and rate allocation decisions. 

2.3.2  Congestion Notification 

When network congestion is detected, the congestion notification information needs 

to be conveyed from the congested nodes to their neighbors or to the source nodes or 

destination nodes. The method for delivery of notification information should be 

carefully designed since sending new messages into an already congested network could 

only aggravate the situation. The congestion information can be sent in the form of a 

congestion notification (CN) bit in packet header or in a more comprehensive format that 

includes the congestion degree or allowable data rate. The congestion information can be 

sent in an explicit control message to notify the relevant nodes. It can also be sent in an 

implicit way by including control information in a regular data packet. For example, in 

ESRT [28], when congestion is detected, the sensor node sets a CN bit in the header of 

the packet being forward. By checking the header of an incoming packet, the 

receiver/sink can learn the congestion status of the network.      

2.3.3  Rate Adjustment  

A straightforward way of alleviating congestion is to simply stop sending packets 

into the network, or to send at a lower rate. The rate adjustment decision can be made by 

the congested nodes themselves, by a node outside the congested area (sink node), or by a 

predetermined policy. When a single CN bit is used to notify congestion, one option is for 
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nodes to adjust their sending rate according to an additive increase multiplicative 

decrease (AIMD) scheme as in RCRT [21]. On the other hand, if additional congestion 

information is provided such as congestion degree or allowable data rate, nodes can 

implement a more accurate rate adjustment as in CCF [5].           

2.4  Existing Protocols  

In general, most of the data transport protocols proposed for wireless sensor 

networks focus on either reliable data delivery or on congestion control. Only a few 

protocols such as RCRT [21] and STCP [16], deal with both issues. The protocols 

focusing on reliable data delivery can be further classified according to their assumptions 

regarding the data transmission direction. Sensors-to-sink protocols include RMST [29], 

RBC [42], DTSN [26] and Flush [18]. Sink-to-Sensors protocols include PSFQ [32], 

PALER [20], GARUDA [22] and HRS [19]. A classification of the existing data transport 

protocols discussed in this thesis is shown in Figure 2.1.        

2.4.1  Protocols with Reliability Guarantee 

Pump Slow Fetch Quickly (PSFQ) is a classic transport layer protocol proposed by 

Wan et al. [32]. In PSFQ, a source distributes data packets at a relatively slow pace to a 

network of sensor nodes. Whenever a packet is detected as being lost (due to out-of-order 

packet reception), PSFQ will fetch the missing data very aggressively (quickly) by 

sending an immediate NACK to the node’s one-hop neighbors. In PSFQ, in-order 

reception is a very important requirement. Nodes only forward packets that are received 

without a gap in their sequence numbers. This requirement not only prevents the 

propagation of a loss event to a node’s downstream neighbors but also helps to recover 

the lost packet very quickly since an immediate retransmission can be requested and 

established. PSFQ introduces the concept of localized recovery, which is designed to 

reduce recovery costs and network overhead by suppressing the redundant retransmission 

requests and the propagation of a loss event. The pushing mechanism and fetching 

mechanism in the PSFQ protocol is built in a tightly controlled timing manner. When a 

node receives a segment, if the segment is out-of-order, the node will prepare a NACK 

requesting the missing segments and will continuously send out NACKs, spacing 
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according to a parameter 푇푟 until all missing segments are recovered. Otherwise, the 

node will schedule a forwarding event with a random delay between 푇푚푖푛 and 푇푚푎푥. 

The relationship between 푇푟  and 푇푚푎푥  is crucial in PSFQ, since the ratio 푇푚푎푥/푇푟 

determines how aggressive the node is in trying to recover a missing segment. When a 

node receives a retransmission request, the node will first check its own cache to locate       

the requested segments and if found, schedules a resend with a random time between 1/4 

푇푟 and 1/2 푇푟. If the node overhears a response with the same missing segment from 

other neighbors before its own reply, the node will cancel the resend event in order to 

reduce contention as well as redundancy.       

Reliable Multi-Segment Transport (RMST) is a NACK-based protocol that has 

primarily timer-driven loss detection and repair mechanisms [19]. RMST is designed for 

relatively long-lived data flows from source nodes to a sink node, although it could be 

applied to other contexts as well. RMST combines both transport layer and MAC layer 

mechanisms to achieve reliable data delivery. In RMST’s cache mode, all intermediate 

nodes on a path as well as the sink maintain a cache that stores all segments being sent. 

When a node detects a missing segment, it creates a NACK packet that includes the 

missing segment’s identifier and sends it back along the path to the source. When an 

intermediate node receives a NACK, if it has all of the missing segments listed in the 

NACK in its cache, it will forward them towards the sink and drops the NACK. If the 

node has only some or none of the missing segments, it locates and resends the missing 

segments it has (if any) and forwards the NACK again along the path to the source until 

either all missing segments are recovered or the NACK reaches the original source node. 

In RMST’s non-cached mode, only the sink and the source node have the ability to 

maintain such a cache. Thus, when a missing segment is identified, the NACK travels 

from the sink all the way back to the source node and the source will resend the missing 

segment in a timely manner. The MAC layer design in RMST is important in that it not 

only provides hop level error recovery for the transport layer but it is also necessary for 

the discovery and maintenance of the route from source to sink. RMST is found to 

achieve good performance in networks with high connectivity and low error rate.  
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Data Transport Protocols for Wireless Sensor Networks 

 Reliability Focused   Congestion Control Focused 

    RCRT [21] 
    STCP [16] 

 

ESRT [28]   CODA[34]   
Fusion [14]  PORT [43]  
CCF [5] 
 

    Sink-to-Sensors       Sensors-to-Sink 

PSFQ [32]  PALER[20]  
GARUDA [22]  HRS [19] 

 

RMST[29]  RBC[42]  

DTSN [26]  Flush [18]   

Figure 2.1 Classification of Existing Reliable Transport Protocols for Wireless Sensor Networks 
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GARUDA [22] is a reliable protocol designed for wireless sensor networks that 

focuses on reliably transferring blocks of data from the sink to the rest of the network. 

GARUDA uses a NACK-based approach similar to PSFQ but also incorporates a scheme 

that guarantees the reliable delivery of the first packet of a data stream. This scheme 

effectively solves the problem associated with NACK-based protocols that a receiver 

needs to receive at least one packet from a block of data in order to detect packet loss. 

The sensor network topology in GARUDA is constructed as an approximation to the 

minimum dominating set (MDS). Each sensor node in the network is classified as either a 

core member or a non-core member. The core member construction is done by a single 

packet flood. The core members of GARUDA act as the recovery center for downstream 

core members as well as non-core members and they each know at least one upstream 

core member. When there is no core member in the range of a non-core member, the non-

core member can send out a request for a nearby core member candidate to become a 

core member. In GARUDA, an upstream core member includes in every forwarded 

packet a bitmap indicating the availability of its current segments into every forwarding 

packet. When a segment is missing, GARUDA implements a two-stage loss recovery 

method. A core member simply sends out a NACK to its upstream core node requesting 

retransmission of the missing segment. This recovery process is carried on in parallel 

with the default message-forwarding process in order to reduce network latency. A non-

core node snoops the network and only requests packet retransmission from its associated 

core node when a complete bitmap is overheard from the core node. The reliable 

single/first packet delivery in GARUDA is done by a pulsing-based approach. The sink 

transmits a small series of short pulses as a signal before it initiates the transmission of a 

block of data. Upon reception of the pulse from the sink, nodes reply with the same pulse 

to indicate their awareness of the incoming packet. Sensor nodes can also use the pulse to 

request retransmission of the first/single packet if they don’t receive it.  

Miller et al. propose and analyze PALER, a reliable transport protocol for re-tasking 

and remote programming of wireless sensor networks [20]. PALER is built on the 

previously proposed PSFQ. PALER is motivated by a belief that the aggressive local 

recovery method used by PSFQ can generate significant packet contention and collisions. 



 

22 

 

Thus, PALER introduces a lazy error recovery scheme with a more aggressive push 

scheme to help to relieve the channel contention. The complicated recovery mechanism 

used in PSFQ is replaced with a single inclusive NACK scheme in PALER. Furthermore, 

by using local neighbor information and examining the local cache of received packets, 

PALER is also able to effectively detect and reduce redundant transmissions. PALER 

removes the in-order packet reception requirement as used in PSFQ. When a node 

receives a segment, if the segment has already been received and is still in the cache, the 

node increases the counter for it. If it is the first time the node receives this segment, the 

node schedules a forwarding event for this segment. The forwarding event will be 

cancelled if the counter for the segment reaches three before the segment is sent so as to 

reduce redundant transmissions. When a node receives the last segment of a data object, it 

broadcasts a NACK that contains a list of its missing segments to its one-hop neighbors. 

The broadcasting of the NACK is scheduled with a random delay period in order to 

reduce packet collisions as well as to give the node an opportunity to snoop rebroadcast 

segments in the network. If a segment is snooped before the NACK is sent out, this 

segment will be removed from the NACK. When a neighbor receives a NACK, it checks 

its cache to locate any of the segments mentioned in the NACK and schedules 

rebroadcasting of those segments. 

Reliable Bursty Convergecast (RBC) is proposed by Zhang et al. to provide real-time 

and reliable data transport under conditions of high-volume bursty traffic [42]. RBC 

improves typical network efficiency by using a window-less block acknowledgement 

scheme to carefully schedule packet retransmission. Each sender in the network divides 

its packet queue into M+2 separate queues, indexed 0 through M+1 where M is the 

maximum number of retransmissions allowed at each hop. Packets in queue j have 

transmission priority over packets in queue j+1. Queue M+1 is used for free packet buffer. 

When the sender sends a packet to the receiver, the ID of the buffer holding the packet, as 

well as the ID of the buffer storing the packet to be sent next, are included with the data 

packet. When the receiver receives a packet from the sender, by comparing the buffer’s 

ID with the expected buffer’s ID piggybacked in the previous packet, the receiver can 

decide whether there is packet loss or not. There are two types of block feedback packets 
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in RBC. For a maximum number of packets that are successful received at the receiver 

without any missing packets in the middle, a block-ACK is generated. A block-ACK 

includes the sequence numbers of all successfully received packets in one block. In the 

case of missing packets, a block-NACK that records the sequence number of the expected 

packet and last received out-of-order packet is created and sent to the sender. Senders in 

RBC maintain a retransmission timer. The retransmission timer is set whenever a packet 

is sent. If no corresponding block-ACK is received or a block-NACK is received before 

the timer expires, a retransmission process is initiated at the sender. The packets that need 

retransmission are moved to a higher-ranked queue, and wait to be transmitted. RBC is 

evaluated using a real world experiment with 49 Mica 2 motes. The evaluation result 

shows that RBC can double the packet delivery ratio and reduce end-to-end delay 

compared with a commonly used stop-and-wait implicit-ACK scheme.  

Wang et al. propose use of a supervised learning technique to improve reliability in 

wireless sensor networks [37]. Supervised learning is a particular case of machine 

learning, where both inputs and outputs are given in the training phase and nodes can 

automatically extract knowledge of readily-available features and the quantity of interest 

[28]. The inputs to the proposed supervised learning technique are system-level metrics 

such as buffer occupancies, the received signal strength and the channel load assessment, 

and outputs are performance metrics such as the throughput and the number of 

retransmission. The proposed technique consists of two phases: an offline learning phase 

and an online classification phase. Two case studies are presented in the paper to 

demonstrate the advantages of supervised learning. In the second case study, which is 

more related to the topic of this thesis, an extension to PSFQ called SHARP is presented, 

which is a situation-aware reliable transport protocol. SHARP uses the knowledge it 

learns from the offline learning phase to manage its storage space and control its caching 

policy. By using the online classification phase, the proposed approach can help 

individual sensor nodes to make informed reliability decisions.  

Rocha et al. design a block oriented reliable transport protocol called DTSN that 

focuses on unicast communication in wireless sensor networks [26]. The basic loss 

recovery mechanism used in DTSN is Selective Repeat Automatic Repeat Request, which 
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employs both positive and negative acknowledgements. In DTSN, a session is identified 

by the tuple <source address, destination address, application identifier, session number> 

and is defined as a source/destination relationship. A randomly selected session number is 

used to distinguish different sessions between the same source and destination nodes. 

Within each session, all packets are given a unique end-to-end sequence number. The 

Acknowledgement Window (AW) is defined as the number of packets that the source 

sends before creating an Explicit Acknowledgement Request (EAR). During each 

transmission session, after the source sends a number of packets that equals the size of 

the Acknowledgement Window, it sends out an EAR packet to request feedback from the 

destination and also starts an EAR timer. The value of both the AW and the EAR timer 

are adjusted according to the individual application. The destination of the session 

prepares and sends out a feedback packet after receiving the EAR. If no feedback packet 

is received by the source before the EAR timer expires, the source will retransmit the 

EAR packet. If an ACK is received by the source, indicating there is no packet loss 

during the last session, the source will free up its output buffer and end the current 

session. Otherwise, if a NACK is received, the source will check the bitmap included in 

the NACK packet, identify the gap(s) in the sequence numbers and retransmit the lost 

packet(s). In DTSN, all intermediate nodes in the path between source and destination 

maintain an output buffer to store the forwarded packets.  

Rahnavard et al. propose CRBcast [24], a two-phase broadcasting scheme which is 

built on probabilistic broadcasting and application layer rateless coding. CRBcast is a 

FEC based approach that has reliability and energy efficiency as its major considerations. 

CRBcast consists of two phases. In the first phase of the protocol, the source simply 

broadcasts the encoded packets. Nodes that receive enough encoded packets to recover 

the original packets are called complete nodes, while nodes that can not recover all of the 

original packets are called incomplete nodes. In the second phase of the protocol, 

complete nodes will collaborate with incomplete nodes to help them collect additional 

encoded packets and recover the original packets. Two types of handshake messages are 

used between complete and incomplete nodes: advertisement messages (ADV) and 

request messages (REQ). When a node becomes a complete node, it communicates its 

status to its neighbors by sending out an ADV. Any incomplete node replies to the ADV 



 

25 

 

by transmitting back a REQ which includes the required number of new packets for its 

completion, the ID of the complete node and certain flag bits. The complete node then 

responds to the REQ by sending the requested packets to the incomplete node. The 

advantage of CRBcast over a simple FEC scheme is that neighboring as well as 

downstream nodes work together to recover lost packets. Thus, the probability of 

successful reconstruction is increased. Two extensions of the CRBcast protocol, 

probabilistic advertising and multi-stage recovery, are also discussed in the paper.    

Flush [18] is a receiver-based reliable bulk transfer protocol designed for multihop 

wireless sensor networks. Flush uses end-to-end selective negative acknowledgments to 

achieve end-to-end reliability, a dynamic rate control technique to maximize the usage of 

bandwidth and implicit snooping control messages to reduce system overhead. In Flush, 

there are four phases within a data transmission process: topology query, data transfer, 

acknowledgement and integrity check [18]. The receiver (sink) sends a topology query to 

request a data object as well as to calculate the Round Trip Time (RTT) to the source. The 

source then starts to send packets at the fastest rate possible without causing network 

congestion. Along the transmission route to the sink, Flush continuously calculates the 

usage of bandwidth and adjusts the transmission rate using the information snooped at 

each hop. The sink is responsible for tracking the received packets and detecting any 

packet loss. When the data transfer phase is completed, the sink sends out a NACK which 

contains the identities of any missing packets to the source for retransmission. When the 

NACK is received by the source, it resends the requested packets. When all packets are 

received at the sink, it starts to verify the integrity of the data. The sink discards the data 

object if it fails the integrity check; otherwise the sink keeps the received data object and 

requests the next one, if any. In order to reduce the sending time and increase the sending 

rate, Flush uses two basic rules in its rate control algorithm. Rule1 is that a node only 

sends packets when the downstream node is free. Rule 2 is that a node cannot send faster 

than its downstream node. Flush is tested with 79 Intel Mirage sensor nodes in a 48-hop 

network.  

A summary of some of the existing protocols guaranteeing reliable data delivery is 

presented in Table 2.1. 
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Features 
Protocols 

PSFQ [32] RMST [29] GARUDA [22] PALER 
[20] RBC [42] DTSN [26] STCP [16] Flush [18] 

Design Focus 

Reliability, 
energy-

efficiency 
and 

scalability 

Reliability 
Reliability and 

energy-
efficiency 

Reliability Reliability 

Reliability, 
energy-

efficiency and 
scalability 

Reliability and 
scalability 

Reliability 
and time-
efficiency 

Direction Sink-to-
sensors 

Sensors-to-
sink Sink-to-sensors Sink-to-

sensors 
Sensors-to-

sink 
Sensors-to-

sink Sensors-to-sink Sensors-to-
sink 

Loss Detection Timer-based 
NACK 

Selective 
NACK NACK Inclusive 

NACK Implicit ACK 
Selective 
ACK and 
NACK 

ACK and 
NACK 

Selective 
NACK 

Loss Recovery Hop-by-hop 
End-to-end 
and hop-by-

hop 

Two-tier two 
stage loss 
recovery 

Hop-by-
hop Hop-by-hop Hop-by-hop Hop-by-hop End-to-end 

Reliability Packet 
reliability 

Packet 
reliability 

Packet 
reliability and 
cover sensing 
field reliability 

Packet 
reliability 

Packet 
reliability 

Packet 
reliability 

Packet 
reliability and 
probabilistic 

reliability 

Packet 
reliability 

Communication 
Type 

Block of 
packets 

Block of 
packets 

Single packet 
and stream of 

packets 

Block of 
packets 

Block of 
packets 

Block of 
packets 

Block of 
packets and 
stream of 
packets 

Block of 
packets 

Unique Design 
Pump slowly 

and fetch 
quickly 

Cross-layer 
design 

(Transport 
and MAC 

layer) 

Wait-for-First-
Packet (WFP) 

pulse for 
reliable first 

packet delivery 

Single 
inclusive 
NACK 

Window-less 
queue 

management 

Combined 
ACK and 

NACK design 

Packet loss 
recovery and 
congestion 

control 

NACK and 
rate control 

design 

Evaluation 

NS-2 
simulation 
and Rene2 

motes 
experiment 

NS-2 
simulation 

NS-2 
simulation 

Jist/Swans 
simulation 

49 Mica2 
motes 

experiment 

TOSSIM 
simulation 

TOSSIM 
simulation 

100 MicaZ 
motes 

experiment 

Table 2.1 Summary of Existing Reliability Guaranteed Protocols 
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2.4.2  Protocols with Congestion Control 

Sankarasubramaniam et al. propose the Event-to-Sink Reliable Transport (ESRT) 

protocol [28]. ESRT keeps the network in the optimum condition (reliable without 

congestion) by dynamically adjusting the reporting rate of upstream nodes as well as 

controlling the downstream congestion level according to the current network state. ESRT 

classifies the network into the following five different states based on different reliability 

and congestion levels:  

 State 1: No congestion and low reliability. This is a state with very low sensor node 

transmission rates and no congestion. The “reliability”, as measured by the ability of 

the sink to detect events reliably, from reports received from the sensors, is low owing 

to the low sensor reporting rates. There is plenty of bandwidth not being used.  

 State 2: No congestion and high reliability. In this state, no congestion is observed in 

the network. The reliability level exceeds the required level because of the high 

reporting rate of the sensor nodes. The network meets the reliability requirement but 

sensor nodes consume more energy than necessary.  

 State 3: Congestion and high reliability. In this state, the network becomes congested 

because sensor nodes report more frequently than required. The network is able to 

maintain higher than required reliability due to the higher reporting rate but also 

experiences congestion.   

 State 4: Congestion and low reliability. This is the worst possible scenario where the 

network experiences congestion while the reliability level is below the required 

reliability level owing to packet loss. ESRT will reduce the transmission rate 

aggressively to attempt to bring the network back to the optimal state.   

 State 5: The optimal state. In this state, the reliability level matches the required 

reliability level with minimum energy consumption. This is the target state.  

By monitoring the network for congestion signs and observing the rate of received 

packets for a period of time, the sink can determine the current state of the network. The 

congestion level is detected by measuring node buffer occupancies. Based on the detected 

congestion state, the sink will compute the new transmission rate to adjust the network to 
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the optimal state (state 5) and propagate this new rate to the network. ESRT assumes that 

in the non-congested state, a linear relationship exists between the transmission rate and 

the number of packets delivered at the sink per round. Under this assumption, the 

protocol should always converge to the optimal state, if this state is feasible to achieve.  

As seen with ESRT, controlling and adjusting the sensor nodes’ transmission rate is 

directly related to the congestion control issue in wireless sensor networks. The CODA 

protocol incorporates a new rate control framework [34]. CODA consists of three 

components: 1) a congestion detection mechanism based on observing the transmission 

queue size at intermediate nodes and the wireless channel load, 2) an explicit congestion 

notification method that uses a local back-pressure mechanism to signal nodes to reduce 

the forwarding rate, and 3) a centralized rate-control technique that allows the sink to 

regulate the multi-source rates. CODA adjusts the sending rate in a manner similar to 

AIMD [21].  

Fusion incorporates three techniques to address the congestion issue in wireless 

sensor networks: hop-by-hop flow control, rate limiting and a prioritized MAC [14]. 

Hop-by-hop flow control consists of both congestion detection and congestion mitigation. 

Two commonly-used congestion detection methods are tested in Fusion: queue size 

monitoring and channel sampling. Congestion mitigation is done at the node level by 

observing the network congestion bit included in each data packet’s header and adjusting 

the sender’s forwarding rate according to the congestion level. If a routing path is unable 

to sustain the current traffic load, the hop-by-hop backpressure will propagate back to the 

source and allow the flow control mechanism to throttle the sampling interval. The rate-

limiting technique is designed to allow sensor nodes to only send at the same rate as their 

children, thus nodes close to the sink can have a smaller chance of being flooded with 

packets when congestion happens. Fusion employs a prioritized MAC to aid congestion 

control. The length of each node’s randomized MAC backoff is designed to be a function 

of its congestion state. When a node is congested, the backoff window is adjusted to only 

one-fourth of the size of a regular node’s window. Thus, higher priority is given to a 

congested node by the prioritized MAC, allowing congestion notification (in the form of 

the network congestion bit in each data packet header) to propagate faster.  
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The Price-Oriented Reliable Transport Protocol (PORT) has a design that combines 

the ideas of multi-path routing, rate control and rate adaptation to avoid network 

congestion [43]. Based on the observation that different sources make different 

contributions to improving the sink’s knowledge of events, PORT gives each node a price, 

which is defined as the energy consumed for each packet successfully delivered from the 

node to the sink, by all the nodes in the corresponding network path. The node price, 

together with link loss rates, is used to dynamically allocate the outgoing traffic to 

mitigate congestion. PORT also incorporates an optimal routing scheme for in-network 

nodes. An optimal route can be constructed based on the estimation of link loss rate on 

the source-to-sink path.      

Paek et al. propose RCRT [21], a reliable rate-controlled transport protocol suitable 

for high-rate wireless sensor network applications. RCRT is designed to reliably transfer 

large amounts of sensor data from multiple sources to multiple sinks without incurring 

network congestion. RCRT uses end-to-end explicit NACKs and retransmissions to 

recover lost packets and implements a congestion detection and rate adjustment function 

in the sinks. In RCRT, end-to-end reliability is provided by a NACK-based loss recovery 

scheme. Each source node buffers every packet being sent and sinks track the end-to-end 

sequence number. Once a gap in the sequence numbers is detected, the missing sequences 

numbers are added to a missing packet list and the list will be sent at the end of the data 

flow in a NACK packet to the source nodes. Upon receiving a NACK from the sink, 

source nodes will initiate an immediate retransmission of the missing packets. Congestion 

detection in RCRT is done by monitoring the time to recover end-to-end loss at the sink. 

The sink maintains an out-of-order list, and if it takes more than four round trip times for 

the sink to recover a missing packet, the protocol decides the network is congested. 

Whenever congestion is detected, RCRT applies rate decrease steps according to an 

AIMD approach in the sinks and propagates the new transmission rate to the network. 

RCRT is one of the few protocols that provides a solution to both the reliability and 

congestion control issues.     

A summary of some of the existing congestion control protocols is presented in 

Table 2.2. 
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Features 
Protocols 

ESRT [28] CODA [34] Fusion [14] PORT [43] RCRT [21] CCF [5] 

Design 
Focus 

Energy-efficiency  
and congested 

control for event-
based WSN 

Congestion 
control and 

energy-efficiency 

Congestion 
control in 

spanning-tree 
topology 

Congestion control 
and energy-
efficiency 

Congestion control for 
high-rate application 

Reliability and 
scalability 

Congestion 
Detection Queue size Queue size and 

channel status Queue size Link loss rate and 
node’s price Time to recover loss Packet service time 

Congestion 
Notification Implicit Explicit Implicit Explicit Implicit Implicit 

Congestion 
Mitigation 

AIMD-like end-
to-end rate 
adjustment 

AIMD-like end-
to-end rate 
adjustment 

Stop-and-start 
hop-by-hop rate 

adjustment 
Multi-path routing AIMD-like end-to-end 

rate adjustment 
Exact hop-by-hop rate 

adjustment 

Unique 
Design 

Event-to-sink 
congestion control 

and sink-based 
congestion 
detection 

Receiver-based 
congestion 
detection 

A prioritized MAC 
design 

Sink-based 
optimization 

approach and local 
optimal routing 

scheme 

Sink-based congestion 
detection and 

mitigation approach 

Packet loss recovery 
and congestion control 

Evaluation NS-2 simulation 
NS-2 simulation 
and Rene2 motes 

experiment 

55 Mica2 motes 
experiment NS-2 simulation 40 Tmote motes 

experiment 

NS-2 simulation and 
10 Mica2dot motes 

experiment 

  

 

Table 2.2 Summary of Existing Congestion Control Protocols 
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CHAPTER 3 

HOP-BY-HOP RELIABLE DATA DELIVERY  

The main contribution of this thesis is the design and evaluation of a reliable data 

delivery protocol for wireless sensor networks. This protocol employs a hop-by-hop loss 

detection and recovery scheme. The goal of this protocol is to provide high reliability for 

general unicast communication with low system overhead and network delay. These 

goals are achieved by efficiently scheduling packet transport and through use of a new 

explicit NACK with reliable last/single packet delivery approach.   

This chapter presents the design of the proposed protocol. Section 3.1 describes 

some design considerations in developing the protocol. Section 3.2 presents terminology 

and assumptions. The protocol’s packet queue structure and explicit NACK approach are 

described in Sections 3.3 and 3.4 respectively. The detailed operation of the proposed 

protocol is presented in Section 3.5. Section 3.6 discusses some additional protocol 

features and design variations. 

3.1  Design Considerations 

Sensor networks applications often involve periodic data collection at a sink node. 

For such applications there is a steady rate of data packet transmission. In contrast to a 

conventional network, where all data is commonly given the same importance, in sensor 

networks, new data can be more valuable to the user. Considering a real-time monitoring 

application, the user is normally more concerned with the current status of the network 

and the new information contained in the fresh data, and therefore this data is more 
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valuable than old data. Meanwhile, when using a NACK-based scheme, older data is 

more likely to have been received by the receiver. Thus, in this study, it is assumed that if 

data packets must be dropped owing to a node buffer being full, newer data is more 

valuable than older data.     

A sensor node, as limited by its own capacity, is forced to drop packets when its 

buffer is filled. When a large number of packets arrive in a short time or new packets 

generated by the node outnumber the available buffer spaces, packet loss is inevitable. 

One of the most important design concerns of this protocol is how to ensure that data 

packets are successfully delivered except when loss is unavoidable due to limited buffer 

space.  

Due to the high link error rate of wireless sensor networks, hop-by-hop packet 

recovery is usually preferred over end-to-end packet recovery. Nevertheless, most of the 

existing hop-by-hop control mechanisms do not schedule packet transmissions so as to 

minimize delay. In some of the protocols, a sent packet is not removed from the head of 

the transmission queue until feedback has been received. As a result, newly arrived 

packets cannot be transmitted immediately and have to wait for the previous packet to be 

acknowledged. Significant delay can be observed in such protocols. In some other 

protocols, retransmissions of the missing packets are given higher priorities over the 

transmissions of newer packets. As a result, when retransmission occurs, data packets that 

are already stored in the transmission queue but haven’t been transmitted may experience 

long queueing delays. Meanwhile, the transmission queue can be quickly filled up with 

new received packets and any new incoming packets may have to be dropped due to the 

buffer overflow. Therefore, in the proposed work, a new design is introduced to schedule 

the transmission process in a more efficient measure.  

As discussed in Chapter 2, several ACK-based or NACK-based network layer hop-

by-hop error recovery protocols have been proposed for wireless sensor networks. 

However, none of them can achieve 100% reliable delivery with low delay and 
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transmission cost. ACK-based approaches provide better reliability, but inevitably 

increase overall network delay and overhead. NACK-based approaches are more efficient 

in lost packet detection but cannot work properly in the presence of route changes or 

losing blocks of packets. Thus, a natural idea is to provide a comprehensive solution that 

has the advantages of both ACK and NACK techniques. In this thesis, a timer-based ACK 

approach is used to handle the last/single packet delivery problem while an explicit 

NACK method is used to detect and repair packet loss for regular data packets. Excepting 

for loss caused by buffer overflow, 100% reliable data delivery is provided.  

3.2  Terminology and Assumptions 

3.2.1  Topology and Link Layer Setup  

The proposed protocol is expected to work for general topologies. Thus, for a single 

node, there could be multiple sources of incoming packets as well as multiple 

destinations of outgoing packets. Only unicast communication is considered in this work. 

Routing is outside the scope of the current work, and so when an intermediate node fails, 

the problem of how to build an alternative route is assumed to be handled by a separate 

protocol. A discussion of how the proposed protocol can accommodate node failure and 

route changes is presented in Section 3.6.   

3.2.2  Protocol Terminology  

 Source/Destination/Sender/Receiver: The source node for a packet is the node at 

which the packet was originally generated, while the destination node is the final 

destination of the packet. On each hop to the destination, the packet is transmitted by 

a sender node and received by a receiver node.  

 Ready_Bit: If a packet is ready to be sent for the first time by the sender, or ready to 

be retransmitted, the Ready_Bit is set to 1. Otherwise, the Ready_Bit is set to 0. Only 
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a packet with Ready_Bit equal to 1 can be transmitted by the node.  

 ACK/NACK_Bit: This bit indicates whether the sender requests ACK or NACK for 

the sent packet. The ACK/NACK_Bit is stored in the header of a data packet. When 

the receiver receives a new packet, it needs to read the value of the ACK/NACK_Bit. 

If the ACK/NACK_Bit is equal to 0, the receiver has to send an ACK for that packet; 

if the ACK/NACK_Bit is equal to 1, the receiver does not need to return an ACK.  

 Packet_ID: This term is used to refer to the combination of the source and destination 

node IDs (all sensor nodes are assumed to have a unique ID) and the end-to-end 

sequence number (assumed to be unique for all packets between a particular 

source/destination pair). Since the Packet_ID is globally unique, it can uniquely 

indentify data packets in the network. 

 Last_ID: This field in the packet header is used to store the Packet_ID of the last new 

(not a retransmission) packet sent by the sender to the receiver. The contents of this 

field are determined when the packet is transmitted for the first time by the sender, 

and are not changed if packet transmission is unsuccessful and the packet must be 

retransmitted. When the sensor state has been initialized (or re- initialized) and there 

is no state information regarding such a packet, the Last_ID field is set to be NULL.     

 R[S]: A state variable maintained by the receiver for each sender. The state variable 

R[S] is created to store the Packet_ID of the newest in-order data packet that has been 

received from the sender. The value of R[S] is updated after a new data packet is 

accepted by the receiver. A detailed description of how R[S] is used to detect missing 

packets is presented in Section 3.4. 

 SKIP: The SKIP field is a single bit indicating the availability of the requested data 

packet at the sender. When the receiver requests a retransmission of a missing packet 

and the packet has been dropped from the queue, the sender sends the oldest available 

data packet in its queue that is destined for that receiver and sets its SKIP field to 1. 

Upon receiving a data packet with SKIP field equal to 1, the receiver realizes that the 
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requested missing packet is no longer available at the sender and so it takes the 

received packet as an in-order packet. 

3.2.3  Packet Format  

In the proposed work, there are two different types of packets: data packet and 

feedback packet. A data packet is a packet containing sensor readings or other data. All 

the data packets share the same header format. The header of a data packet contains four 

important fields: Packet_ID, ACK/NACK_Bit, Last_ID and SKIP.  

There are two types of feedback packet in this work: ACK packet and NACK packet. 

ACK and NACK share the same packet format. They both have a one bit feedback type 

field and a four byte Packet_ID field, giving the ID of the newest in-order packet 

successfully received by the receiver. These two packets can be distinguished by using 

their feedback type bit: 0 refers to NACK packet, 1 refers to ACK packet.  

3.3  Transmission queue Management 

The common method to recover lost packets in a hop-by-hop recovery scheme is 

through retransmission. However, most current retransmission schemes may yield either 

excess redundant traffic or excess delay. As one goal of the presented work is to transmit 

new data packets as quickly as possible, new transmission queue management policies 

are designed for better scheduling retransmissions. 

3.3.1  Enqueue and Transmission Policies  

Each individual node has to maintain a transmission queue structure, whose 

responsibility is to temporarily store packets and manage the transmission. Every packet 

in the queue has a Ready_Bit to indicate its status as introduced in Section 3.2.2. If the 

Ready_Bit is 1, then the packet is ready to be sent; if the Ready_Bit is 0, it means the 

packet has been sent already and does not need to be resent at this time. This Ready_Bit 
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can be changed when a NACK is received or the packet is transmitted.  

When a sender gets a new packet, either generated by the node itself or forwarded 

by an upstream neighbor, the Ready_Bit of the packet is set to 1 and the packet is stored 

at the tail of the queue. Whenever the sender is ready to begin a new transmission, it 

checks the Ready_Bit of the packets in the queue in the order from the head of the queue 

to the tail. The first packet with Ready_Bit equal to 1 will be sent and its Ready_Bit will 

be set to 0. After sending a packet and waiting a random delay period (so as to provide 

some spacing between transmissions), the node checks the Ready_Bit of the packets in 

the queue again and sends the next packet with Ready_Bit equal to 1.       

In a conventional ACK-based approach, after a data packet has been transmitted, it 

stays at the head of the queue and no other packet can be transmitted until feedback is 

received from the receiver. A direct consequence of this approach is that significant delay 

can be incurred if the sender doesn’t get the feedback as expected, due to network 

congestion or link error. As a result, packets newer than the sent packet have to wait in 

the queue and cannot be transmitted promptly. This send-and-wait strategy may work fine 

when network connectivity is good. However, it may cause significant delay in poor 

network conditions.  

In the proposed protocol, by taking advantage of this transmission queue design, a 

source node can transmit multiple new data packets consecutively without waiting for 

feedback. For example, suppose that a packet X is transmitted. Its Ready_Bit is then set 

to 0. A data packet newer than packet X with Ready_Bit equal to 1 can then be 

transmitted. At the same time, the sender can retransmit any missing packet in parallel 

with the regular data packet transmitting process. For example, when a node receives a 

NACK for a packet Y, it locates the missing packet in its transmission queue if present 

and sets its Ready_Bit back to 1. Any packet older than packet Y that is destined for the 

same receiver must have been received and is thus removed from the queue, as described 

in Section 3.3.2. If there is no older packet destined to some other receivers with 
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Ready_Bit equal to 1, the retransmission of packet Y can be started immediately.   

3.3.2  Dequeue Policy  

Since sensor nodes can receive and generate data packets constantly, while their 

storage capacity is quite limited due to size, cost and power limitations, an appropriate 

dequeue policy is necessary in order to manage the buffer space more efficiently. In the 

proposed policy, packets are dequeued in the following scenarios: 

 If the transmission queue reaches its maximum capacity and a new packet is received, 

the node discards the packet at the head of the queue and makes room for the newer 

packet. Since all packets in the queue move in the sequence from tail to head, the 

packet at the head of the queue has been in queue the longest and can therefore be 

considered to be the most likely to have been successfully received by its respective 

receiver.     

 If an ACK or NACK is received, the Packet_ID is read from the ACK and compared 

with the IDs of packets in the transmission queue. Since the Packet_ID in the ACK or 

NACK gives the latest in-order packet received by the receiver (see Section 3.5), the 

packet X with matching Packet_ID (if still present in the queue) as well as all packets 

older than packet X that were sent to that receiver and are still present in the queue 

can be dequeued.  

3.3.3  Summary 

The advantages of the proposed transmission queue management policy are two-fold. 

On the one hand, a packet will not be dequeued before it is known it has been 

successfully received, or, if necessary, when it is the oldest packet in the queue 

maximizing the opportunity to re-send lost packets. On the other hand, the detection of 

packet loss does not interfere with normal packet transmission, and thus delay can be 

significantly reduced while still ensuring a high level of reliability.   
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3.4  Explicit NACK with Reliable Last/Single Packet Delivery  

The crucial issue in providing reliable data delivery is how to detect and repair 

packet losses. In this work, in order to overcome the problems with conventional ACK 

and NACK protocols as mentioned in the previous chapter, a hybrid of a NACK-based 

technique and explicit positive acknowledgement is employed.  

The advantage of a NACK-based approach is obvious: it is effective in detecting 

packet losses and also efficient in recovering from them. However, a typical problem 

with a NACK-based approach concerns the fact that the receiver has to be aware of the 

incoming packet. Otherwise, the receiver cannot send out a NACK to request 

retransmission. In the proposed work, every outgoing packet includes the Packet_ID of 

the last packet sent by the same sender. Thus, by examining the Packet_ID of the packet 

most recently received from the same sender and the Packet_ID included in the current 

received packet, the receiver can detect if there are any missing packets between the two 

receptions. A “send-and-wait” ACK approach is used to ensure the successful 

transmission of the last/single packet, and an explicit NACK approach for the rest of the 

packets. The following detailed description of this approach considers a single 

sender/receiver pair.  

As introduced in Section 3.2, every data packet includes an ACK/NACK_Bit in the 

packet header, which indicates whether or not this packet is the last packet in a data 

stream. When the sender prepares the data packet, if it is known that there will be another 

packet that will be sent to the same receiver within some reasonable time period, it sets 

the ACK/NACK_Bit to 1; otherwise the sender sets it to be 0. In the latter case, the 

sender sends the packet to the receiver and starts a retransmission timer. Upon receiving a 

packet from the sender, the receiver first examines its ACK/NACK_Bit. If the 

ACK/NACK_Bit is 0, the receiver learns that this packet is the last packet it will receive 

from the sender. Thus, it creates an ACK packet and sends it back to the sender. In this 



 

39 

 

case, the sender keeps re-sending the last packet until the reception of the packet is 

confirmed by the receiver. Otherwise, the receiver only uses the explicit NACK approach 

as described below. 

When a sender S sends a packet Y to the receiver, the Packet_ID of the last packet 

transmitted by the sender to that receiver is included in the Last_ID field of packet Y’s 

header. The receiver maintains a local state variable R[S], which is used to store the 

Packet_ID of the last in-order packet received from sender S. After receiving packet X, 

the receiver stores the Packet_ID of packet X in R[S]. When a new packet arrives, by 

comparing the Packet_ID in its Last_ID field with R[S], the receiver can learn whether or 

not this is the next in-order packet. If the Packet_ID in the Last_ID field of the new 

packet matches with R[S], then the incoming packet is indeed the next in-order packet, 

and R[S] is updated to the ID of packet Y. If the packet needs to be transmitted another 

hop, the receiver inserts packet Y into the transmission queue. If, on the other hand, the 

Last_ID field does not match R[S], the received packet is not the next in-order packet, 

whose transmission must have been unsuccessful. The receiver drops the packet, creates a 

NACK packet containing R[S] and immediately sends it back to the sender requesting 

retransmission of all packets newer than that with ID of R[S].  

Note that in the explicit NACK approach, the receiver only accepts in-order packets 

and drops all out-of-order packets. This policy is designed to ensure that packet delivery 

is 100% reliable, except possibly when a node’s buffer reaches its capacity. Specifically, a 

receiver continually requests a missing packet until it has been successfully received, or 

such reception is no longer possible, as described in Section 3.5. However, a possible 

performance enhancement can be achieved by buffering packets that are received out of 

order, so as to eliminate the need for the sender to retransmit such packets. A protocol 

variant using out-of-order buffering is proposed and discussed in Section 3.6.5.     
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3.5  Protocol Operation  

In this section, a detailed description of the operation of the proposed protocol is 

presented. The protocol operation is described for a general scenario. 

3.5.1  Sender Operation  

 Before the sender sends any packet, it first examines the Ready_Bit of the packets in 

the queue. The sender chooses the first (oldest) packet it encounters in the queue with 

the Ready_Bit equal to 1 as the packet to be sent. If the packet is being transmitted for 

the first time, and the sender knows that it will be sending another new packet to the 

same receiver soon, it sets the ACK/NACK_Bit in the packet header to 1; otherwise, 

it sets this bit to 0. In the latter case, the sender will not send any new data packet 

until it gets an ACK back.   

 When sending a packet that is being transmitted for the first time, the sender puts 

the Packet_ID of the packet that it has most recently sent to the same receiver 

(excluding any retransmissions) into the Last_ID field in the packet header. If there is 

no such previous packet or if the sender has no memory of its ID (e.g., the sender has 

failed and lost data at least once since the previous packet was sent), it fills this field 

with NULL. 

 When the sender sends a packet (either a new packet or a retransmission), with the 

ACK/NACK_Bit set to 0, it initiates a retransmission timer. If no acknowledgment is 

received for the packet before the timer expires, the sender sets the ready bit of the 

packet back to 1, which will cause the packet to be retransmitted. Before the 

retransmission timer is fired, the sender cannot transmit any newer packet to this 

receiver unless an acknowledgment is received. Whenever the sender finishes sending 

a packet, it sets the Ready_Bit of the sent packet to 0.    

 When the sender receives an ACK for a packet X, the sender cancels the 
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retransmission timer. According to the dequeue policy described in Section 3.3, the 

sender can safely remove the packet X as well as all older packets that were sent to 

that receiver from the queue and move on to send the next available packet. 

 When the sender receives a NACK containing the ID of packet Y, the sender sets the 

Ready_Bit of all enqueued packets newer than packet Y that were sent to the same 

receiver (if any) to 1 and dequeues packet Y (if found in the queue) and all older 

enqueued packets (if any) that were sent to that receiver. The sender has to resend any 

packets sent to that receiver that are newer than packet Y and that are found in the 

queue because the receiver does not accept out-of-order packets. Note that if packet Y 

is not found in the queue, any packets defined for the same receiver that are in the 

queue must be newer than packet Y. In this case, the first of the packets transmitted to 

the receiver (or the first new packet if no packets for that receiver were found in the 

queue) has its SKIP field set to 1 to indicate that no packets between packet Y and 

this packet are available.  

3.5.2  Receiver Operation  

 When a packet with the ACK/NACK_Bit set to 1 is received and the state variable 

R[S] matches the Last_ID field in the packet header, the receiver accepts the packet, 

and no acknowledgment is required. The receiver sets R[S] to the Packet_ID of the 

received packet. 

 When a packet with the ACK/NACK_Bit set to 0 is received and the state variable 

R[S] matches the Last_ID field in the packet header, the receiver accepts the packet 

and transmits an ACK containing the Packet_ID of packet X back to the sender. The 

receiver sets R[S] to the Packet_ID of the received packet. 

 When a packet with the SKIP field set to 1 is received, the receiver accepts the packet 

and assigns the Packet_ID of the received packet as the new value of R[S]. The 

receiver may have missed one or more packets from that sender, but if so, then 
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packets were dropped from the sender’s queue and cannot be recovered.   

 When a packet is received with a Last_ID field that does not match R[S], and the 

SKIP field is not set to 1, the receiver must have missed one or more packets from 

that sender. The received packet is dropped by the receiver and a NACK with ID field 

set to its R[S] is sent back to the sender.  

3.6  Additional Features and Design Variations 

In this section, some other details of the proposed protocol are discussed. Those 

details are worth mentioning because they explain how the protocol works in different 

and complex scenarios, such as nodes failure and route changes, variable reliability 

requirements and how to eliminate duplicated data packets. In Section 3.6.4, a variation 

of the proposed protocol is also discussed, which further improves the performance of the 

original protocol in a high loss rate environment by caching out-of-order packets at the 

intermediate nodes.      

3.6.1  Variable Reliability   

As discussed in Section 2.1.2, different applications in wireless sensor networks may 

have different reliability requirements. The data transport protocol for a WSN should be 

able to adapt the quality of service and type of services to be provided to the application 

requirements. For example, in an event-monitoring application, it may be possible to 

recognize an event by receiving only 80% of the data packets reporting the event. It may 

also be necessary to maximize the life time of the network. By slightly modifying the loss 

recovery scheme, the proposed protocol can easily adapt to the above requirement. Each 

node in the network updates a measure of link-level reliability between the node itself 

and its upstream node whenever it receives a new data packet. The link-level reliability is 

defined as the number of received in-order packets divided by the total number of 

transmitted packets which includes packets not successfully received. Each node in the 



 

43 

 

network also maintains a required reliability level, which may be predefined or updated 

by the sink during data collection. When a node receives an out-of-order packet, if the 

calculated average reliability level is above the required reliability level, the node will not 

create the NACK packet and request retransmission of the missing packet. By skipping 

the creation of a NACK packet and so avoiding the retransmission of an unnecessary data 

packet, the node is able to maintain the required reliability level while saving energy and 

bandwidth which can in turn increase the lifetime of the network.         

3.6.2  Route Changes or Node Failure  

Node failure or severe network congestion may result in route changes [15]. Adding 

new nodes to an existing sensor network may also cause such changes. How to detect 

node failure, coordinate newly added nodes and construct a new route depends on the 

underlying routing protocols and is outside the scope of this paper. However, a well-

designed reliable transport protocol should be able to effectively handle the case of route 

change or node failure and perform robustly. Because the proposed protocol uses hop-by-

hop loss detection and recovery and can initiate the data transmission process without any 

additional information exchange, a newly joined node (either a newly added node or a 

node just available in the new route) can be integrated into a route without any previous 

knowledge of the network.      

Consider the example shown in Figure 3.1, where the sender is forwarding or 

sourcing a stream of packets and the new node is a node that has just joined the network, 

which either replaces a failed node or is part of a new route. Assuming that the sender has 

five packets available in its queue (from packet 3 to packet 7) and has already sent out 

packet 3 in a previous transmission, the sender continues to send packet 4 as shown in 

Figure 3.1(a). When the new node receives data packet 4, since the Last_ID field does not 

match the local variable R[S] (which is NULL), the new node considers this packet an 

out-of-order packet and drops it. Since the transmission queue of the new node is empty 
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and there is no record of previously received packets, the new node sends back a NACK 

with NULL in the Packet_ID field as shown in Figure 3.1(b). Upon receiving the NACK, 

the sender checks its queue and finds no packet with Packet_ID matching with NULL. 

Thus, the sender resets all the packets’ Ready_Bit to 1 and resends the first packet 

available (which is packet 3) in its queue with SKIP field set to 1. The new node accepts 

the packet 3 as shown in Figure 3.1(c) because of the SKIP field, and updates its state 

variable R[S] to the Packet_ID of packet 3. The new node successfully joins the network 

within two sending rounds.   

 

3.6.3  Data Redundancy  

Route changes and node failure can not only result in packet loss, but also the 

possibility of transmitting redundant data. As described in the previous section, when a 

new route is established or a new node joins the network, the sender needs to resend 

every packet available in its buffer to the new next hop node in case packet loss has 

occurred. However, some of these packets may have already been successfully 

transmitted to the destination nodes through the original path or other old nodes before 

the new node joins the path. Since all data packets will eventually be sent to destination 

nodes and the Packet_ID of each packet used in this protocol is globally unique, the data 

redundancy check can be done at destination nodes by comparing the Packet_ID of the 
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Figure 3.1 Example of Route Changes or Node Failure 
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received packets.  

3.6.4  New Protocol with Out-of-Order Buffering  

In the hop-by-hop reliable data delivery protocol presented in the previous sections, 

the receiver accepts only in-order data packets and is forced to drop all out-of-order 

packets. As a consequence, when a NACK is received, the sender not only needs to 

resend the first missing packet but also all newer packets including the out-of-order 

packet. In an environment of high link error rate and poor network connection, this 

strategy can be a waste of resources. With a closer look at the sender operation, one can 

notice that the sender always sends data packets in a first-in-first-out (FIFO) basis. In 

other words, the sending sequence at the sender is consistent with the data packet arrival 

sequence at the sender’s transmission queue, unless a retransmission timer expires or a 

NACK is received. Out-of-order packets the receiver receives are packets newer than the 

receiver’s expected next new packet. Therefore, if out-of-order packets can be stored 

temporarily, at least one data packet retransmission can be saved by recovering the 

missing packet locally from the buffer. Therefore, a variant of the new protocol with out-

of-order buffering is developed. 

In the modified protocol, besides the transmission queue, each node also maintains a 

separate out-of-order buffer that can temporarily store a single out-of-order packet. If this 

buffer is already occupied when the node receives another out-of-order packet, the old 

packet in the buffer will be replaced with the new packet. The receiver still creates a 

NACK packet and sends it back to the sender for retransmission when it receives an out-

of-order data packet. However, the receiver stores this packet into its out-of-order buffer, 

rather than immediately discarding it as in the original protocol. If a data packet with 

Last_ID matching R[S] is received next, the receiver updates its variable R[S] to the 

Packet_ID of the new packet and stores this packet in the queue (if it needs to be 

forwarded on). The receiver in the modified protocol also needs to examine the Last_ID 
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field of the packet in the out-of-order buffer. If the Last_ID field of the packet in the out-

of-order buffer matches the new R[S], this packet is the next new packet from the sender. 

The receiver updates the state variable R[S] again to be the Packet_ID of the packet in the 

out-of-order buffer and moves this packet to the transmission queue (if it needs to be 

forwarded on).  

When a data packet with SKIP field equal to 1 is received, there are several cases 

that need to be considered. If the out-of-order buffer is filled and the Packet_ID of the 

new packet matches with the Last_ID of the packet in the out-of-order buffer, the receiver 

saves the new packet and updates the state variable R[S] to be the Packet_ID of the 

packet in the out-of-order buffer and moves this packet to the transmission queue (if it 

needs to be forwarded on). If, however, the Packet_ID of the new packet doesn’t match 

the Last_ID of the packet in the out-of-order buffer, the receiver needs to compare the 

Last_ID of the new packet and the Packet_ID of the buffered packet. If they match, the 

receiver moves the packet in the out-of-order buffer to the transmission queue and 

updates the state variable R[S] to be the Packet_ID of the new packet and saves the new 

packet in the transmission queue (if it needs to be forwarded on). In all other cases (e.g. 

the out-of-buffer is not filled or the received new packet is the same packet as in the out-

of-order buffer), the receiver saves the new packet in the transmission queue and updates 

the state variable R[S] to be the Packet_ID of the new packet.  

Because only an out-of-order data packet can trigger a NACK packet, when a NACK 

is received, the sender can assume that a packet it sent after the missing packet was 

received by the receiver and is stored in its out-of-order buffer. Thus, rather than 

retransmitting all newer packets in the queue as in the original protocol, the sender in the 

modified protocol only retransmits the oldest packet in its queue following the packet 

whose Packet_ID is given in the NACK. The example in Figure 3.2 is used to illustrate 

the mechanism of this modified protocol.      
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In Figure 3.2, the left and right rectangles in each diagram represent the sender and 

the receiver, respectively. The receiver maintains a transmission queue, as well as an out-

of-order buffer as shown in the bottom of the receiver rectangle. The solid line from the 

sender rectangle to the receiver rectangle represents the sending of a data packet, while a 

dashed line from the receiver rectangle to the sender rectangle represents the sending of a 

NACK. Assume that initially the last packet sent from the sender is packet 3 which has 

been successfully received by the receiver as shown in Figure 3.2(a). The transmission of 

packet 4 is lost but packet 5 is successfully received (Figure 3.2(b)). Since packet 5 is an 

out-of-order packet, the receiver puts it in the out-of-order buffer and sends back a 

NACK that containing the Packet_ID of packet 3 (Figure 3.2(c)). In Figure 3.2(d), after 

receiving the NACK, the sender locates the next in-order packet after packet 3, which is 

packet 4, and resends it. When the receiver gets the retransmission of packet 4, the 

receiver stores it in the transmission queue for forwarding since the Last_ID field in 

packet 4 (which specifies packet 3) is the same as R[S]. After receiving packet 4, the 

Figure 3.2 Example of New Protocol with Out-of-Order Buffering 
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receiver checks its out-of-order buffer and finds that the Last_ID in packet 5’s header 

matches with the Packet_ID of packet 4. Thus, the receiver moves packet 5 to the 

transmission queue as shown in Figure3.2 (e) and updates R[S] to the Packet_ID of 

packet 5. The sender doesn’t need to retransmit packet 5, and instead can transmit a new 

packet as shown in Figure3.2 (f).   
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CHAPTER 4 

PERFORMANCE EVALUATION 

This chapter presents a performance study of the proposed hop-by-hop reliable data 

delivery protocol based on a testbed implementation. Experimentation is chosen as 

opposed to simulation in order to get more realistic results. The performance of the 

protocol presented in Chapter 3 is evaluated under various network conditions. An 

overview of the performance study is described in Section 4.1. Section 4.2 describes the 

testbed implementation used to evaluate performance. Section 4.3 presents the 

methodology of the experimentation including performance metrics, the evaluated 

protocols, experiment parameters, and the experimental design. The experimental results 

are analyzed and discussed in Sections 4.4 through 4.6.  

4.1  Performance Evaluation Overview 

The performance evaluation study described in this chapter aims at demonstrating 

the performance of the proposed hop-by-hop reliable data delivery protocol. By 

employing techniques such as reliable last/single packet delivery and implicit NACK 

approaches, the new protocol is expected to have better performance on both overall 

network delay and reliability than conventional protocols. The experimentation on 

CrossBow Technology’s MicaZ sensor nodes is described in this chapter and the 

following questions are considered in the experimental study: 

 How is the overall performance of the new protocol in terms of link-to-link and end-

to-end reliability? 
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 How is the performance of the new protocol impacted by various system and protocol 

parameters? 

 Under what conditions will the performance of the new protocol be compromised? 

 How does the performance of the new protocol compare with the performance of 

protocols with different loss recovery and detection schemes such as an ACK-based 

approach and a timer-based NACK approach?  

4.2  Testbed  

4.2.1  Software Implementation  

The proposed protocol is implemented in the network embedded systems C (nesC) 

programming language and the TinyOS operating system [30]. nesC is a component-

based event-driven programming language based on the C programming language. 

TinyOS is an open source component-based operating environment written in nesC and is 

optimized and designed for embedded systems such as wireless sensor networks. TinyOS 

consists of a set of software components and interfaces. The components in TinyOS are 

connected with each other by interfaces and provide common abstractions including 

routing, storage and communication [30]. A TinyOS application normally consists of one 

or more components. There are two types of components in nesC: modules and 

configurations. A module contains the implementation of an algorithm or a model. A 

configuration consists of the wiring of the components used in a module and describes 

the way components are connected by interfaces. All applications in TinyOS require a 

configuration file but not necessarily a module.      

The implementations of all tested protocols in this thesis run on the Crossbow MicaZ 

platform. Each MicaZ mote has an ATMEL 7.37 MHz ATMega128L, low power 8-bit 

micro-controller with 128 KB of program memory, 512 KB measurement serial flash data 

memory, and 4 KB EEPROM [2]. The MicaZ mote uses Chipcon CC2420, a single-chip 
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IEEE 802.15.4 compliant radio frequency transceiver operating at 2.4 GHz, and is 

capable of transmitting at 250 kbps.  

4.2.2  System Configuration  

The testbed of the experimentation consists of up to 9 MicaZ motes (exclude 

interference nodes used in Section 4.4.4), depends on different experiments. In each 

experiment, one mote acts as the sink and is connected through a CrossBow MIB600 

programming board to a computer. The sink is responsible for receiving data packets and 

logging information as well as broadcasting control messages. Other sensor nodes are 

programmed with the tested protocols. The computer is used to program/reprogram the 

MicaZ motes as well as receive and analyze data/log after the experiments. The default 

CSMA/CA (provided in TinyOS) is used as the MAC layer protocol for all MicaZ motes 

in the experiments. The new protocol is independent of the underlying network topology 

and routing protocol. The study in this work applies to other cases where different 

topology or routing protocol is used. 

For experiments conducted in this thesis, all sensor nodes are deployed in a single 

line topology and the distance between two neighbor sensor nodes is 3 feet. The MicaZ 

mote’s radio power level is set to -3dBm and the transmission range of the resulting 

network is just over 1 hop. All the nodes in the experiment are time-synchronized prior to 

each experiment. Sensor nodes as well as the sink record the information of each packet 

received and log them into the on-board flash memory. The sink broadcasts a control 

message at the end of each experiment. Upon receiving the message, sensor nodes start to 

send the logging information saved in their local memory until all logs are transmitted to 

the sink.  

4.3  Experimental Methodology 

A series of experiments is performed in this chapter to evaluate the performance of 
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the new protocol. In this section, the metrics used to evaluate performance, the protocols 

used for comparison, the experimental parameters and the experimental design are 

described. Section 4.3.1 introduces the evaluation metrics used in the result analysis. The 

four protocols used in the performance comparison study are described in Section 4.3.2. 

Section 4.3.3 presents the experimental parameters including the system parameters as 

well as the protocol parameters. Section 4.3.4 provides details on the experimental design.     

4.3.1  Evaluation Metrics 

The goal of the proposed protocol is to improve reliability and reduce overhead as 

well as latency by implementing a hop-by-hop loss recovery and detection scheme. In the 

experiments, the following metrics are considered when analyzing the performance of the 

proposed protocol: 

 End-to-End Delay: The end-to-end delay is measured as the interval between the 

generation of a data packet at its source and the reception of that packet at the sink. 

The average end-to-end delay for each source node is calculated as the average end-

to-end delay of all data packets generated by that node. The end-to-end delay shows 

the average amount of time it takes for the network to deliver a data packet from a 

particular source node to the sink.   

 Link Delay: The link delay measures the interval from when a packet is 

received/created at the sender to the time it is received at the next hop receiver. 

Comparing the link delays is useful for understanding the network congestion level at 

each link as well as the impact of traffic load on a packet’s link delay.   

 End-to-End Reliability: The end-to-end reliability for each source node is defined as 

the number of data packets from the node that are received at the sink divided by the 

total number of data packets the node generates. The end-to-end reliability reflects the 

reliability of a given path in the network. 

 Link-level Reliability: The link-level reliability measures the reliability of the link 
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between two adjacent nodes. It is defined as the number of unique data packets 

received by the receiver divided by the number of data packets enqueued to be 

transmitted by the sender at every hop.  

 Resend Rate: As the name indicates, the resend rate is a measure of the frequency of 

retransmissions by a node. The resend rate for each sensor node is calculated as the 

number of resent data packets divided by the total number of data packets sent by the 

node. A higher resend rate indicates that more of the senders’ transmissions at the link 

are unsuccessful. Since retransmitting packets may cause higher waiting time in the 

transmission queue, the resend rate has significant impact on both the end-to-end 

delay and the link delay.   

 Total Throughput: The total throughput is measured as the number of unique data 

packets received at the sink divided by the time interval between when the first data 

packet is generated and the last packet is received. The achievable total throughput 

reflects the efficiency of the protocol. The higher the achievable total throughput, the 

faster source nodes can deliver their data packets to the sink. Both the end-to-end 

reliability and the end-to-end delay can affect the total throughput.    

 Link Throughput: The link throughput measures the throughput between two 

neighbor nodes. Link throughput is calculated as the number of unique data packets 

received at the receiver divided by the time interval between when the first data 

packet is generated by the sender and the last packet is received by the receiver. 

 Feedback Overhead: The feedback overhead on a link is defined as the number of 

feedback packets (including ACK and NACK) sent by the receiver divided by the 

total number of unique data packets received by the receiver (Note, however, that 

feedback packets are smaller than data packets).  

4.3.2  Experimental Parameters 

In this section, some important parameters used in the experimental study are 
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identified. There are two types of parameters in the experiments: system workload 

parameters and protocol parameters. They are introduced respectively in the following 

paragraphs.  

System workload parameters are general system settings that affect all sensor nodes 

in the network. All of these parameters are adjustable according to the needs of each 

individual experiment.   

 Network Size is defined as the number of source nodes participating in the experiment. 

It ranges from 4 to 8 in the experiments. 

 Sampling Interval is defined as the time interval between two sensor readings. The 

smaller the sampling interval, the faster the sensor nodes take sensor readings and 

sending them. Changing the sampling interval directly affects the sending rate and the 

overall network throughput.   

 Number of Data Packets per Source Node is defined as the number of sensor readings 

(and therefore data packets) each source node generates during the experiment. When 

the sampling interval is constant, the larger the number of data packet per source node, 

the longer the duration of the experiment.  

 Level of Interference is defined as the extent of interference from other wireless 

devices using the 2.4 GHz frequency band. Two types of interference are identified in 

the experiments. When sensor nodes are deployed sufficiently close to each other, the 

radio transmissions could interfere. Another type of interference is the external 

interference, which is created using a separate sensor network deployed across the 

existing network.   

There are two protocol parameters in the experiments: buffer size and sending gap. 

Both of them have significant impact on overall performance.  

 Buffer Size is defined as the storage capacity in the sensor node’s transmission queue, 

measured as the number of data packets that can be stored. The mechanism and 
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dequeue policy of the transmission queue are described in Section 3.3. The default 

buffer size of the transmission queue is 15.  

 Sending Gap is defined as the mandatory time interval between two consecutive 

sending operations at the sensor node. With the default underlying MAC and TinyOS 

operating system running on the MicaZ testbed, if the time interval between two 

sending operations is below a certain threshold, the network could experience 

significant and unexpected packet loss [18]. Thus, In order to eliminate any potential 

impact of the above effect, a default 50 ms sending gap is implemented in all sensor 

nodes. However, the sending gap is varied in some experiments.   

4.3.3  Compared Protocols 

Besides the proposed data delivery protocol, four other protocols with different loss 

recovery and detection schemes are also implemented for the purpose of comparison.   

Basic Protocol: The basic protocol has no mechanism to recover from packet loss. 

Sensor nodes in the basic protocol simply forward all data packets they create or receive. 

Since no effort is made to resend missing packets, in the basic protocol, there is no 

overhead for a reliability mechanism. The basic protocol is implemented as follows: 

when a sensor node receives a data packet, if the queue is not full, it stores the new 

packet in the queue. Packets are transmitted in a FIFO ordering. A transmitted packet is 

removed from the queue and the second packet in the queue becomes the new head of the 

queue if such a packet exists. After waiting the time period specified by the sending gap, 

the node sends the new head of the queue and repeats the above sending cycle. If the 

queue is full, the node discards any new received packet until a buffer space is available. 

The performance of the basic protocol can be used as a benchmark when studying and 

comparing other reliable protocols. 

ACK Protocol: This protocol uses a timer-based ACK recovery scheme to detect and 

retransmit missing packets. A stop-and-wait explicit ACK strategy is used. After 
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transmitting a data packet, the sender initiates an ACK timer and waits for the feedback 

from the receiver. If no feedback is received before the timer expires, the sender resends 

the data packet. Upon receiving a data packet, the receiver generates an ACK packet and 

sends it back to the sender immediately. The ACK-based loss detection and recovery 

protocol is more aggressive in detecting missing packets compared with a NACK-based 

protocol, since the receiver in the ACK-based protocol confirms reception of every data 

packet it is received. As a result, the ACK function is widely used in the TCP/IP network 

as the reliable transmission scheme. However, in a wireless sensor network, where sensor 

nodes are extremely limited by resource and power, the heavy feedback overhead and 

delay generated by an ACK-based reliable transmission scheme may not be desirable. 

Timer-based NACK Protocol: In most NACK loss recovery schemes, including the 

proposed new protocol, once the NACK packet is sent, the receiver can only passively 

wait for the retransmission from the sender. If, however, the NACK packet itself is lost, 

or the resent packet is lost again, which may be likely to occur in a congested network, 

the receiver can only initiate the next resend request after it receives another data packet 

(another out-of-order packet) from the sender. In order to reduce the waiting time and 

resend delay caused by the loss of a NACK packet or the retransmission, some protocols 

implement a NACK timer to control the sending frequency of the NACK packet. In 

PSFQ [32] and RMST [29] a NACK timer is implemented at the receiver. In the timer-

based NACK protocols, when there is a missing data packet, the receiver aggressively 

sends out NACK packets to the sender for retransmission of the missing packet. If the 

receiver doesn’t hear any reply for the retransmission request within a certain period of 

time, it continually resends the NACK until the data packet is recovered. In the timer-

based NACK protocol implemented in this work, a sensor node starts a NACK timer 

immediately after it sends out a NACK packet. The node will stop the NACK timer and 

suppress the NACK sending process if the missing data packet is recovered before the 

timer is fired. When the sender receives the NACK packet, it resends all enqueued 
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packets for the same receivers that are newer than the last in-order received packet (as 

indicated in the NACK). 

New Protocol with Out-of-order Buffering：As described in Section 3.6.4, a variant 

of the new protocol with out-of-order buffering is proposed. In the modified protocol, 

each node in the network maintains an out-of-order buffer besides the regular 

transmission queue. When receiving a data packet with a packet ID that doesn’t match the 

local variable R[S], the receiver temporarily stores the packet in its out-of-order buffer 

instead of simply dropping it. The receiver checks the out-of-order buffer whenever it 

receives a new in-order data packet. If the previously received out-of-order packet 

happens to be the next expected data packet, the receiver can recover this packet. 

Whenever the sender receives a NACK, at least one out-of-order data packet must have 

been received by the receiver (otherwise the receiver won’t send back the NACK). The 

sender therefore resends only the oldest packet among those packets following the last in-

order packet received by the receivers that are still present in the senders’ transmission 

queue. In contrast to the original proposed protocol, by introducing the out-of-order 

buffer, the modified protocol may be able to reduce the number of retransmissions and 

improve the network delay. 

4.3.4  Experimental Design 

In order to demonstrate the impact of different parameters to the performance of the 

proposed protocol, all of the experiments in this chapter are conducted by varying one 

parameter and keeps all other parameters unchanged. The default experimental settings 

are as followed. The protocol runs on a network configured as a line topology with six 

sensor nodes and one sink node. Each of the sensor nodes is programmed to create data 

packets and send them as well as packets received from its upstream neighbor, to its 

downstream neighbor. Each sensor node creates a new data packet every 1000 ms and has 

15 buffer spaces in its queue. The default sending gap is 50 ms and each sensor node 
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generates 100 packets during the experiment. A summary of the default experimental 

settings is given in Table 4.1.  

 

 

 

 

 

The experiments conducted in this chapter are divided into three groups. The first 

group includes four different tests designed to study the performance of the new protocol 

under different scenarios, which includes traffic test, sampling interval test, scalability 

test and interference test. In the second group of experiments, the new protocol is tested 

under some extreme scenarios such as sampling and transmitting at five times faster rate 

or working with only 1/3 of the buffer space. These sets of experiments are conducted to 

find out when the performance of the protocol may be compromised. Finally, in the last 

group of experiments, the new protocol is compared with four other protocols that 

implement different reliability strategies, in order to demonstrate the relative strengths 

and weaknesses of the new protocol. For all experiments, results are studied from the 

perspective of end-to-end delay, link delay, total throughput, link throughput, resend rate, 

feedback overhead rate, link reliability and end-to-end reliability.  

4.4  Basic Tests of Protocol Performance  

In this section, a set of experiments is conducted to illustrate the important features 

of the new protocol. Since wireless sensor nodes are constrained by both bandwidth and 

storage space, the buffer size and the sampling interval play very important roles in the 

performance of any reliable protocol. Other system parameters such as network traffic, 

Parameters Default Value Range 
Number of Nodes 6 nodes 4 - 8 

Buffer Size 15 packets 10 - 15 
Sending Gap 50 ms 40 - 50 

Sending Interval 1000 ms 200 - 1000 
Number of Packets Created 100 packets 50 - 200 

Table 4.1 Summary of Experimental Parameters 
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interference between sensor nodes and network size may also have impact on the 

performance of the protocol. Four separate tests are performed in this section to discuss 

how system and protocol parameters may affect the performance of the protocol.    

4.4.1  Traffic Test 

In the first set of experiments, the performance of the new protocol with different 

number of packets per source node is tested. Since each sensor node creates new packet 

with a fixed sampling interval, the total number of packets created by each node is 

determined by the duration of the experiment. The traffic test illustrates basic 

performance properties of the protocol. The default experimental settings are used in the 

traffic test, except the number of packets created per node varies in individual 

experiments. The experiment starts with generating 50 packets per node, which equals to 

300 packets in total in the network. Then the number of packets created (and the 

experiment duration) is increased by 100% to 100 packets per node, which equals to 600 

packets in total. At last, the number of packets created is increased by 300% to 200 

packets per node, which equals to 1200 packets in total. The experiment results are 

shown in Figure 4.1, Figure 4.2 and Table 4.2.  

The first observation of the result from Table 4.2 is that reliability is 100% (the 

figure of link level reliability is not presented here because the reliability at each link is 

100%), which indicate all data packets generated by the sensor nodes are successfully 

transmitted to the sink. This result is encouraging because the protocol meets the most 

important design objective: 100% reliable data delivery.  

Figure 4.2(a) represents the resend rate per hop during the traffic test. A  observation 

can be made that on average only around 5.3% of the data packets incurred hop-by-hop 

retransmission, and highest overhead is still less than 8.3%. The feedback overhead 

presented in Figure 4.2(b) contains both NACK and ACK packets. All three experiments 

show similar feedback overhead rate at each hop. 
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When working with different traffic load, the network is only transmitting packets 

for a different length of time, while the number of packet transmitted per second at each 

node remains the same. As can be seen from Figure 4.1 (c), the throughput at each hop 
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for all three experiments are almost identical and the total throughput of the network as 

shown in Table 4.1 are at the same level as well.  

From Figure 4.1 (a), an increasing tread of the end-to-end delay can be observed as 

the number of hops from the sink increase. For example, the end-to-end delay of packets 

created by node 6 is much larger than the end-to-end delay of packets created by nodes. 

The above observation is because data packets generated by node 6 need to travel six 

hops before they can reach the sink, and thus they will take much longer time compare 

with packet from node 1, which is only one hop away from the sink. Another observation 

that can be made from Figure 4.1 (a) is that the relationship between the hops from the 

sink and the end-to-end delay is non-linear. For example, in the 200 packet experiment, 

the delay of packets from node 1 is 22.38 ms; the delay of packets from node 2 is 40.41 

ms, which is slightly less than twice of node 1’s packet delay; the delay of packets from 

node 6 is 193.13 ms, which is nine times larger than node 1’s packet delay. The above 

observation is likely because packets from the nodes far from the sink usually end up at 

the ends of the queues of the intermediate nodes, which increase the queueing delay.  And 

if there are no following packets of these packets, it will take long time to for receivers to 

detect loss. Another possible reason for the larger delay of packets from node 6 is the 

larger possibility of link interference of these packets compared with packets from nodes 

closer to the sink. 

Figure 4.1(b) and Figure 4.2(a) plot the link delay and link resend rate at each hop in 

the network. Often, on a given link, the higher the resend rate, the larger the link delay. 

Recall that the new protocol is designed upon a NACK-based loss detection and recovery 

mechanism. As described in Section 3.4, in the new protocol, a packet loss can only be 

detected when an out-of-order packet is received by the receiver. Thus, if a packet is lost 

during the transmission, the period of time it waits in the queue for retransmission will 

certainly introduce significant amount of delay to the node’s average link delay. The 

positive correlation between resend rate and link delay can be observed from Figure 4.1. 
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For example, in Figure 4.2 (a), the resend rate at node 3 increases as more packets are 

generated. Accordingly, from Figure 4.1 (b), the link delay also increases at node 3 if 

compares the 50 packet line, the 100 packet line and the 200 packet line.  

However, the resend rate and the link delay on a given link are not always directly 

related. Comparing node 4’s link delay and resend rate from Figure 4.1 (b) and Figure 4.2 

(a), although the 50 packet experiment shares the same resend rate with 100 packet 

experiment, it shows lower link delay than 100 packet experiment does. The reason 

behind this observation is that, the pattern of retransmission may also influence the 

positive relationship between the resend rate and the link delay. For example, consider 

the case where two packets were missing and need retransmissions at node 6. It is 

possible that these two packets lost are independent events. Assuming both of them are 

recovered successfully at the first resend attempt, the total extra delay caused by the 

retransmission is two sampling intervals, as explained in the previous paragraphs. 

However, it is also possible that these two packets are adjacent packets and both of them 

get lost during their initial retransmissions. This is a possible scenario that may be caused 

by network congestions or packet collisions. In this case, the first lost packet won’t be 

scheduled for retransmission until the third data packet gets received by the receivers. 

The first packet has to wait at least two sampling intervals in the transmission queue, 

while the second lost packet needs to wait one sampling interval. Thus, with same resend 

rate, in the second scenario, the total extra delay caused by the retransmission is three 

sampling interval. It is reasonable to believe that under the same per node throughput rate, 

the longer the experiment, the higher the possibility to have consecutive packet loss in the 

experiment, which explains why the 50 packet experiment shows lower link delay than 

100 packet experiment at node 4.  

For a single experiment, the link delay is not only influenced by the resend rate, but 

also depends on the link’s distance from the sink. For example, in the 200 packet 

experiment, although node 6 has much lower resend rate than node 1, it can be observed 
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from Figure 4.1 (b) that node 6’s link delay is still higher than node 1. As explained in the 

previous paragraph, both packet loss and retransmission have significant impact on the 

link delay. However, the level of impact varies at different links. At node 6, the node only 

sends one packet per 1000 ms to its downstream neighbor node 5. When a packet from 

node 6 gets lost, node 5 won’t be able to detect the gap in the incoming packet until the 

next packet arrives. Thus, the lost packet has to wait in the transmission queue for at least 

one sampling interval (1000 ms in the traffic test) to get retransmitted. However, if a 

packet loss occurs at node 1, it will be different. Because node 1 not only sends its own 

generated packets but also forwarding all received packets from previous nodes, it 

actually sends at a speed of six packets per second to the sink, a much faster rate than 

node 6. The lost packet from node 1 only needs to wait approximately one sixth of a 

sampling interval to get resent. Therefore, as shown in Figure 4.1, the higher resend rate 

doesn’t necessarily lead to higher link delay if comparing resend rate at different nodes.  

In summary, the protocol can provide 100% reliable data delivery while maintain a 

relatively low network overhead. Increasing the number of packets generated per node 

only extends the length of the experiment which has little impact on the protocol’s overall 

performance. At the same time, because of the higher possibility of adjacent packet loss, 

a slightly larger end-to-end delay and link delay can be observed when more packets are 

generated per node.  

4.4.2  Scalability Test 

The traffic test demonstrates the performance of the new protocol with different 

experimental durations. The next question to address is: how does the performance of the 

new protocol scale with the number of nodes in the network path to the sink? In this 

section, the proposed protocol is tested with a path length of four nodes, six nodes and 

eight nodes respectively. The default value is used for other experimental parameters. The 

test results are shown in Figure 4.3, Figure 4.4 and Table 4.3. 
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The end-to-end reliability and the link reliability are both 100% in all three 

experiments. As the network size increases, there are more nodes creating data packets. In 

the four nodes experiment, a total number of 1069 packets are sent by all nodes, 1048 of 
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which are data packets (including retransmission packets) and 21 are feedback packets. In 

the six node experiment, there are 2263 packets sent in total, including 2211 data packets 

and 52 feedback packets. The number of packets sent increases to 4024 in the eight node 

experiment, 3888 of them are data packets and 136 of them are feedback packets.  

As the network size increases, the network throughput increases as well. A linear 

relationship between the network size and throughput is shown in Figure 4.3(c). The 

throughput at node 1 is around four packets per second in the four node experiment. The 

throughput doubled to approximately eight packets per second at node 1 when the 

network size increased by 100% to eight nodes. Since the total transmission time remains 

unchanged under different network sizes, the linear relationship observed in Figure 4.3(c) 

is a result of the increasing number of data packets generated in the network. The total 

throughput of the experiments is presented in Table 4.3. The total throughput rises by 49% 

when the network size increases from four to six, and rises by another 33% when the 

network size increases from six to eight. The results are in line with expectations.  

The resend rate and overhead also exhibit an increasing trend as the network size 

increase as shown in Figure 4.4(a) and Figure 4.4(b). The total resend rate in the six node 

experiment is 12% higher than in the four node experiment and the total resend rate in the 

eight nodes experiment is 68% higher than in the four nodes experiment. This result is 

consistent with expectations. When more data packets are transmitted in the network 

within the same time period, sensor nodes have a higher possibility to experience packet 

collisions and network congestion. Thus the positive relationship between network size 

and resend rate is reasonable.  

In summary, the three experiments in the scalability test show that the new protocol 

can provide 100% reliable data delivery while maintaining a relatively low network 

overhead for various path lengths. Increasing the number of sensor nodes in the path to 

the sink will result in higher throughput, higher resend rate and higher overhead. The 

impact of path length on end-to-end delay and link delay can also be observed.    
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4.4.3  Sampling Interval Test 

The next set of experiments studies the impact of the sampling interval on the 

protocol’s performance. The sampling interval is the time interval between two sensor 

readings at each source node. With a smaller sampling interval, sensor nodes create more 

data packets per time unit, possibly creating more network congestion since the 

transmission time required for each packet remains the same. The default experimental 

settings are used in the sampling interval test, except the sampling interval varies in 

different experiments. In the first experiment, the sampling interval is one sample every 

1000 ms. The sampling interval is decreased by 25% to one sample every 750 ms in the 

second experiment. At last, the sampling interval is further decreased by 50% to one 

sample every 500 ms in the third experiment. The test results are shown in Figure 4.5, 

Figure 4.6 and Table 4.4. 

As in the previous test, no packet loss is observed in all three experiments at both the 

end-to-end level and the link level. However, note in Figure 4.6(a) that there is an 

increasing trend in the resend rate as the sampling interval becomes smaller. The 500 ms 

experiment has a resend rate approximately 54% higher than in the 750 ms experiment, 

and 92% higher than in the 1000 ms experiment. With a smaller sampling interval, sensor 

nodes are simply creating more data packets per second. For example, in the 1000 ms 

experiment, each node generates one data packet per second. Sensor nodes also need to 

forward packets they receive from their upstream neighbors. Thus, node 1 needs to 

handle at least six data packets per second. In the 500 ms experiment, since each node 

creates two data packets per second, the sending rate at node 1 is at least twelve packets 

per second. The higher resend rate observed in the 500 ms experiment is likely due to the 

higher loss rate, which is a result of smaller sampling interval. It is encouraging to 

observe that the proposed protocol is able to maintain high reliability in the higher-rate 

environment. However, it is reasonable to predict that if the sampling interval is further  
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decreased to a level where a sensor node is receiving more packets than it can handle, 

packet loss can be inevitable, considering the limited storage space in sensor nodes. A 

detailed discussion of the impact of a low sampling interval on the end-to-end reliability 
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is presented in Section 4.5.1.  

Figure 4.5(c) presents the throughput per node in all three experiments. As the 

sampling interval becomes smaller, the sensor nodes are sending more data packets per 

second and thus an increasing trend of throughput is observed. The result in Table 4.4 

shows that the total network throughput in the 500 ms experiment is nearly 49.5% higher 

than in the 750 ms experiment and is 99% higher than in the 1000 ms experiment.     

The end-to-end delay and link delay are plotted in Figure 4.5(a) and Figure 4.5(b), 

respectively. The 750 ms experiment shows slightly higher end-to-end delay and link 

delay than the 1000 ms experiment. The sensor nodes in the 500 ms experiment are 

sampling two times faster than in the 1000 ms experiment and 50% faster than in the 750 

ms experiment, and the end-to-end delay is higher than in the other two. All else equal, it 

is reasonable to assume that the faster nodes send, the smaller the delay. However, as 

shown in this test, the smaller sampling interval leads to higher resend rate, which in 

general has negative impact on the delay, as discussed in Section 4.4.1. Thus there is a 

tradeoff between the impact of sampling interval and the resend rate to the delay. As 

shown in the experimental results, at the sampling interval range between one packet per 

second to two packet per second, the resend rate plays a more important role in the end-

to-end delay.     

In summary, according to the three experiments in the sampling interval test, it can 

be concluded that the protocol can achieve desirable reliability and low overhead under 

different sampling intervals. Decreasing the sampling interval within the range 

considered here has no significant impact on the end-to-end reliability and link reliability. 

At the same time, the network throughput is increasing because more data packets are 

pumped into the network. The resend rate and overhead are also increasing due to the 

higher possibility of packet loss.  
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4.4.4  Interference Test 

In WSN applications, sensor nodes may be required to work in various environments 

in which interference between sensor nodes is unavoidable. In the last test, the impact of 

interference on the protocol’s performance is tested. The default experimental settings 

described in Section 4.3.4 are used in this test. In the first experiment (“Normal”), sensor 

nodes are deployed in a linear topology and each node is one hop away from its neighbor 

nodes as in the previous tests. In the second experiment (“Overlap”), nodes were moved 

close to each other that every node can cover four nodes in its radio range. In the final 

experiment (“Interference”), four other nodes were added into the network. By defining 

different group ID (a bit in the packet header), those other nodes form two pairs and can 

only communicate with each other. These nodes will not join in the existing network. 

Each of the two nodes is deployed on one side of the original network. The other nodes 

keep transmitting during the entire experiment to each other at the rate of 20 packets per 

second. The experimental results are shown in Figure 4.7, Figure 4.8 and Table 4.5.   

From Figure 4.7(a), significant differences in the end-to-end delay between the 

interference experiment and other two experiments can be observed. The frequent data 

transmission between the four new nodes appears to have strongly interfered with the 

normal communication among the other nodes. The overlap experiment also exhibits 

slightly higher end-to-end delay than the normal experiment. It is likely that the closer 

distance between sensor nodes in the overlap experiment causes interference and 

contention to occur and thus increases the end-to-end delay.      

Figure 4.8(a) and Figure 4.8(b) plot the resend rate and overhead respectively. The 

average resend rate for the three experiments are 5.3%, 6.1% and 13%, respectively. The 

interference experiment shows 145% higher resend rate than the normal experiment and 

109% higher than the overlap experiment.  

Because all experiments run with a 1000 ms sampling interval experience no packet  
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loss, it is reasonable to predict that all experiments should have approximately the same 

throughput. The throughput results shown in Figure 4.7(c) and Table 4.5 confirm this 

prediction. There is only 0.05% variance in the throughput among the three experiments.   
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In summary, interference from other traffic flows can significantly disrupt 

communication. The interference may lead to higher end-to-end delay, higher link delay 

and a higher resend rate. Interference among the nodes on the same path to the sink also 

exists, although the impact is not as strong as from other traffic flows. Interference has no 

significant impact on the throughput of the network.  

4.5  Protocol Stress Tests 

The performance of the new protocol has already been tested with various system 

and protocol parameters in Section 4.4. The protocol achieves 100% reliability in all of 

the tests. However, an increasing trend of resend rate is noticed with the increase of 

system and protocol parameters. In this section, the performance of the protocol is 

studied under some extreme conditions where the performance may be compromised. 

The reminder of this section is organized as follow: Section 4.5.1 studies the impact of 

the sending gap and the sampling interval on the new protocol. Section 4.5.2 evaluates 

the performance of the protocol with different buffer sizes.  

4.5.1  Effect of Sending Gap and Sampling Interval 

One significant difference between simulation and testbed implementation is that 

simulation simplifies some assumptions that cannot be ignored in the implementation. As 

tested in Flush [24], with the default underlying MAC and TinyOS operating system 

running on the MicaZ testbed, if the packet interval between two sending operations is 

below a certain threshold, the network could experience significant and unexpected 

packet loss. Thus, in the implementation of the protocol, in order to achieve the best 

possible performance and completely remove the impact of the above issue, a 50 ms 

sending gap between two consecutive sending operations is implemented. In other words, 

after sending a packet, the sensor node is forced to wait 50 ms before it can send another 

packet. By implementing the sending gap, the maximum sending rate a sensor node can 
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reach is limited. A 50 ms sending gap implies that a sensor node can send no faster than 

20 packets per second. Since each sensor node in the network has limited storage space, 

when the receiving rate at a node is larger than the sending rate, packet loss is inevitable 

after the buffer gets filled up. The receiving rate in this protocol is determined by the 

speed at which the sensor nodes generate new data packets, which is decided by the 

sampling interval. Thus, in this section, several experiments are conducted to study the 

effect of different sending gap and sampling interval on the performance of the new 

protocol. The experimental settings of the four experiments conducted in this test are the 

default settings with different combinations of the sending gap and the sampling interval. 

The sending gap and the sampling interval of the experiments are summarized in Table 

4.6. Figure 4.9, Figure 4.10 Figure 4.11 and Table 4.7 show the experimental results. The 

result of the experiment with default 1000 ms sampling interval and 50 ms sending gap is 

also included for comparison.          

 

Experiment Sending Gap Sampling Interval 
250-40 40 ms 250 ms 
300-40 40 ms 300 ms 
250-50 50 ms 250 ms 
300-50 50 ms 300 ms 

 

Figure 4.9(a) and Figure 4.9(b) show the end-to-end delay and link delay, 

respectively. Because of heavy packet loss and retransmissions at link 1, the 250 ms 

sampling interval and 50 ms sending gap experiment (250-50) shows significantly higher 

delay than all other experiments at both end-to-end level and link level. Experiments with 

larger sampling interval and with same sending gap have lower end-to-end delay. As 

shown in Figure 4.6(a), the 300-40 experiment exhibits lower end-to-end delay at every 

node compared with the 250-40 experiment. The rationale behind this observation is that 

although a lower sampling interval can reduce the amount of time a packet must wait in  

Table 4.6 Experiment Settings of Sending Gap and Sampling Interval Test  
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        (b) Link Delay 

(c) Throughput 
Figure 4.9 Throughput and Delay in Sending Gap and Sampling Interval Test 

(a) End-to-end Delay 
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the queue for retransmission, it also results in a higher resend rate, which in turn leads to 

higher end-to-end delay. It is also observed that the 300-40 experiment has smaller delay 

than the 300-50 experiment, which has the same sampling interval but a larger sending 

gap. The result is consistent with expectations. All else being equal, the faster the nodes 

send, the smaller the overall delay. 

Figure 4.9(c) presents the per node throughput of the experiment. Without packet 

loss, it is observed that with the same sampling interval, the throughputs are nearly 

identical, even if the sending gap is different. For example, the throughputs in the 300-40  
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Figure 4.10 Overhead Costs in Sending Gap and Sampling Interval Test 
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Experiment End-to-End 
Reliability 

Total 
Throughput 

(pkt/sec) 

Average 
Resend Rate 

Average Feedback 
Overhead 

250-40 100% 22.61 23.8% 11.7% 
300-40 100% 19.12 19.7% 9.6% 
250-50 77% 16.92 20.8% 10.2% 
300-50 100% 18.92 19.1% 9.3% 

1000-50 100% 5.87 5.3% 2.5% 
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Figure 4.11 Reliability in Sending Gap and Sampling Interval Test  

Table 4.7 Results of Sending Gap and Sampling Interval Test 

(a) End-to-end Reliability 

(b) Link Reliability 



 

80 

 

and 300-50 experiment almost overlap with each other in Figure 4.9(c). Even with packet 

loss, the throughput in the 250-40 and 250-50 experiments is still very close at links 

without packet loss, such as from link 2 to link 6. The plunge of the throughput at link 1 

in the 250-50 experiment is mainly due to the large packet loss at node 1. Thanks to the 

small sampling interval, all experiments show much higher network throughput than the 

1000 ms sampling interval experiment.     

Figure 4.11(a) and Figure 4.11(b) plot the end-to-end and the link reliability of the 

experiments, respectively. Packet loss is observed in the experiment. As shown in Figure 

4.11(b), all sensor nodes are able to maintain 100% reliability except node 1 in the 250 

ms sampling interval and 50 sending rate experiment (250-50).An interesting comparison 

is that both 250 ms sampling interval and 40 ms sending gap experiment (250-40) and 

300 ms sampling interval and 50 ms sending gap experiment (300-50) are still able to 

achieve 100% reliability. An explanation as to why packet loss only occurs in 250-50 

experiment is as follows. The 250 ms sampling interval implies that each sensor node 

generates four packets per second. Since all sensor nodes except the very last one need to 

forward the incoming data packet from their upstream neighbor, the minimum number of 

data packets every sensor node needs to transmit per second can be calculated. In Table 

4.8, the number of data packets that need to be sent in the 250-50 experiment, assuming 

no packet loss, is presented. As one can see, node 1 gets 24 data packets every second 

coming to the transmission queue. However, since the sending rate is only 20 pkt/s as 

determined by the sending gap, node 1 is receiving more packets in its queue than it can 

send out. When the receiving rate exceeds the sending rate, the data packet cannot be sent 

immediately is stored in the transmission queue. When the queue fills up, the node is then 

forced to drop data packets. That explains the larger number of packets lost on the link 

between node 1 and the sink. A similar argument also explains why the 250 ms sampling 

interval and 40 ms sending gap didn’t have any packet loss. Since the 40 ms sending gap 

implies a maximum sending rate of 25 packets second, with the same sampling interval 
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as the 250-50 experiment, node 1 in the 250-40 experiment is sending fast enough to 

handle all incoming packets and thus has no packet loss.   

 

Category Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 
Data Packet Generated 100 100 100 100 100 100 
Data Packet Received 500 400 300 200 100 0 
Data Packet in Total 600 500 400 300 100 100 

Packet need to Be Sent 24 pkt/s 20 pkt/s 16 pkt/s 12 pkt/s 8 pkt/s 4 pkt/s 
  

Figure 4.10(a) and Figure 4.10(b) present the resend rate and overhead of the 

experiments. Some observations of the results are summarized and discussed as follows: 

 With the same sampling interval, the experiment with smaller sending gap has 

slightly higher resend rate. For example, the average resend rate for the 300-40 

experiment is 19.7%, around 2.5% higher than the 300-50 experiment. A smaller 

sending gap implies a higher sending rate. In general, the faster a node is sending, the 

higher the possibility that the node may experience packet collisions and channel 

contentions, which may in turn leads to a higher packet loss rate and a higher resend 

rate.  

 With the same sending gap, the experiment with smaller sampling interval has a 

higher resend rate. For example, the average resend rate in the 250-40 experiment is 

about 19% higher than in the 300-40 experiment. This result is in line with the 

findings in the sampling interval test in Section 4.4.3. With a 250 ms sampling 

interval, a single sensor node generates four packets per second. In a six node 

network, 24 packets are created and transmitted in the network every second. The 

number of packets for the 300 ms sampling interval can be calculated with the same 

method. Comparing with the 300-40 experiment, the 250-40 experiment transmits 20% 

more packets per second. The more packets transmitted in the network, the higher the 

packet loss rate and the resend rate.  

Table 4.8 Sending Rate and Receiving Rate of Sending Gap and Sampling Interval Test  
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 An increasing trend of the link level resend rate can be observed in Figure4.10 (a) as 

the distance to the sink decreases. This observation is reasonable based on the fact 

that nodes closer to the sink have more packets to forward and experience greater 

network contention. Node 1 shows the highest resend rate among all nodes in almost 

all the experiments in this test. However, an interesting observation about the resend 

rate with experiment has packet loss is that the there is a plunge in the resend rate at 

the link with packet loss. In the 250-50 experiment, node 1’s resend rate is only 

28.4%, compared with 37.1% at node 2. As discussed in previous sections, the packet 

loss in experiment 250-50 is because node 1 receives more packets than it can 

transmit. Thus when a NACK is received by node 1, it is possible that the data packet 

that would otherwise be retransmitted has already been removed from the queue due 

to the limited storage space. As described in Section 3.5, instead of resending the 

missing packet (which is no longer available), node 1 will set the SKIP field to 1 and 

transmitting all packets available in the queue to the receiver. As a result the resend 

rate is lower at node 1. 

The effect of the sampling interval and the sending gap to the performance of the 

protocol is quite significant. By comparing the 250 ms sampling interval and 40 sending 

rate experiment (250-40) and the default 1000 ms sampling interval and 50 sending rate 

experiment (1000-50), one can observe that the 250-40 experiment has on average 235% 

higher end-to-end delay and 390% higher total resend rate than the 1000-50 experiment. 

On the other hand, with a lower sampling interval and a lower sending gap the network 

throughput can be significantly improved. The 250-40 experiment shows 305% higher 

total throughput than the 1000-50 experiment. 

4.5.2  Effect of Buffer Size 

One of the characteristics of wireless sensor networks is that sensor nodes have 

limited storage space. In this section, four experiments are performed to study the impact 
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of buffer size to the performance of the proposed protocol. The default experimental 

settings are used in this test. In order to study the effect of buffer size in the case with and 

without packet loss, the experiments conducted in this test are run with different sampling 

interval and buffer size. The experiment results are presented in Figure 4.12, Figure 4.13, 

Figure 4.14 and Table 4.10. 

 

 
Experiment Sampling Interval Buffer Size (packets) 

250-10 250 ms 10 
300-10 300 ms 10 
250-15 250 ms 15 
300-15 300 ms 15 

 

As shown in the figures, the 300-10 experiment and 300-15 experiment exhibit 

similar performance for all performance metrics. Both experiments have 100% end-to-

end reliability and link reliability as shown in Figure 4.14(a) and Figure 4.14(b). The 

average resend rate in the 300-10 experiment is 18.9%, which is only 1% different than in 

the 300-15 experiment. The average overhead in the 300-10 experiment is 9.5% 

compared with 9.3% in the 300-15 experiment. The end-to-end delay and link delay 

curves of the two experiments in Figure 4.12(a) and Figure 4.12(b) are almost 

overlapping with each other. Since no packet loss is observed in either experiment, all 

sensor nodes are sending at a rate matching their receiving rate. As long as buffer 

overflow doesn’t occur during the experiment, the size of the buffer has no significant 

impact on the performance of the new protocol. 

As discussed in the previous section, the network experiences packet loss when the 

protocol runs with 250 ms sampling interval and 50 ms sending gap because of buffer 

overflow. Comparing the result of the 250 ms sampling interval with 10 buffer spaces 

experiment (250-10) and 250 ms sampling interval with 15 buffer spaces experiment 

(300-15), some of the observations are as follows: 

Table 4.9 Experiment Settings of Buffer Size Test 
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Figure 4.12 Throughput and Delay in Buffer Size Test 
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 Due to buffer overflow, both experiments have packet loss as shown in Figure 4.14(a) 

and Figure 4.14(b). When a packet is missing and this packet is no longer available in 

the queue because of buffer overflow, the sensor node will not be able to resend the 

missing packet but send out the oldest packet available in its queue and sets the SKIP 

field in that packet. Since the 250-10 experiment has only buffer space for 10 packets 

compared with 15 packets in the 250-15 experiment, in the case of buffer overflow, 

the 250-10 experiment has a higher chance to drop packets and can recover fewer 

missing packets compared with the 250-15 experiment.  
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Figure 4.13 Overhead Costs in Buffer Size Test 
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 Experiment End-to-End 
Reliability 

Total 
Throughput 

(pkt/sec) 

Average 
Resend Rate 

Average 
Feedback 
Overhead 

250-10 70% 15.45 19.6% 9.7% 
300-10 100% 19.01 18.9% 9.5% 
250-15 77% 16.92 20.8% 10.2% 
300-15 100% 18.93 19.1% 9.3% 
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Figure 4.14 Reliability in Buffer Size Test 

Table 4.10 Results of Buffer Size Test 

(a) End-to-end Reliability 

(b) Link Reliability 
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 The average end-to-end delay of the 250-15 experiment is 684 ms, which is about 25% 

higher than the end-to-end delay of 250-10 experiment at 552 ms. The link delay of 

the 250-15 experiment is also higher than the 250-15 experiment as plotted in Figure 

4.12(b). The higher delay observed in the 250-15 experiment is a result of its larger 

buffer space. Since more data packets can be stored in the larger buffer, the chance of 

recovering missing packets is higher. Consequently, the average waiting time of data 

packets in the queue is also higher in the experiment with larger buffer size. The 

increasing waiting time in the transmission queue of the 250-15 experiment 

significantly increases the overall delay.  

 The throughput of the experiment is shown in Figure 4.12(c). Since no packets are 

lost except of the link from node 1 to the sink, the throughput in the 250-10 

experiment and in the 250-15 experiment is almost identical. However, the 

throughput in the 250-10 experiment at link 1 is 15.45 packets per second, which is 

8.6% lower than the throughput in the 250-15 experiment at the same link. The above 

observation is because the higher packet loss rate at the 250-10 experiment at link 1 

leads to a lower number of data packets finally received by the sink. As a result, the 

throughput of link 1 in the 250-10 experiment is smaller than in the 250-15 

experiment.  

 Finally, the results for resend rate and feedback overhead are also influenced by the 

buffer size. The average resend rate in the 250-10 experiment is 19.6% compared 

with the resend rate in the 250-15 experiment at 20.8%. The average feedback 

overhead of the 250-10 experiment is 9.7% compared with the overhead in the 250-15 

experiment at 10.2%. In the experiment with a larger buffer space, missing packets 

have more retransmission opportunities to be recovered. In contrast, in the experiment 

with a smaller buffer space, there is a higher chance that a missing packet has already 

been dropped out of the queue because of buffer overflow. Thus, the retransmission 

opportunities for those packets are eliminated. As a result, a lower resend rate and 
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lower feedback overhead are observed in the experiment with smaller buffer size.   

4.6  Performance Comparison with Other Protocols 

In this section, the proposed new protocol is tested and compared with four other 

protocols with different reliability schemes. In Section 4.6.1, the new protocol is 

compared with a basic protocol, which doesn’t implement any loss detection and 

recovery scheme. Section 4.6.2 presents the comparison results between the new protocol 

and a stop-and-wait explicit ACK protocol. Section 4.6.3 gives results for the 

performance differences between the new protocol and a timer-based NACK protocol. In 

the last section, the new protocol is compared with the modified protocol with out-of-

order buffering.  

4.6.1  Comparing New Protocol with Basic Protocol 

Four experiments are conducted in this section to test the performance of the new 

protocol and the basic protocol. The default experimental settings are used in this test, 

except the sampling interval varies in individual experiment. In the following, Basic-250 

ms and New-250 ms refer to the basic and new protocol with a 250 ms sampling interval, 

respectively, while Basic-500 ms and New-500 ms refer to the basic protocol and new 

protocol, respectively, with a 500 ms sampling interval. The test results are shown in 

Figure 4.15, Figure 4.16 and Table 4.11.  

Figure 4.15(a) and Figure 4.16(b) show the end-to-end delay and the link delay 

results of the test, respectively. It is observed that the basic protocol with a 500 ms 

sampling interval achieves the lowest network delay among all four protocols. Because 

the basic protocol doesn’t make any effort to recover the missing packets, after sending a 

data packet, no matter this packet is received by the receiver or not, sensor nodes in the 

basic protocol forward the next packet in their transmission queue. As discussed in 

Section 4.5.1, a 50 ms sending gap implies that the maximum sending rate at each sensor 
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node is 20 packets per second. With a sampling interval of 500 ms, the highest receiving 

rate is 12 packets per second, which occurs at node 1. Thus, when a data packet is 

received at a sensor node, it can be forwarded with little or no delay. The average link 

delay of 10ms that is observed on all but the link between node 1 and the sink can be 

considered as the minimum amount of time needed by a sensor node to deliver a packet 

in the network. In the Basic-500 ms experiment, an increasing trend of the link delay can 

be observed from Figure 4.15(b). This observation is due to the increasing amount of 

traffic as the node gets closer to the sink. In the Basic-250 ms experiment, despite the 

similar delay as in the Basic-500 ms experiment from node 2 to node 6, a significant 

increase of link delay at node 1 can be observed. In the Basic-250 ms experiment, the 

receiving rate is 24 packets per second at node 1, which exceeds the maximum sending 

rate of 20 packets per second. The packets that node 1 cannot send immediately are 

stored in the transmission queue and thus increase the queuing delay. When the queue is 

full, the new received data packets are dropped immediately. Those dropped data packets 

have no impact on the end-to-end delay or the link delay since they weren’t sent out at all.  

Figure 4.15(c) plots the link throughput. Both the sampling interval and the achieved 

reliability impact the link throughput. However, as one can observe from the results, the 

sampling interval plays a more important role than the reliability. The link throughput in 

the New-500 ms experiment is slightly higher because of higher reliability. The link 

throughput in the Basic-250 ms experiment and the New-250 ms experiment is about 100% 

higher compared with in the Basic-500 ms experiment and in the New-500 ms 

experiment. Given the fact that with a 250 ms sampling interval packets are generated 

twice as fast as with a 500 ms sampling interval, the result is reasonable. The difference 

between the Basic-250 ms experiment and the New-250 ms experiment is because of the 

difference in their link reliability. In the New-250 ms experiment, higher link reliability is 

achieved for all but the link between node 1 and the sink and thus it has higher 

throughput at those links. For the link between node 1 and the sink, however, the  
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Figure 4.15 Throughput and Delay in New Protocol and Basic Protocol Test 
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Experiment End-to-End 
Reliability 

Total 
Throughput 

(pkt/sec) 

Average 
Resend Rate 

Average 
Feedback 
Overhead 

Basic-250 ms 83% 18.77 0.0% 0.0% 
Basic-500 ms 91% 10.48 0.0% 0.0% 
New-250 ms 77% 16.92 20.8% 10.2% 
New-500 ms 100% 11.63 9.8% 4.7% 

 

New-250 ms experiment achieves has only 77% link reliability, 8% lower than in the 
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            Figure 4.16 Overhead Cost in New Protocol and Basic Protocol Test 

Table 4.11 Results of New Protocol and Basic Protocol Test 

(a) End-to-end Reliability 

(b) Link Reliability 
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Basic-250 ms experiment.  

Figure 4.16(a) and Figure 4.16(b) show the end-to-end reliability and the link 

reliability, respectively. With 500 ms sampling interval, the new protocol, because of the 

hop-by-hop loss recovery scheme, achieves 100% reliability at all links. The total end-to-

end reliability in the Basic-250 ms experiment is 83%, which is 9.6% lower than the total 

end-to-end reliability in the Basic-500 ms experiment. The Basic-250 ms experiment also 

exhibits lower link reliability at all links compared with the Basic-500 ms experiment. 

Since the basic protocol doesn’t have any loss detection and loss recovery scheme, it is 

safe to conclude that most of the packet loss is due to corrupted packets and collisions. 

However, there could be another reason for the packet loss in the Basic-250 ms 

experiment. As analyzed in the previous paragraph, in the Basic-250 ms experiment, node 

1 receives data packets at a rate higher than it can send out. When the queue is filled up, 

node 1 has to reject a number of packets and discard them right away. The new protocol 

surprisingly underperforms the basic protocol on all performance metrics. The overall 

end-to-end reliability is 77% in the New-250 ms experiment compared with 83% in the 

Basic-250 ms experiment. The average end-to-end delay in the New-250 ms is 517ms 

compared with 51ms in the Basic-250 ms experiment. The total throughput in the New-

250 ms experiment is 17.4 packets per second, while the total throughput is 18.8 packets 

per second in the Basic-250 ms experiment. The link delay at node 1 is around 360ms in 

the New-250 ms experiment compared with 26ms in the Basic-250 ms experiment. In the 

New-250 ms experiment, a large number of feedback packets are injected into the 

network (around 10.2%) relative to the total number of data packets, which triggers many 

packet resends (around 20.8%). The above comparison results show that, even through 

the hop-by-hop recovery scheme in the new protocol helps to repair some of the packet 

loss caused by packet corruptions, the feedback packets and resent packets generated by 

the recovery scheme may actually lead to a higher possibility of packet collisions and 

channel contentions, which in turn results in significant delay and larger loss rate.  
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4.6.2  Comparing New Protocol with ACK Protocol 

In this section, the new protocol is tested and compared with the ACK-based reliable 

protocols. In this section, three experiments are conducted. The first experiment tests the 

performance of an ACK protocol with a 50 ms ACK timer. The second experiment tests 

the performance of the same ACK protocol with a 100 ms ACK timer. The last 

experiment tests the performance of the new protocol. The default experimental settings 

with 500 ms sampling interval are used in this test. The test results are shown in Figure 

4.17, Figure 4.18 and Table 4.12.   

Figure 4.17(a) plots the end-to-end delay of the experiments. In the ACK protocol, 

because the new data packet cannot be sent until the previous sent packet was 

acknowledged by the receiver, tremendous queuing delay is introduced to the end-to-end 

delay of the packet. Both ACK protocols show significant delay compared with the new 

protocol. The average end-to-end delay in the ACK-50 ms experiment is 1529.55ms and 

the average end-to-end delay in the ACK-100ms experiment is 1660.40 ms. The new 

protocol, on the other hand, allows the transmission of the new data packet in parallel 

with the loss detection and recovery process. Thus, the average end-to-end delay of the 

New Protocol experiment is only 78.29 ms. A similar result can be observed in the link 

delay as shown in Figure 4.17(b). The new protocol shows much smaller delay than the 

ACK protocols at all links. The advantage of the new protocol over the ACK protocol in 

terms of delay is obvious. It is worth mentioning that the delay in the ACK-50 ms 

experiment is lower than in the ACK-100 ms experiment as observed because the resend 

timer of the ACK-50 ms experiment is smaller. As a result, in the case where the resend 

timer is fired and the sender needs to retransmit the missing packet, the queuing delay in 

the ACK-50 ms experiment is relatively smaller. 

The resend rate plotted in Figure 4.18(a) exhibits some variance among the three 

experiments. As explained in the previous section, the new protocol employs a NACK- 
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based loss detection approach where packet loss can only be detected when the receiver 

receives another data packet with gap in the packet ID. As a result, for every missing 
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Experiment End-to-End 
Reliability 

Total 
Throughput 

(pkt/sec) 

Average 
Resend Rate 

Average 
Feedback 
Overhead 

ACK-50 ms 100% 7.74 5.7% 100.0% 
ACK-100ms 100% 7.35 5.8% 100.0% 
New Protocol 100% 11.63 9.8% 4.7% 

Figure 4.18 Overhead Cost in New Protocol and ACK Protocol Test 

Table 4.12 Results of New Protocol and ACK Protocol Test 

(a) Resend Rate 

(b) Feedback Overhead 
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packet, both the missing packet and the packet next to that packet in the transmission 

queue have to be retransmitted. However, in the ACK-based protocol, since the loss 

detection is associated with a local resend timer, the sender only needs to resend the 

missing packet.  As one can observe from Figure 4.18(a), the average resend rate in the 

New Protocol experiment is 9.8%, whereas the resend rate in the ACK-50 ms experiment 

is 5.7% and resend rate in the ACK-100ms experiment is 5.8%.  

Figure 4.18(b) presents the result of overhead of the test. Since the receiver in the 

ACK protocol is responsible to create ACK packet and confirm the reception of every 

data packet, the overhead of the ACK protocol is 100%. In the new protocol, however, 

the receiver only needs to reply a NACK when a missing packet is identified. The 

average overhead of NACK is 4.7%, which is much smaller compared with ACK 

protocols. Small overhead is the main reason that a NACK-based approach is usually 

preferred over an ACK-based approach in wireless sensor networks.  

All experiments in this test show 100% reliability. Although all data packets are 

received by the sink at all experiments, the duration of the each experiment varies. 

Because of the variance of the resend timer and the queuing delay, the ACK-50 ms 

experiment lasts 77368 ms, the ACK-100 ms experiment lasts 81630ms, while the New 

Protocol experiment last only 51569 ms. As a result, the New Protocol experiment shows 

the total throughput of 11.63 packets per second, 49% higher than in the ACK-50 ms 

experiment and 57% higher than in the ACK-100ms experiment.  

4.6.3  Comparing New Protocol with NACK Protocol 

In this section, three experiments are conducted to compare the performance of the 

new protocol and a timer-based NACK protocol. The NACK-50 ms represents the NACK 

protocol with a 50 ms NACK timer, and the NACK-100 ms represents the NACK 

protocol with a 100 ms NACK timer. The default experimental settings with a 500 ms 

sampling interval are used in this test. The test results are shown in Figure 4.19, Figure 
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4.20 and Table 4.13.  

50 ms and 100 ms are chosen as the length of the NACK timer in this test because 

the sending gap at all sensor nodes is set to 50 ms. If the timer is reduced to a value 

smaller than 50 ms, it is possible that a retransmission has already been scheduled and is 

waiting to be sent. The receiver, however, may assume that the NACK or the 

retransmission was lost when the timer expires and thus will send out a redundant NACK 

packet. The timer-based NACK protocol is expected to reduce the network delay at the 

expense of a higher overhead rate.  

As shown in Figure 4.19 and Table 4.13, all three protocols achieve 100% end-to-end 

reliability and have similar throughput. In Figure 4.20(b), the timer-based NACK 

protocols show higher overhead. The average overhead in the NACK-50 ms experiment 

is 12.5%, which is 20.2% higher than in the NACK-100 ms experiment and 27.5% higher 

than in the New Protocol experiment. However, as plotted in Figure 4.19(a) and Figure 

4.19(b), the timer-based NACK protocols have even higher delay than the new protocol 

which has no NACK timer. The average end-to-end delay in the NACK-50 ms 

experiment, NACK-100ms experiment and New Protocol experiment is 97.94 ms, 84.18 

ms and 78.29 ms, respectively. The higher delay of the timer-based NACK protocol is 

likely because, although aggressively sending NACKs and requesting retransmissions 

may reduce queuing delay for some data packets, the additional overhead generated may 

cause a higher possibility of packet corruptions and channel contention. In fact, the 

consecutive loss of packets in the scenarios described above is possibly caused by local 

network congestion. In the timer-based NACK approach, by sending additional NACK 

packets, the nodes are injecting more packets into a congested network, which may 

further aggravate the network congestion. In Figure 4.20(a), the NACK-50 ms 

experiment shows a higher resend rate than the other two experiments. One may draw the 

conclusion that the implementation of a NACK timer leads to higher numbers of NACK 

packets, which results in higher numbers of retransmissions and finally impacts delay. 
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Experiment End-to-End 
Reliability 

Total 
Throughput 

(pkt/sec) 

Average 
Resend Rate 

Average 
Feedback 
Overhead 

NACK-50 ms 100% 11.62 12.5% 5.9% 
NACK-100 ms 100% 11.62 10.4% 5.1% 
New Protocol 100% 11.63 9.8% 4.7% 

   

Compared with the NACK-50 ms experiment, the performance results in the NACK-

100 ms experiment are closer to the result of New Protocol experiment. For example, the 
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Table 4.13 Results of New Protocol and NACK Protocol Test 

(a) Resend Rate 

(b) Feedback Overhead 



 

100 

 

average overhead and average resend rate in the NACK-100ms experiment is only 6% 

larger than in the New Protocol experiment and it is about 20% smaller than in the 

NACK-50 ms experiment. A similar trend can be observed in the results of the end-to-end 

delay and the link delay. The reason for the above observation is that, when increasing the 

NACK timer to 100 ms, which is twice as large as the sending gap, the chance of 

receiving no replies at the receiver decreases significantly. Most of the NACK timers 

were suppressed and only a very small number of retransmissions were triggered. Thus, 

the NACK-100 ms experiment shows similar results as in the New Protocol experiment. 

4.6.4  Comparing New Protocol with Modified Protocol 

As described in Section 3.6.4, a modified protocol with out-of-order buffering is 

proposed in this work for the purpose of performance enhancement. Four experiments are 

conducted in this test to test the performance of the original protocol and the modified 

protocol. The default experimental settings are used in this test, except the sampling rate 

varies in individual experiments. New-250 ms and Modified-250 ms represent the new 

protocol and the modified protocol with 250 ms sampling interval, respectively, and 

New-500 ms and Modified-500 ms represent the new protocol and the modified protocol 

with 500 ms sampling interval, respectively. The experimental results are shown in 

Figure 4.21, Figure 4.22, Figure 4.23 and Table 4.14.      

Figure 4.21(a) and Figure 4.21(b) plot the end-to-end delay and the link delay 

observed in the experiments. When using a 500 ms sampling interval, both protocols 

show very similar network delay. Although the modified protocol is able to recover out-

of-order packets from its local buffer rather than requesting additional retransmissions, 

the amount of time those packets spend in the out-of-order buffer becomes part of their 

network delay. However, when the network starts to experience packet loss, when using a  

250 ms sampling interval, the modified protocol shows better delay results at both end-to-

end level and link level than the original protocol. The lower delay of the modified 
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protocol is a consequence of the implementation of the out-of-order buffer. It is 

reasonable to assume that when the wireless channel becomes lossy and congested, the 

NACK packet as well as the retransmissions may also be lost during their transmission. 

Since the modified protocol stores an out-of-order packet in its own buffer, it is able to 

recover that packet immediately after receiving the correct in-order packet. For the 

original protocol, however, the receiver relies on retransmission from the sender to 

recover the missing packet. If retransmission isn’t successful because of the increasing 

level of channel contention and packet collisions, multiple retransmissions may be 

needed for one missing packet. As a result, the accumulated queuing delay eventually 

increases the network delay of the original protocol.    

The throughput of both of the 500 ms sampling interval experiments are almost 

identical as plotted in Figure 4.21(c). The Modified protocol with 250 ms sampling 

interval, however, exhibits higher throughput at link 1 compared with the original 

protocol. The variance of the throughput is a result of the difference in the end-to-end 

reliability. Because of the implementation of the out-of-order buffer, which results in a 

lower resend rate, the modified protocol shows 79% end-to-end reliability, which is 2% 

higher than the original protocol.  

From Figure 4.22(a), one can observe that the resend rate in the Modified-500 ms 

experiment is much lower than in the New-500 ms experiment. The average resend rate 

in the Modified-500 ms experiment is only 4.9% compared with 9.9% in the New-500 ms 

experiment. As explained in the previous section, the above observation is because the 

receiver in the modified protocol is able to recover some of the out-of-order packets from 

its local buffer and thus the sender can skip the retransmissions of those packets. When 

using a 250 ms sampling interval, the variance of the resend rate between protocols still 

exists but narrows. The average resend rate in the Modified-250 ms experiment is 12.8% 

compared with 20.8% in the New-250 ms experiment. Part of the reason for the above 

result is that the network is likely to experience more consecutive  
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Figure 4.21 Throughput and Delay in New Protocol and Modified Protocol Test 
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packet loss with the 250 ms sampling interval. In this case, even in the modified protocol, 

the sender may still need to resend all of the missing packets.  

The overhead of the experiments is plotted in Figure 4.22(b). Protocols with 500 ms 

sampling interval show higher overhead compared to protocols with 250 ms sampling 

interval. Comparing the two protocols with the same sampling interval, the variance is 

minor. The average overhead in the Modified-250 ms experiment is 9.7% compared with 

10.2% in the New-250 ms experiment; the average overhead in the Modified-500 ms 

experiment is 4.7% compared with 4.8% in the New-500 ms experiment.  
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Experiment End-to-End 
Reliability 

Total 
Throughput 

(pkt/sec) 

Average 
Resend Rate 

Average 
Feedback 
Overhead 

Modified-250 ms 79% 18.16 12.8% 9.7% 
Modified-500 ms       100% 18.97 4.9% 4.7% 

New-250 ms 77% 16.92 20.8% 10.2% 
New-500 ms 100% 18.93 9.9% 4.8% 
 

The results for the end-to-end reliability and the link reliability are shown in Figure 
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Table 4.14 Results of New Protocol and Modified Protocol Test 
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4.23 (a) and Figure 4.23(b). Only the experiments with 250 ms sampling interval 

experienced packet loss. The reason for the packet loss, as explained in Section 4.5.1, is 

because the sending rate is smaller than the receiving rate at node 1. When the 

transmission queue is filled up, sensor nodes are forced to drop packets. The out-of-order 

buffer implemented in the modified protocol helps to improve the reliability. The end-to-

end reliability in the modified-250 ms experiment is 79%, compared with 77% in the 

New-250 ms experiment. The modified protocol is able to recover some of the missing 

packets from its local buffer and thus avoid the retransmission of those packets.      
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CHAPTER 5 

                                   CONCLUSIONS 

This thesis studied the reliable data delivery issue in wireless sensor networks. A 

NACK-based hop-by-hop reliable transport layer protocol is developed and evaluated in 

this work. This chapter summarizes the work that has been done in this thesis and 

discusses some directions for future work. Section 5.1 provides a brief summary of the 

thesis. Section 5.2 states the contributions of this work. In Section 5.3, some of the 

possible future work is described.      

5.1  Thesis Summary 

This thesis addresses the reliability issues in data transport in wireless sensor 

networks. The design goal was to provide a solution that is able to maintain 100% 

reliable data delivery (except in the case of buffer overflow) with minimal delay and 

overhead. Chapter 2 provides an overview of the current research on reliable data 

transport in wireless sensor networks as well as describing some existing data transport 

protocols. A new hop-by-hop reliable data delivery protocol is proposed in Chapter 3. 

The new protocol is designed based on a NACK loss detection and recovery scheme. A 

timer-based explicit ACK approach is also used to address the last/single packet delivery 

problem. The new queue management scheme designed in the protocol is used to 

efficiently schedule the data transmission and retransmission. The performance of the 

new protocol is tested in a Crossbow MicaZ testbed. Performance results are given in 

Chapter 4. Ten separate tests of the protocol are conducted to evaluate the performance of 
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the protocol. The first group of tests including the traffic test, the scalability test, the 

sampling interval test and the interference test, demonstrates some basic properties of the 

protocol under various system and protocol parameters. The second group of tests 

including the test of sending gap with sampling interval and the test of buffer size, 

illustrates the performance of the protocol with some extreme parameter settings. The last 

group of tests compares the performance of the new protocol to the performance of four 

other protocols including a basic protocol with no packet loss recovery mechanisms, an 

explicit stop-and-wait ACK protocol, a timer-based NACK protocol and the modified 

new protocol with out-of-order buffering.    

5.2  Contributions 

The main contribution of this thesis is the design and the evaluation of a hop-by-hop 

reliable data delivery protocol. In particular, the contributions are as follows: 

 The general issues in designing a reliable data transport protocol for wireless sensor 

networks are discussed. A survey is conducted of some of the existing data transport 

protocols focusing on reliability and congestion control. 

 A NACK-based loss detection and recovery scheme is designed for reliable data 

delivery in wireless sensor networks.    

 A solution is provided to the last/single packet delivery problem in the conventional 

NACK-based approach by introducing a timer-based explicit ACK approach to the 

new protocol.  

 A new queue management scheme is designed. This scheme gives priority to fresh 

data, which is preferable in some WSN applications. Nodes with the new queue 

management scheme are able to transmit new data packets in parallel with the 

detection and recovery of missing packets. 

 A variant of the new protocol that buffers out-of-order packets is designed. 

Experimental results show that the modified protocol performs better in some 
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conditions compared with the original new protocol.  

 The new protocol is implemented and tested in a MicaZ testbed under various system 

and protocol parameter settings. The new protocol is also tested and compared with 

four other protocols.   

5.3  Future Work 

The new protocol proposed in this work is evaluated in a MicaZ testbed and proven 

to be able to provide 100% reliability (except under some extreme conditions) and reduce 

overhead and delay. However, there are some limitations of this work that can be 

improved in the future. First, the evaluation considers only single line topology with one 

destination (the sink). Some further tests can be done with a more general topology 

setting such as with multiple source nodes and multiple destination nodes. Second, as 

discussed in Section 3.6.2, route changes because of node failure or network congestion 

are not uncommon in wireless sensor network applications. Route changes may also 

result in the transmission of redundant data packets by the sender. A test of the new 

protocol with route changes could be useful to further evaluate the performance of the 

new protocol. Third, the tests conducted in Chapter 4 use only a small number of sensor 

nodes. A larger scale test of the protocol with a greater number of sensor nodes may be 

desirable as part of the future work. Fourth, fairness among different traffic flows could 

be considered in the future design. Last, the new protocol could be incorporated with 

other MAC layer, routing layer or network layer protocols. The cross-layer design of a 

reliable data transport protocol is attractive.  
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