242 research outputs found

    Trajectory generation of space telerobots

    Get PDF
    The purpose is to review a variety of trajectory generation techniques which may be applied to space telerobots and to identify problems which need to be addressed in future telerobot motion control systems. As a starting point for the development of motion generation systems for space telerobots, the operation and limitations of traditional path-oriented trajectory generation approaches are discussed. This discussion leads to a description of more advanced techniques which have been demonstrated in research laboratories, and their potential applicability to space telerobots. Examples of this work include systems that incorporate sensory-interactive motion capability and optimal motion planning. Additional considerations which need to be addressed for motion control of a space telerobot are described, such as redundancy resolution and the description and generation of constrained and multi-armed cooperative motions. A task decomposition module for a hierarchical telerobot control system which will serve as a testbed for trajectory generation approaches which address these issues is also discussed briefly

    Task-space dynamic control of underwater robots

    Get PDF
    This thesis is concerned with the control aspects for underwater tasks performed by marine robots. The mathematical models of an underwater vehicle and an underwater vehicle with an onboard manipulator are discussed together with their associated properties. The task-space regulation problem for an underwater vehicle is addressed where the desired target is commonly specified as a point. A new control technique is proposed where the multiple targets are defined as sub-regions. A fuzzy technique is used to handle these multiple sub-region criteria effectively. Due to the unknown gravitational and buoyancy forces, an adaptive term is adopted in the proposed controller. An extension to a region boundary-based control law is then proposed for an underwater vehicle to illustrate the flexibility of the region reaching concept. In this novel controller, a desired target is defined as a boundary instead of a point or region. For a mapping of the uncertain restoring forces, a least-squares estimation algorithm and the inverse Jacobian matrix are utilised in the adaptive control law. To realise a new tracking control concept for a kinematically redundant robot, subregion tracking control schemes with a sub-tasks objective are developed for a UVMS. In this concept, the desired objective is specified as a moving sub-region instead of a trajectory. In addition, due to the system being kinematically redundant, the controller also enables the use of self-motion of the system to perform sub-tasks (drag minimisation, obstacle avoidance, manipulability and avoidance of mechanical joint limits)

    Model-based recurrent neural network for redundancy resolution of manipulator with remote centre of motion constraints

    Get PDF
    Redundancy resolution is a critical issue to achieve accurate kinematic control for manipulators. End-effectors of manipulators can track desired paths well with suitable resolved joint variables. In some manipulation applications such as selecting insertion paths to thrill through a set of points, it requires the distal link of a manipulator to translate along such fixed point and then perform manipulation tasks. The point is known as remote centre of motion (RCM) to constrain motion planning and kinematic control of manipulators. Together with its end-effector finishing path tracking tasks, the redundancy resolution of a manipulators has to maintain RCM to produce reliable resolved joint angles. However, current existing redundancy resolution schemes on manipulators based on recurrent neural networks (RNNs) mainly are focusing on unrestricted motion without RCM constraints considered. In this paper, an RNN-based approach is proposed to solve the redundancy resolution issue with RCM constraints, developing a new general dynamic optimisation formulation containing the RCM constraints. Theoretical analysis shows the theoretical derivation and convergence of the proposed RNN for redundancy resolution of manipulators with RCM constraints. Simulation results further demonstrate the efficiency of the proposed method in end-effector path tracking control under RCM constraints based on an industrial redundant manipulator system

    Simplified Motion Control of a Vehicle manipulator for the Coordinated Mobile Manipulation

    Get PDF
    This paper considers a resolved kinematic motion control approach for controlling a spatial serial manipulator arm that is mounted on a vehicle base. The end-effectorโ€™s motion of the manipulator is controlled by a novel kinematic control scheme, and the performance is compared with the well-known operational-space control scheme. The proposed control scheme aims to track the given operational-space (end-effector) motion trajectory with the help of resolved configuration-space motion without using the Jacobian matrix inverse or pseudo inverse. The experimental testing results show that the suggested control scheme is as close to the conventional operational-space kinematic control scheme

    Trajectory generation for cooperating robots

    Get PDF
    Includes bibliographical references (page 302).This paper derives a formulation for on-line trajectory generation for two robots cooperating to perform an assembly task. The two robots are treated as a single redundant system. A Jacobian is formulated that relates the joint rates of the entire system to the relative motion of one of the hands with respect to the other. The minimum norm solution of this relative Jacobian equation results in a set of joint rates which perform the cooperative task. In addition to the cooperative task, secondary goals, which include obstacle and joint limit avoidance, are specified using velocities in the null space of the relative Jacobian. This formulation also allows the robots to be controlled in parallel on independent tasks

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    A Generalized Index for Fault-tolerant Control in Operational Space under Free-swinging Actuation Failure

    Get PDF
    Actuation failure and fault-tolerant control under the actuation failure scenario have drawn more attention in accordance with the recent increasing demand for reliable robot control applications such for long-term and remote operation. The emergence of control torque loss, i.e., the free-swinging failure, is particularly challenging when the robot performs dynamic operational space tasks due to complexities stemming from redundancies in the kinematic structure as well as a dynamical disturbance in the under-actuated multi-body system. To reinforce robustness and accuracy of task-space control under the failure condition, this letter proposes a performance index, named generalized failure-susceptibility (GFS), which is formulated to render thorough dynamic and kinematic effects caused by the un-actuated joints. The GFS index is then exploited with the hierarchical task controller, where self-motion is controlled to minimize the index in real-time. Several experiments with a seven-degrees-of-freedom torque-controlled robot verify that the proposed control strategy with the GFS index effectively improves fault tolerance against anticipating actuation failure

    ๊ธฐ๊ตฌํ•™์  ๋ฐ ๋™์  ์ œํ•œ์กฐ๊ฑด๋“ค์„ ๊ณ ๋ คํ•œ ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ์ž‘์—… ์ค‘์‹ฌ ์ „์‹  ๋™์ž‘ ์ƒ์„ฑ ์ „๋žต

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€(์ง€๋Šฅํ˜•์œตํ•ฉ์‹œ์Šคํ…œ์ „๊ณต), 2023. 2. ๋ฐ•์žฌํฅ.๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋Š” ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์— ์žฅ์ฐฉ๋œ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์ž…๋‹ˆ๋‹ค. ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋Š” ๊ณ ์ •ํ˜• ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์— ๋น„ํ•ด ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ์ด๋™์„ฑ์„ ์ œ๊ณต๋ฐ›๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค์–‘ํ•˜๊ณ  ๋ณต์žกํ•œ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‘ ๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์‹œ์Šคํ…œ์„ ๊ฒฐํ•ฉํ•จ์œผ๋กœ์จ ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ์ „์‹ ์„ ๊ณ„ํšํ•˜๊ณ  ์ œ์–ดํ•  ๋•Œ ์—ฌ๋Ÿฌ ํŠน์ง•์„ ๊ณ ๋ คํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์ง•๋“ค์€ ์—ฌ์ž์œ ๋„, ๋‘ ์‹œ์Šคํ…œ์˜ ๊ด€์„ฑ ์ฐจ์ด ๋ฐ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ๋น„ํ™€๋กœ๋…ธ๋ฏน ์ œํ•œ ์กฐ๊ฑด ๋“ฑ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์˜ ๋ชฉ์ ์€ ๊ธฐ๊ตฌํ•™์  ๋ฐ ๋™์  ์ œํ•œ์กฐ๊ฑด๋“ค์„ ๊ณ ๋ คํ•˜์—ฌ ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ์ „์‹  ๋™์ž‘ ์ƒ์„ฑ ์ „๋žต์„ ์ œ์•ˆํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋จผ์ €, ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๊ฐ€ ์ดˆ๊ธฐ ์œ„์น˜์—์„œ ๋ฌธ์„ ํ†ต๊ณผํ•˜์—ฌ ๋ชฉํ‘œ ์œ„์น˜์— ๋„๋‹ฌํ•˜๊ธฐ ์œ„ํ•œ ์ „์‹  ๊ฒฝ๋กœ๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋กœ๋ด‡๊ณผ ๋ฌธ์— ์˜ํ•ด ์ƒ๊ธฐ๋Š” ๊ธฐ๊ตฌํ•™์  ์ œํ•œ์กฐ๊ฑด์„ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ˆํ•˜๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ๋‘ ๋‹จ๊ณ„๋ฅผ ๊ฑฐ์ณ ์ „์‹ ์˜ ๊ฒฝ๋กœ๋ฅผ ์–ป์Šต๋‹ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ๊ทธ๋ž˜ํ”„ ํƒ์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜์—ฌ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ์ž์„ธ ๊ฒฝ๋กœ์™€ ๋ฌธ์˜ ๊ฐ๋„ ๊ฒฝ๋กœ๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๊ทธ๋ž˜ํ”„ ํƒ์ƒ‰์—์„œ area indicator๋ผ๋Š” ์ •์ˆ˜ ๋ณ€์ˆ˜๋ฅผ ์ƒํƒœ์˜ ๊ตฌ์„ฑ ์š”์†Œ๋กœ์„œ ์ •์˜ํ•˜๋Š”๋ฐ, ์ด๋Š” ๋ฌธ์— ๋Œ€ํ•œ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ์ƒ๋Œ€์  ์œ„์น˜๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ๊ฒฝ๋กœ์™€ ๋ฌธ์˜ ๊ฐ๋„๋ฅผ ํ†ตํ•ด ๋ฌธ์˜ ์†์žก์ด ์œ„์น˜๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ์—ญ๊ธฐ๊ตฌํ•™์„ ํ™œ์šฉํ•˜์—ฌ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ๊ด€์ ˆ ์œ„์น˜๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ํ”„๋ ˆ์ž„์›Œํฌ์˜ ํšจ์œจ์„ฑ์€ ๋น„ํ™€๋กœ๋…ธ๋ฏน ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์‹ค์ œ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๋‘˜ ์งธ, ์ตœ์ ํ™” ๋ฐฉ๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœํ•œ ์ „์‹  ์ œ์–ด๊ธฐ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๋“ฑ์‹ ๋ฐ ๋ถ€๋“ฑ์‹ ์ œํ•œ์กฐ๊ฑด ๋ชจ๋‘์— ๋Œ€ํ•ด ๊ฐ€์ค‘ ํ–‰๋ ฌ์„ ๋ฐ˜์˜ํ•œ ๊ณ„์ธต์  ์ตœ์ ํ™” ๋ฌธ์ œ์˜ ํ•ด๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ ๋˜๋Š” ํœด๋จธ๋…ธ์ด๋“œ์™€ ๊ฐ™์ด ์ž์œ ๋„๊ฐ€ ๋งŽ์€ ๋กœ๋ด‡์˜ ์—ฌ์ž์œ ๋„๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ฐœ๋ฐœ๋˜์–ด ์ž‘์—… ์šฐ์„  ์ˆœ์œ„์— ๋”ฐ๋ผ ๊ฐ€์ค‘์น˜๊ฐ€ ๋‹ค๋ฅธ ๊ด€์ ˆ ๋™์ž‘์œผ๋กœ ์—ฌ๋Ÿฌ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ๊ฐ€์ค‘ ํ–‰๋ ฌ์„ ์ตœ์ ํ™” ๋ฌธ์ œ์˜ 1์ฐจ ์ตœ์  ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋„๋ก ํ•˜๋ฉฐ, Active-set ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ๋“ฑ์‹ ๋ฐ ๋ถ€๋“ฑ์‹ ์ž‘์—…์„ ์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋Œ€์นญ์ ์ธ ์˜๊ณต๊ฐ„ ์‚ฌ์˜ ํ–‰๋ ฌ์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ณ„์‚ฐ์ƒ ํšจ์œจ์ ์ž…๋‹ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, ์ œ์•ˆ๋œ ์ œ์–ด๊ธฐ๋ฅผ ํ™œ์šฉํ•˜๋Š” ๋กœ๋ด‡์€ ์šฐ์„  ์ˆœ์œ„์— ๋”ฐ๋ผ ๊ฐœ๋ณ„์ ์ธ ๊ด€์ ˆ ๊ฐ€์ค‘์น˜๋ฅผ ๋ฐ˜์˜ํ•˜์—ฌ ์ „์‹  ์›€์ง์ž„์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ์ œ์–ด๊ธฐ์˜ ํšจ์šฉ์„ฑ์€ ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์™€ ํœด๋จธ๋…ธ์ด๋“œ๋ฅผ ์ด์šฉํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ชจ๋ฐ”์ผ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ๋™์  ์ œํ•œ์กฐ๊ฑด๋“ค ์ค‘ ํ•˜๋‚˜๋กœ์„œ ์ž๊ฐ€ ์ถฉ๋Œ ํšŒํ”ผ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์™€ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡ ๊ฐ„์˜ ์ž๊ฐ€ ์ถฉ๋Œ์— ์ค‘์ ์„ ๋‘ก๋‹ˆ๋‹ค. ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ๋ฒ„ํผ ์˜์—ญ์„ ๋‘˜๋Ÿฌ์‹ธ๋Š” 3์ฐจ์› ๊ณก๋ฉด์ธ distance buffer border์˜ ๊ฐœ๋…์„ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค. ๋ฒ„ํผ ์˜์—ญ์˜ ๋‘๊ป˜๋Š” ๋ฒ„ํผ ๊ฑฐ๋ฆฌ์ž…๋‹ˆ๋‹ค. ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์™€ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡ ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๊ฐ€ ๋ฒ„ํผ ๊ฑฐ๋ฆฌ๋ณด๋‹ค ์ž‘์€ ๊ฒฝ์šฐ, ์ฆ‰ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๊ฐ€ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ๋ฒ„ํผ ์˜์—ญ ๋‚ด๋ถ€์— ์žˆ๋Š” ๊ฒฝ์šฐ ์ œ์•ˆ๋œ ์ „๋žต์€ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋ฅผ ๋ฒ„ํผ ์˜์—ญ ๋ฐ–์œผ๋กœ ๋‚ด๋ณด๋‚ด๊ธฐ ์œ„ํ•ด ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ์›€์ง์ž„์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋Š” ๋ฏธ๋ฆฌ ์ •์˜๋œ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ์˜ ์›€์ง์ž„์„ ์ˆ˜์ •ํ•˜์ง€ ์•Š๊ณ ๋„ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡๊ณผ์˜ ์ž๊ฐ€ ์ถฉ๋Œ์„ ํ”ผํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์˜ ์›€์ง์ž„์€ ๊ฐ€์ƒ์˜ ํž˜์„ ๊ฐ€ํ•จ์œผ๋กœ์จ ์ƒ์„ฑ๋ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ํž˜์˜ ๋ฐฉํ–ฅ์€ ์ฐจ๋™ ๊ตฌ๋™ ์ด๋™ ๋กœ๋ด‡์˜ ๋น„ํ™€๋กœ๋…ธ๋ฏน ์ œ์•ฝ ๋ฐ ์กฐ์ž‘๊ธฐ์˜ ๋„๋‹ฌ ๊ฐ€๋Šฅ์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ๊ฒฐ์ •๋ฉ๋‹ˆ๋‹ค. ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ 7์ž์œ ๋„ ๋กœ๋ด‡ํŒ”์„ ๊ฐ€์ง„ ์ฐจ๋™ ๊ตฌ๋™ ๋ชจ๋ฐ”์ผ ๋กœ๋ด‡์— ์ ์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์‹คํ—˜ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ ์ž…์ฆ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.A mobile manipulator is a manipulator mounted on a mobile robot. Compared to a fixed-base manipulator, the mobile manipulator can perform various and complex tasks because the mobility is offered by the mobile robot. However, combining two different systems causes several features to be considered when generating the whole-body motion of the mobile manipulator. The features include redundancy, inertia difference, and non-holonomic constraint. The purpose of this thesis is to propose the whole-body motion generation strategy of the mobile manipulator for considering kinematic and dynamic constraints. First, a planning framework is proposed that computes a path for the whole-body configuration of the mobile manipulator to navigate from the initial position, traverse through the door, and arrive at the target position. The framework handles the kinematic constraint imposed by the closed-chain between the robot and door. The proposed framework obtains the path of the whole-body configuration in two steps. First, the path for the pose of the mobile robot and the path for the door angle are computed by using the graph search algorithm. In graph search, an integer variable called area indicator is introduced as an element of state, which indicates where the robot is located relative to the door. Especially, the area indicator expresses a process of door traversal. In the second step, the configuration of the manipulator is computed by the inverse kinematics (IK) solver from the path of the mobile robot and door angle. The proposed framework has a distinct advantage over the existing methods that manually determine several parameters such as which direction to approach the door and the angle of the door required for passage. The effectiveness of the proposed framework was validated through experiments with a nonholonomic mobile manipulator. Second, a whole-body controller is presented based on the optimization method that can consider both equality and inequality constraints. The method computes the optimal solution of the weighted hierarchical optimization problem. The method is developed to resolve the redundancy of robots with a large number of Degrees of Freedom (DOFs), such as a mobile manipulator or a humanoid, so that they can execute multiple tasks with differently weighted joint motion for each task priority. The proposed method incorporates the weighting matrix into the first-order optimality condition of the optimization problem and leverages an active-set method to handle equality and inequality constraints. In addition, it is computationally efficient because the solution is calculated in a weighted joint space with symmetric null-space projection matrices for propagating recursively to a low priority task. Consequently, robots that utilize the proposed controller effectively show whole-body motions handling prioritized tasks with differently weighted joint spaces. The effectiveness of the proposed controller was validated through experiments with a nonholonomic mobile manipulator as well as a humanoid. Lastly, as one of dynamic constraints for the mobile manipulator, a reactive self-collision avoidance algorithm is developed. The proposed method mainly focuses on self-collision between a manipulator and the mobile robot. We introduce the concept of a distance buffer border (DBB), which is a 3D curved surface enclosing a buffer region of the mobile robot. The region has the thickness equal to buffer distance. When the distance between the manipulator and mobile robot is less than the buffer distance, i.e. the manipulator lies inside the buffer region of the mobile robot, the proposed strategy is to move the mobile robot away from the manipulator in order for the manipulator to be placed outside the border of the region, the DBB. The strategy is achieved by exerting force on the mobile robot. Therefore, the manipulator can avoid self-collision with the mobile robot without modifying the predefined motion of the manipulator in a world Cartesian coordinate frame. In particular, the direction of the force is determined by considering the non-holonomic constraint of the differentially driven mobile robot. Additionally, the reachability of the manipulator is considered to arrive at a configuration in which the manipulator can be more maneuverable. To realize the desired force and resulting torque, an avoidance task is constructed by converting them into the accelerations of the mobile robot and smoothly inserted with a top priority into the controller. The proposed algorithm was implemented on a differentially driven mobile robot with a 7-DOFs robotic arm and its performance was demonstrated in various experimental scenarios.1 INTRODUCTION 1 1.1 Motivation 1 1.2 Contributions of thesis 2 1.3 Overview of thesis 3 2 WHOLE-BODY MOTION PLANNER : APPLICATION TO NAVIGATION INCLUDING DOOR TRAVERSAL 5 2.1 Background & related works 7 2.2 Proposed framework 9 2.2.1 Computing path for mobile robot and door angle - S1 10 2.2.1.1 State 10 2.2.1.2 Action 13 2.2.1.3 Cost 15 2.2.1.4 Search 18 2.2.2 Computing path for arm configuration - S2 20 2.3 Results 21 2.3.1 Application to pull and push-type door 21 2.3.2 Experiment in cluttered environment 22 2.3.3 Experiment with different robot platform 23 2.3.4 Comparison with separate planning by existing works 24 2.3.5 Experiment with real robot 29 2.4 Conclusion 29 3 WHOLE-BODY CONTROLLER : WEIGHTED HIERARCHICAL QUADRATIC PROGRAMMING 31 3.1 Related works 32 3.2 Problem statement 34 3.2.1 Pseudo-inverse with weighted least-squares norm for each task 35 3.2.2 Problem statement 37 3.3 WHQP with equality constraints 37 3.4 WHQP with inequality constraints 45 3.5 Experimental results 48 3.5.1 Simulation experiment with nonholonomic mobile manipulator 48 3.5.1.1 Scenario description 48 3.5.1.2 Task and weighting matrix description 49 3.5.1.3 Results 51 3.5.2 Real experiment with nonholonomic mobile manipulator 53 3.5.2.1 Scenario description 53 3.5.2.2 Task and weighting matrix description 53 3.5.2.3 Results 54 3.5.3 Real experiment with humanoid 55 3.5.3.1 Scenario description 55 3.5.3.2 Task and weighting matrix description 55 3.5.3.3 Results 57 3.6 Discussions and implementation details 57 3.6.1 Computation cost 57 3.6.2 Composite weighting matrix in same hierarchy 59 3.6.3 Nullity of WHQP 59 3.7 Conclusion 59 4 WHOLE-BODY CONSTRAINT : SELF-COLLISION AVOIDANCE 61 4.1 Background & related Works 64 4.2 Distance buffer border and its score computation 65 4.2.1 Identification of potentially colliding link pairs 66 4.2.2 Distance buffer border 67 4.2.3 Evaluation of distance buffer border 69 4.2.3.1 Singularity of the differentially driven mobile robot 69 4.2.3.2 Reachability of the manipulator 72 4.2.3.3 Score of the DBB 74 4.3 Self-collision avoidance algorithm 75 4.3.1 Generation of the acceleration for the mobile robot 76 4.3.2 Generation of the repulsive acceleration for the other link pair 82 4.3.3 Construction of an acceleration-based task for self-collision avoidance 83 4.3.4 Insertion of the task in HQP-based controller 83 4.4 Experimental results 86 4.4.1 System overview 87 4.4.2 Experimental results 87 4.4.2.1 Self-collision avoidance while tracking the predefined trajectory 87 4.4.2.2 Self-collision avoidance while manually guiding the end-effector 89 4.4.2.3 Extension to obstacle avoidance when opening the refrigerator 91 4.4.3 Discussion 94 4.5 Conclusion 95 5 CONCLUSIONS 97 Abstract (In Korean) 113 Acknowlegement 116๋ฐ•
    • โ€ฆ
    corecore