

RELIABLE DATA DELIVERY IN WIRELESS SENSOR NETWORKS

A Thesis Submitted to the College of

Graduate Studies and Research

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

In the Department of Computer Science

University of Saskatchewan

Saskatoon, Saskatchewan, Canada

By

 Bofu Yang

 Copyright Bofu Yang, May 2010. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226137882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate

degree from the University of Saskatchewan, I agree that the Libraries of this University

may make it freely available for inspection. I further agree that permission for copying of

this thesis in any manner, in whole or in part, for scholarly purposes may be granted by

the professor or professors who supervised my thesis work or, in their absence, by the

Head of the Department or the Dean of the College in which my thesis work was done. It

is understood that any copying or publication or use of this thesis or parts thereof for

financial gain shall not be allowed without my written permission. It is also understood

that due recognition shall be given to me and to the University of Saskatchewan in any

scholarly use which may be made of any material in my thesis.

 Requests for permission to copy or to make other use of material in this thesis in

whole or part should be addressed to:

 Head of the Department of Computer Science

 University of Saskatchewan

 Saskatoon, Saskatchewan, Canada

 S7N 5C9

ii

ABSTRACT

Wireless sensor networks (WSN) have generated tremendous interest among

researchers these years because of their potential usage in a wide variety of applications.

Sensor nodes are inexpensive portable devices with limited processing power and energy

resources. Sensor nodes can be used to collect information from the environment, locally

process this data and transmit the sensed data back to the user.

This thesis proposes a new reliable data delivery protocol for general point-to-point

data delivery (unicasting) in wireless sensor networks. The new protocol is designed that

aims at providing 100% reliability when possible as well as minimizing overhead and

network delay. The design of the new protocol includes three components. The new

protocol adopts a NACK-based hop-by-hop loss detection and recovery scheme using

end-to-end sequence numbers. In order to solve the single/last packet problem in the

NACK-based approach, a hybrid ACK/NACK scheme is proposed where an ACK-based

approach is used as a supplement to the NACK-based approach to solve the single/last

packet problem. The proposed protocol also has a new queue management scheme that

gives priority to new data. By introducing the idea of a Ready_Bit and newer packet first

rule in the transmission queue, nodes can detect and recover lost packets in parallel with

the normal data transmission process.

The performance of the new protocol is tested in a Crossbow MicaZ testbed.

Experimental results show that the new protocol performs well under various system and

protocol parameter settings.

iii

ACKNOWLEDGMENTS

 I would like to express my sincere appreciation to my thesis supervisor Dr. Derek

Eager for all his invaluable guidance, support and encouragement. His perpetual energy

and enthusiasm in research had motivated all his advisees, including me. In addition, he

was always accessible and willing to help his students with their research. As a result,

research life became smooth and rewarding for me. It has been my great pleasure and

honor to have worked with him. I would also like to thank the members on my

supervisory committee, Dr. Dwight Makaroff and Dr. Ralph Deters, as well as my

external examiner, Dr. Li Chen, for their helpful comments and constructive suggestions.

I would also like to express my gratefulness to all the faculty, staff and graduate

students in the Department of Computer Science, for their caring and support during my

study at the University of Saskatchewan.

Finally, I would like to thank my family and friends for their encouragement and

help, especially my parents who have devoted all their efforts in me, I am grateful for

their continuing understanding and countless support throughout my entire life.

iv

TABLE OF CONTENTS

PERMISSION TO USE .. i

ABSTRACT .. ii

ACKNOWLEDGMENTS ... iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES .. viii

LIST OF TABLES ... x

LIST OF ACRONMS .. xi

1 INTRODUCTION ... 1

1.1 Wireless Sensor Networks Overview .. 1

1.2 Reliable Data Delivery Overview ... 4

1.3 Motivations .. 5

1.4 Contributions.. 6

1.5 Thesis Organization .. 7

2 BACKGROUND ... 8

2.1 Data Transport Protocol Design in WSN .. 8

2.1.1 Design Considerations... 8

2.1.2 Performance Evaluation Metrics ... 9

2.2 Reliable Data Delivery ... 10

2.2.1 Discussion of General Issues in Reliable Data Delivery......................... 11

2.2.2 Basic Approaches in Reliable Data Delivery ... 12

2.2.2.1 End-to-End vs Hop-by-Hop Error Recovery 12

2.2.2.2 ACK vs NACK ... 13

2.2.2.3 Sender Retransmission vs Forward Error Correction....................... 14

2.3 Congestion Control .. 16

v

2.3.1 Congestion Detection .. 16

2.3.2 Congestion Notification .. 17

2.3.3 Rate Adjustment .. 17

2.4 Existing Protocols .. 18

2.4.1 Protocols with Reliability Guarantee ... 18

2.4.2 Protocols with Congestion Control .. 27

3 HOP-BY-HOP RELIABLE DATA DELIVERY .. 31

3.1 Design Considerations .. 31

3.2 Terminology and Assumptions.. 33

3.2.1 Topology and Link Layer Setup .. 33

3.2.2 Protocol Terminology .. 33

3.2.3 Packet Format ... 35

3.3 Transmission queue Management ... 35

3.3.1 Enqueue and Transmission Policies ... 35

3.3.2 Dequeue Policy ... 37

3.3.3 Summary... 37

3.4 Explicit NACK with Reliable Last/Single Packet Delivery 38

3.5 Protocol Operation ... 40

3.5.1 Sender Operation .. 40

3.5.2 Receiver Operation ... 41

3.6 Additional Features and Design Variations.. 42

3.6.1 Variable Reliability.. 42

3.6.2 Route Changes or Node Failure ... 43

3.6.3 Data Redundancy .. 44

3.6.4 New Protocol with Out-of-Order Buffering ... 45

vi

4 PERFORMANCE EVALUATION ... 49

4.1 Performance Evaluation Overview ... 49

4.2 Testbed ... 50

4.2.1 Software Implementation .. 50

4.2.2 System Configuration .. 51

4.3 Experimental Methodology .. 51

4.3.1 Evaluation Metrics .. 52

4.3.2 Experimental Parameters ... 53

4.3.3 Compared Protocols .. 55

4.3.4 Experimental Design ... 57

4.4 Basic Tests of Protocol Performance ... 58

4.4.1 Traffic Test .. 59

4.4.2 Scalability Test .. 64

4.4.3 Sampling Interval Test... 68

4.4.4 Interference Test .. 72

4.5 Protocol Stress Tests ... 75

4.5.1 Effect of Sending Gap and Sampling Interval .. 75

4.5.2 Effect of Buffer Size ... 82

4.6 Performance Comparison with Other Protocols .. 88

4.6.1 Comparing New Protocol with Basic Protocol 88

4.6.2 Comparing New Protocol with ACK Protocol 93

4.6.3 Comparing New Protocol with NACK Protocol 96

4.6.4 Comparing New Protocol with Modified Protocol 100

5 CONCLUSIONS ... 106

5.1 Thesis Summary ... 106

vii

5.2 Contributions.. 107

5.3 Future Work ... 108

REFERENCES... 109

viii

LIST OF FIGURES

Figure 1.1 Wireless Sensor Networks .. 3

Figure 2.1 Classification of Existing Reliable Transport Protocols for Wireless Sensor

Networks ... 20

Figure 3.1 Example of Route Changes or Node Failure ... 44

Figure 3.2 Example of New Protocol with Out-of-Order Buffering 46

Figure 3.2 Example of New Protocol with Out-of-Order Buffering 47

Figure 4.1 Throughput and Delay in Traffic Test .. 60

Figure 4.2 Overhead Costs in Traffic Test .. 61

Figure 4.3 Throughput and Delay in Scalability Test .. 65

Figure 4.4 Overhead Costs in Scalability Test .. 66

Figure 4.5 Throughput and Delay in Sampling Interval Test 69

Figure 4.6 Overhead Costs in Sampling Interval Test ... 70

Figure 4.7 Throughput and Delay in Interference Test ... 73

Figure 4.8 Overhead Costs in Interference Test .. 74

Figure 4.9 Throughput and Delay in Sending Gap and Sampling Interval Test 77

Figure 4.10 Overhead Costs in Sending Gap and Sampling Interval Test 78

Figure 4.11 Reliability in Sending Gap and Sampling Interval Test 79

Figure 4.12 Throughput and Delay in Buffer Size Test... 84

Figure 4.13 Overhead Costs in Buffer Size Test ... 85

Figure 4.14 Reliability in Buffer Size Test ... 86

Figure 4.15 Throughput and Delay in New Protocol and Basic Protocol Test 90

Figure 4.16 Overhead Cost in New Protocol and Basic Protocol Test 91

Figure 4.17 Throughput and Delay in New Protocol and ACK Protocol Test 94

ix

Figure 4.18 Overhead Cost in New Protocol and ACK Protocol Test 95

Figure 4.19 Throughput and Delay in New Protocol and NACK Protocol Test 98

Figure 4.20 Overhead Cost in New Protocol and NACK Protocol Test 99

Figure 4.21 Throughput and Delay in New Protocol and Modified Protocol Test102

Figure 4.22 Overhead Costs in New Protocol and Modified Protocol Test103

Figure 4.23 Reliability in New Protocol and Modified Protocol Test104

x

LIST OF TABLES

Table 2.1 Summary of Existing Reliability Guaranteed Protocols 26

Table 2.2 Summary of Existing Congestion Control Protocols 30

Table 4.1 Summary of Experimental Parameters .. 58

Table 4.2 Results of Traffic Test .. 61

Table 4.3 Results of Scalability Test .. 66

Table 4.4 Results of Sampling Interval Test .. 70

Table 4.5 Results of Interference Test .. 74

Table 4.6 Experiment Settings of Sending Gap and Sampling Interval Test 76

Table 4.7 Results of Sending Gap and Sampling Interval Test 79

Table 4.8 Sending Rate and Receiving Rate of Sending Gap and Sampling Interval

Test ... 81

Table 4.9 Experiment Settings of Buffer Size Test ... 82

Table 4.9 Experiment Settings of Buffer Size Test ... 83

Table 4.10 Results of Buffer Size Test ... 86

Table 4.11 Results of New Protocol and Basic Protocol Test 91

Table 4.12 Results of New Protocol and ACK Protocol Test 95

Table 4.13 Results of New Protocol and NACK Protocol Test 99

Table 4.14 Results of New Protocol and Modified Protocol Test104

xi

LIST OF ACROYNMS

ACK Acknowledgement

AIMD Additive Increase Multiplicative Decrease

ARQ Automatic Repeat Request

CODA Congestion Detection and Avoidance

DTSN Distributed Transport for Sensor Networks

ESRT Event-to-Sink Reliable Transport

FEC Forward Error Correction

FIFO First In First Out

IP Internet Protocol

MDS Minimum Dominating Set

NACK Negative Acknowledgement

nesC Network Embedded Systems C

PALER Push Aggressively with Lazy Error Recovery

PORT Price-Oriented Reliable Transport

PSFQ Pump Slowly, Fetch Quickly

QoS Quality of Service

RBC Reliable Bursty Convergecast

RCRT Rate-Controlled Reliable Transport

ReInForM Reliable Information Forwarding

RMST Reliable Multi- Segment Transport

RTS/CTS Request to Send / Clear to Send

RTT Round Trip Time

TCP Transmission Control Protocol

WSN Wireless Sensor Network

1

CHAPTER 1

INTRODUCTION

A wireless sensor network (WSN) consists of a group of self-organizing, lightweight

sensor nodes that are used to cooperatively monitor physical or environmental conditions.

Commonly monitored parameters include temperature, sound, humidity, vibration,

pressure and motion [40]. Each sensor node in a WSN is equipped with a radio

transmitter, several sensors, a battery unit and a microcontroller. Although WSN research

was initially motivated by military applications, wireless sensor networks are now used in

many industrial and public service areas including traffic monitoring, weather conditions

monitoring, video surveillance, industrial automation and healthcare applications [1].

Because of the size and cost constraints on sensor nodes, they are limited by energy,

bandwidth, memory and other resources. Any protocol design for WSNs needs to

consider the limitations of sensor nodes carefully. This thesis proposes a new hop-by-hop

NACK-based reliable data delivery protocol that aims to provide high reliability with

minimal delay and overhead. The rest of this chapter is organized as follows, Section 1.1

and Section 1.2 provide overviews of WSNs and the reliable data delivery in WSNs,

respectively. The motivation of this thesis is described in Section 1.3. Section 1.4

describes the contributions. Section 1.5 presents the thesis organization.

1.1 Wireless Sensor Networks Overview

WSNs have generated tremendous interest among researchers these years because of

their potential usage in a wide variety of applications. Sensor nodes are inexpensive

portable devices with limited processing power and energy resources. Sensor nodes can

be used to collect information from the environment, locally process this data and

transmit the sensed data back to the user.

Sensor nodes consist of five main components [17]: a computing unit, a

communication unit, a sensing unit, a memory unit, and a power supply unit. The

2

computing unit consists of a microprocessor. The microprocessor is responsible for

managing the communication protocols, processing collected data from the on-board

sensors, and performing the power management. Each sensor node has a single

communication unit that is able to transmit and receive packets. This unit combines the

functionality of both transmitter and receiver. The communication frequencies of the

sensor nodes are between 433 MHz (in some early generations of sensor nodes) and 2.4

GHz (the most commonly used frequency) [2]. The communication unit has four

operational states: transmit, receive, idle and sleep. A sensing unit is usually a sensor

board that consists of one or more sensors. Sensors must have extremely low power

consumption. Some commonly used sensors are temperature sensor, humidity sensor,

light sensor, barometer, 2-axis accelerometer, microphone, and GPS receiver. There are

two types of memory units based on different needs for storage in a sensor node. The

microprocessor itself contains some on-chip memory used to store system software.

There is also typically flash memory available where users can store their own

applications and data. The power unit provides power to other four units described above.

In the MicaZ mote, for example, it consists of two AA batteries, either rechargeable or

non-rechargeable [2]. Although all sensing, computing and communication operations

consume energy, data communication requires more energy than sensing and computing.

Thus, reducing data communication between sensor nodes can improve the energy

efficiency and extend the lifetime of sensor networks.

As shown in Figure 1.1, typical wireless sensor networks consist of multiple sensor

nodes deployed in the sensing field, and one or several sinks nodes at which data is

collected and which have external network connectivity. Sensor networks in many

applications are deployed without pre-defined structure and left unattended to perform

multiple monitoring or tracking tasks. A WSN is able to self-configure its operation and

manage its connectivity. A WSN is also able to tolerate malfunctioning nodes and

integrate new nodes in the network since node failure is common in WSN applications

[12]. Because of the limited power and transmission range in a large sensor network, the

communication between sensor nodes must be multihop. Data from a source sensor node

relayed by a number of intermediate nodes before it reaches the final destination.

Collaboration between sensor nodes and in-network processing are necessary in sensor

3

networks since a single node may not have all the data concerning some event of interest

[8] [13]. In-network processing can also reduce the number of packets transmitted in the

network by aggregating similar data together and thus reducing the power consumption.

Wireless sensor networks have great potential for many industrial applications.

Typical WSN applications can be classified into two categories: monitoring and tracking

[17]. Monitoring applications may involve periodic data collection or may be event-

driven. In an event-driven application, when a certain event occurs in the sensing field,

sensor nodes collect the sensor readings of that certain event and transmit them back to

the sink. Those applications usually employ a very strict power management strategy due

to the limited power supply of sensor nodes and long lifetime requirement of the

application [9] [23][25]. For example, sensor nodes may operate most of the time in sleep

mode and are only woken up by a nearby sentry node (a node that is awake all the time

and monitors the sensing field) when a certain event is detected [39]. Some common

WSN monitoring applications include environmental monitoring, battlefield monitoring,

health monitoring, water monitoring, and greenhouse monitoring [1]. Tracking

applications have different requirements than monitoring applications in that the source

of an event can be mobile. Of interest is the current location of the target. Real-time

communication is usually desired in tracking applications [11]. Some common tracking

Figure 1.1 Wireless Sensor Networks

4

applications include traffic control [33] and surveillance [10].

1.2 Reliable Data Delivery Overview

Reliable data transport is an important topic in wireless sensor networks. A reliable

protocol in wireless sensor networks is a protocol that can reliably deliver packets from

their sources to their destinations without packet loss. Many WSN applications require

reliable data transport. For example, consider a sensor network deployed in a chemical

plant to detect harmful gas. It is crucial for sensor nodes to reliably transport every sensor

reading back to the sink. Other critical WSN applications such as biological monitoring,

health care monitoring, and battlefield surveillance also require high end-to-end

reliability. On the other hand, some applications may not require simple 100% guaranteed

transmission of data packets [7]. The reason is that this guaranteed delivery is challenging

and costly in terms of energy and bandwidth usage. In some circumstances, applications

may only require data packets to be reliably delivered to or from a sub-region of the

network or to or from a minimal number of sensor nodes that can cover the sensing area.

Due to many unique characteristics and constraints of sensor nodes, providing

reliability in wireless sensor networks can be challenging. As a microelectronic device,

sensor node has very limited power resources. Sensor nodes can be deployed in many

non-easily accessible areas or inhospitable conditions, which make replenishment of

power resources impossible. Thus, energy consumption must be considered when

designing a reliable data transport protocol in wireless sensor networks. A number of

strategies can be implemented in the communication protocols to reduce energy

consumption in sensor networks including: reduce the data transmitting frequency, reduce

the protocol and system overhead, implement data compression and aggregation schemes,

implement power management mechanisms, and eliminate the transmission of redundant

data [1].

Another challenge in designing a reliable protocol in wireless sensor networks is

frequent node failure. Node failure in the sensor network can be the result of harsh

environment, energy depletion, or system crashes. As a multihop self-organized network,

malfunction of several sensor nodes can cause significant topology changes and disrupt

the normal functioning of the reliable protocol in a wireless sensor network.

5

In order to detect and recover lost packets, a receiver feedback and sender

retransmission mechanism is usually used in wireless sensor networks. There are two

commonly used receiver feedback mechanisms: the ACK-based approach and the

NACK-based approach. In an ACK-based approach, the receiver positively

acknowledges receipt of data packets, while in a NACK-based approach, the receiver

only returns feedback to the sender if it detects a packet loss. The NACK-based approach

incurs less overhead than the ACK-based approach, but a common problem for the

NACK-based approach is that it can not detect single/last packet loss, since packet loss

detection is based on observing gaps in the packet flow. A detailed discussion of an ACK-

based approach and NACK-based approach are presented in Section 2.2.2.2.

The solution of reliability can be provided in different communication layers in

wireless sensor networks. Error detection in the physical layer can be helpful to achieve

reliability. However, for MicaZ, a commonly-used sensor node testbed, it is hard, if not

impossible to rewrite its physical layer since it has been hardcoded. The MAC layer can

provide reliability mechanisms such as RTS/CTS handshake, MAC layer

acknowledgement and randomized slot selection [27] [38]. RMST [29] is a good example

of using a MAC layer protocol to achieve reliability. Reliability issues can also be

addressed in the routing layer. One example is ReInForM [3], a reliable routing protocol

that takes advantage of multipath routing to transmit redundant data packets to the

receiver and thus provide reliability. Finally, reliability can be provided in the transport

layer. Transport layer can implement a similar hop-by-hop error recovery scheme as in

the data link layer. However, different from the data link layer, the quality and type of

service provided in transport layer is negotiable. The design of a transport layer reliable

protocol can be very flexible according to the specific reliability requirement of the

application. Some existing transport layer reliable protocols include PSFQ [32], RBC

[42], and DTSN [26].

1.3 Motivations

General speaking, the design of a data transport protocol in wireless sensor networks

is focused on providing end-to-end reliability, mitigating congestion, and achieving

fairness in bandwidth allocation [17]. The reliability issue in the data transport protocol

6

usually involves loss recovery, congestion control, or both. Most of the reliable data

transport protocols either use a retransmission-based loss recovery approach or a

redundant data transmission method (sending multiple copies of a data packet into the

network). A detailed discussion of reliable data transport is presented in Section 2.2. As in

many other types of networks, congestion in wireless sensor networks can have a

significant impact on quality of service. Large numbers of lost packets, increased network

latency and poor energy efficiency can be direct consequences of congestion. Congestion

control protocols in WSNs concern how to detect congestion and how to mitigate

congestion. Several existing congestion control protocols are discussed in Section 2.4.2.

After studying the design challenges of data transport protocols and existing reliable

data transport protocols in wireless sensor networks, it was found that no existing

protocol has all of the following characteristics:

 Full reliability (100% reliable data delivery) is provided unless there are unavoidable

packet drops due to buffer overflow.

 Recovery from packet loss can be achieved with low system overhead and reduced

communication cost and delay compared to conventional protocols.

 Lost packets can be recovered as quickly as possible, while at the same time not

interfering with normal data transmission.

 A specified level of robustness can be provided.

 The protocol is robust to node failure and route changes.

 Fresh data has higher priority in the network and is able to be sent as soon as possible.

 The protocol is scalable and easy to implement.

It is the goal of this thesis to design, implement, and test such a protocol.

1.4 Contributions

This work proposes a new reliable data delivery protocol for general point-to-point

data delivery (unicasting) in wireless sensor networks. The new reliable data transport

protocol is designed that aims at providing 100% reliability when possible as well as

minimizing overhead and network delay. The main contributions of this work are:

7

 A new negative acknowledgement (NACK) based reliable data transport protocol is

proposed. The new protocol adopts a NACK-based hop-by-hop loss detection and

recovery scheme using end-to-end sequence numbers.

 In order to solve the single/last packet problem in the NACK-based approach, a

hybrid ACK/NACK scheme is proposed. Conventional NACK-based approaches are

efficient in loss detection and recovery but they cannot provide reliable delivery of

single/last packets. In the proposed new protocol, an ACK-based approach is used as

a supplement to the NACK-based approach to solve the single/last packet problem.

 A new queue management scheme that gives priority to newer data is proposed. By

introducing the idea of a ready bit and a newer packet first rule in the transmission

queue, nodes can detect and recover lost packets in parallel with the normal data

transmission process. Newer packets in the transmission queue don’t have to

experience any extra delay and can be transmitted as quickly as possible.

 A new protocol incorporating the above three schemes is implemented and tested.

The new protocol is implemented and tested in a Crossbow MicaZ testbed under

various system and protocol parameter settings. The performance of the new protocol

is also studied and compared against four other protocols with different reliability

schemes.

1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 reviews background related

to data transport protocols in wireless sensor networks. Chapter 3 presents the

considerations and design of the proposed new protocol. Chapter 4 describes the

performance evaluation methodology and experimental results from a protocol

implementation. A summary of the contributions of this work and a discussion of possible

future work are presented in Chapter 5.

8

CHAPTER 2

BACKGROUND

A larger number of wireless sensor network applications require reliable data

delivery. However, due to the nature of sensor networks, designing a reliable data

transport protocol faces many challenges, such as constrained energy, large number of

nodes, data-centric networking, and small message size. This chapter presents an

overview of general reliability issues in the data transport protocol for wireless sensor

networks and discusses some recently proposed data transport protocols. Section 2.1

discusses the general issues in data transport protocol design in WSN. Section 2.2 and

Section 2.3 provide overviews of reliable data delivery and congestion control in WSN,

respectively. Section 2.4 presents a survey of existing data transport protocols for

wireless sensor networks.

2.1 Data Transport Protocol Design in WSN

Because of the unique features of wireless sensor networks, the design of a reliable

data transport protocol for WSN can be very challenging. Unlike the traditional TCP/IP

network, each sensor node in a WSN has very limited power, bandwidth and storage

space and has to cope with a lossy wireless channel. The reliable data transport protocols

that are widely used in the internet such as TCP and UDP are not suitable for wireless

sensor networks [32]. The following two sections discuss the design considerations of a

reliable data transport protocol in wireless sensor networks and some commonly used

performance evaluation metrics.

2.1.1 Design Considerations

In general, reliable data transport protocols for wireless sensor networks should

consider a number of factors. First, the reliable data transport protocol should be able to

9

provide robustness to the network and be able to adapt to different scenarios, such as

node failure and route changes. The initiation process of the transport protocol should be

as simple and as quick as possible. For example, consider a remote monitoring wireless

sensor network application, in which sensor nodes spend most of their lifetime in idle or

sleep mode, but should be able to switch to transmitting mode and start the reliable data

transport in a very short period of time when an event occurs in the network [39].

Second, since a WSN is an energy-constrained multi-hop network, a reliable data

transport protocol should try to avoid any packet drop unless absolutely necessary. This is

because data packets normally have to travel many hops before they reach their

destinations. If a packet is dropped during the transmission, all the energy and bandwidth

that have already been spent on the packet in the previous hops are completely wasted.

However, there are cases where packet dropping is inevitable. Since sensor nodes have

limited storage space, when the buffer is full of data packets and a new packet arrives, a

data packet must be discarded.

Finally, fairness may be another consideration in the reliable data transport protocol

design. As a data collecting network, most of the data flows are transmitted from sensor

nodes to the sink. Such a multihop many-to-one routing structure can often result in

unfairness in the network, in that the packets from nodes far away from the sink have a

higher possibility to get lost during transmission than packets from closer nodes. Such

unfairness for different nodes can cause problems in some applications and thus may

need to be considered when designing a reliable data transport protocol [7].

2.1.2 Performance Evaluation Metrics

Because of the unique features of wireless sensor networks, the data transport

protocol in a WSN should be able to mitigate network congestion, minimize overhead,

reduce packet loss, and improve overall end-to-end reliability. In general, the metrics

used to evaluate the performance of a WSN data transport protocol can be categorized as

reliability, QoS (Quality of Service), and energy efficiency [17].

 Reliability: Reliability in wireless sensor networks can be examined from both the

packet level and the event level. Packet level reliability refers to how many packets

are successfully received at the final destination. An alternative way of measuring

10

packet level reliability is to calculate the overall end-to-end packet loss rate. The

smaller the loss rate, the better the reliability of the network. Event level reliability

refers to the delivery of certain data objects or events to the receiver. In this case, not

all data packets need to be received by the receiver, rather, as long as a certain

percentage of packets within a certain time period are delivered to the destination,

the event level reliability is considered provided.

 QoS: In general, quality of service includes metrics such as bandwidth usage,

network latency, real-time/in-order delivery and system throughput. QoS

requirements can vary widely for different wireless sensor network applications. For

example, in a real-time monitoring application, the delivery of data in a timely

manner is more important than other metrics. However, in a high-rate application

such as imaging or acoustic localization, where concurrently transmitting a large

volume of data from different nodes is required, efficient bandwidth usage is more

crucial.

 Energy efficiency: Since wireless sensor nodes are typically powered by battery and

may be deployed in a remote rural area, the ability to collect data at a low energy cost

is an important performance metric in wireless sensor networks. Energy efficiency

can be examined by calculating the total energy spent in the network with a certain

percentile of reliability. For example, with the STCP protocol, the energy cost for

providing 100% reliability in a 100-node network for 100ms was 2.78 J, for 75%

reliability was 1.06 J, and for 50% reliability was 0.77 J [16].

2.2 Reliable Data Delivery

Reliable data delivery is a critical issue in the application of wireless sensor networks.

The requirement of reliability may vary from application to application. However, the

fundamental issue of reliability is the same: how to detect packet loss and how to repair it.

There are many design options for reliable data transport protocols in wireless sensor

networks. For example, the protocol can run on an end-to-end or a hop-by-hop basis, the

loss recovery scheme can be based on positive acknowledgment or negative

acknowledgment, and the reliable data delivery can be provided from the direction of

sensors-to-sink or the direction of sink-to-sensors. In Section 2.2.1, some of the general

11

issues in reliable data delivery protocol design are discussed. Section 2.2.2 presents

several basic approaches of achieving reliability in wireless sensor networks from three

different perspectives.

2.2.1 Discussion of General Issues in Reliable Data Delivery

In general, a reliable data transport protocol should cover the following dimensions:

 Communication type: Reliable protocols should provide reliable delivery of a single

packet, blocks of packets or streams of packets [17]. Streams of packets are a

continuous data streams. Periodic event monitoring is an example application type

using streams of packets. Blocks of packets are segments of a complete data stream.

A block of packets consists of a fixed number of data packets. Reliably delivering a

single packet can be very important for queries or highly aggregated data, while

delivery of blocks of data is necessary for many WSN applications such as remote

network reprogramming. The cases of delivering a single packet and delivering

blocks of packets can use very different underlying protocol mechanisms. The

primary approaches for single packet delivery are ACK-based retransmission and

transmission of multiple redundant packets. A wider variety of options exist for

reliable delivery of blocks of data or streams of data. NACK-based approaches and

multi-paths approaches are commonly used in such protocols.

 Reliability Requirement: Reliability requirements vary across different wireless

sensor network applications. For sensors-to-sink delivery, the reliability requirement

is either 100% guaranteed data delivery (or as close to this possible) or a percentage

or probabilistic delivery requirement (for example 75% reliability). For sink-to-

sensors delivery, the reliability requirement can be classified into four categories: 1)

delivery to the entire network; 2) delivery to sensor nodes in a sub-region of a

network (location based delivery); 3) delivery to the core members of the network

that are able to cover the entire sensing field; and 4) delivery to sensor nodes with a

probabilistic reliability requirement [7].

 Upstream and downstream delivery: In wireless sensor networks, it can be assumed

that most communications are not between arbitrary peer nodes. As a data collecting

network, the data flow in wireless sensor networks is normally from sensor nodes

12

towards a single sink/gateway node. Most of the research in WSN reliability is

dedicated to sensor-to-sink transmission, such as in the protocols RMST [29], RBC

[42] and RCRT [21]. However, in some scenarios, a reliable protocol for downstream

communication is also important. For example, if a network consists of

reprogrammable sensor nodes, the sink may want to send out certain control codes

such as upgrade commands or new code images to the nodes. In the sink-to-sensors

communication, since there is only a single sender (the sink), the data transmission

usually uses broadcasting rather than unicasting. Reliable downstream protocols

include PALER [20], PSFQ [32], HRS [19] and GARUDA [22].

2.2.2 Basic Approaches in Reliable Data Delivery

In this section, basic approaches to achieving reliability in wireless sensor networks

are discussed from three different perspectives.

2.2.2.1 End-to-End vs Hop-by-Hop Error Recovery

In order to achieve reliability, the reliable data delivery protocol should be able to

recover the lost data when errors happen. In traditional IP networks, the commonly used

error recovery mechanism uses end-to-end acknowledgments, in which the final

destination node is responsible to detect lost data and request retransmission. There are

two critical challenges for the end-to-end recovery to be applied in wireless sensor

networks. Firstly, in sensor networks, the connectivity between sensor nodes is neither

stable nor predictable. The high latency and frequent disconnects generate significant

overhead and delay and thus may seriously compromise the effectiveness of end-to-end

recovery. Secondly, since sensor networks rely heavily on multihop forwarding to

transmit information, while the end-to-end recovery mechanism only detects loss at the

last node, the probability of successful reception at the destination node may become

quite low. Wan et al. illustrate this problem by giving a simple example: assume that the

packet error rate of a wireless channel is p, then the probability of successfully receiving

a packet transmitted from n hops away is only (1 − 푝) [32]. These two problems

indicate that end-to-end recovery is not an ideal choice for reliable data transport in

wireless sensor networks.

13

Hop-by-hop error recovery is used in protocols such as PSFQ [32] and has become a

widely-accepted recovery mechanism in sensor networks. The basic design idea of hop-

by-hop error recovery is that the intermediate nodes, rather than just the final node,

perform loss detection and recovery. To be specific, the whole multihop forwarding

operation is divided into a series of single-hop processes. By ensuring reliable

transmission between every two neighbor nodes in the transmission path, overall

reliability can be achieved. The biggest advantages of hop-by-hop recovery are that

recovery from packet loss can occur quickly, and progress made in early hops is not lost

if a failure occurs in a later hop.

However, hop-by-hop recovery also has some shortcomings, which should be

carefully considered when designing a hop-by-hop based protocol. The most obvious

problem is the accumulated delay during multihop transmission. Typical hop-by-hop

recovery schemes check for packet loss with every transmission on every hop, even when

the network situation is good and no packet loss exists. This can generate significant

overhead and unnecessary delay. Another problem of hop-by-hop recovery is that, in

order to recover lost packets, intermediate nodes have to buffer all the incoming packets.

This is not always desirable. On one hand, when the network condition is good and

retransmission does not happen very often, buffering all the packets is a waste of

resources. On the other hand, if some events suddenly happen after a long quiet time, a

large amount of data can be generated and fill all the buffer space of the intermediate

nodes in a short period. In this case, the effectiveness of hop-by-hop recovery is

compromised [32].

2.2.2.2 ACK vs NACK

ACK and NACK are two commonly used receiver feedback mechanisms in multi-

hop wireless networks. An ACK is the control packet sent by the receiver if it has

successfully received the data packet from the sender. Normally, ACK-based loss

recovery schemes are timer-driven. That is, if the sender doesn’t receive the ACK from

the receiver within a predefined period, the sender will consider the data packet to be lost

during the transmission and will resend the previous packet. NACK-based loss recovery

schemes work in a different way. If the receiver doesn’t receive the data packet within a

14

given time, it will send back a NACK packet to the sender to request retransmission.

ACK-based approaches seem to be more reliable than NACK-based approaches

since they verify the transmission of every single packet. However, ACK-based schemes

suffer from two major drawbacks when used in sensor networks. The first problem is that,

considering the limited bandwidth and energy of sensor nodes, the overhead of sending

an ACK for every data packet may be unacceptable, especially when the size of each data

packet is relatively small. The second problem is the well-known ACK implosion

problem [32]. That is, when a node is broadcasting data packets in a dense network, the

requirement of sending an ACK in response to the receipt of a packet for all the receivers

may cause serious channel congestion and packet collisions. NACK-based is more

effective than ACK-based and can be a better option for sensor networks because it only

generates an extra packet when data loss occurs. However, when designing a NACK-

based loss recovery scheme, several issues still need to be carefully considered. Similarly

as with ACK-based schemes, there is a potential NACK implosion problem. When the

network connectivity is poor and the sender is broadcasting to many receivers, the sender

can be flooded with NACK packets. Retransmissions may lead to more serious

congestion in the network, while ignoring errors can reduce overall network reliability.

Another typical NACK problem is the loss of all data packets. In a NACK-based scheme,

the receiver can detect and report packet loss only if it is aware of the incoming packet.

Thus, a NACK-based scheme cannot handle the unique case where all packets in a

communication are lost.

2.2.2.3 Sender Retransmission vs Forward Error Correction

Sender retransmission and the transmission of redundant data are the two basic ways

of providing reliability for transport protocols. Automatic repeat request (ARQ) is the

most commonly used sender retransmission method. In ARQ schemes, the sender will

retransmit the packet if loss occurs and an acknowledgement (ACK) is not received prior

to expiry of a retransmission timer [27].

Forward error correction (FEC), in contrast to ARQ, provides reliability by

transmitting redundant packets in a proactive manner. Block (n, k) codes are the most

15

commonly used FEC codes. In (n, k) FEC [35], an additional n-k packets are added to

each group of k source packets. The successfully receipt at the receiver of any k packets

out of the n transmitted packets enable the reconstruction of the original k packets. There

are many different FEC codes. The XOR code is a simple (k+1, k) FEC. Each

transmission group only adds one parity packet, which is the bitwise XOR of all the

source packets in the group. The XOR code is relatively simple to implement, but can

only repair one packet loss in the group. RS codes [35] are block (n, k) FEC codes that

have multiple parity packets. RS codes are more flexible and can provide better

protection against losses. However, they can result in high processing costs and

additional memory space requirements. Tornado codes provide an alternative to RS codes

[35]. Tornado codes require a few more than k encoded packets to recover k source

packets, but they have lower computational complexity and smaller reception overhead

than RS codes.

Both ARQ and FEC are appealing approaches to achieving reliability. ARQ schemes

are very effective and can always recover loss as long as the network is connected and

there is sufficient node buffer space. However, if the error rate is high or link failure

happens frequently, the cost of ARQ for loss detection and retransmission can be high.

Using FEC can avoid the overhead generated by ARQ and prevent feedback implosion in

large scale data transmission. However, FEC schemes should not be applied in congested

networks. When the network is congested, adding redundant data will only aggravate the

situation.

From the discussion so far, both ARQ and FEC methods have their advantages and

disadvantages when applied in wireless sensor networks. A natural idea is to combine

these two schemes together. For example, a low-overhead FEC code can be applied for

transmission of data packets, while uncorrected errors are handled using ARQ. Wang et al.

[35] propose a new reliability scheme for network reprogramming that uses a hybrid of

ARQ and FEC. Use of FEC provides an abstraction of a better transmission medium and

an ARQ scheme is responsible for the remaining loss recovery.

16

2.3 Congestion Control

Congestion can occur in wireless sensor networks due to several reasons:

interference between concurrent data transmissions, the addition or removal of sensor

nodes in the network, or bursts of messages because of the occurrence of some events [31]

[41]. Congestion in the network can lead to two serious outcomes. As congestion spreads,

buffer drops will increase quickly and become the dominant reason for packet loss.

Significant delay can also be observed when congestion occurs. Another consequence of

congestion is the growing expenditure of resources per packet. Fewer packets can be

transmitted with the same amount of energy as before. Thus, alleviating congestion can

be helpful in achieving reliable data delivery. The design and implementation of a

congestion control protocol is challenging in the wireless sensor network domain due to

the following reasons: firstly, the wireless channel itself is lossy and uncertain, which

makes distributed data flow control a challenge; secondly, contention for the wireless

channel can be observed at both the sender and receiver side; and finally, it is difficult to

optimize channel utilization and fairness at the same time.

For sensor networks with a single sink node, mitigating congestion is mainly done by

employing passive approaches. Rate control is the most commonly-used method [36].

When congestion is detected in the network, sensor nodes limit their reporting rate and

thus give opportunity for congested nodes to drain their queue. Many papers have studied

such rate control methods and focused on how to dynamically adjust the reporting rate in

the context of various congestion situations. Another method that can be used to alleviate

congestion is packet dropping. When the receiver node has already used up all the buffer

space due to congestion, it clearly has to drop either the newly-arrived packet or an old

one. In this case, evaluating the importance of different packets becomes important in that

it can help a node to make better dropping decisions to avoid wasting resources.

2.3.1 Congestion Detection

Two fundamental methods have been proposed so far to detect congestion in sensor

networks. Based on the observation that congestion can result in excessive queueing, the

first method is to compare the instantaneous buffer occupancy with a certain watermark.

17

If the water mark is exceeded, a congestion state is diagnosed. This method is simple to

implement. However, its accuracy is questionable, especially when packets are already

lost on the channel. Another way to detect congestion is through channel sampling. As

used in CODA [34], when a packet is waiting to be sent, the sensor node samples the

state of the channel at a fixed interval. Based on the number of times the channel is

sensed busy, a utilization factor can be calculated to deduce the congestion level of the

network.

In wireless sensor networks, the sink is normally considered to have unlimited

resources and able to have a more extensive view of the network behavior than a normal

sensor node. Thus, in some protocols such as RCRT [21], the sink makes all the

congestion detection and rate allocation decisions.

2.3.2 Congestion Notification

When network congestion is detected, the congestion notification information needs

to be conveyed from the congested nodes to their neighbors or to the source nodes or

destination nodes. The method for delivery of notification information should be

carefully designed since sending new messages into an already congested network could

only aggravate the situation. The congestion information can be sent in the form of a

congestion notification (CN) bit in packet header or in a more comprehensive format that

includes the congestion degree or allowable data rate. The congestion information can be

sent in an explicit control message to notify the relevant nodes. It can also be sent in an

implicit way by including control information in a regular data packet. For example, in

ESRT [28], when congestion is detected, the sensor node sets a CN bit in the header of

the packet being forward. By checking the header of an incoming packet, the

receiver/sink can learn the congestion status of the network.

2.3.3 Rate Adjustment

A straightforward way of alleviating congestion is to simply stop sending packets

into the network, or to send at a lower rate. The rate adjustment decision can be made by

the congested nodes themselves, by a node outside the congested area (sink node), or by a

predetermined policy. When a single CN bit is used to notify congestion, one option is for

18

nodes to adjust their sending rate according to an additive increase multiplicative

decrease (AIMD) scheme as in RCRT [21]. On the other hand, if additional congestion

information is provided such as congestion degree or allowable data rate, nodes can

implement a more accurate rate adjustment as in CCF [5].

2.4 Existing Protocols

In general, most of the data transport protocols proposed for wireless sensor

networks focus on either reliable data delivery or on congestion control. Only a few

protocols such as RCRT [21] and STCP [16], deal with both issues. The protocols

focusing on reliable data delivery can be further classified according to their assumptions

regarding the data transmission direction. Sensors-to-sink protocols include RMST [29],

RBC [42], DTSN [26] and Flush [18]. Sink-to-Sensors protocols include PSFQ [32],

PALER [20], GARUDA [22] and HRS [19]. A classification of the existing data transport

protocols discussed in this thesis is shown in Figure 2.1.

2.4.1 Protocols with Reliability Guarantee

Pump Slow Fetch Quickly (PSFQ) is a classic transport layer protocol proposed by

Wan et al. [32]. In PSFQ, a source distributes data packets at a relatively slow pace to a

network of sensor nodes. Whenever a packet is detected as being lost (due to out-of-order

packet reception), PSFQ will fetch the missing data very aggressively (quickly) by

sending an immediate NACK to the node’s one-hop neighbors. In PSFQ, in-order

reception is a very important requirement. Nodes only forward packets that are received

without a gap in their sequence numbers. This requirement not only prevents the

propagation of a loss event to a node’s downstream neighbors but also helps to recover

the lost packet very quickly since an immediate retransmission can be requested and

established. PSFQ introduces the concept of localized recovery, which is designed to

reduce recovery costs and network overhead by suppressing the redundant retransmission

requests and the propagation of a loss event. The pushing mechanism and fetching

mechanism in the PSFQ protocol is built in a tightly controlled timing manner. When a

node receives a segment, if the segment is out-of-order, the node will prepare a NACK

requesting the missing segments and will continuously send out NACKs, spacing

19

according to a parameter 푇푟 until all missing segments are recovered. Otherwise, the

node will schedule a forwarding event with a random delay between 푇푚푖푛 and 푇푚푎푥.

The relationship between 푇푟 and 푇푚푎푥 is crucial in PSFQ, since the ratio 푇푚푎푥/푇푟

determines how aggressive the node is in trying to recover a missing segment. When a

node receives a retransmission request, the node will first check its own cache to locate

the requested segments and if found, schedules a resend with a random time between 1/4

푇푟 and 1/2 푇푟. If the node overhears a response with the same missing segment from

other neighbors before its own reply, the node will cancel the resend event in order to

reduce contention as well as redundancy.

Reliable Multi-Segment Transport (RMST) is a NACK-based protocol that has

primarily timer-driven loss detection and repair mechanisms [19]. RMST is designed for

relatively long-lived data flows from source nodes to a sink node, although it could be

applied to other contexts as well. RMST combines both transport layer and MAC layer

mechanisms to achieve reliable data delivery. In RMST’s cache mode, all intermediate

nodes on a path as well as the sink maintain a cache that stores all segments being sent.

When a node detects a missing segment, it creates a NACK packet that includes the

missing segment’s identifier and sends it back along the path to the source. When an

intermediate node receives a NACK, if it has all of the missing segments listed in the

NACK in its cache, it will forward them towards the sink and drops the NACK. If the

node has only some or none of the missing segments, it locates and resends the missing

segments it has (if any) and forwards the NACK again along the path to the source until

either all missing segments are recovered or the NACK reaches the original source node.

In RMST’s non-cached mode, only the sink and the source node have the ability to

maintain such a cache. Thus, when a missing segment is identified, the NACK travels

from the sink all the way back to the source node and the source will resend the missing

segment in a timely manner. The MAC layer design in RMST is important in that it not

only provides hop level error recovery for the transport layer but it is also necessary for

the discovery and maintenance of the route from source to sink. RMST is found to

achieve good performance in networks with high connectivity and low error rate.

20

Data Transport Protocols for Wireless Sensor Networks

 Reliability Focused Congestion Control Focused

 RCRT [21]
 STCP [16]

ESRT [28] CODA[34]
Fusion [14] PORT [43]
CCF [5]

 Sink-to-Sensors Sensors-to-Sink

PSFQ [32] PALER[20]
GARUDA [22] HRS [19]

RMST[29] RBC[42]

DTSN [26] Flush [18]

Figure 2.1 Classification of Existing Reliable Transport Protocols for Wireless Sensor Networks

20

21

GARUDA [22] is a reliable protocol designed for wireless sensor networks that

focuses on reliably transferring blocks of data from the sink to the rest of the network.

GARUDA uses a NACK-based approach similar to PSFQ but also incorporates a scheme

that guarantees the reliable delivery of the first packet of a data stream. This scheme

effectively solves the problem associated with NACK-based protocols that a receiver

needs to receive at least one packet from a block of data in order to detect packet loss.

The sensor network topology in GARUDA is constructed as an approximation to the

minimum dominating set (MDS). Each sensor node in the network is classified as either a

core member or a non-core member. The core member construction is done by a single

packet flood. The core members of GARUDA act as the recovery center for downstream

core members as well as non-core members and they each know at least one upstream

core member. When there is no core member in the range of a non-core member, the non-

core member can send out a request for a nearby core member candidate to become a

core member. In GARUDA, an upstream core member includes in every forwarded

packet a bitmap indicating the availability of its current segments into every forwarding

packet. When a segment is missing, GARUDA implements a two-stage loss recovery

method. A core member simply sends out a NACK to its upstream core node requesting

retransmission of the missing segment. This recovery process is carried on in parallel

with the default message-forwarding process in order to reduce network latency. A non-

core node snoops the network and only requests packet retransmission from its associated

core node when a complete bitmap is overheard from the core node. The reliable

single/first packet delivery in GARUDA is done by a pulsing-based approach. The sink

transmits a small series of short pulses as a signal before it initiates the transmission of a

block of data. Upon reception of the pulse from the sink, nodes reply with the same pulse

to indicate their awareness of the incoming packet. Sensor nodes can also use the pulse to

request retransmission of the first/single packet if they don’t receive it.

Miller et al. propose and analyze PALER, a reliable transport protocol for re-tasking

and remote programming of wireless sensor networks [20]. PALER is built on the

previously proposed PSFQ. PALER is motivated by a belief that the aggressive local

recovery method used by PSFQ can generate significant packet contention and collisions.

22

Thus, PALER introduces a lazy error recovery scheme with a more aggressive push

scheme to help to relieve the channel contention. The complicated recovery mechanism

used in PSFQ is replaced with a single inclusive NACK scheme in PALER. Furthermore,

by using local neighbor information and examining the local cache of received packets,

PALER is also able to effectively detect and reduce redundant transmissions. PALER

removes the in-order packet reception requirement as used in PSFQ. When a node

receives a segment, if the segment has already been received and is still in the cache, the

node increases the counter for it. If it is the first time the node receives this segment, the

node schedules a forwarding event for this segment. The forwarding event will be

cancelled if the counter for the segment reaches three before the segment is sent so as to

reduce redundant transmissions. When a node receives the last segment of a data object, it

broadcasts a NACK that contains a list of its missing segments to its one-hop neighbors.

The broadcasting of the NACK is scheduled with a random delay period in order to

reduce packet collisions as well as to give the node an opportunity to snoop rebroadcast

segments in the network. If a segment is snooped before the NACK is sent out, this

segment will be removed from the NACK. When a neighbor receives a NACK, it checks

its cache to locate any of the segments mentioned in the NACK and schedules

rebroadcasting of those segments.

Reliable Bursty Convergecast (RBC) is proposed by Zhang et al. to provide real-time

and reliable data transport under conditions of high-volume bursty traffic [42]. RBC

improves typical network efficiency by using a window-less block acknowledgement

scheme to carefully schedule packet retransmission. Each sender in the network divides

its packet queue into M+2 separate queues, indexed 0 through M+1 where M is the

maximum number of retransmissions allowed at each hop. Packets in queue j have

transmission priority over packets in queue j+1. Queue M+1 is used for free packet buffer.

When the sender sends a packet to the receiver, the ID of the buffer holding the packet, as

well as the ID of the buffer storing the packet to be sent next, are included with the data

packet. When the receiver receives a packet from the sender, by comparing the buffer’s

ID with the expected buffer’s ID piggybacked in the previous packet, the receiver can

decide whether there is packet loss or not. There are two types of block feedback packets

23

in RBC. For a maximum number of packets that are successful received at the receiver

without any missing packets in the middle, a block-ACK is generated. A block-ACK

includes the sequence numbers of all successfully received packets in one block. In the

case of missing packets, a block-NACK that records the sequence number of the expected

packet and last received out-of-order packet is created and sent to the sender. Senders in

RBC maintain a retransmission timer. The retransmission timer is set whenever a packet

is sent. If no corresponding block-ACK is received or a block-NACK is received before

the timer expires, a retransmission process is initiated at the sender. The packets that need

retransmission are moved to a higher-ranked queue, and wait to be transmitted. RBC is

evaluated using a real world experiment with 49 Mica 2 motes. The evaluation result

shows that RBC can double the packet delivery ratio and reduce end-to-end delay

compared with a commonly used stop-and-wait implicit-ACK scheme.

Wang et al. propose use of a supervised learning technique to improve reliability in

wireless sensor networks [37]. Supervised learning is a particular case of machine

learning, where both inputs and outputs are given in the training phase and nodes can

automatically extract knowledge of readily-available features and the quantity of interest

[28]. The inputs to the proposed supervised learning technique are system-level metrics

such as buffer occupancies, the received signal strength and the channel load assessment,

and outputs are performance metrics such as the throughput and the number of

retransmission. The proposed technique consists of two phases: an offline learning phase

and an online classification phase. Two case studies are presented in the paper to

demonstrate the advantages of supervised learning. In the second case study, which is

more related to the topic of this thesis, an extension to PSFQ called SHARP is presented,

which is a situation-aware reliable transport protocol. SHARP uses the knowledge it

learns from the offline learning phase to manage its storage space and control its caching

policy. By using the online classification phase, the proposed approach can help

individual sensor nodes to make informed reliability decisions.

Rocha et al. design a block oriented reliable transport protocol called DTSN that

focuses on unicast communication in wireless sensor networks [26]. The basic loss

recovery mechanism used in DTSN is Selective Repeat Automatic Repeat Request, which

24

employs both positive and negative acknowledgements. In DTSN, a session is identified

by the tuple <source address, destination address, application identifier, session number>

and is defined as a source/destination relationship. A randomly selected session number is

used to distinguish different sessions between the same source and destination nodes.

Within each session, all packets are given a unique end-to-end sequence number. The

Acknowledgement Window (AW) is defined as the number of packets that the source

sends before creating an Explicit Acknowledgement Request (EAR). During each

transmission session, after the source sends a number of packets that equals the size of

the Acknowledgement Window, it sends out an EAR packet to request feedback from the

destination and also starts an EAR timer. The value of both the AW and the EAR timer

are adjusted according to the individual application. The destination of the session

prepares and sends out a feedback packet after receiving the EAR. If no feedback packet

is received by the source before the EAR timer expires, the source will retransmit the

EAR packet. If an ACK is received by the source, indicating there is no packet loss

during the last session, the source will free up its output buffer and end the current

session. Otherwise, if a NACK is received, the source will check the bitmap included in

the NACK packet, identify the gap(s) in the sequence numbers and retransmit the lost

packet(s). In DTSN, all intermediate nodes in the path between source and destination

maintain an output buffer to store the forwarded packets.

Rahnavard et al. propose CRBcast [24], a two-phase broadcasting scheme which is

built on probabilistic broadcasting and application layer rateless coding. CRBcast is a

FEC based approach that has reliability and energy efficiency as its major considerations.

CRBcast consists of two phases. In the first phase of the protocol, the source simply

broadcasts the encoded packets. Nodes that receive enough encoded packets to recover

the original packets are called complete nodes, while nodes that can not recover all of the

original packets are called incomplete nodes. In the second phase of the protocol,

complete nodes will collaborate with incomplete nodes to help them collect additional

encoded packets and recover the original packets. Two types of handshake messages are

used between complete and incomplete nodes: advertisement messages (ADV) and

request messages (REQ). When a node becomes a complete node, it communicates its

status to its neighbors by sending out an ADV. Any incomplete node replies to the ADV

25

by transmitting back a REQ which includes the required number of new packets for its

completion, the ID of the complete node and certain flag bits. The complete node then

responds to the REQ by sending the requested packets to the incomplete node. The

advantage of CRBcast over a simple FEC scheme is that neighboring as well as

downstream nodes work together to recover lost packets. Thus, the probability of

successful reconstruction is increased. Two extensions of the CRBcast protocol,

probabilistic advertising and multi-stage recovery, are also discussed in the paper.

Flush [18] is a receiver-based reliable bulk transfer protocol designed for multihop

wireless sensor networks. Flush uses end-to-end selective negative acknowledgments to

achieve end-to-end reliability, a dynamic rate control technique to maximize the usage of

bandwidth and implicit snooping control messages to reduce system overhead. In Flush,

there are four phases within a data transmission process: topology query, data transfer,

acknowledgement and integrity check [18]. The receiver (sink) sends a topology query to

request a data object as well as to calculate the Round Trip Time (RTT) to the source. The

source then starts to send packets at the fastest rate possible without causing network

congestion. Along the transmission route to the sink, Flush continuously calculates the

usage of bandwidth and adjusts the transmission rate using the information snooped at

each hop. The sink is responsible for tracking the received packets and detecting any

packet loss. When the data transfer phase is completed, the sink sends out a NACK which

contains the identities of any missing packets to the source for retransmission. When the

NACK is received by the source, it resends the requested packets. When all packets are

received at the sink, it starts to verify the integrity of the data. The sink discards the data

object if it fails the integrity check; otherwise the sink keeps the received data object and

requests the next one, if any. In order to reduce the sending time and increase the sending

rate, Flush uses two basic rules in its rate control algorithm. Rule1 is that a node only

sends packets when the downstream node is free. Rule 2 is that a node cannot send faster

than its downstream node. Flush is tested with 79 Intel Mirage sensor nodes in a 48-hop

network.

A summary of some of the existing protocols guaranteeing reliable data delivery is

presented in Table 2.1.

26

Features
Protocols

PSFQ [32] RMST [29] GARUDA [22] PALER
[20] RBC [42] DTSN [26] STCP [16] Flush [18]

Design Focus

Reliability,
energy-

efficiency
and

scalability

Reliability
Reliability and

energy-
efficiency

Reliability Reliability

Reliability,
energy-

efficiency and
scalability

Reliability and
scalability

Reliability
and time-
efficiency

Direction Sink-to-
sensors

Sensors-to-
sink Sink-to-sensors Sink-to-

sensors
Sensors-to-

sink
Sensors-to-

sink Sensors-to-sink Sensors-to-
sink

Loss Detection Timer-based
NACK

Selective
NACK NACK Inclusive

NACK Implicit ACK
Selective
ACK and
NACK

ACK and
NACK

Selective
NACK

Loss Recovery Hop-by-hop
End-to-end
and hop-by-

hop

Two-tier two
stage loss
recovery

Hop-by-
hop Hop-by-hop Hop-by-hop Hop-by-hop End-to-end

Reliability Packet
reliability

Packet
reliability

Packet
reliability and
cover sensing
field reliability

Packet
reliability

Packet
reliability

Packet
reliability

Packet
reliability and
probabilistic

reliability

Packet
reliability

Communication
Type

Block of
packets

Block of
packets

Single packet
and stream of

packets

Block of
packets

Block of
packets

Block of
packets

Block of
packets and
stream of
packets

Block of
packets

Unique Design
Pump slowly

and fetch
quickly

Cross-layer
design

(Transport
and MAC

layer)

Wait-for-First-
Packet (WFP)

pulse for
reliable first

packet delivery

Single
inclusive
NACK

Window-less
queue

management

Combined
ACK and

NACK design

Packet loss
recovery and
congestion

control

NACK and
rate control

design

Evaluation

NS-2
simulation
and Rene2

motes
experiment

NS-2
simulation

NS-2
simulation

Jist/Swans
simulation

49 Mica2
motes

experiment

TOSSIM
simulation

TOSSIM
simulation

100 MicaZ
motes

experiment

Table 2.1 Summary of Existing Reliability Guaranteed Protocols

26

27

2.4.2 Protocols with Congestion Control

Sankarasubramaniam et al. propose the Event-to-Sink Reliable Transport (ESRT)

protocol [28]. ESRT keeps the network in the optimum condition (reliable without

congestion) by dynamically adjusting the reporting rate of upstream nodes as well as

controlling the downstream congestion level according to the current network state. ESRT

classifies the network into the following five different states based on different reliability

and congestion levels:

 State 1: No congestion and low reliability. This is a state with very low sensor node

transmission rates and no congestion. The “reliability”, as measured by the ability of

the sink to detect events reliably, from reports received from the sensors, is low owing

to the low sensor reporting rates. There is plenty of bandwidth not being used.

 State 2: No congestion and high reliability. In this state, no congestion is observed in

the network. The reliability level exceeds the required level because of the high

reporting rate of the sensor nodes. The network meets the reliability requirement but

sensor nodes consume more energy than necessary.

 State 3: Congestion and high reliability. In this state, the network becomes congested

because sensor nodes report more frequently than required. The network is able to

maintain higher than required reliability due to the higher reporting rate but also

experiences congestion.

 State 4: Congestion and low reliability. This is the worst possible scenario where the

network experiences congestion while the reliability level is below the required

reliability level owing to packet loss. ESRT will reduce the transmission rate

aggressively to attempt to bring the network back to the optimal state.

 State 5: The optimal state. In this state, the reliability level matches the required

reliability level with minimum energy consumption. This is the target state.

By monitoring the network for congestion signs and observing the rate of received

packets for a period of time, the sink can determine the current state of the network. The

congestion level is detected by measuring node buffer occupancies. Based on the detected

congestion state, the sink will compute the new transmission rate to adjust the network to

28

the optimal state (state 5) and propagate this new rate to the network. ESRT assumes that

in the non-congested state, a linear relationship exists between the transmission rate and

the number of packets delivered at the sink per round. Under this assumption, the

protocol should always converge to the optimal state, if this state is feasible to achieve.

As seen with ESRT, controlling and adjusting the sensor nodes’ transmission rate is

directly related to the congestion control issue in wireless sensor networks. The CODA

protocol incorporates a new rate control framework [34]. CODA consists of three

components: 1) a congestion detection mechanism based on observing the transmission

queue size at intermediate nodes and the wireless channel load, 2) an explicit congestion

notification method that uses a local back-pressure mechanism to signal nodes to reduce

the forwarding rate, and 3) a centralized rate-control technique that allows the sink to

regulate the multi-source rates. CODA adjusts the sending rate in a manner similar to

AIMD [21].

Fusion incorporates three techniques to address the congestion issue in wireless

sensor networks: hop-by-hop flow control, rate limiting and a prioritized MAC [14].

Hop-by-hop flow control consists of both congestion detection and congestion mitigation.

Two commonly-used congestion detection methods are tested in Fusion: queue size

monitoring and channel sampling. Congestion mitigation is done at the node level by

observing the network congestion bit included in each data packet’s header and adjusting

the sender’s forwarding rate according to the congestion level. If a routing path is unable

to sustain the current traffic load, the hop-by-hop backpressure will propagate back to the

source and allow the flow control mechanism to throttle the sampling interval. The rate-

limiting technique is designed to allow sensor nodes to only send at the same rate as their

children, thus nodes close to the sink can have a smaller chance of being flooded with

packets when congestion happens. Fusion employs a prioritized MAC to aid congestion

control. The length of each node’s randomized MAC backoff is designed to be a function

of its congestion state. When a node is congested, the backoff window is adjusted to only

one-fourth of the size of a regular node’s window. Thus, higher priority is given to a

congested node by the prioritized MAC, allowing congestion notification (in the form of

the network congestion bit in each data packet header) to propagate faster.

29

The Price-Oriented Reliable Transport Protocol (PORT) has a design that combines

the ideas of multi-path routing, rate control and rate adaptation to avoid network

congestion [43]. Based on the observation that different sources make different

contributions to improving the sink’s knowledge of events, PORT gives each node a price,

which is defined as the energy consumed for each packet successfully delivered from the

node to the sink, by all the nodes in the corresponding network path. The node price,

together with link loss rates, is used to dynamically allocate the outgoing traffic to

mitigate congestion. PORT also incorporates an optimal routing scheme for in-network

nodes. An optimal route can be constructed based on the estimation of link loss rate on

the source-to-sink path.

Paek et al. propose RCRT [21], a reliable rate-controlled transport protocol suitable

for high-rate wireless sensor network applications. RCRT is designed to reliably transfer

large amounts of sensor data from multiple sources to multiple sinks without incurring

network congestion. RCRT uses end-to-end explicit NACKs and retransmissions to

recover lost packets and implements a congestion detection and rate adjustment function

in the sinks. In RCRT, end-to-end reliability is provided by a NACK-based loss recovery

scheme. Each source node buffers every packet being sent and sinks track the end-to-end

sequence number. Once a gap in the sequence numbers is detected, the missing sequences

numbers are added to a missing packet list and the list will be sent at the end of the data

flow in a NACK packet to the source nodes. Upon receiving a NACK from the sink,

source nodes will initiate an immediate retransmission of the missing packets. Congestion

detection in RCRT is done by monitoring the time to recover end-to-end loss at the sink.

The sink maintains an out-of-order list, and if it takes more than four round trip times for

the sink to recover a missing packet, the protocol decides the network is congested.

Whenever congestion is detected, RCRT applies rate decrease steps according to an

AIMD approach in the sinks and propagates the new transmission rate to the network.

RCRT is one of the few protocols that provides a solution to both the reliability and

congestion control issues.

A summary of some of the existing congestion control protocols is presented in

Table 2.2.

30

Features
Protocols

ESRT [28] CODA [34] Fusion [14] PORT [43] RCRT [21] CCF [5]

Design
Focus

Energy-efficiency
and congested

control for event-
based WSN

Congestion
control and

energy-efficiency

Congestion
control in

spanning-tree
topology

Congestion control
and energy-
efficiency

Congestion control for
high-rate application

Reliability and
scalability

Congestion
Detection Queue size Queue size and

channel status Queue size Link loss rate and
node’s price Time to recover loss Packet service time

Congestion
Notification Implicit Explicit Implicit Explicit Implicit Implicit

Congestion
Mitigation

AIMD-like end-
to-end rate
adjustment

AIMD-like end-
to-end rate
adjustment

Stop-and-start
hop-by-hop rate

adjustment
Multi-path routing AIMD-like end-to-end

rate adjustment
Exact hop-by-hop rate

adjustment

Unique
Design

Event-to-sink
congestion control

and sink-based
congestion
detection

Receiver-based
congestion
detection

A prioritized MAC
design

Sink-based
optimization

approach and local
optimal routing

scheme

Sink-based congestion
detection and

mitigation approach

Packet loss recovery
and congestion control

Evaluation NS-2 simulation
NS-2 simulation
and Rene2 motes

experiment

55 Mica2 motes
experiment NS-2 simulation 40 Tmote motes

experiment

NS-2 simulation and
10 Mica2dot motes

experiment

Table 2.2 Summary of Existing Congestion Control Protocols

30

31

CHAPTER 3

HOP-BY-HOP RELIABLE DATA DELIVERY

The main contribution of this thesis is the design and evaluation of a reliable data

delivery protocol for wireless sensor networks. This protocol employs a hop-by-hop loss

detection and recovery scheme. The goal of this protocol is to provide high reliability for

general unicast communication with low system overhead and network delay. These

goals are achieved by efficiently scheduling packet transport and through use of a new

explicit NACK with reliable last/single packet delivery approach.

This chapter presents the design of the proposed protocol. Section 3.1 describes

some design considerations in developing the protocol. Section 3.2 presents terminology

and assumptions. The protocol’s packet queue structure and explicit NACK approach are

described in Sections 3.3 and 3.4 respectively. The detailed operation of the proposed

protocol is presented in Section 3.5. Section 3.6 discusses some additional protocol

features and design variations.

3.1 Design Considerations

Sensor networks applications often involve periodic data collection at a sink node.

For such applications there is a steady rate of data packet transmission. In contrast to a

conventional network, where all data is commonly given the same importance, in sensor

networks, new data can be more valuable to the user. Considering a real-time monitoring

application, the user is normally more concerned with the current status of the network

and the new information contained in the fresh data, and therefore this data is more

32

valuable than old data. Meanwhile, when using a NACK-based scheme, older data is

more likely to have been received by the receiver. Thus, in this study, it is assumed that if

data packets must be dropped owing to a node buffer being full, newer data is more

valuable than older data.

A sensor node, as limited by its own capacity, is forced to drop packets when its

buffer is filled. When a large number of packets arrive in a short time or new packets

generated by the node outnumber the available buffer spaces, packet loss is inevitable.

One of the most important design concerns of this protocol is how to ensure that data

packets are successfully delivered except when loss is unavoidable due to limited buffer

space.

Due to the high link error rate of wireless sensor networks, hop-by-hop packet

recovery is usually preferred over end-to-end packet recovery. Nevertheless, most of the

existing hop-by-hop control mechanisms do not schedule packet transmissions so as to

minimize delay. In some of the protocols, a sent packet is not removed from the head of

the transmission queue until feedback has been received. As a result, newly arrived

packets cannot be transmitted immediately and have to wait for the previous packet to be

acknowledged. Significant delay can be observed in such protocols. In some other

protocols, retransmissions of the missing packets are given higher priorities over the

transmissions of newer packets. As a result, when retransmission occurs, data packets that

are already stored in the transmission queue but haven’t been transmitted may experience

long queueing delays. Meanwhile, the transmission queue can be quickly filled up with

new received packets and any new incoming packets may have to be dropped due to the

buffer overflow. Therefore, in the proposed work, a new design is introduced to schedule

the transmission process in a more efficient measure.

As discussed in Chapter 2, several ACK-based or NACK-based network layer hop-

by-hop error recovery protocols have been proposed for wireless sensor networks.

However, none of them can achieve 100% reliable delivery with low delay and

33

transmission cost. ACK-based approaches provide better reliability, but inevitably

increase overall network delay and overhead. NACK-based approaches are more efficient

in lost packet detection but cannot work properly in the presence of route changes or

losing blocks of packets. Thus, a natural idea is to provide a comprehensive solution that

has the advantages of both ACK and NACK techniques. In this thesis, a timer-based ACK

approach is used to handle the last/single packet delivery problem while an explicit

NACK method is used to detect and repair packet loss for regular data packets. Excepting

for loss caused by buffer overflow, 100% reliable data delivery is provided.

3.2 Terminology and Assumptions

3.2.1 Topology and Link Layer Setup

The proposed protocol is expected to work for general topologies. Thus, for a single

node, there could be multiple sources of incoming packets as well as multiple

destinations of outgoing packets. Only unicast communication is considered in this work.

Routing is outside the scope of the current work, and so when an intermediate node fails,

the problem of how to build an alternative route is assumed to be handled by a separate

protocol. A discussion of how the proposed protocol can accommodate node failure and

route changes is presented in Section 3.6.

3.2.2 Protocol Terminology

 Source/Destination/Sender/Receiver: The source node for a packet is the node at

which the packet was originally generated, while the destination node is the final

destination of the packet. On each hop to the destination, the packet is transmitted by

a sender node and received by a receiver node.

 Ready_Bit: If a packet is ready to be sent for the first time by the sender, or ready to

be retransmitted, the Ready_Bit is set to 1. Otherwise, the Ready_Bit is set to 0. Only

34

a packet with Ready_Bit equal to 1 can be transmitted by the node.

 ACK/NACK_Bit: This bit indicates whether the sender requests ACK or NACK for

the sent packet. The ACK/NACK_Bit is stored in the header of a data packet. When

the receiver receives a new packet, it needs to read the value of the ACK/NACK_Bit.

If the ACK/NACK_Bit is equal to 0, the receiver has to send an ACK for that packet;

if the ACK/NACK_Bit is equal to 1, the receiver does not need to return an ACK.

 Packet_ID: This term is used to refer to the combination of the source and destination

node IDs (all sensor nodes are assumed to have a unique ID) and the end-to-end

sequence number (assumed to be unique for all packets between a particular

source/destination pair). Since the Packet_ID is globally unique, it can uniquely

indentify data packets in the network.

 Last_ID: This field in the packet header is used to store the Packet_ID of the last new

(not a retransmission) packet sent by the sender to the receiver. The contents of this

field are determined when the packet is transmitted for the first time by the sender,

and are not changed if packet transmission is unsuccessful and the packet must be

retransmitted. When the sensor state has been initialized (or re- initialized) and there

is no state information regarding such a packet, the Last_ID field is set to be NULL.

 R[S]: A state variable maintained by the receiver for each sender. The state variable

R[S] is created to store the Packet_ID of the newest in-order data packet that has been

received from the sender. The value of R[S] is updated after a new data packet is

accepted by the receiver. A detailed description of how R[S] is used to detect missing

packets is presented in Section 3.4.

 SKIP: The SKIP field is a single bit indicating the availability of the requested data

packet at the sender. When the receiver requests a retransmission of a missing packet

and the packet has been dropped from the queue, the sender sends the oldest available

data packet in its queue that is destined for that receiver and sets its SKIP field to 1.

Upon receiving a data packet with SKIP field equal to 1, the receiver realizes that the

35

requested missing packet is no longer available at the sender and so it takes the

received packet as an in-order packet.

3.2.3 Packet Format

In the proposed work, there are two different types of packets: data packet and

feedback packet. A data packet is a packet containing sensor readings or other data. All

the data packets share the same header format. The header of a data packet contains four

important fields: Packet_ID, ACK/NACK_Bit, Last_ID and SKIP.

There are two types of feedback packet in this work: ACK packet and NACK packet.

ACK and NACK share the same packet format. They both have a one bit feedback type

field and a four byte Packet_ID field, giving the ID of the newest in-order packet

successfully received by the receiver. These two packets can be distinguished by using

their feedback type bit: 0 refers to NACK packet, 1 refers to ACK packet.

3.3 Transmission queue Management

The common method to recover lost packets in a hop-by-hop recovery scheme is

through retransmission. However, most current retransmission schemes may yield either

excess redundant traffic or excess delay. As one goal of the presented work is to transmit

new data packets as quickly as possible, new transmission queue management policies

are designed for better scheduling retransmissions.

3.3.1 Enqueue and Transmission Policies

Each individual node has to maintain a transmission queue structure, whose

responsibility is to temporarily store packets and manage the transmission. Every packet

in the queue has a Ready_Bit to indicate its status as introduced in Section 3.2.2. If the

Ready_Bit is 1, then the packet is ready to be sent; if the Ready_Bit is 0, it means the

packet has been sent already and does not need to be resent at this time. This Ready_Bit

36

can be changed when a NACK is received or the packet is transmitted.

When a sender gets a new packet, either generated by the node itself or forwarded

by an upstream neighbor, the Ready_Bit of the packet is set to 1 and the packet is stored

at the tail of the queue. Whenever the sender is ready to begin a new transmission, it

checks the Ready_Bit of the packets in the queue in the order from the head of the queue

to the tail. The first packet with Ready_Bit equal to 1 will be sent and its Ready_Bit will

be set to 0. After sending a packet and waiting a random delay period (so as to provide

some spacing between transmissions), the node checks the Ready_Bit of the packets in

the queue again and sends the next packet with Ready_Bit equal to 1.

In a conventional ACK-based approach, after a data packet has been transmitted, it

stays at the head of the queue and no other packet can be transmitted until feedback is

received from the receiver. A direct consequence of this approach is that significant delay

can be incurred if the sender doesn’t get the feedback as expected, due to network

congestion or link error. As a result, packets newer than the sent packet have to wait in

the queue and cannot be transmitted promptly. This send-and-wait strategy may work fine

when network connectivity is good. However, it may cause significant delay in poor

network conditions.

In the proposed protocol, by taking advantage of this transmission queue design, a

source node can transmit multiple new data packets consecutively without waiting for

feedback. For example, suppose that a packet X is transmitted. Its Ready_Bit is then set

to 0. A data packet newer than packet X with Ready_Bit equal to 1 can then be

transmitted. At the same time, the sender can retransmit any missing packet in parallel

with the regular data packet transmitting process. For example, when a node receives a

NACK for a packet Y, it locates the missing packet in its transmission queue if present

and sets its Ready_Bit back to 1. Any packet older than packet Y that is destined for the

same receiver must have been received and is thus removed from the queue, as described

in Section 3.3.2. If there is no older packet destined to some other receivers with

37

Ready_Bit equal to 1, the retransmission of packet Y can be started immediately.

3.3.2 Dequeue Policy

Since sensor nodes can receive and generate data packets constantly, while their

storage capacity is quite limited due to size, cost and power limitations, an appropriate

dequeue policy is necessary in order to manage the buffer space more efficiently. In the

proposed policy, packets are dequeued in the following scenarios:

 If the transmission queue reaches its maximum capacity and a new packet is received,

the node discards the packet at the head of the queue and makes room for the newer

packet. Since all packets in the queue move in the sequence from tail to head, the

packet at the head of the queue has been in queue the longest and can therefore be

considered to be the most likely to have been successfully received by its respective

receiver.

 If an ACK or NACK is received, the Packet_ID is read from the ACK and compared

with the IDs of packets in the transmission queue. Since the Packet_ID in the ACK or

NACK gives the latest in-order packet received by the receiver (see Section 3.5), the

packet X with matching Packet_ID (if still present in the queue) as well as all packets

older than packet X that were sent to that receiver and are still present in the queue

can be dequeued.

3.3.3 Summary

The advantages of the proposed transmission queue management policy are two-fold.

On the one hand, a packet will not be dequeued before it is known it has been

successfully received, or, if necessary, when it is the oldest packet in the queue

maximizing the opportunity to re-send lost packets. On the other hand, the detection of

packet loss does not interfere with normal packet transmission, and thus delay can be

significantly reduced while still ensuring a high level of reliability.

38

3.4 Explicit NACK with Reliable Last/Single Packet Delivery

The crucial issue in providing reliable data delivery is how to detect and repair

packet losses. In this work, in order to overcome the problems with conventional ACK

and NACK protocols as mentioned in the previous chapter, a hybrid of a NACK-based

technique and explicit positive acknowledgement is employed.

The advantage of a NACK-based approach is obvious: it is effective in detecting

packet losses and also efficient in recovering from them. However, a typical problem

with a NACK-based approach concerns the fact that the receiver has to be aware of the

incoming packet. Otherwise, the receiver cannot send out a NACK to request

retransmission. In the proposed work, every outgoing packet includes the Packet_ID of

the last packet sent by the same sender. Thus, by examining the Packet_ID of the packet

most recently received from the same sender and the Packet_ID included in the current

received packet, the receiver can detect if there are any missing packets between the two

receptions. A “send-and-wait” ACK approach is used to ensure the successful

transmission of the last/single packet, and an explicit NACK approach for the rest of the

packets. The following detailed description of this approach considers a single

sender/receiver pair.

As introduced in Section 3.2, every data packet includes an ACK/NACK_Bit in the

packet header, which indicates whether or not this packet is the last packet in a data

stream. When the sender prepares the data packet, if it is known that there will be another

packet that will be sent to the same receiver within some reasonable time period, it sets

the ACK/NACK_Bit to 1; otherwise the sender sets it to be 0. In the latter case, the

sender sends the packet to the receiver and starts a retransmission timer. Upon receiving a

packet from the sender, the receiver first examines its ACK/NACK_Bit. If the

ACK/NACK_Bit is 0, the receiver learns that this packet is the last packet it will receive

from the sender. Thus, it creates an ACK packet and sends it back to the sender. In this

39

case, the sender keeps re-sending the last packet until the reception of the packet is

confirmed by the receiver. Otherwise, the receiver only uses the explicit NACK approach

as described below.

When a sender S sends a packet Y to the receiver, the Packet_ID of the last packet

transmitted by the sender to that receiver is included in the Last_ID field of packet Y’s

header. The receiver maintains a local state variable R[S], which is used to store the

Packet_ID of the last in-order packet received from sender S. After receiving packet X,

the receiver stores the Packet_ID of packet X in R[S]. When a new packet arrives, by

comparing the Packet_ID in its Last_ID field with R[S], the receiver can learn whether or

not this is the next in-order packet. If the Packet_ID in the Last_ID field of the new

packet matches with R[S], then the incoming packet is indeed the next in-order packet,

and R[S] is updated to the ID of packet Y. If the packet needs to be transmitted another

hop, the receiver inserts packet Y into the transmission queue. If, on the other hand, the

Last_ID field does not match R[S], the received packet is not the next in-order packet,

whose transmission must have been unsuccessful. The receiver drops the packet, creates a

NACK packet containing R[S] and immediately sends it back to the sender requesting

retransmission of all packets newer than that with ID of R[S].

Note that in the explicit NACK approach, the receiver only accepts in-order packets

and drops all out-of-order packets. This policy is designed to ensure that packet delivery

is 100% reliable, except possibly when a node’s buffer reaches its capacity. Specifically, a

receiver continually requests a missing packet until it has been successfully received, or

such reception is no longer possible, as described in Section 3.5. However, a possible

performance enhancement can be achieved by buffering packets that are received out of

order, so as to eliminate the need for the sender to retransmit such packets. A protocol

variant using out-of-order buffering is proposed and discussed in Section 3.6.5.

40

3.5 Protocol Operation

In this section, a detailed description of the operation of the proposed protocol is

presented. The protocol operation is described for a general scenario.

3.5.1 Sender Operation

 Before the sender sends any packet, it first examines the Ready_Bit of the packets in

the queue. The sender chooses the first (oldest) packet it encounters in the queue with

the Ready_Bit equal to 1 as the packet to be sent. If the packet is being transmitted for

the first time, and the sender knows that it will be sending another new packet to the

same receiver soon, it sets the ACK/NACK_Bit in the packet header to 1; otherwise,

it sets this bit to 0. In the latter case, the sender will not send any new data packet

until it gets an ACK back.

 When sending a packet that is being transmitted for the first time, the sender puts

the Packet_ID of the packet that it has most recently sent to the same receiver

(excluding any retransmissions) into the Last_ID field in the packet header. If there is

no such previous packet or if the sender has no memory of its ID (e.g., the sender has

failed and lost data at least once since the previous packet was sent), it fills this field

with NULL.

 When the sender sends a packet (either a new packet or a retransmission), with the

ACK/NACK_Bit set to 0, it initiates a retransmission timer. If no acknowledgment is

received for the packet before the timer expires, the sender sets the ready bit of the

packet back to 1, which will cause the packet to be retransmitted. Before the

retransmission timer is fired, the sender cannot transmit any newer packet to this

receiver unless an acknowledgment is received. Whenever the sender finishes sending

a packet, it sets the Ready_Bit of the sent packet to 0.

 When the sender receives an ACK for a packet X, the sender cancels the

41

retransmission timer. According to the dequeue policy described in Section 3.3, the

sender can safely remove the packet X as well as all older packets that were sent to

that receiver from the queue and move on to send the next available packet.

 When the sender receives a NACK containing the ID of packet Y, the sender sets the

Ready_Bit of all enqueued packets newer than packet Y that were sent to the same

receiver (if any) to 1 and dequeues packet Y (if found in the queue) and all older

enqueued packets (if any) that were sent to that receiver. The sender has to resend any

packets sent to that receiver that are newer than packet Y and that are found in the

queue because the receiver does not accept out-of-order packets. Note that if packet Y

is not found in the queue, any packets defined for the same receiver that are in the

queue must be newer than packet Y. In this case, the first of the packets transmitted to

the receiver (or the first new packet if no packets for that receiver were found in the

queue) has its SKIP field set to 1 to indicate that no packets between packet Y and

this packet are available.

3.5.2 Receiver Operation

 When a packet with the ACK/NACK_Bit set to 1 is received and the state variable

R[S] matches the Last_ID field in the packet header, the receiver accepts the packet,

and no acknowledgment is required. The receiver sets R[S] to the Packet_ID of the

received packet.

 When a packet with the ACK/NACK_Bit set to 0 is received and the state variable

R[S] matches the Last_ID field in the packet header, the receiver accepts the packet

and transmits an ACK containing the Packet_ID of packet X back to the sender. The

receiver sets R[S] to the Packet_ID of the received packet.

 When a packet with the SKIP field set to 1 is received, the receiver accepts the packet

and assigns the Packet_ID of the received packet as the new value of R[S]. The

receiver may have missed one or more packets from that sender, but if so, then

42

packets were dropped from the sender’s queue and cannot be recovered.

 When a packet is received with a Last_ID field that does not match R[S], and the

SKIP field is not set to 1, the receiver must have missed one or more packets from

that sender. The received packet is dropped by the receiver and a NACK with ID field

set to its R[S] is sent back to the sender.

3.6 Additional Features and Design Variations

In this section, some other details of the proposed protocol are discussed. Those

details are worth mentioning because they explain how the protocol works in different

and complex scenarios, such as nodes failure and route changes, variable reliability

requirements and how to eliminate duplicated data packets. In Section 3.6.4, a variation

of the proposed protocol is also discussed, which further improves the performance of the

original protocol in a high loss rate environment by caching out-of-order packets at the

intermediate nodes.

3.6.1 Variable Reliability

As discussed in Section 2.1.2, different applications in wireless sensor networks may

have different reliability requirements. The data transport protocol for a WSN should be

able to adapt the quality of service and type of services to be provided to the application

requirements. For example, in an event-monitoring application, it may be possible to

recognize an event by receiving only 80% of the data packets reporting the event. It may

also be necessary to maximize the life time of the network. By slightly modifying the loss

recovery scheme, the proposed protocol can easily adapt to the above requirement. Each

node in the network updates a measure of link-level reliability between the node itself

and its upstream node whenever it receives a new data packet. The link-level reliability is

defined as the number of received in-order packets divided by the total number of

transmitted packets which includes packets not successfully received. Each node in the

43

network also maintains a required reliability level, which may be predefined or updated

by the sink during data collection. When a node receives an out-of-order packet, if the

calculated average reliability level is above the required reliability level, the node will not

create the NACK packet and request retransmission of the missing packet. By skipping

the creation of a NACK packet and so avoiding the retransmission of an unnecessary data

packet, the node is able to maintain the required reliability level while saving energy and

bandwidth which can in turn increase the lifetime of the network.

3.6.2 Route Changes or Node Failure

Node failure or severe network congestion may result in route changes [15]. Adding

new nodes to an existing sensor network may also cause such changes. How to detect

node failure, coordinate newly added nodes and construct a new route depends on the

underlying routing protocols and is outside the scope of this paper. However, a well-

designed reliable transport protocol should be able to effectively handle the case of route

change or node failure and perform robustly. Because the proposed protocol uses hop-by-

hop loss detection and recovery and can initiate the data transmission process without any

additional information exchange, a newly joined node (either a newly added node or a

node just available in the new route) can be integrated into a route without any previous

knowledge of the network.

Consider the example shown in Figure 3.1, where the sender is forwarding or

sourcing a stream of packets and the new node is a node that has just joined the network,

which either replaces a failed node or is part of a new route. Assuming that the sender has

five packets available in its queue (from packet 3 to packet 7) and has already sent out

packet 3 in a previous transmission, the sender continues to send packet 4 as shown in

Figure 3.1(a). When the new node receives data packet 4, since the Last_ID field does not

match the local variable R[S] (which is NULL), the new node considers this packet an

out-of-order packet and drops it. Since the transmission queue of the new node is empty

44

and there is no record of previously received packets, the new node sends back a NACK

with NULL in the Packet_ID field as shown in Figure 3.1(b). Upon receiving the NACK,

the sender checks its queue and finds no packet with Packet_ID matching with NULL.

Thus, the sender resets all the packets’ Ready_Bit to 1 and resends the first packet

available (which is packet 3) in its queue with SKIP field set to 1. The new node accepts

the packet 3 as shown in Figure 3.1(c) because of the SKIP field, and updates its state

variable R[S] to the Packet_ID of packet 3. The new node successfully joins the network

within two sending rounds.

3.6.3 Data Redundancy

Route changes and node failure can not only result in packet loss, but also the

possibility of transmitting redundant data. As described in the previous section, when a

new route is established or a new node joins the network, the sender needs to resend

every packet available in its buffer to the new next hop node in case packet loss has

occurred. However, some of these packets may have already been successfully

transmitted to the destination nodes through the original path or other old nodes before

the new node joins the path. Since all data packets will eventually be sent to destination

nodes and the Packet_ID of each packet used in this protocol is globally unique, the data

redundancy check can be done at destination nodes by comparing the Packet_ID of the

 Sender

Packet 3
Packet 4
Packet 5
Packet 6
Packet 7

 Sender

Packet 3
Packet 4
Packet 5
Packet 6
Packet 7

 NACK Packet 3
Packet 4
Packet 5
Packet 6
Packet 7

Packet 3

 Packet 3

(a) (b) (c)

 Sender Packet 5
New Node New Node New Node

Figure 3.1 Example of Route Changes or Node Failure

45

received packets.

3.6.4 New Protocol with Out-of-Order Buffering

In the hop-by-hop reliable data delivery protocol presented in the previous sections,

the receiver accepts only in-order data packets and is forced to drop all out-of-order

packets. As a consequence, when a NACK is received, the sender not only needs to

resend the first missing packet but also all newer packets including the out-of-order

packet. In an environment of high link error rate and poor network connection, this

strategy can be a waste of resources. With a closer look at the sender operation, one can

notice that the sender always sends data packets in a first-in-first-out (FIFO) basis. In

other words, the sending sequence at the sender is consistent with the data packet arrival

sequence at the sender’s transmission queue, unless a retransmission timer expires or a

NACK is received. Out-of-order packets the receiver receives are packets newer than the

receiver’s expected next new packet. Therefore, if out-of-order packets can be stored

temporarily, at least one data packet retransmission can be saved by recovering the

missing packet locally from the buffer. Therefore, a variant of the new protocol with out-

of-order buffering is developed.

In the modified protocol, besides the transmission queue, each node also maintains a

separate out-of-order buffer that can temporarily store a single out-of-order packet. If this

buffer is already occupied when the node receives another out-of-order packet, the old

packet in the buffer will be replaced with the new packet. The receiver still creates a

NACK packet and sends it back to the sender for retransmission when it receives an out-

of-order data packet. However, the receiver stores this packet into its out-of-order buffer,

rather than immediately discarding it as in the original protocol. If a data packet with

Last_ID matching R[S] is received next, the receiver updates its variable R[S] to the

Packet_ID of the new packet and stores this packet in the queue (if it needs to be

forwarded on). The receiver in the modified protocol also needs to examine the Last_ID

46

field of the packet in the out-of-order buffer. If the Last_ID field of the packet in the out-

of-order buffer matches the new R[S], this packet is the next new packet from the sender.

The receiver updates the state variable R[S] again to be the Packet_ID of the packet in the

out-of-order buffer and moves this packet to the transmission queue (if it needs to be

forwarded on).

When a data packet with SKIP field equal to 1 is received, there are several cases

that need to be considered. If the out-of-order buffer is filled and the Packet_ID of the

new packet matches with the Last_ID of the packet in the out-of-order buffer, the receiver

saves the new packet and updates the state variable R[S] to be the Packet_ID of the

packet in the out-of-order buffer and moves this packet to the transmission queue (if it

needs to be forwarded on). If, however, the Packet_ID of the new packet doesn’t match

the Last_ID of the packet in the out-of-order buffer, the receiver needs to compare the

Last_ID of the new packet and the Packet_ID of the buffered packet. If they match, the

receiver moves the packet in the out-of-order buffer to the transmission queue and

updates the state variable R[S] to be the Packet_ID of the new packet and saves the new

packet in the transmission queue (if it needs to be forwarded on). In all other cases (e.g.

the out-of-buffer is not filled or the received new packet is the same packet as in the out-

of-order buffer), the receiver saves the new packet in the transmission queue and updates

the state variable R[S] to be the Packet_ID of the new packet.

Because only an out-of-order data packet can trigger a NACK packet, when a NACK

is received, the sender can assume that a packet it sent after the missing packet was

received by the receiver and is stored in its out-of-order buffer. Thus, rather than

retransmitting all newer packets in the queue as in the original protocol, the sender in the

modified protocol only retransmits the oldest packet in its queue following the packet

whose Packet_ID is given in the NACK. The example in Figure 3.2 is used to illustrate

the mechanism of this modified protocol.

47

 Sender

Packet 3
Packet 4
Packet 5
Packet 6
Packet 7

Packet 3

 Sender

Packet 3
Packet 4
Packet 5
Packet 6
Packet 7

Packet 3

Packet 5 Packet 3

Packet 4
Packet 5
Packet 6
Packet 7

Packet 3

Packet 4

NACK 3

 (a) (b) (c)

 Sender

Packet 3
Packet 4

Packet 3
Packet 4
Packet 5
Packet 6
Packet 7

Packet 3
Packet 4

Packet 3
Packet 4
Packet 5
Packet 6
Packet 7

Packet 4
Packet 6

 (d) (e) (f)

Packet 3
Packet 4
Packet 5
Packet 6

Packet 3
Packet 4
Packet 5
Packet 6
Packet 7

 Sender Sender Sender Receiver Receiver Receiver

Packet 5

Packet 5

Packet 5

Receiver

 Packet 5

 Receiver Receiver

In Figure 3.2, the left and right rectangles in each diagram represent the sender and

the receiver, respectively. The receiver maintains a transmission queue, as well as an out-

of-order buffer as shown in the bottom of the receiver rectangle. The solid line from the

sender rectangle to the receiver rectangle represents the sending of a data packet, while a

dashed line from the receiver rectangle to the sender rectangle represents the sending of a

NACK. Assume that initially the last packet sent from the sender is packet 3 which has

been successfully received by the receiver as shown in Figure 3.2(a). The transmission of

packet 4 is lost but packet 5 is successfully received (Figure 3.2(b)). Since packet 5 is an

out-of-order packet, the receiver puts it in the out-of-order buffer and sends back a

NACK that containing the Packet_ID of packet 3 (Figure 3.2(c)). In Figure 3.2(d), after

receiving the NACK, the sender locates the next in-order packet after packet 3, which is

packet 4, and resends it. When the receiver gets the retransmission of packet 4, the

receiver stores it in the transmission queue for forwarding since the Last_ID field in

packet 4 (which specifies packet 3) is the same as R[S]. After receiving packet 4, the

Figure 3.2 Example of New Protocol with Out-of-Order Buffering

48

receiver checks its out-of-order buffer and finds that the Last_ID in packet 5’s header

matches with the Packet_ID of packet 4. Thus, the receiver moves packet 5 to the

transmission queue as shown in Figure3.2 (e) and updates R[S] to the Packet_ID of

packet 5. The sender doesn’t need to retransmit packet 5, and instead can transmit a new

packet as shown in Figure3.2 (f).

49

CHAPTER 4

PERFORMANCE EVALUATION

This chapter presents a performance study of the proposed hop-by-hop reliable data

delivery protocol based on a testbed implementation. Experimentation is chosen as

opposed to simulation in order to get more realistic results. The performance of the

protocol presented in Chapter 3 is evaluated under various network conditions. An

overview of the performance study is described in Section 4.1. Section 4.2 describes the

testbed implementation used to evaluate performance. Section 4.3 presents the

methodology of the experimentation including performance metrics, the evaluated

protocols, experiment parameters, and the experimental design. The experimental results

are analyzed and discussed in Sections 4.4 through 4.6.

4.1 Performance Evaluation Overview

The performance evaluation study described in this chapter aims at demonstrating

the performance of the proposed hop-by-hop reliable data delivery protocol. By

employing techniques such as reliable last/single packet delivery and implicit NACK

approaches, the new protocol is expected to have better performance on both overall

network delay and reliability than conventional protocols. The experimentation on

CrossBow Technology’s MicaZ sensor nodes is described in this chapter and the

following questions are considered in the experimental study:

 How is the overall performance of the new protocol in terms of link-to-link and end-

to-end reliability?

50

 How is the performance of the new protocol impacted by various system and protocol

parameters?

 Under what conditions will the performance of the new protocol be compromised?

 How does the performance of the new protocol compare with the performance of

protocols with different loss recovery and detection schemes such as an ACK-based

approach and a timer-based NACK approach?

4.2 Testbed

4.2.1 Software Implementation

The proposed protocol is implemented in the network embedded systems C (nesC)

programming language and the TinyOS operating system [30]. nesC is a component-

based event-driven programming language based on the C programming language.

TinyOS is an open source component-based operating environment written in nesC and is

optimized and designed for embedded systems such as wireless sensor networks. TinyOS

consists of a set of software components and interfaces. The components in TinyOS are

connected with each other by interfaces and provide common abstractions including

routing, storage and communication [30]. A TinyOS application normally consists of one

or more components. There are two types of components in nesC: modules and

configurations. A module contains the implementation of an algorithm or a model. A

configuration consists of the wiring of the components used in a module and describes

the way components are connected by interfaces. All applications in TinyOS require a

configuration file but not necessarily a module.

The implementations of all tested protocols in this thesis run on the Crossbow MicaZ

platform. Each MicaZ mote has an ATMEL 7.37 MHz ATMega128L, low power 8-bit

micro-controller with 128 KB of program memory, 512 KB measurement serial flash data

memory, and 4 KB EEPROM [2]. The MicaZ mote uses Chipcon CC2420, a single-chip

51

IEEE 802.15.4 compliant radio frequency transceiver operating at 2.4 GHz, and is

capable of transmitting at 250 kbps.

4.2.2 System Configuration

The testbed of the experimentation consists of up to 9 MicaZ motes (exclude

interference nodes used in Section 4.4.4), depends on different experiments. In each

experiment, one mote acts as the sink and is connected through a CrossBow MIB600

programming board to a computer. The sink is responsible for receiving data packets and

logging information as well as broadcasting control messages. Other sensor nodes are

programmed with the tested protocols. The computer is used to program/reprogram the

MicaZ motes as well as receive and analyze data/log after the experiments. The default

CSMA/CA (provided in TinyOS) is used as the MAC layer protocol for all MicaZ motes

in the experiments. The new protocol is independent of the underlying network topology

and routing protocol. The study in this work applies to other cases where different

topology or routing protocol is used.

For experiments conducted in this thesis, all sensor nodes are deployed in a single

line topology and the distance between two neighbor sensor nodes is 3 feet. The MicaZ

mote’s radio power level is set to -3dBm and the transmission range of the resulting

network is just over 1 hop. All the nodes in the experiment are time-synchronized prior to

each experiment. Sensor nodes as well as the sink record the information of each packet

received and log them into the on-board flash memory. The sink broadcasts a control

message at the end of each experiment. Upon receiving the message, sensor nodes start to

send the logging information saved in their local memory until all logs are transmitted to

the sink.

4.3 Experimental Methodology

A series of experiments is performed in this chapter to evaluate the performance of

52

the new protocol. In this section, the metrics used to evaluate performance, the protocols

used for comparison, the experimental parameters and the experimental design are

described. Section 4.3.1 introduces the evaluation metrics used in the result analysis. The

four protocols used in the performance comparison study are described in Section 4.3.2.

Section 4.3.3 presents the experimental parameters including the system parameters as

well as the protocol parameters. Section 4.3.4 provides details on the experimental design.

4.3.1 Evaluation Metrics

The goal of the proposed protocol is to improve reliability and reduce overhead as

well as latency by implementing a hop-by-hop loss recovery and detection scheme. In the

experiments, the following metrics are considered when analyzing the performance of the

proposed protocol:

 End-to-End Delay: The end-to-end delay is measured as the interval between the

generation of a data packet at its source and the reception of that packet at the sink.

The average end-to-end delay for each source node is calculated as the average end-

to-end delay of all data packets generated by that node. The end-to-end delay shows

the average amount of time it takes for the network to deliver a data packet from a

particular source node to the sink.

 Link Delay: The link delay measures the interval from when a packet is

received/created at the sender to the time it is received at the next hop receiver.

Comparing the link delays is useful for understanding the network congestion level at

each link as well as the impact of traffic load on a packet’s link delay.

 End-to-End Reliability: The end-to-end reliability for each source node is defined as

the number of data packets from the node that are received at the sink divided by the

total number of data packets the node generates. The end-to-end reliability reflects the

reliability of a given path in the network.

 Link-level Reliability: The link-level reliability measures the reliability of the link

53

between two adjacent nodes. It is defined as the number of unique data packets

received by the receiver divided by the number of data packets enqueued to be

transmitted by the sender at every hop.

 Resend Rate: As the name indicates, the resend rate is a measure of the frequency of

retransmissions by a node. The resend rate for each sensor node is calculated as the

number of resent data packets divided by the total number of data packets sent by the

node. A higher resend rate indicates that more of the senders’ transmissions at the link

are unsuccessful. Since retransmitting packets may cause higher waiting time in the

transmission queue, the resend rate has significant impact on both the end-to-end

delay and the link delay.

 Total Throughput: The total throughput is measured as the number of unique data

packets received at the sink divided by the time interval between when the first data

packet is generated and the last packet is received. The achievable total throughput

reflects the efficiency of the protocol. The higher the achievable total throughput, the

faster source nodes can deliver their data packets to the sink. Both the end-to-end

reliability and the end-to-end delay can affect the total throughput.

 Link Throughput: The link throughput measures the throughput between two

neighbor nodes. Link throughput is calculated as the number of unique data packets

received at the receiver divided by the time interval between when the first data

packet is generated by the sender and the last packet is received by the receiver.

 Feedback Overhead: The feedback overhead on a link is defined as the number of

feedback packets (including ACK and NACK) sent by the receiver divided by the

total number of unique data packets received by the receiver (Note, however, that

feedback packets are smaller than data packets).

4.3.2 Experimental Parameters

In this section, some important parameters used in the experimental study are

54

identified. There are two types of parameters in the experiments: system workload

parameters and protocol parameters. They are introduced respectively in the following

paragraphs.

System workload parameters are general system settings that affect all sensor nodes

in the network. All of these parameters are adjustable according to the needs of each

individual experiment.

 Network Size is defined as the number of source nodes participating in the experiment.

It ranges from 4 to 8 in the experiments.

 Sampling Interval is defined as the time interval between two sensor readings. The

smaller the sampling interval, the faster the sensor nodes take sensor readings and

sending them. Changing the sampling interval directly affects the sending rate and the

overall network throughput.

 Number of Data Packets per Source Node is defined as the number of sensor readings

(and therefore data packets) each source node generates during the experiment. When

the sampling interval is constant, the larger the number of data packet per source node,

the longer the duration of the experiment.

 Level of Interference is defined as the extent of interference from other wireless

devices using the 2.4 GHz frequency band. Two types of interference are identified in

the experiments. When sensor nodes are deployed sufficiently close to each other, the

radio transmissions could interfere. Another type of interference is the external

interference, which is created using a separate sensor network deployed across the

existing network.

There are two protocol parameters in the experiments: buffer size and sending gap.

Both of them have significant impact on overall performance.

 Buffer Size is defined as the storage capacity in the sensor node’s transmission queue,

measured as the number of data packets that can be stored. The mechanism and

55

dequeue policy of the transmission queue are described in Section 3.3. The default

buffer size of the transmission queue is 15.

 Sending Gap is defined as the mandatory time interval between two consecutive

sending operations at the sensor node. With the default underlying MAC and TinyOS

operating system running on the MicaZ testbed, if the time interval between two

sending operations is below a certain threshold, the network could experience

significant and unexpected packet loss [18]. Thus, In order to eliminate any potential

impact of the above effect, a default 50 ms sending gap is implemented in all sensor

nodes. However, the sending gap is varied in some experiments.

4.3.3 Compared Protocols

Besides the proposed data delivery protocol, four other protocols with different loss

recovery and detection schemes are also implemented for the purpose of comparison.

Basic Protocol: The basic protocol has no mechanism to recover from packet loss.

Sensor nodes in the basic protocol simply forward all data packets they create or receive.

Since no effort is made to resend missing packets, in the basic protocol, there is no

overhead for a reliability mechanism. The basic protocol is implemented as follows:

when a sensor node receives a data packet, if the queue is not full, it stores the new

packet in the queue. Packets are transmitted in a FIFO ordering. A transmitted packet is

removed from the queue and the second packet in the queue becomes the new head of the

queue if such a packet exists. After waiting the time period specified by the sending gap,

the node sends the new head of the queue and repeats the above sending cycle. If the

queue is full, the node discards any new received packet until a buffer space is available.

The performance of the basic protocol can be used as a benchmark when studying and

comparing other reliable protocols.

ACK Protocol: This protocol uses a timer-based ACK recovery scheme to detect and

retransmit missing packets. A stop-and-wait explicit ACK strategy is used. After

56

transmitting a data packet, the sender initiates an ACK timer and waits for the feedback

from the receiver. If no feedback is received before the timer expires, the sender resends

the data packet. Upon receiving a data packet, the receiver generates an ACK packet and

sends it back to the sender immediately. The ACK-based loss detection and recovery

protocol is more aggressive in detecting missing packets compared with a NACK-based

protocol, since the receiver in the ACK-based protocol confirms reception of every data

packet it is received. As a result, the ACK function is widely used in the TCP/IP network

as the reliable transmission scheme. However, in a wireless sensor network, where sensor

nodes are extremely limited by resource and power, the heavy feedback overhead and

delay generated by an ACK-based reliable transmission scheme may not be desirable.

Timer-based NACK Protocol: In most NACK loss recovery schemes, including the

proposed new protocol, once the NACK packet is sent, the receiver can only passively

wait for the retransmission from the sender. If, however, the NACK packet itself is lost,

or the resent packet is lost again, which may be likely to occur in a congested network,

the receiver can only initiate the next resend request after it receives another data packet

(another out-of-order packet) from the sender. In order to reduce the waiting time and

resend delay caused by the loss of a NACK packet or the retransmission, some protocols

implement a NACK timer to control the sending frequency of the NACK packet. In

PSFQ [32] and RMST [29] a NACK timer is implemented at the receiver. In the timer-

based NACK protocols, when there is a missing data packet, the receiver aggressively

sends out NACK packets to the sender for retransmission of the missing packet. If the

receiver doesn’t hear any reply for the retransmission request within a certain period of

time, it continually resends the NACK until the data packet is recovered. In the timer-

based NACK protocol implemented in this work, a sensor node starts a NACK timer

immediately after it sends out a NACK packet. The node will stop the NACK timer and

suppress the NACK sending process if the missing data packet is recovered before the

timer is fired. When the sender receives the NACK packet, it resends all enqueued

57

packets for the same receivers that are newer than the last in-order received packet (as

indicated in the NACK).

New Protocol with Out-of-order Buffering：As described in Section 3.6.4, a variant

of the new protocol with out-of-order buffering is proposed. In the modified protocol,

each node in the network maintains an out-of-order buffer besides the regular

transmission queue. When receiving a data packet with a packet ID that doesn’t match the

local variable R[S], the receiver temporarily stores the packet in its out-of-order buffer

instead of simply dropping it. The receiver checks the out-of-order buffer whenever it

receives a new in-order data packet. If the previously received out-of-order packet

happens to be the next expected data packet, the receiver can recover this packet.

Whenever the sender receives a NACK, at least one out-of-order data packet must have

been received by the receiver (otherwise the receiver won’t send back the NACK). The

sender therefore resends only the oldest packet among those packets following the last in-

order packet received by the receivers that are still present in the senders’ transmission

queue. In contrast to the original proposed protocol, by introducing the out-of-order

buffer, the modified protocol may be able to reduce the number of retransmissions and

improve the network delay.

4.3.4 Experimental Design

In order to demonstrate the impact of different parameters to the performance of the

proposed protocol, all of the experiments in this chapter are conducted by varying one

parameter and keeps all other parameters unchanged. The default experimental settings

are as followed. The protocol runs on a network configured as a line topology with six

sensor nodes and one sink node. Each of the sensor nodes is programmed to create data

packets and send them as well as packets received from its upstream neighbor, to its

downstream neighbor. Each sensor node creates a new data packet every 1000 ms and has

15 buffer spaces in its queue. The default sending gap is 50 ms and each sensor node

58

generates 100 packets during the experiment. A summary of the default experimental

settings is given in Table 4.1.

The experiments conducted in this chapter are divided into three groups. The first

group includes four different tests designed to study the performance of the new protocol

under different scenarios, which includes traffic test, sampling interval test, scalability

test and interference test. In the second group of experiments, the new protocol is tested

under some extreme scenarios such as sampling and transmitting at five times faster rate

or working with only 1/3 of the buffer space. These sets of experiments are conducted to

find out when the performance of the protocol may be compromised. Finally, in the last

group of experiments, the new protocol is compared with four other protocols that

implement different reliability strategies, in order to demonstrate the relative strengths

and weaknesses of the new protocol. For all experiments, results are studied from the

perspective of end-to-end delay, link delay, total throughput, link throughput, resend rate,

feedback overhead rate, link reliability and end-to-end reliability.

4.4 Basic Tests of Protocol Performance

In this section, a set of experiments is conducted to illustrate the important features

of the new protocol. Since wireless sensor nodes are constrained by both bandwidth and

storage space, the buffer size and the sampling interval play very important roles in the

performance of any reliable protocol. Other system parameters such as network traffic,

Parameters Default Value Range
Number of Nodes 6 nodes 4 - 8

Buffer Size 15 packets 10 - 15
Sending Gap 50 ms 40 - 50

Sending Interval 1000 ms 200 - 1000
Number of Packets Created 100 packets 50 - 200

Table 4.1 Summary of Experimental Parameters

59

interference between sensor nodes and network size may also have impact on the

performance of the protocol. Four separate tests are performed in this section to discuss

how system and protocol parameters may affect the performance of the protocol.

4.4.1 Traffic Test

In the first set of experiments, the performance of the new protocol with different

number of packets per source node is tested. Since each sensor node creates new packet

with a fixed sampling interval, the total number of packets created by each node is

determined by the duration of the experiment. The traffic test illustrates basic

performance properties of the protocol. The default experimental settings are used in the

traffic test, except the number of packets created per node varies in individual

experiments. The experiment starts with generating 50 packets per node, which equals to

300 packets in total in the network. Then the number of packets created (and the

experiment duration) is increased by 100% to 100 packets per node, which equals to 600

packets in total. At last, the number of packets created is increased by 300% to 200

packets per node, which equals to 1200 packets in total. The experiment results are

shown in Figure 4.1, Figure 4.2 and Table 4.2.

The first observation of the result from Table 4.2 is that reliability is 100% (the

figure of link level reliability is not presented here because the reliability at each link is

100%), which indicate all data packets generated by the sensor nodes are successfully

transmitted to the sink. This result is encouraging because the protocol meets the most

important design objective: 100% reliable data delivery.

Figure 4.2(a) represents the resend rate per hop during the traffic test. A observation

can be made that on average only around 5.3% of the data packets incurred hop-by-hop

retransmission, and highest overhead is still less than 8.3%. The feedback overhead

presented in Figure 4.2(b) contains both NACK and ACK packets. All three experiments

show similar feedback overhead rate at each hop.

60

0

50

100

150

200

250

1 2 3 4 5 6

En
d-

to
-E

nd
 D

el
ay

 (m
s)

Hops from Sink

50pkt

100pkt

200pkt

0

5

10

15

20

25

30

35

1 2 3 4 5 6

Li
nk

 D
el

ay
 (m

s)

Hops from Sink

50pkt

100pkt

200pkt

0

1

2

3

4

5

6

7

1 2 3 4 5 6

Th
ro

ug
hp

ut
 (

pk
t/

s)

Hops from Sink

50p

100p

200p

Figure 4.1 Throughput and Delay in Traffic Test

(a) End-to-end Delay

(b) Link Delay

(c) Throughput

61

When working with different traffic load, the network is only transmitting packets

for a different length of time, while the number of packet transmitted per second at each

node remains the same. As can be seen from Figure 4.1 (c), the throughput at each hop

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

1 2 3 4 5 6

R
es

en
d

R
at

e
(%

)

Hops from Sink

50p

100p

200p

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

1 2 3 4 5 6

Fe
ed

ba
ck

 O
ve

rh
ea

d
(%

)

Hops from Sink

50p

100p

200p

Experiment End-to-End
Reliability

Total Throughput
(pkt/sec)

Average
Resend Rate

Average Feedback
Overhead

50pkt 100% 5.80 5.4% 2.4%
100pkt 100% 5.87 5.3% 2.5%
200pkt 100% 5.9 5.2% 2.5%

Figure 4.2 Overhead Costs in Traffic Test

Table 4.2 Results of Traffic Test

(a) Resend Rate

(b) Feedback Overhead

62

for all three experiments are almost identical and the total throughput of the network as

shown in Table 4.1 are at the same level as well.

From Figure 4.1 (a), an increasing tread of the end-to-end delay can be observed as

the number of hops from the sink increase. For example, the end-to-end delay of packets

created by node 6 is much larger than the end-to-end delay of packets created by nodes.

The above observation is because data packets generated by node 6 need to travel six

hops before they can reach the sink, and thus they will take much longer time compare

with packet from node 1, which is only one hop away from the sink. Another observation

that can be made from Figure 4.1 (a) is that the relationship between the hops from the

sink and the end-to-end delay is non-linear. For example, in the 200 packet experiment,

the delay of packets from node 1 is 22.38 ms; the delay of packets from node 2 is 40.41

ms, which is slightly less than twice of node 1’s packet delay; the delay of packets from

node 6 is 193.13 ms, which is nine times larger than node 1’s packet delay. The above

observation is likely because packets from the nodes far from the sink usually end up at

the ends of the queues of the intermediate nodes, which increase the queueing delay. And

if there are no following packets of these packets, it will take long time to for receivers to

detect loss. Another possible reason for the larger delay of packets from node 6 is the

larger possibility of link interference of these packets compared with packets from nodes

closer to the sink.

Figure 4.1(b) and Figure 4.2(a) plot the link delay and link resend rate at each hop in

the network. Often, on a given link, the higher the resend rate, the larger the link delay.

Recall that the new protocol is designed upon a NACK-based loss detection and recovery

mechanism. As described in Section 3.4, in the new protocol, a packet loss can only be

detected when an out-of-order packet is received by the receiver. Thus, if a packet is lost

during the transmission, the period of time it waits in the queue for retransmission will

certainly introduce significant amount of delay to the node’s average link delay. The

positive correlation between resend rate and link delay can be observed from Figure 4.1.

63

For example, in Figure 4.2 (a), the resend rate at node 3 increases as more packets are

generated. Accordingly, from Figure 4.1 (b), the link delay also increases at node 3 if

compares the 50 packet line, the 100 packet line and the 200 packet line.

However, the resend rate and the link delay on a given link are not always directly

related. Comparing node 4’s link delay and resend rate from Figure 4.1 (b) and Figure 4.2

(a), although the 50 packet experiment shares the same resend rate with 100 packet

experiment, it shows lower link delay than 100 packet experiment does. The reason

behind this observation is that, the pattern of retransmission may also influence the

positive relationship between the resend rate and the link delay. For example, consider

the case where two packets were missing and need retransmissions at node 6. It is

possible that these two packets lost are independent events. Assuming both of them are

recovered successfully at the first resend attempt, the total extra delay caused by the

retransmission is two sampling intervals, as explained in the previous paragraphs.

However, it is also possible that these two packets are adjacent packets and both of them

get lost during their initial retransmissions. This is a possible scenario that may be caused

by network congestions or packet collisions. In this case, the first lost packet won’t be

scheduled for retransmission until the third data packet gets received by the receivers.

The first packet has to wait at least two sampling intervals in the transmission queue,

while the second lost packet needs to wait one sampling interval. Thus, with same resend

rate, in the second scenario, the total extra delay caused by the retransmission is three

sampling interval. It is reasonable to believe that under the same per node throughput rate,

the longer the experiment, the higher the possibility to have consecutive packet loss in the

experiment, which explains why the 50 packet experiment shows lower link delay than

100 packet experiment at node 4.

For a single experiment, the link delay is not only influenced by the resend rate, but

also depends on the link’s distance from the sink. For example, in the 200 packet

experiment, although node 6 has much lower resend rate than node 1, it can be observed

64

from Figure 4.1 (b) that node 6’s link delay is still higher than node 1. As explained in the

previous paragraph, both packet loss and retransmission have significant impact on the

link delay. However, the level of impact varies at different links. At node 6, the node only

sends one packet per 1000 ms to its downstream neighbor node 5. When a packet from

node 6 gets lost, node 5 won’t be able to detect the gap in the incoming packet until the

next packet arrives. Thus, the lost packet has to wait in the transmission queue for at least

one sampling interval (1000 ms in the traffic test) to get retransmitted. However, if a

packet loss occurs at node 1, it will be different. Because node 1 not only sends its own

generated packets but also forwarding all received packets from previous nodes, it

actually sends at a speed of six packets per second to the sink, a much faster rate than

node 6. The lost packet from node 1 only needs to wait approximately one sixth of a

sampling interval to get resent. Therefore, as shown in Figure 4.1, the higher resend rate

doesn’t necessarily lead to higher link delay if comparing resend rate at different nodes.

In summary, the protocol can provide 100% reliable data delivery while maintain a

relatively low network overhead. Increasing the number of packets generated per node

only extends the length of the experiment which has little impact on the protocol’s overall

performance. At the same time, because of the higher possibility of adjacent packet loss,

a slightly larger end-to-end delay and link delay can be observed when more packets are

generated per node.

4.4.2 Scalability Test

The traffic test demonstrates the performance of the new protocol with different

experimental durations. The next question to address is: how does the performance of the

new protocol scale with the number of nodes in the network path to the sink? In this

section, the proposed protocol is tested with a path length of four nodes, six nodes and

eight nodes respectively. The default value is used for other experimental parameters. The

test results are shown in Figure 4.3, Figure 4.4 and Table 4.3.

65

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8

En
d-

to
-E

nd
 D

el
ay

 (m
s)

Hops from Sink

4 Nodes

6 Nodes

8 Nodes

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

Li
n

k
D

e
la

y
(m

s)

Hops from Sink

4 Nodes

6 Nodes

8 Nodes

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Th
ro

ug
hp

u
t

(p
kt

/s
)

Hops from Sink

4 Nodes

6 Nodes

8 Nodes

Figure 4.3 Throughput and Delay in Scalability Test

(a) End-to-end Delay

 (b) Link Delay

(c) Throughput

66

The end-to-end reliability and the link reliability are both 100% in all three

experiments. As the network size increases, there are more nodes creating data packets. In

the four nodes experiment, a total number of 1069 packets are sent by all nodes, 1048 of

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

1 2 3 4 5 6 7 8

R
e

se
n

d
R

at
e

 (%
)

Hops from Sink

4 Nodes

6 Nodes

8 Nodes

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

1 2 3 4 5 6 7 8

Fe
e

db
a

ck
 O

ve
rh

ea
d

 (%
)

Hops from Sink

4 Nodes

6 Nodes

8 Nodes

Experiment End-to-End
Reliability

Total Throughput
(pkt/sec)

Average
Resend Rate

Average Feedback
Overhead

4 Nodes 100% 3.93 4.8% 2.1%
6 Nodes 100% 5.87 5.3% 2.5%
8 Nodes 100% 7.79 8.0% 3.8%

Figure 4.4 Overhead Costs in Scalability Test

Table 4.3 Results of Scalability Test

(a) Resend Rate

(b) Feedback Overhead

67

which are data packets (including retransmission packets) and 21 are feedback packets. In

the six node experiment, there are 2263 packets sent in total, including 2211 data packets

and 52 feedback packets. The number of packets sent increases to 4024 in the eight node

experiment, 3888 of them are data packets and 136 of them are feedback packets.

As the network size increases, the network throughput increases as well. A linear

relationship between the network size and throughput is shown in Figure 4.3(c). The

throughput at node 1 is around four packets per second in the four node experiment. The

throughput doubled to approximately eight packets per second at node 1 when the

network size increased by 100% to eight nodes. Since the total transmission time remains

unchanged under different network sizes, the linear relationship observed in Figure 4.3(c)

is a result of the increasing number of data packets generated in the network. The total

throughput of the experiments is presented in Table 4.3. The total throughput rises by 49%

when the network size increases from four to six, and rises by another 33% when the

network size increases from six to eight. The results are in line with expectations.

The resend rate and overhead also exhibit an increasing trend as the network size

increase as shown in Figure 4.4(a) and Figure 4.4(b). The total resend rate in the six node

experiment is 12% higher than in the four node experiment and the total resend rate in the

eight nodes experiment is 68% higher than in the four nodes experiment. This result is

consistent with expectations. When more data packets are transmitted in the network

within the same time period, sensor nodes have a higher possibility to experience packet

collisions and network congestion. Thus the positive relationship between network size

and resend rate is reasonable.

In summary, the three experiments in the scalability test show that the new protocol

can provide 100% reliable data delivery while maintaining a relatively low network

overhead for various path lengths. Increasing the number of sensor nodes in the path to

the sink will result in higher throughput, higher resend rate and higher overhead. The

impact of path length on end-to-end delay and link delay can also be observed.

68

4.4.3 Sampling Interval Test

The next set of experiments studies the impact of the sampling interval on the

protocol’s performance. The sampling interval is the time interval between two sensor

readings at each source node. With a smaller sampling interval, sensor nodes create more

data packets per time unit, possibly creating more network congestion since the

transmission time required for each packet remains the same. The default experimental

settings are used in the sampling interval test, except the sampling interval varies in

different experiments. In the first experiment, the sampling interval is one sample every

1000 ms. The sampling interval is decreased by 25% to one sample every 750 ms in the

second experiment. At last, the sampling interval is further decreased by 50% to one

sample every 500 ms in the third experiment. The test results are shown in Figure 4.5,

Figure 4.6 and Table 4.4.

As in the previous test, no packet loss is observed in all three experiments at both the

end-to-end level and the link level. However, note in Figure 4.6(a) that there is an

increasing trend in the resend rate as the sampling interval becomes smaller. The 500 ms

experiment has a resend rate approximately 54% higher than in the 750 ms experiment,

and 92% higher than in the 1000 ms experiment. With a smaller sampling interval, sensor

nodes are simply creating more data packets per second. For example, in the 1000 ms

experiment, each node generates one data packet per second. Sensor nodes also need to

forward packets they receive from their upstream neighbors. Thus, node 1 needs to

handle at least six data packets per second. In the 500 ms experiment, since each node

creates two data packets per second, the sending rate at node 1 is at least twelve packets

per second. The higher resend rate observed in the 500 ms experiment is likely due to the

higher loss rate, which is a result of smaller sampling interval. It is encouraging to

observe that the proposed protocol is able to maintain high reliability in the higher-rate

environment. However, it is reasonable to predict that if the sampling interval is further

69

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6

En
d-

to
-E

nd
 D

el
ay

 (m
s)

Hops from Sink

500ms

750ms

1000ms

0

5

10

15

20

25

30

35

1 2 3 4 5 6

Li
n

k
D

e
la

y
(m

s)

Hops from Sink

500ms

750ms

1000ms

0

2

4

6

8

10

12

14

1 2 3 4 5 6

Th
ro

ug
hp

u
t

(p
kt

/s
)

Hops from Sink

500ms

750ms

1000ms

(a) End-to-end Delay

 (b) Link Delay

(c) Throughput
Figure 4.5 Throughput and Delay in Sampling Interval Test

70

decreased to a level where a sensor node is receiving more packets than it can handle,

packet loss can be inevitable, considering the limited storage space in sensor nodes. A

detailed discussion of the impact of a low sampling interval on the end-to-end reliability

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

1 2 3 4 5 6

R
e

se
n

d
R

at
e

 (%
)

Hops from Sink

500ms

750ms

1000ms

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

1 2 3 4 5 6

Fe
e

db
ac

k
O

ve
rh

ea
d

(%
)

Hops from Sink

500ms

750ms

1000ms

Experiment End-to-End
Reliability

Total Throughput
(pkt/sec)

Average
Resend Rate

Average Feedback
Overhead

500 ms 100% 11.63 9.8% 4.7%
750 ms 100% 7.78 6.6% 3.1%

1000 ms 100% 5.87 5.3% 2.5%

Table 4.4 Results of Sampling Interval Test

(a) Resend Rate

(b) Feedback Overhead

Figure 4.6 Overhead Costs in Sampling Interval Test

71

is presented in Section 4.5.1.

Figure 4.5(c) presents the throughput per node in all three experiments. As the

sampling interval becomes smaller, the sensor nodes are sending more data packets per

second and thus an increasing trend of throughput is observed. The result in Table 4.4

shows that the total network throughput in the 500 ms experiment is nearly 49.5% higher

than in the 750 ms experiment and is 99% higher than in the 1000 ms experiment.

The end-to-end delay and link delay are plotted in Figure 4.5(a) and Figure 4.5(b),

respectively. The 750 ms experiment shows slightly higher end-to-end delay and link

delay than the 1000 ms experiment. The sensor nodes in the 500 ms experiment are

sampling two times faster than in the 1000 ms experiment and 50% faster than in the 750

ms experiment, and the end-to-end delay is higher than in the other two. All else equal, it

is reasonable to assume that the faster nodes send, the smaller the delay. However, as

shown in this test, the smaller sampling interval leads to higher resend rate, which in

general has negative impact on the delay, as discussed in Section 4.4.1. Thus there is a

tradeoff between the impact of sampling interval and the resend rate to the delay. As

shown in the experimental results, at the sampling interval range between one packet per

second to two packet per second, the resend rate plays a more important role in the end-

to-end delay.

In summary, according to the three experiments in the sampling interval test, it can

be concluded that the protocol can achieve desirable reliability and low overhead under

different sampling intervals. Decreasing the sampling interval within the range

considered here has no significant impact on the end-to-end reliability and link reliability.

At the same time, the network throughput is increasing because more data packets are

pumped into the network. The resend rate and overhead are also increasing due to the

higher possibility of packet loss.

72

4.4.4 Interference Test

In WSN applications, sensor nodes may be required to work in various environments

in which interference between sensor nodes is unavoidable. In the last test, the impact of

interference on the protocol’s performance is tested. The default experimental settings

described in Section 4.3.4 are used in this test. In the first experiment (“Normal”), sensor

nodes are deployed in a linear topology and each node is one hop away from its neighbor

nodes as in the previous tests. In the second experiment (“Overlap”), nodes were moved

close to each other that every node can cover four nodes in its radio range. In the final

experiment (“Interference”), four other nodes were added into the network. By defining

different group ID (a bit in the packet header), those other nodes form two pairs and can

only communicate with each other. These nodes will not join in the existing network.

Each of the two nodes is deployed on one side of the original network. The other nodes

keep transmitting during the entire experiment to each other at the rate of 20 packets per

second. The experimental results are shown in Figure 4.7, Figure 4.8 and Table 4.5.

From Figure 4.7(a), significant differences in the end-to-end delay between the

interference experiment and other two experiments can be observed. The frequent data

transmission between the four new nodes appears to have strongly interfered with the

normal communication among the other nodes. The overlap experiment also exhibits

slightly higher end-to-end delay than the normal experiment. It is likely that the closer

distance between sensor nodes in the overlap experiment causes interference and

contention to occur and thus increases the end-to-end delay.

Figure 4.8(a) and Figure 4.8(b) plot the resend rate and overhead respectively. The

average resend rate for the three experiments are 5.3%, 6.1% and 13%, respectively. The

interference experiment shows 145% higher resend rate than the normal experiment and

109% higher than the overlap experiment.

Because all experiments run with a 1000 ms sampling interval experience no packet

73

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6

En
d-

to
-E

nd
 D

el
ay

 (m
s)

Hops from Sink

Normal

Overlap

Interference

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6

Li
nk

 D
el

ay
 (m

s)

Hops from Sink

Normal

Overlap

Interference

0

1

2

3

4

5

6

7

1 2 3 4 5 6

Th
ro

ug
hp

ut
 (

pk
t/

s)

Hops from Sink

Normal

Overlap

Interference

Figure 4.7 Throughput and Delay in Interference Test

(a) End-to-end Delay

 (b) Link Delay

(c) Throughput

74

loss, it is reasonable to predict that all experiments should have approximately the same

throughput. The throughput results shown in Figure 4.7(c) and Table 4.5 confirm this

prediction. There is only 0.05% variance in the throughput among the three experiments.

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

1 2 3 4 5 6

R
es

en
d

R
at

e
(%

)

Hops from Sink

Normal

Overlap

Interference

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

1 2 3 4 5 6

Fe
ed

ba
ck

 O
ve

rh
ea

d
(%

)

Hops from Sink

Normal

Overlap

Interference

Experiment End-to-End
Reliability

Total Throughput
(pkt/sec)

Average
Resend Rate

Average Feedback
Overhead

Normal 100% 5.86 5.3% 2.5%
Overlap 100% 5.87 6.1% 2.8%

Interference 100% 5.87 13% 6.3%

Figure 4.8 Overhead Costs in Interference Test

Table 4.5 Results of Interference Test

(a) Resend Rate

(b) Feedback Overhead

75

In summary, interference from other traffic flows can significantly disrupt

communication. The interference may lead to higher end-to-end delay, higher link delay

and a higher resend rate. Interference among the nodes on the same path to the sink also

exists, although the impact is not as strong as from other traffic flows. Interference has no

significant impact on the throughput of the network.

4.5 Protocol Stress Tests

The performance of the new protocol has already been tested with various system

and protocol parameters in Section 4.4. The protocol achieves 100% reliability in all of

the tests. However, an increasing trend of resend rate is noticed with the increase of

system and protocol parameters. In this section, the performance of the protocol is

studied under some extreme conditions where the performance may be compromised.

The reminder of this section is organized as follow: Section 4.5.1 studies the impact of

the sending gap and the sampling interval on the new protocol. Section 4.5.2 evaluates

the performance of the protocol with different buffer sizes.

4.5.1 Effect of Sending Gap and Sampling Interval

One significant difference between simulation and testbed implementation is that

simulation simplifies some assumptions that cannot be ignored in the implementation. As

tested in Flush [24], with the default underlying MAC and TinyOS operating system

running on the MicaZ testbed, if the packet interval between two sending operations is

below a certain threshold, the network could experience significant and unexpected

packet loss. Thus, in the implementation of the protocol, in order to achieve the best

possible performance and completely remove the impact of the above issue, a 50 ms

sending gap between two consecutive sending operations is implemented. In other words,

after sending a packet, the sensor node is forced to wait 50 ms before it can send another

packet. By implementing the sending gap, the maximum sending rate a sensor node can

76

reach is limited. A 50 ms sending gap implies that a sensor node can send no faster than

20 packets per second. Since each sensor node in the network has limited storage space,

when the receiving rate at a node is larger than the sending rate, packet loss is inevitable

after the buffer gets filled up. The receiving rate in this protocol is determined by the

speed at which the sensor nodes generate new data packets, which is decided by the

sampling interval. Thus, in this section, several experiments are conducted to study the

effect of different sending gap and sampling interval on the performance of the new

protocol. The experimental settings of the four experiments conducted in this test are the

default settings with different combinations of the sending gap and the sampling interval.

The sending gap and the sampling interval of the experiments are summarized in Table

4.6. Figure 4.9, Figure 4.10 Figure 4.11 and Table 4.7 show the experimental results. The

result of the experiment with default 1000 ms sampling interval and 50 ms sending gap is

also included for comparison.

Experiment Sending Gap Sampling Interval
250-40 40 ms 250 ms
300-40 40 ms 300 ms
250-50 50 ms 250 ms
300-50 50 ms 300 ms

Figure 4.9(a) and Figure 4.9(b) show the end-to-end delay and link delay,

respectively. Because of heavy packet loss and retransmissions at link 1, the 250 ms

sampling interval and 50 ms sending gap experiment (250-50) shows significantly higher

delay than all other experiments at both end-to-end level and link level. Experiments with

larger sampling interval and with same sending gap have lower end-to-end delay. As

shown in Figure 4.6(a), the 300-40 experiment exhibits lower end-to-end delay at every

node compared with the 250-40 experiment. The rationale behind this observation is that

although a lower sampling interval can reduce the amount of time a packet must wait in

Table 4.6 Experiment Settings of Sending Gap and Sampling Interval Test

77

0

100

200

300

400

500

600

700

1 2 3 4 5 6

En
d

-t
o-

En
d

 D
el

ay
 (

m
s)

Hops from Sink

250-40

300-40

250-50

300-50

1000-50

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6

Li
n

k
D

e
la

y
(m

s)

Hops from Sink

250-40

300-40

250-50

300-50

1000-50

0

5

10

15

20

25

1 2 3 4 5 6

T
h

ro
u

g
h

p
u

t
(p

kt
/s

)

Hops from Sink

250-40

300-40

250-50

300-50

1000-50

 (b) Link Delay

(c) Throughput
Figure 4.9 Throughput and Delay in Sending Gap and Sampling Interval Test

(a) End-to-end Delay

78

the queue for retransmission, it also results in a higher resend rate, which in turn leads to

higher end-to-end delay. It is also observed that the 300-40 experiment has smaller delay

than the 300-50 experiment, which has the same sampling interval but a larger sending

gap. The result is consistent with expectations. All else being equal, the faster the nodes

send, the smaller the overall delay.

Figure 4.9(c) presents the per node throughput of the experiment. Without packet

loss, it is observed that with the same sampling interval, the throughputs are nearly

identical, even if the sending gap is different. For example, the throughputs in the 300-40

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

1 2 3 4 5 6

R
e

se
n

d
 R

a
te

 (
%

)

Hops from Sink

250-40

300-40

250-50

300-50

1000-50

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

1 2 3 4 5 6

Fe
e

d
b

a
ck

 O
ve

rh
e

a
d

 (
%

)

Hops from Sink

250-40

300-40

250-50

300-50

1000-50

(a) Resend Rate

(b) Feedback Overhead
Figure 4.10 Overhead Costs in Sending Gap and Sampling Interval Test

79

Experiment End-to-End
Reliability

Total
Throughput

(pkt/sec)

Average
Resend Rate

Average Feedback
Overhead

250-40 100% 22.61 23.8% 11.7%
300-40 100% 19.12 19.7% 9.6%
250-50 77% 16.92 20.8% 10.2%
300-50 100% 18.92 19.1% 9.3%

1000-50 100% 5.87 5.3% 2.5%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 3 4 5 6

En
d

-t
o

-E
n

d
R

el
ia

bi
li

ty

Hops from Sink

250-40

300-40

250-50

300-50

1000-50

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 3 4 5 6

Li
nk

 R
e

li
ab

ili
ty

Hops from Sink

250-40

300-40

250-50

300-50

1000-50

Figure 4.11 Reliability in Sending Gap and Sampling Interval Test

Table 4.7 Results of Sending Gap and Sampling Interval Test

(a) End-to-end Reliability

(b) Link Reliability

80

and 300-50 experiment almost overlap with each other in Figure 4.9(c). Even with packet

loss, the throughput in the 250-40 and 250-50 experiments is still very close at links

without packet loss, such as from link 2 to link 6. The plunge of the throughput at link 1

in the 250-50 experiment is mainly due to the large packet loss at node 1. Thanks to the

small sampling interval, all experiments show much higher network throughput than the

1000 ms sampling interval experiment.

Figure 4.11(a) and Figure 4.11(b) plot the end-to-end and the link reliability of the

experiments, respectively. Packet loss is observed in the experiment. As shown in Figure

4.11(b), all sensor nodes are able to maintain 100% reliability except node 1 in the 250

ms sampling interval and 50 sending rate experiment (250-50).An interesting comparison

is that both 250 ms sampling interval and 40 ms sending gap experiment (250-40) and

300 ms sampling interval and 50 ms sending gap experiment (300-50) are still able to

achieve 100% reliability. An explanation as to why packet loss only occurs in 250-50

experiment is as follows. The 250 ms sampling interval implies that each sensor node

generates four packets per second. Since all sensor nodes except the very last one need to

forward the incoming data packet from their upstream neighbor, the minimum number of

data packets every sensor node needs to transmit per second can be calculated. In Table

4.8, the number of data packets that need to be sent in the 250-50 experiment, assuming

no packet loss, is presented. As one can see, node 1 gets 24 data packets every second

coming to the transmission queue. However, since the sending rate is only 20 pkt/s as

determined by the sending gap, node 1 is receiving more packets in its queue than it can

send out. When the receiving rate exceeds the sending rate, the data packet cannot be sent

immediately is stored in the transmission queue. When the queue fills up, the node is then

forced to drop data packets. That explains the larger number of packets lost on the link

between node 1 and the sink. A similar argument also explains why the 250 ms sampling

interval and 40 ms sending gap didn’t have any packet loss. Since the 40 ms sending gap

implies a maximum sending rate of 25 packets second, with the same sampling interval

81

as the 250-50 experiment, node 1 in the 250-40 experiment is sending fast enough to

handle all incoming packets and thus has no packet loss.

Category Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
Data Packet Generated 100 100 100 100 100 100
Data Packet Received 500 400 300 200 100 0
Data Packet in Total 600 500 400 300 100 100

Packet need to Be Sent 24 pkt/s 20 pkt/s 16 pkt/s 12 pkt/s 8 pkt/s 4 pkt/s

Figure 4.10(a) and Figure 4.10(b) present the resend rate and overhead of the

experiments. Some observations of the results are summarized and discussed as follows:

 With the same sampling interval, the experiment with smaller sending gap has

slightly higher resend rate. For example, the average resend rate for the 300-40

experiment is 19.7%, around 2.5% higher than the 300-50 experiment. A smaller

sending gap implies a higher sending rate. In general, the faster a node is sending, the

higher the possibility that the node may experience packet collisions and channel

contentions, which may in turn leads to a higher packet loss rate and a higher resend

rate.

 With the same sending gap, the experiment with smaller sampling interval has a

higher resend rate. For example, the average resend rate in the 250-40 experiment is

about 19% higher than in the 300-40 experiment. This result is in line with the

findings in the sampling interval test in Section 4.4.3. With a 250 ms sampling

interval, a single sensor node generates four packets per second. In a six node

network, 24 packets are created and transmitted in the network every second. The

number of packets for the 300 ms sampling interval can be calculated with the same

method. Comparing with the 300-40 experiment, the 250-40 experiment transmits 20%

more packets per second. The more packets transmitted in the network, the higher the

packet loss rate and the resend rate.

Table 4.8 Sending Rate and Receiving Rate of Sending Gap and Sampling Interval Test

82

 An increasing trend of the link level resend rate can be observed in Figure4.10 (a) as

the distance to the sink decreases. This observation is reasonable based on the fact

that nodes closer to the sink have more packets to forward and experience greater

network contention. Node 1 shows the highest resend rate among all nodes in almost

all the experiments in this test. However, an interesting observation about the resend

rate with experiment has packet loss is that the there is a plunge in the resend rate at

the link with packet loss. In the 250-50 experiment, node 1’s resend rate is only

28.4%, compared with 37.1% at node 2. As discussed in previous sections, the packet

loss in experiment 250-50 is because node 1 receives more packets than it can

transmit. Thus when a NACK is received by node 1, it is possible that the data packet

that would otherwise be retransmitted has already been removed from the queue due

to the limited storage space. As described in Section 3.5, instead of resending the

missing packet (which is no longer available), node 1 will set the SKIP field to 1 and

transmitting all packets available in the queue to the receiver. As a result the resend

rate is lower at node 1.

The effect of the sampling interval and the sending gap to the performance of the

protocol is quite significant. By comparing the 250 ms sampling interval and 40 sending

rate experiment (250-40) and the default 1000 ms sampling interval and 50 sending rate

experiment (1000-50), one can observe that the 250-40 experiment has on average 235%

higher end-to-end delay and 390% higher total resend rate than the 1000-50 experiment.

On the other hand, with a lower sampling interval and a lower sending gap the network

throughput can be significantly improved. The 250-40 experiment shows 305% higher

total throughput than the 1000-50 experiment.

4.5.2 Effect of Buffer Size

One of the characteristics of wireless sensor networks is that sensor nodes have

limited storage space. In this section, four experiments are performed to study the impact

83

of buffer size to the performance of the proposed protocol. The default experimental

settings are used in this test. In order to study the effect of buffer size in the case with and

without packet loss, the experiments conducted in this test are run with different sampling

interval and buffer size. The experiment results are presented in Figure 4.12, Figure 4.13,

Figure 4.14 and Table 4.10.

Experiment Sampling Interval Buffer Size (packets)

250-10 250 ms 10
300-10 300 ms 10
250-15 250 ms 15
300-15 300 ms 15

As shown in the figures, the 300-10 experiment and 300-15 experiment exhibit

similar performance for all performance metrics. Both experiments have 100% end-to-

end reliability and link reliability as shown in Figure 4.14(a) and Figure 4.14(b). The

average resend rate in the 300-10 experiment is 18.9%, which is only 1% different than in

the 300-15 experiment. The average overhead in the 300-10 experiment is 9.5%

compared with 9.3% in the 300-15 experiment. The end-to-end delay and link delay

curves of the two experiments in Figure 4.12(a) and Figure 4.12(b) are almost

overlapping with each other. Since no packet loss is observed in either experiment, all

sensor nodes are sending at a rate matching their receiving rate. As long as buffer

overflow doesn’t occur during the experiment, the size of the buffer has no significant

impact on the performance of the new protocol.

As discussed in the previous section, the network experiences packet loss when the

protocol runs with 250 ms sampling interval and 50 ms sending gap because of buffer

overflow. Comparing the result of the 250 ms sampling interval with 10 buffer spaces

experiment (250-10) and 250 ms sampling interval with 15 buffer spaces experiment

(300-15), some of the observations are as follows:

Table 4.9 Experiment Settings of Buffer Size Test

84

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6

En
d

-t
o-

En
d

 D
el

ay
 (

m
s)

Hops from Sink

250-10

300-10

250-15

300-15

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6

Li
n

k
D

e
la

y
(m

s)

Hops from Sink

250-10

300-10

250-15

300-15

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

T
h

ro
u

g
h

p
u

t
(p

kt
/s

)

Hops from Sink

250-10

300-10

250-15

300-15

(a) End-to-end Delay

 (b) Link Delay

(c) Throughput
Figure 4.12 Throughput and Delay in Buffer Size Test

85

 Due to buffer overflow, both experiments have packet loss as shown in Figure 4.14(a)

and Figure 4.14(b). When a packet is missing and this packet is no longer available in

the queue because of buffer overflow, the sensor node will not be able to resend the

missing packet but send out the oldest packet available in its queue and sets the SKIP

field in that packet. Since the 250-10 experiment has only buffer space for 10 packets

compared with 15 packets in the 250-15 experiment, in the case of buffer overflow,

the 250-10 experiment has a higher chance to drop packets and can recover fewer

missing packets compared with the 250-15 experiment.

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

1 2 3 4 5 6

R
e

se
n

d
 R

a
te

 (
%

)

Hops from Sink

250-10

300-10

250-15

300-15

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

1 2 3 4 5 6

Fe
e

d
b

a
ck

 O
ve

rh
e

a
d

 (
%

)

Hops from Sink

250-10

300-10

250-15

300-15

(a) Resend Rate

(b) Feedback Overhead

Figure 4.13 Overhead Costs in Buffer Size Test

86

 Experiment End-to-End
Reliability

Total
Throughput

(pkt/sec)

Average
Resend Rate

Average
Feedback
Overhead

250-10 70% 15.45 19.6% 9.7%
300-10 100% 19.01 18.9% 9.5%
250-15 77% 16.92 20.8% 10.2%
300-15 100% 18.93 19.1% 9.3%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 3 4 5 6

E
nd

-t
o

-E
n

d
 R

e
lia

bi
li

ty

Hops from Sink

250-10

300-10

250-15

300-15

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 3 4 5 6

Li
nk

 R
e

li
ab

ili
ty

Hops from Sink

250-10

300-10

250-15

300-15

Figure 4.14 Reliability in Buffer Size Test

Table 4.10 Results of Buffer Size Test

(a) End-to-end Reliability

(b) Link Reliability

87

 The average end-to-end delay of the 250-15 experiment is 684 ms, which is about 25%

higher than the end-to-end delay of 250-10 experiment at 552 ms. The link delay of

the 250-15 experiment is also higher than the 250-15 experiment as plotted in Figure

4.12(b). The higher delay observed in the 250-15 experiment is a result of its larger

buffer space. Since more data packets can be stored in the larger buffer, the chance of

recovering missing packets is higher. Consequently, the average waiting time of data

packets in the queue is also higher in the experiment with larger buffer size. The

increasing waiting time in the transmission queue of the 250-15 experiment

significantly increases the overall delay.

 The throughput of the experiment is shown in Figure 4.12(c). Since no packets are

lost except of the link from node 1 to the sink, the throughput in the 250-10

experiment and in the 250-15 experiment is almost identical. However, the

throughput in the 250-10 experiment at link 1 is 15.45 packets per second, which is

8.6% lower than the throughput in the 250-15 experiment at the same link. The above

observation is because the higher packet loss rate at the 250-10 experiment at link 1

leads to a lower number of data packets finally received by the sink. As a result, the

throughput of link 1 in the 250-10 experiment is smaller than in the 250-15

experiment.

 Finally, the results for resend rate and feedback overhead are also influenced by the

buffer size. The average resend rate in the 250-10 experiment is 19.6% compared

with the resend rate in the 250-15 experiment at 20.8%. The average feedback

overhead of the 250-10 experiment is 9.7% compared with the overhead in the 250-15

experiment at 10.2%. In the experiment with a larger buffer space, missing packets

have more retransmission opportunities to be recovered. In contrast, in the experiment

with a smaller buffer space, there is a higher chance that a missing packet has already

been dropped out of the queue because of buffer overflow. Thus, the retransmission

opportunities for those packets are eliminated. As a result, a lower resend rate and

88

lower feedback overhead are observed in the experiment with smaller buffer size.

4.6 Performance Comparison with Other Protocols

In this section, the proposed new protocol is tested and compared with four other

protocols with different reliability schemes. In Section 4.6.1, the new protocol is

compared with a basic protocol, which doesn’t implement any loss detection and

recovery scheme. Section 4.6.2 presents the comparison results between the new protocol

and a stop-and-wait explicit ACK protocol. Section 4.6.3 gives results for the

performance differences between the new protocol and a timer-based NACK protocol. In

the last section, the new protocol is compared with the modified protocol with out-of-

order buffering.

4.6.1 Comparing New Protocol with Basic Protocol

Four experiments are conducted in this section to test the performance of the new

protocol and the basic protocol. The default experimental settings are used in this test,

except the sampling interval varies in individual experiment. In the following, Basic-250

ms and New-250 ms refer to the basic and new protocol with a 250 ms sampling interval,

respectively, while Basic-500 ms and New-500 ms refer to the basic protocol and new

protocol, respectively, with a 500 ms sampling interval. The test results are shown in

Figure 4.15, Figure 4.16 and Table 4.11.

Figure 4.15(a) and Figure 4.16(b) show the end-to-end delay and the link delay

results of the test, respectively. It is observed that the basic protocol with a 500 ms

sampling interval achieves the lowest network delay among all four protocols. Because

the basic protocol doesn’t make any effort to recover the missing packets, after sending a

data packet, no matter this packet is received by the receiver or not, sensor nodes in the

basic protocol forward the next packet in their transmission queue. As discussed in

Section 4.5.1, a 50 ms sending gap implies that the maximum sending rate at each sensor

89

node is 20 packets per second. With a sampling interval of 500 ms, the highest receiving

rate is 12 packets per second, which occurs at node 1. Thus, when a data packet is

received at a sensor node, it can be forwarded with little or no delay. The average link

delay of 10ms that is observed on all but the link between node 1 and the sink can be

considered as the minimum amount of time needed by a sensor node to deliver a packet

in the network. In the Basic-500 ms experiment, an increasing trend of the link delay can

be observed from Figure 4.15(b). This observation is due to the increasing amount of

traffic as the node gets closer to the sink. In the Basic-250 ms experiment, despite the

similar delay as in the Basic-500 ms experiment from node 2 to node 6, a significant

increase of link delay at node 1 can be observed. In the Basic-250 ms experiment, the

receiving rate is 24 packets per second at node 1, which exceeds the maximum sending

rate of 20 packets per second. The packets that node 1 cannot send immediately are

stored in the transmission queue and thus increase the queuing delay. When the queue is

full, the new received data packets are dropped immediately. Those dropped data packets

have no impact on the end-to-end delay or the link delay since they weren’t sent out at all.

Figure 4.15(c) plots the link throughput. Both the sampling interval and the achieved

reliability impact the link throughput. However, as one can observe from the results, the

sampling interval plays a more important role than the reliability. The link throughput in

the New-500 ms experiment is slightly higher because of higher reliability. The link

throughput in the Basic-250 ms experiment and the New-250 ms experiment is about 100%

higher compared with in the Basic-500 ms experiment and in the New-500 ms

experiment. Given the fact that with a 250 ms sampling interval packets are generated

twice as fast as with a 500 ms sampling interval, the result is reasonable. The difference

between the Basic-250 ms experiment and the New-250 ms experiment is because of the

difference in their link reliability. In the New-250 ms experiment, higher link reliability is

achieved for all but the link between node 1 and the sink and thus it has higher

throughput at those links. For the link between node 1 and the sink, however, the

90

0

100

200

300

400

500

600

700

1 2 3 4 5 6

En
d

-t
o-

En
d

D
e

la
y

(m
s)

Hops from Sink

Basic-250ms

Basic-500ms

New-250ms

New-500ms

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6

Li
n

k
D

e
la

y
(m

s)

Hops from Sink

Basic-250ms

Basic-500ms

New-250ms

New-500ms

0

5

10

15

20

25

1 2 3 4 5 6

T
hr

ou
gh

pu
t

(p
kt

/s
)

Hops from Sink

Basic-250ms

Basic-500ms

New-250ms

New-500ms

(a) End-to-end Delay

 (b) Link Delay

(c) Throughput
Figure 4.15 Throughput and Delay in New Protocol and Basic Protocol Test

91

Experiment End-to-End
Reliability

Total
Throughput

(pkt/sec)

Average
Resend Rate

Average
Feedback
Overhead

Basic-250 ms 83% 18.77 0.0% 0.0%
Basic-500 ms 91% 10.48 0.0% 0.0%
New-250 ms 77% 16.92 20.8% 10.2%
New-500 ms 100% 11.63 9.8% 4.7%

New-250 ms experiment achieves has only 77% link reliability, 8% lower than in the

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 3 4 5 6

E
nd

-t
o-

En
d

R
e

lia
bi

lit
y

Hops from Sink

Basic-250ms

Basic-500ms

New-250ms

New-500ms

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 3 4 5 6

Li
nk

 R
el

ia
b

ili
ty

Hops from Sink

Basic-250ms

Basic-500ms

New-250ms

New-500ms

 Figure 4.16 Overhead Cost in New Protocol and Basic Protocol Test

Table 4.11 Results of New Protocol and Basic Protocol Test

(a) End-to-end Reliability

(b) Link Reliability

92

Basic-250 ms experiment.

Figure 4.16(a) and Figure 4.16(b) show the end-to-end reliability and the link

reliability, respectively. With 500 ms sampling interval, the new protocol, because of the

hop-by-hop loss recovery scheme, achieves 100% reliability at all links. The total end-to-

end reliability in the Basic-250 ms experiment is 83%, which is 9.6% lower than the total

end-to-end reliability in the Basic-500 ms experiment. The Basic-250 ms experiment also

exhibits lower link reliability at all links compared with the Basic-500 ms experiment.

Since the basic protocol doesn’t have any loss detection and loss recovery scheme, it is

safe to conclude that most of the packet loss is due to corrupted packets and collisions.

However, there could be another reason for the packet loss in the Basic-250 ms

experiment. As analyzed in the previous paragraph, in the Basic-250 ms experiment, node

1 receives data packets at a rate higher than it can send out. When the queue is filled up,

node 1 has to reject a number of packets and discard them right away. The new protocol

surprisingly underperforms the basic protocol on all performance metrics. The overall

end-to-end reliability is 77% in the New-250 ms experiment compared with 83% in the

Basic-250 ms experiment. The average end-to-end delay in the New-250 ms is 517ms

compared with 51ms in the Basic-250 ms experiment. The total throughput in the New-

250 ms experiment is 17.4 packets per second, while the total throughput is 18.8 packets

per second in the Basic-250 ms experiment. The link delay at node 1 is around 360ms in

the New-250 ms experiment compared with 26ms in the Basic-250 ms experiment. In the

New-250 ms experiment, a large number of feedback packets are injected into the

network (around 10.2%) relative to the total number of data packets, which triggers many

packet resends (around 20.8%). The above comparison results show that, even through

the hop-by-hop recovery scheme in the new protocol helps to repair some of the packet

loss caused by packet corruptions, the feedback packets and resent packets generated by

the recovery scheme may actually lead to a higher possibility of packet collisions and

channel contentions, which in turn results in significant delay and larger loss rate.

93

4.6.2 Comparing New Protocol with ACK Protocol

In this section, the new protocol is tested and compared with the ACK-based reliable

protocols. In this section, three experiments are conducted. The first experiment tests the

performance of an ACK protocol with a 50 ms ACK timer. The second experiment tests

the performance of the same ACK protocol with a 100 ms ACK timer. The last

experiment tests the performance of the new protocol. The default experimental settings

with 500 ms sampling interval are used in this test. The test results are shown in Figure

4.17, Figure 4.18 and Table 4.12.

Figure 4.17(a) plots the end-to-end delay of the experiments. In the ACK protocol,

because the new data packet cannot be sent until the previous sent packet was

acknowledged by the receiver, tremendous queuing delay is introduced to the end-to-end

delay of the packet. Both ACK protocols show significant delay compared with the new

protocol. The average end-to-end delay in the ACK-50 ms experiment is 1529.55ms and

the average end-to-end delay in the ACK-100ms experiment is 1660.40 ms. The new

protocol, on the other hand, allows the transmission of the new data packet in parallel

with the loss detection and recovery process. Thus, the average end-to-end delay of the

New Protocol experiment is only 78.29 ms. A similar result can be observed in the link

delay as shown in Figure 4.17(b). The new protocol shows much smaller delay than the

ACK protocols at all links. The advantage of the new protocol over the ACK protocol in

terms of delay is obvious. It is worth mentioning that the delay in the ACK-50 ms

experiment is lower than in the ACK-100 ms experiment as observed because the resend

timer of the ACK-50 ms experiment is smaller. As a result, in the case where the resend

timer is fired and the sender needs to retransmit the missing packet, the queuing delay in

the ACK-50 ms experiment is relatively smaller.

The resend rate plotted in Figure 4.18(a) exhibits some variance among the three

experiments. As explained in the previous section, the new protocol employs a NACK-

94

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6

En
d-

to
-E

nd
 D

el
ay

 (m
s)

Hops from Sink

ACK-50ms

ACK-100ms

New Protocol

0

100

200

300

400

500

600

700

1 2 3 4 5 6

Li
n

k
D

e
la

y
(m

s)

Hops from Sink

ACK-50ms

ACK-100ms

New Protocol

0

2

4

6

8

10

12

14

1 2 3 4 5 6

Th
ro

ug
hp

u
t

(p
kt

/s
)

Hops from Sink

ACK-50ms

ACK-100ms

New Protocol

(a) End-to-end Delay

 (b) Link Delay

(c) Throughput
Figure 4.17 Throughput and Delay in New Protocol and ACK Protocol Test

95

based loss detection approach where packet loss can only be detected when the receiver

receives another data packet with gap in the packet ID. As a result, for every missing

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

1 2 3 4 5 6

R
es

e
nd

 R
a

te
 (

%
)

Hops from Sink

ACK-50ms

ACK-100ms

New Protocol

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

140.0%

1 2 3 4 5 6

Fe
e

d
ba

ck
 O

ve
rh

e
ad

 (%
)

Hops from Sink

ACK-50ms

ACK-100ms

New Protocol

Experiment End-to-End
Reliability

Total
Throughput

(pkt/sec)

Average
Resend Rate

Average
Feedback
Overhead

ACK-50 ms 100% 7.74 5.7% 100.0%
ACK-100ms 100% 7.35 5.8% 100.0%
New Protocol 100% 11.63 9.8% 4.7%

Figure 4.18 Overhead Cost in New Protocol and ACK Protocol Test

Table 4.12 Results of New Protocol and ACK Protocol Test

(a) Resend Rate

(b) Feedback Overhead

96

packet, both the missing packet and the packet next to that packet in the transmission

queue have to be retransmitted. However, in the ACK-based protocol, since the loss

detection is associated with a local resend timer, the sender only needs to resend the

missing packet. As one can observe from Figure 4.18(a), the average resend rate in the

New Protocol experiment is 9.8%, whereas the resend rate in the ACK-50 ms experiment

is 5.7% and resend rate in the ACK-100ms experiment is 5.8%.

Figure 4.18(b) presents the result of overhead of the test. Since the receiver in the

ACK protocol is responsible to create ACK packet and confirm the reception of every

data packet, the overhead of the ACK protocol is 100%. In the new protocol, however,

the receiver only needs to reply a NACK when a missing packet is identified. The

average overhead of NACK is 4.7%, which is much smaller compared with ACK

protocols. Small overhead is the main reason that a NACK-based approach is usually

preferred over an ACK-based approach in wireless sensor networks.

All experiments in this test show 100% reliability. Although all data packets are

received by the sink at all experiments, the duration of the each experiment varies.

Because of the variance of the resend timer and the queuing delay, the ACK-50 ms

experiment lasts 77368 ms, the ACK-100 ms experiment lasts 81630ms, while the New

Protocol experiment last only 51569 ms. As a result, the New Protocol experiment shows

the total throughput of 11.63 packets per second, 49% higher than in the ACK-50 ms

experiment and 57% higher than in the ACK-100ms experiment.

4.6.3 Comparing New Protocol with NACK Protocol

In this section, three experiments are conducted to compare the performance of the

new protocol and a timer-based NACK protocol. The NACK-50 ms represents the NACK

protocol with a 50 ms NACK timer, and the NACK-100 ms represents the NACK

protocol with a 100 ms NACK timer. The default experimental settings with a 500 ms

sampling interval are used in this test. The test results are shown in Figure 4.19, Figure

97

4.20 and Table 4.13.

50 ms and 100 ms are chosen as the length of the NACK timer in this test because

the sending gap at all sensor nodes is set to 50 ms. If the timer is reduced to a value

smaller than 50 ms, it is possible that a retransmission has already been scheduled and is

waiting to be sent. The receiver, however, may assume that the NACK or the

retransmission was lost when the timer expires and thus will send out a redundant NACK

packet. The timer-based NACK protocol is expected to reduce the network delay at the

expense of a higher overhead rate.

As shown in Figure 4.19 and Table 4.13, all three protocols achieve 100% end-to-end

reliability and have similar throughput. In Figure 4.20(b), the timer-based NACK

protocols show higher overhead. The average overhead in the NACK-50 ms experiment

is 12.5%, which is 20.2% higher than in the NACK-100 ms experiment and 27.5% higher

than in the New Protocol experiment. However, as plotted in Figure 4.19(a) and Figure

4.19(b), the timer-based NACK protocols have even higher delay than the new protocol

which has no NACK timer. The average end-to-end delay in the NACK-50 ms

experiment, NACK-100ms experiment and New Protocol experiment is 97.94 ms, 84.18

ms and 78.29 ms, respectively. The higher delay of the timer-based NACK protocol is

likely because, although aggressively sending NACKs and requesting retransmissions

may reduce queuing delay for some data packets, the additional overhead generated may

cause a higher possibility of packet corruptions and channel contention. In fact, the

consecutive loss of packets in the scenarios described above is possibly caused by local

network congestion. In the timer-based NACK approach, by sending additional NACK

packets, the nodes are injecting more packets into a congested network, which may

further aggravate the network congestion. In Figure 4.20(a), the NACK-50 ms

experiment shows a higher resend rate than the other two experiments. One may draw the

conclusion that the implementation of a NACK timer leads to higher numbers of NACK

packets, which results in higher numbers of retransmissions and finally impacts delay.

98

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6

En
d-

to
-E

nd
 D

el
ay

 (m
s)

Hops from Sink

NACK-50ms

Nack-100ms

New Protocol

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6

Li
n

k
D

e
la

y
(m

s)

Hops from Sink

NACK-50ms

Nack-100ms

New Protocol

0

2

4

6

8

10

12

14

1 2 3 4 5 6

Th
ro

ug
hp

u
t

(p
kt

/s
)

Hops from Sink

NACK-50ms

Nack-100ms

New Protocol

(a) End-to-end Delay

 (b) Link Delay

(c) Throughput
Figure 4.19 Throughput and Delay in New Protocol and NACK Protocol Test

99

Experiment End-to-End
Reliability

Total
Throughput

(pkt/sec)

Average
Resend Rate

Average
Feedback
Overhead

NACK-50 ms 100% 11.62 12.5% 5.9%
NACK-100 ms 100% 11.62 10.4% 5.1%
New Protocol 100% 11.63 9.8% 4.7%

Compared with the NACK-50 ms experiment, the performance results in the NACK-

100 ms experiment are closer to the result of New Protocol experiment. For example, the

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

1 2 3 4 5 6

R
e

se
n

d
 R

a
te

 (
%

)

Hops from Sink

NACK-50ms

Nack-100ms

New Protocol

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

1 2 3 4 5 6

Fe
e

db
a

ck
 O

ve
rh

ea
d

 (%
)

Hops from Sink

NACK-50ms

Nack-100ms

New Protocol

Figure 4.20 Overhead Cost in New Protocol and NACK Protocol Test

Table 4.13 Results of New Protocol and NACK Protocol Test

(a) Resend Rate

(b) Feedback Overhead

100

average overhead and average resend rate in the NACK-100ms experiment is only 6%

larger than in the New Protocol experiment and it is about 20% smaller than in the

NACK-50 ms experiment. A similar trend can be observed in the results of the end-to-end

delay and the link delay. The reason for the above observation is that, when increasing the

NACK timer to 100 ms, which is twice as large as the sending gap, the chance of

receiving no replies at the receiver decreases significantly. Most of the NACK timers

were suppressed and only a very small number of retransmissions were triggered. Thus,

the NACK-100 ms experiment shows similar results as in the New Protocol experiment.

4.6.4 Comparing New Protocol with Modified Protocol

As described in Section 3.6.4, a modified protocol with out-of-order buffering is

proposed in this work for the purpose of performance enhancement. Four experiments are

conducted in this test to test the performance of the original protocol and the modified

protocol. The default experimental settings are used in this test, except the sampling rate

varies in individual experiments. New-250 ms and Modified-250 ms represent the new

protocol and the modified protocol with 250 ms sampling interval, respectively, and

New-500 ms and Modified-500 ms represent the new protocol and the modified protocol

with 500 ms sampling interval, respectively. The experimental results are shown in

Figure 4.21, Figure 4.22, Figure 4.23 and Table 4.14.

Figure 4.21(a) and Figure 4.21(b) plot the end-to-end delay and the link delay

observed in the experiments. When using a 500 ms sampling interval, both protocols

show very similar network delay. Although the modified protocol is able to recover out-

of-order packets from its local buffer rather than requesting additional retransmissions,

the amount of time those packets spend in the out-of-order buffer becomes part of their

network delay. However, when the network starts to experience packet loss, when using a

250 ms sampling interval, the modified protocol shows better delay results at both end-to-

end level and link level than the original protocol. The lower delay of the modified

101

protocol is a consequence of the implementation of the out-of-order buffer. It is

reasonable to assume that when the wireless channel becomes lossy and congested, the

NACK packet as well as the retransmissions may also be lost during their transmission.

Since the modified protocol stores an out-of-order packet in its own buffer, it is able to

recover that packet immediately after receiving the correct in-order packet. For the

original protocol, however, the receiver relies on retransmission from the sender to

recover the missing packet. If retransmission isn’t successful because of the increasing

level of channel contention and packet collisions, multiple retransmissions may be

needed for one missing packet. As a result, the accumulated queuing delay eventually

increases the network delay of the original protocol.

The throughput of both of the 500 ms sampling interval experiments are almost

identical as plotted in Figure 4.21(c). The Modified protocol with 250 ms sampling

interval, however, exhibits higher throughput at link 1 compared with the original

protocol. The variance of the throughput is a result of the difference in the end-to-end

reliability. Because of the implementation of the out-of-order buffer, which results in a

lower resend rate, the modified protocol shows 79% end-to-end reliability, which is 2%

higher than the original protocol.

From Figure 4.22(a), one can observe that the resend rate in the Modified-500 ms

experiment is much lower than in the New-500 ms experiment. The average resend rate

in the Modified-500 ms experiment is only 4.9% compared with 9.9% in the New-500 ms

experiment. As explained in the previous section, the above observation is because the

receiver in the modified protocol is able to recover some of the out-of-order packets from

its local buffer and thus the sender can skip the retransmissions of those packets. When

using a 250 ms sampling interval, the variance of the resend rate between protocols still

exists but narrows. The average resend rate in the Modified-250 ms experiment is 12.8%

compared with 20.8% in the New-250 ms experiment. Part of the reason for the above

result is that the network is likely to experience more consecutive

102

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6

E
n

d
-t

o
-E

n
d

 D
e

la
y

(m
s)

Hops from Sink

Modified-250ms

Modified-500ms
New-250ms
New-500ms

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6

Li
n

k
D

e
la

y
(m

s)

Hops from Sink

Modified-250ms

Modified-500ms

New-250ms

New-500ms

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

T
h

ro
u

g
h

p
u

t
(p

kt
/s

)

Hops from Sink

Modified-250ms

Modified-500ms

New-250ms

New-500ms

(a) End-to-end Delay

 (b) Link Delay

(c) Throughput
Figure 4.21 Throughput and Delay in New Protocol and Modified Protocol Test

103

packet loss with the 250 ms sampling interval. In this case, even in the modified protocol,

the sender may still need to resend all of the missing packets.

The overhead of the experiments is plotted in Figure 4.22(b). Protocols with 500 ms

sampling interval show higher overhead compared to protocols with 250 ms sampling

interval. Comparing the two protocols with the same sampling interval, the variance is

minor. The average overhead in the Modified-250 ms experiment is 9.7% compared with

10.2% in the New-250 ms experiment; the average overhead in the Modified-500 ms

experiment is 4.7% compared with 4.8% in the New-500 ms experiment.

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

1 2 3 4 5 6

R
e

se
n

d
 R

a
te

 (
%

)

Hops from Sink

Modified-250ms

Modified-500ms

New-250ms

New-500ms

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

1 2 3 4 5 6

Fe
e

d
b

a
ck

 O
ve

rh
e

a
d

 (
%

)

Hops from Sink

Modified-250ms

Modified-500ms

New-250ms

New-500ms

(a) Resend Rate

(b) Feedback Overhead
Figure 4.22 Overhead Costs in New Protocol and Modified Protocol Test

104

Experiment End-to-End
Reliability

Total
Throughput

(pkt/sec)

Average
Resend Rate

Average
Feedback
Overhead

Modified-250 ms 79% 18.16 12.8% 9.7%
Modified-500 ms 100% 18.97 4.9% 4.7%

New-250 ms 77% 16.92 20.8% 10.2%
New-500 ms 100% 18.93 9.9% 4.8%

The results for the end-to-end reliability and the link reliability are shown in Figure

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 3 4 5 6

E
n

d
-t

o
-E

n
d

 R
e

li
a

b
il

it
y

Hops from Sink

Modified-250ms

Modified-500ms

New-250ms

New-500ms

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 3 4 5 6

Li
n

k
R

e
li

a
b

il
it

y

Hops from Sink

Modified-250ms

Modified-500ms

New-250ms

New-500ms

Figure 4.23 Reliability in New Protocol and Modified Protocol Test

Table 4.14 Results of New Protocol and Modified Protocol Test

(a) End-to-end Reliability

(b) Link Reliability

105

4.23 (a) and Figure 4.23(b). Only the experiments with 250 ms sampling interval

experienced packet loss. The reason for the packet loss, as explained in Section 4.5.1, is

because the sending rate is smaller than the receiving rate at node 1. When the

transmission queue is filled up, sensor nodes are forced to drop packets. The out-of-order

buffer implemented in the modified protocol helps to improve the reliability. The end-to-

end reliability in the modified-250 ms experiment is 79%, compared with 77% in the

New-250 ms experiment. The modified protocol is able to recover some of the missing

packets from its local buffer and thus avoid the retransmission of those packets.

106

CHAPTER 5

 CONCLUSIONS

This thesis studied the reliable data delivery issue in wireless sensor networks. A

NACK-based hop-by-hop reliable transport layer protocol is developed and evaluated in

this work. This chapter summarizes the work that has been done in this thesis and

discusses some directions for future work. Section 5.1 provides a brief summary of the

thesis. Section 5.2 states the contributions of this work. In Section 5.3, some of the

possible future work is described.

5.1 Thesis Summary

This thesis addresses the reliability issues in data transport in wireless sensor

networks. The design goal was to provide a solution that is able to maintain 100%

reliable data delivery (except in the case of buffer overflow) with minimal delay and

overhead. Chapter 2 provides an overview of the current research on reliable data

transport in wireless sensor networks as well as describing some existing data transport

protocols. A new hop-by-hop reliable data delivery protocol is proposed in Chapter 3.

The new protocol is designed based on a NACK loss detection and recovery scheme. A

timer-based explicit ACK approach is also used to address the last/single packet delivery

problem. The new queue management scheme designed in the protocol is used to

efficiently schedule the data transmission and retransmission. The performance of the

new protocol is tested in a Crossbow MicaZ testbed. Performance results are given in

Chapter 4. Ten separate tests of the protocol are conducted to evaluate the performance of

107

the protocol. The first group of tests including the traffic test, the scalability test, the

sampling interval test and the interference test, demonstrates some basic properties of the

protocol under various system and protocol parameters. The second group of tests

including the test of sending gap with sampling interval and the test of buffer size,

illustrates the performance of the protocol with some extreme parameter settings. The last

group of tests compares the performance of the new protocol to the performance of four

other protocols including a basic protocol with no packet loss recovery mechanisms, an

explicit stop-and-wait ACK protocol, a timer-based NACK protocol and the modified

new protocol with out-of-order buffering.

5.2 Contributions

The main contribution of this thesis is the design and the evaluation of a hop-by-hop

reliable data delivery protocol. In particular, the contributions are as follows:

 The general issues in designing a reliable data transport protocol for wireless sensor

networks are discussed. A survey is conducted of some of the existing data transport

protocols focusing on reliability and congestion control.

 A NACK-based loss detection and recovery scheme is designed for reliable data

delivery in wireless sensor networks.

 A solution is provided to the last/single packet delivery problem in the conventional

NACK-based approach by introducing a timer-based explicit ACK approach to the

new protocol.

 A new queue management scheme is designed. This scheme gives priority to fresh

data, which is preferable in some WSN applications. Nodes with the new queue

management scheme are able to transmit new data packets in parallel with the

detection and recovery of missing packets.

 A variant of the new protocol that buffers out-of-order packets is designed.

Experimental results show that the modified protocol performs better in some

108

conditions compared with the original new protocol.

 The new protocol is implemented and tested in a MicaZ testbed under various system

and protocol parameter settings. The new protocol is also tested and compared with

four other protocols.

5.3 Future Work

The new protocol proposed in this work is evaluated in a MicaZ testbed and proven

to be able to provide 100% reliability (except under some extreme conditions) and reduce

overhead and delay. However, there are some limitations of this work that can be

improved in the future. First, the evaluation considers only single line topology with one

destination (the sink). Some further tests can be done with a more general topology

setting such as with multiple source nodes and multiple destination nodes. Second, as

discussed in Section 3.6.2, route changes because of node failure or network congestion

are not uncommon in wireless sensor network applications. Route changes may also

result in the transmission of redundant data packets by the sender. A test of the new

protocol with route changes could be useful to further evaluate the performance of the

new protocol. Third, the tests conducted in Chapter 4 use only a small number of sensor

nodes. A larger scale test of the protocol with a greater number of sensor nodes may be

desirable as part of the future work. Fourth, fairness among different traffic flows could

be considered in the future design. Last, the new protocol could be incorporated with

other MAC layer, routing layer or network layer protocols. The cross-layer design of a

reliable data transport protocol is attractive.

109

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor
networks. Communications Magazine, IEEE, 40(8):102--114, 2002.

[2] CrossBow Technology. http://www.xbow.com/
[3] B. Deb, S. Bhatnagar, and B. Nath. ReInForM: Reliable Information Forwarding

Using Multiple Paths in Sensor Network. In Proc. LCN ’03, Konigswinter,
Germany, Oct. 2003, pp. 406--415.

[4] A. Dunkels, J. Alonso, T. Voigt and H. Ritter. Distributed TCP Caching for
Wireless Sensor Networks. In Proc. 3rd Annual Mediterranean Ad Hoc Net.
Workshop, Bodrum, Turkey, June 2004, pp. 21--31.

[5] C.-T. Ee and R. Bajcsy. Congestion Control and Fairness for Many-to-One Routing
in Sensor Networks. In Proc. ACM Sensys ’04, Baltimore, MD, Nov. 2004, pp.148-
-161.

[6] D. Estrin. Reliability and Storage in Sensor Networks. Technical Report in CENS,
UCLA, Los Angeles, CA, 2005.

[7] E. Felemban, C. Lee, E. Ekici, R. Boder, and S. Vural. Probabilistic QoS guarantee
in reliability and timeliness domains in wireless sensor networks. In Proc. IEEE
INFOCOM ’05, Miami, FL, Mar. 2005, pp. 2646--2657.

[8] S. Gobriel, S. Khattab, D. Mosse, J. Brustoloni, and R. Melhem. RideSharing: Fault
Tolerant Aggregation in Sensor Networks Using Corrective Actions. In Proc.
SECON ’06, Reston, VA, Sept. 2006, pp. 595--604.

[9] Y. Gu and T. He. Data Forwarding in Extremely Low Duty-Cycle Sensor Networks
with Unreliable Communication Links. In Proc. ACM SenSys ’07, Sydney,
Australia, Nov. 2007, pp. 321--334.

[10] C. Gui and P. Mohapatra. Power conservation and quality of surveillance in target
tracking sensor networks. In Proc. IEEE MobiCom ’04, Philadelphia, PA, Sept.
2004, pp. 129--143.

[11] T. He, John A. Stankovic, C. Lu, and T. Abdelzaher. SPEED: A stateless protocol
for real-time communication in sensor networks. In Proc. ICDCS ’03, Providence,
RI, May 2003, pp. 46--55.

[12] J. Heidemann and R. Govindan. An overview of embedded sensor networks.
Technical report, USC/Information Sciences Institute, Nov. 2004.

110

[13] J. Hui and D. Culler. The dynamic behavior of a data dissemination algorithm at
scale. In Proc. ACM Sensys ’04, Baltimore, MD, Nov. 2004, pp.59--71.

[14] B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating Congestion in Wireless
Sensor Networks. In Proc. ACM SenSys ’04, Baltimore, MD, Nov. 2004, pp. 134--
147.

[15] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed
Diffusion for Wireless Sensor Networking. ACM/IEEE Transactions on
Networking, 11(1):2--18, Feb. 2002.

[16] Y. G. Iyer, S. Gandham, and S. Venkatesan. STCP: A Generic Transport Layer
Protocol for Wireless Sensor Networks. In Proc. IEEE ICCCN ‘05, San Diego, CA,
Oct. 2005, pp. 449--454.

[17] H. Karl and A. Willig. Protocols and Architectures for Wireless Sensor Networks.
John Wiley & Sons, 2005.

[18] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, P. Levis, S. Shenker, and I.
Stoica. Flush: A Reliable Bulk Transport Protocol for Multihop Wireless Networks.
In Proc. ACM SenSys ’07, Sydney, Australia, Nov. 2007, pp. 351--365.

[19] H. Lee, Y. Ko, and D. Lee. A Hop-by-hop Reliability Support Scheme for Wireless
Sensor Networks. In Proc. PERCOMW ’06, Pisa, Italy, Mar. 2006, pp. 431--439.

[20] C. Miller and C.Poellabauer. PALER: A Reliable Transport Protocol for Code
Distribution in Large Sensor Networks. In Proc. SECON ’08, San Francisco, CA,
Jun. 2008, pp. 206--214.

[21] J. Paek and R. Govindan. RCRT: Rate-Controlled Reliable Transport for Wireless
Sensor Networks. In Proc. ACM SenSys ’07, Sydney, Australia, Nov. 2007, pp.
305--319.

[22] S. Park, R. Vedantham, R. Sivakumar, and I. Akyildiz. A Scalable Approach for
Reliable Downstream Data Delivery in Wireless Sensor Networks. In Proc.
MobiHoc ’04, Tokyo, Japan, May 2004, pp. 78--89.

[23] V. Raghunathan, C. Schurgers, S. Park, M. Srivastava, and B. Shaw. Energy-aware
wireless microsensor networks. IEEE Signal Processing Magazine, 19(2):40--50,
2002.

[24] N. Rahnavard, and F. Fekri. CRBcast: A Collaborative Rateless Scheme for
Reliable and Energy-Efficient Broadcasting in Wireless Sensor Networks. In Proc.
ISPN ’06, Nashville, TN, April 2006, pp. 276--283.

111

[25] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves. Energy-efficient
collision-free medium access control for wireless sensor networks. In Proc. ACM
SenSys ’03, Los Angeles, CA, Nov. 2003, pp. 181--192.

[26] F. Rocha. A. Grilo, P. R. Pereria, M. S. Nunes and A. Casaca. Performance
Evaluation of DTSN in Wireless Sensor Networks. In Proc. EuroNGI ’08,
Barcelona, Spain, Jan. 2008, pp. 1--9.

[27] Z. Rosberg, R.P. Liu, A. Y. Dong, L. D. Tuan, and S. Jha. ARQ with Implicit and
Explicit ACKs in Sensor Networks. In Proc. IEEE Globecom ’08, New Orleans,
LA, Dec. 2008, pp. 1--6.

[28] Y. Sankarasubramaniam, O. Akan, and I. Akyildiz. ESRT: Event-to-Sink Reliable
Transport in Wireless Sensor Networks. In Proc. MobiHoc ’03, Annapolis, MD,
June 2003, pp. 177--188.

[29] F. Stann, and J. Heidemann. RMST: Reliable Data Transport in Sensor Networks.
In Proc. SNPA ’03, Anchorage, AK, June 2003, pp. 102--112.

[30] The TinyOS. http://www.tinyos.net/
[31] R. Vedantham, R. Sivakumar, and S. Park. Sink-to-Sensors Congestion Control. In

Proc. ICC ’05, May 2005, pp. 3211--3217.

[32] C.-Y. Wan, A. Campbell, and L. Krishnamurthy. Pump-Slowly, Fetch-Quickly
(PSFQ): A Reliable Transport Protocol for Sensor Networks. In Proc. WSNA ’02,
Atlanta, GA, Sept. 2002, pp. 1--11.

[33] C.-Y. Wan, S. Eisenman, A. Campbell and J. Crowcroft. Siphon: Overload Traffic
Management Using Multi-Radio Virtual Sinks in Sensor Networks. In Proc. ACM
SenSys ’05, San Diego, CA, Nov. 2005, pp. 116--129.

[34] C.-Y. Wan. S. B. Eisenman, and A. T. Campbell. CODA: Congestion Detection
and Avoidance in Sensor Networks. In Proc. ACM SenSys ’03, Los Angeles, CA,
Nov. 2003, pp. 266--279.

[35] L. Wang, and S. Kulkarni. Proactive Reliable Bulk Data Dissemination in Sensor
Networks. In Proc. PDCS ’05, Phoenix, AZ, Nov. 2005, pp. 773--778.

[36] C. Wang, K. Sohraby, V. Lawrence, B. Li and Y. Hu. Priority-Based Congestion
Control in Wireless Sensor Networks. In Proc. STCU ‘06, Taichung, Taiwan, June,
2006, pp. 21--31.

112

[37] Y. Wang, M. Martonosi, and L.-S. Peh. Supervised Learning in Sensor Networks:
New Approaches with Routing, Reliability Optimizations. In Proc. SECON ’06,
Reston, VA, Sept. 2006, pp. 256--265.

[38] A. Woo and D. C. Culler. A Transmission Control Scheme for Media Access in
Sensor Networks. In Proc. ACM Mobicom ’01, Rome, Italy, July 2004, pp. 221--
235.

[39] W. Ye, J. Heidemann, and D. Estrin. Medium access control with coordinated
adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on
Networking, 12(3):493--506, Dec. 2004.

[40] J. Yicka, B. Mukherjeea, and D. Ghosal. Wireless sensor network survey.
Computer Networks, 52(12):2292–2330, 2008.

[41] B. Yu, P. Scerri, K. Sycara, Yang Xu, and M. Lewis. Scalable and Reliable Data
Delivery in Mobile Ad Hoc Sensor Networks. In Proc. AAMAS ’06, Hakodate,
Japan, May 2006, pp. 71--83.

[42] H. Zhang, A. Arora, Y.-R. Choi, and M. Gouda. Reliable Bursty Convergecast in
Wireless Sensor Networks. In Proc. MobiHoc ’05, Urbana-Champaign, IL, May
2005, pp. 266--276.

[43] Y. Zhou, M. R. Lyu, J. Liu, and H. Wang. PORT: A Price-Oriented Reliable
Transport Protocol for Wireless Sensor Networks. In Proc. ISSRE ’05, St. Malo,
France, Nov. 2005, pp. 10--23.

