

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Task-oriented whole-body motion
generation strategy of mobile manipulator

for considering kinematic and dynamic
constraints

기구학적 및 동적 제한조건들을 고려한
모바일 매니퓰레이터의 작업 중심 전신 동작 생성 전략

BY

KEUNWOO JANG
FEBRUARY 2023

DEPARTMENT OF TRANSDISCIPLINARY STUDIES
THE GRADUATE SCHOOL OF CONVERGENCE

SCIENCE AND TECHNOLOGY
SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Task-oriented whole-body motion
generation strategy of mobile manipulator

for considering kinematic and dynamic
constraints

기구학적 및 동적 제한조건들을 고려한
모바일 매니퓰레이터의 작업 중심 전신 동작 생성 전략

BY

KEUNWOO JANG
FEBRUARY 2023

DEPARTMENT OF TRANSDISCIPLINARY STUDIES
THE GRADUATE SCHOOL OF CONVERGENCE

SCIENCE AND TECHNOLOGY
SEOUL NATIONAL UNIVERSITY

Task-oriented whole-body motion
generation strategy of mobile manipulator

for considering kinematic and dynamic
constraints

기구학적 및 동적 제한조건들을 고려한
모바일 매니퓰레이터의 작업 중심 전신 동작 생성 전략

지도교수 박 재 흥

이 논문을 공학박사 학위논문으로 제출함

2023년 1월

서울대학교 대학원

융합과학부

장 근 우

장근우의 공학박사 학위 논문을 인준함

2022년 12월

위 원 장 곽 노 준 (인)

부위원장 박 재 흥 (인)

위 원 김 창 환 (인)

위 원 김 현 진 (인)

위 원 문 형 필 (인)

Abstract

A mobile manipulator is a manipulator mounted on a mobile robot. Com-

pared to a fixed-base manipulator, the mobile manipulator can perform various

and complex tasks because the mobility is offered by the mobile robot. How-

ever, combining two different systems causes several features to be considered

when generating the whole-body motion of the mobile manipulator. The fea-

tures include redundancy, inertia difference, and non-holonomic constraint. The

purpose of this thesis is to propose the whole-body motion generation strategy

of the mobile manipulator for considering kinematic and dynamic constraints.

First, a planning framework is proposed that computes a path for the whole-

body configuration of the mobile manipulator to navigate from the initial po-

sition, traverse through the door, and arrive at the target position. The frame-

work handles the kinematic constraint imposed by the closed-chain between the

robot and door. The proposed framework obtains the path of the whole-body

configuration in two steps. First, the path for the pose of the mobile robot and

the path for the door angle are computed by using the graph search algorithm.

In graph search, an integer variable called area indicator is introduced as an

element of state, which indicates where the robot is located relative to the

door. Especially, the area indicator expresses a process of door traversal. In the

second step, the configuration of the manipulator is computed by the inverse

kinematics (IK) solver from the path of the mobile robot and door angle. The

proposed framework has a distinct advantage over the existing methods that

manually determine several parameters such as which direction to approach the

door and the angle of the door required for passage. The effectiveness of the

i

proposed framework was validated through experiments with a nonholonomic

mobile manipulator.

Second, a whole-body controller is presented based on the optimization

method that can consider both equality and inequality constraints. The method

computes the optimal solution of the weighted hierarchical optimization prob-

lem. The method is developed to resolve the redundancy of robots with a large

number of Degrees of Freedom (DOFs), such as a mobile manipulator or a hu-

manoid, so that they can execute multiple tasks with differently weighted joint

motion for each task priority. The proposed method incorporates the weighting

matrix into the first-order optimality condition of the optimization problem and

leverages an active-set method to handle equality and inequality constraints.

In addition, it is computationally efficient because the solution is calculated in

a weighted joint space with symmetric null-space projection matrices for prop-

agating recursively to a low priority task. Consequently, robots that utilize the

proposed controller effectively show whole-body motions handling prioritized

tasks with differently weighted joint spaces. The effectiveness of the proposed

controller was validated through experiments with a nonholonomic mobile ma-

nipulator as well as a humanoid.

Lastly, as one of dynamic constraints for the mobile manipulator, a reactive

self-collision avoidance algorithm is developed. The proposed method mainly

focuses on self-collision between a manipulator and the mobile robot. We in-

troduce the concept of a distance buffer border (DBB), which is a 3D curved

surface enclosing a buffer region of the mobile robot. The region has the thick-

ness equal to buffer distance. When the distance between the manipulator and

mobile robot is less than the buffer distance, i.e. the manipulator lies inside

ii

the buffer region of the mobile robot, the proposed strategy is to move the

mobile robot away from the manipulator in order for the manipulator to be

placed outside the border of the region, the DBB. The strategy is achieved by

exerting force on the mobile robot. Therefore, the manipulator can avoid self-

collision with the mobile robot without modifying the predefined motion of the

manipulator in a world Cartesian coordinate frame. In particular, the direction

of the force is determined by considering the non-holonomic constraint of the

differentially driven mobile robot. Additionally, the reachability of the manip-

ulator is considered to arrive at a configuration in which the manipulator can

be more maneuverable. To realize the desired force and resulting torque, an

avoidance task is constructed by converting them into the accelerations of the

mobile robot and smoothly inserted with a top priority into the controller. The

proposed algorithm was implemented on a differentially driven mobile robot

with a 7-DOFs robotic arm and its performance was demonstrated in various

experimental scenarios.

keywords: Mobile Manipulator, Whole-body Control, Motion Planning

student number: 2016-26043

iii

Contents

Abstract i

Contents iv

List of Tables viii

List of Figures ix

1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Contributions of thesis . 2

1.3 Overview of thesis . 3

2 WHOLE-BODY MOTION PLANNER : APPLICATION TO

NAVIGATION INCLUDING DOOR TRAVERSAL 5

2.1 Background & related works . 7

2.2 Proposed framework . 9

2.2.1 Computing path for mobile robot and door angle - S1 . . 10

2.2.1.1 State . 10

2.2.1.2 Action . 13

2.2.1.3 Cost . 15

iv

2.2.1.4 Search . 18

2.2.2 Computing path for arm configuration - S2 20

2.3 Results . 21

2.3.1 Application to pull and push-type door 21

2.3.2 Experiment in cluttered environment 22

2.3.3 Experiment with different robot platform 23

2.3.4 Comparison with separate planning by existing works . . 24

2.3.5 Experiment with real robot 29

2.4 Conclusion . 29

3 WHOLE-BODY CONTROLLER : WEIGHTED HIERARCHI-

CAL QUADRATIC PROGRAMMING 31

3.1 Related works . 32

3.2 Problem statement . 34

3.2.1 Pseudo-inverse with weighted least-squares norm for each

task . 35

3.2.2 Problem statement . 37

3.3 WHQP with equality constraints 37

3.4 WHQP with inequality constraints 45

3.5 Experimental results . 48

3.5.1 Simulation experiment with nonholonomic mobile manip-

ulator . 48

3.5.1.1 Scenario description 48

3.5.1.2 Task and weighting matrix description 49

3.5.1.3 Results . 51

3.5.2 Real experiment with nonholonomic mobile manipulator . 53

3.5.2.1 Scenario description 53

v

3.5.2.2 Task and weighting matrix description 53

3.5.2.3 Results . 54

3.5.3 Real experiment with humanoid 55

3.5.3.1 Scenario description 55

3.5.3.2 Task and weighting matrix description 55

3.5.3.3 Results . 57

3.6 Discussions and implementation details 57

3.6.1 Computation cost . 57

3.6.2 Composite weighting matrix in same hierarchy 59

3.6.3 Nullity of WHQP . 59

3.7 Conclusion . 59

4 WHOLE-BODY CONSTRAINT : SELF-COLLISION AVOID-

ANCE 61

4.1 Background & related Works . 64

4.2 Distance buffer border and its score computation 65

4.2.1 Identification of potentially colliding link pairs 66

4.2.2 Distance buffer border . 67

4.2.3 Evaluation of distance buffer border 69

4.2.3.1 Singularity of the differentially driven mobile

robot . 69

4.2.3.2 Reachability of the manipulator 72

4.2.3.3 Score of the DBB 74

4.3 Self-collision avoidance algorithm 75

4.3.1 Generation of the acceleration for the mobile robot 76

4.3.2 Generation of the repulsive acceleration for the other link

pair . 82

vi

4.3.3 Construction of an acceleration-based task for self-collision

avoidance . 83

4.3.4 Insertion of the task in HQP-based controller 83

4.4 Experimental results . 86

4.4.1 System overview . 87

4.4.2 Experimental results . 87

4.4.2.1 Self-collision avoidance while tracking the pre-

defined trajectory 87

4.4.2.2 Self-collision avoidance while manually guiding

the end-effector 89

4.4.2.3 Extension to obstacle avoidance when opening

the refrigerator 91

4.4.3 Discussion . 94

4.5 Conclusion . 95

5 CONCLUSIONS 97

Abstract (In Korean) 113

Acknowlegement 116

vii

List of Tables

2.1 Comparison with the separate planning 26

4.1 Notation and symbols . 63

viii

List of Figures

2.1 Overview of the proposed framework 6

2.2 Illustration of the area indicator 11

2.3 The range of door angles by the area indicator 11

2.4 Example of a set of feasible actions for the given pose of the robot. 13

2.5 Illustration of the state transitions depending on the value of the

area indicator . 14

2.6 Visualization of the reachability of our robot in OPENRAVE . . 16

2.7 Illustration of each term of the heuristic 17

2.8 Illustration of the states depending on the value of the area in-

dicator . 19

2.9 Illustration of regrasping the door handle 21

2.10 Snapshots of simulation from the proposed framework 23

2.11 Snapshots of simulation from the proposed framework with ob-

stacles . 24

2.12 Snapshots of simulation from the proposed framework with dif-

ferent platform . 25

2.13 Paths of the mobile robot obtained by the proposed framework

and separate planning . 28

ix

2.14 Snapshots of the real experiment results from the proposed frame-

work for pull-type door . 29

3.1 An example application of the proposed method with individual

weighting matrix for each task priority: a box-taping scenario of

humanoid. 32

3.2 Experimental results with a nonholonomic mobile manipulator

in simulation . 51

3.3 Experimental results with a nonholonomic mobile manipulator

in delivery scenario . 54

3.4 Experimental results with a humanoid in box-taping scenario . . 56

3.5 Computation time for the equality tasks with respect to the num-

ber of task hierarchies . 58

4.1 Overview of the proposed algorithm 62

4.2 Kinematic structure and collision model of our robot 66

4.3 Visualization of Pi and DBBi for Lm(i) 68

4.4 Schematic drawing of the differentially driven mobile robot . . . 70

4.5 All the points in DBB1 are colored depending on (a) the deter-

minant value in (4.7), (b) the reachability in (4.9), and the score

in (4.10) (yellow: high, blue: low) 73

4.6 Visualization of reachability shown in OPENRAVE 74

4.7 Illustration of generating the direction of force 77

4.8 Illustration of finding the acting point 79

4.9 Illustration of generating the desired force and resulting torque . 80

4.10 Value of the activation parameter depending on the distance of

the link pair. 84

x

4.11 Snapshots during experiments in which the end-effector tracks a

predefined trajectory . 88

4.12 Experimental results of self-collision avoidance while tracking the

predefined trajectory . 89

4.13 Experimental results of self-collision avoidance while manually

guiding the end-effector . 90

4.14 Experimental results of self-collision avoidance while manually

guiding the end-effector . 90

4.15 Experimental results of self-collision avoidance while manually

guiding the end-effector . 91

4.16 Illustration of the scenario and collision model 92

4.17 Snapshots of opening a refrigerator 92

4.18 Simulation results of opening the refrigerator 93

4.19 Experimental results of opening a refrigerator 93

xi

Chapter 1

INTRODUCTION

1.1 Motivation

A mobile manipulator, which is a manipulator mounted on a mobile robot,

has infinite workspace offered by the mobile robot. Also, the degrees of free-

dom (DOFs) of the mobile robot usually provide the mobile manipulator with

redundancy with respect to the task such as the trajectory tracking of the

end-effector. By utilizing these properties, the mobile manipulator can perform

complex and various tasks such as painting [1], polishing [2], and door open-

ing [3]. To perform these tasks, the motion planning and control considering

the whole-body of the mobile manipulator are necessary.

Among various tasks that require the whole-body of the mobile manipu-

lator, door traversal still remains a challenging task because it requires tight

coordinated motion of the whole-body and has to satisfy the constraint that

the end-effector grasps the door handle. To plan the motion of robot, several

1

approaches [4–8] have been developed. However, these approaches need to plan

additional motion to traverse through the door because the goal of them is to

open the door or articulated object to a predefined angle.

On the other hand, the whole-body control frameworks [9, 10] have been

developed to perform various prioritized tasks to consider motion distribution

with kinematic redundancy. However, these frameworks are difficult to generate

natural whole-body behavior because they produce joint motion minimizing the

same metric for all prioritized tasks. Recently, even though the controller [11]

was developed to generate different motion patterns for each task hierarchy, it

cannot calculate the solution for 3 or more tasks and cannot deal with inequality

constraints.

Therefore, we propose the task-oriented whole-body motion generation strat-

egy of the mobile manipulator for considering kinematic and dynamic con-

straints.

1.2 Contributions of thesis

The contributions of the thesis consist of three parts. First, we propose a frame-

work that belongs to the motion planning approach and addresses the problem

for the mobile manipulator to navigate from the start position to the goal

position, including passing through the door. The framework is composed of

two steps which plan separately for the mobile robot and manipulator. The

framework first computes the path of the mobile robot and door angle by using

the graph search algorithm. Based on the obtained paths of the first step, the

framework finds a collision-free path of the joint position of the manipulator by

2

utilizing the IK solver.

Second, the whole-body controller based on hierarchical quadratic program-

ming (HQP) is proposed. The proposed controller can efficiently compute an an-

alytic solution in a weighted least-squares norm manner for prioritized equality

and inequality tasks. By reformulating HQP with complete orthogonal decom-

position (COD) [12], the proposed controller assigns the weighting matrix to

each task hierarchy and derives the first-order optimality conditions. Based on

these conditions, the active-set method [12,13] is exploited to handle inequality

tasks.

Third, as one of the constraints to be considered for the mobile manipula-

tor, a new self-collision avoidance algorithm is developed. Our focus is on the

avoidance of self-collision between the manipulator and the mobile robot. We

propose a concept of distance buffer border (DBB), a border of the buffer re-

gion that the manipulator can reach around the mobile robot. The region has

the thickness of the buffer distance. The strategy is to position the manipu-

lator outside the DBB by the motion of the mobile robot. This is realized by

generating the force exerted on the mobile robot because the DBB is attached

to the mobile robot and moves with it. Therefore, the manipulator can avoid

self-collision with the mobile robot without modifying reference motion of the

manipulator.

1.3 Overview of thesis

Chapter 2 presents the whole-boy planning framework that addresses the navi-

gation problem including door traversal. Next, Chapter 3 describes the whole-

3

body controller that prioritizes equality and inequality tasks while assigning

individual joint weights for each task priority. Chapter 4 shows the self-collision

avoidance algorithm that handles the collision between the manipulator and

mobile robot. Finally, the paper is concluded in Chapter. 5.

4

Chapter 2

WHOLE-BODY MOTION PLANNER : APPLI-

CATION TO NAVIGATION INCLUDING DOOR

TRAVERSAL

Mobile manipulators can manipulate objects in the extended workspace of-

fered by the mobile robot. In this respect, mobile manipulators can help people

by performing various tasks such as delivery, household chores, etc. Since the

chances of successfully executing such tasks depend on whether the target object

is reachable or not, mobile manipulators need the ability to open and traverse

doors which connect spaces. However, the problem of generating the motion of

mobile manipulator is not simple because the mobile manipulator is a coupled

system and the door is an articulated object.

In this chapter, we propose a framework that belongs to the motion planning

approach and addresses the problem for the mobile manipulator to navigate

from the start position to the goal position, including passing through the door.

The search space of the problem is high dimensional. Also, the problem has to

5

Start

Goal

Workspace

Boundary

Door

Obstacle
S1 S2

Figure 2.1: Overview of the proposed framework. Given the information of the
environment, door, and start and goal positions, S1 is the step that computes
the pose path of the mobile robot and angle path of the door. The paths are
computed with the constraint that the position of the door handle has to be
located inside the workspace of the manipulator as shown in blue dotted circles.
Red dotted line shows the computed path of the mobile robot. Then, S2 is the
step that computes the path of the joint configuration of the manipulator by
using the inverse kinematics solver. Combining the computed paths, the motion
of the mobile manipulator is generated that the mobile manipulator approaches,
opens, traverses through, closes the door, and eventually arrives at the goal
position.

satisfy the constraint that the end-effector of the mobile manipulator grasps the

door handle. In these respects, the problem demands expensive computational

cost. To alleviate the cost, the framework is composed of two steps which plan

separately for the mobile robot and the manipulator, as shown in Fig. 2.1. The

framework first computes the path of the mobile robot and door angle by using

the graph search algorithm. Based on the obtained paths of the first step, the

framework finds a collision-free path of the joint position of the manipulator

by utilizing the IK solver. By merging these paths, the whole-body motion of

the mobile manipulator is generated such that the robot navigates to the goal

position after passing through the door.

The main contribution of the framework is the graph representation. The

graph is designed to formulate the problem of planning the motion of the robot

6

approaching, opening, traversing through, closing the door, and finally reaching

the target position. Thus, the proposed framework can plan the path for all sub-

problems by a single search, whereas the previous works [4–6,14] can only plan

the path for one sub-problem or a part of the sub-problems and thus require

the additional path planning for the other sub-problems. Especially, an integer

variable called area indicator is introduced as an element of the state, which

represents where the robot is located relative to the door. Each value of the

area indicator represents the process of the sub-tasks. Also, the area indicator

allows to calculate the range of the door angle that the manipulator can reach,

which eliminates the need to include the door angle directly in the state space.

The remainder of the chapter is organized as follows. Sec. 2.1 presents the

background and related works for door traversal. In Sec. 2.2, the proposed

framework consisting of two steps is explained. Sec. 2.3 describes the experi-

mental validations and discussion of the proposed framework. Finally, the paper

is concluded in Sec. 2.4.

2.1 Background & related works

Researches for door traversal have been actively conducted in recent decades.

They can be categorized into two main approaches [15]: sense-and-act [16–19]

and plan-and-act [4–8, 14]. The former estimates geometric information of the

door and simultaneously generates the motion that opens the door on the basis

of sensory feedback information in real-time. The latter plans the motion that

opens and traverses through the door given prior information of the door. First,

in the field of sense-and-act approach, Lee et al. [16] developed a control system

7

combining impedance control and teleoperation in order for a humanoid to

open and traverse through the door. Karayiannidis et al. [17] developed control

strategy that estimates the position of joint axis from the measured force and

simultaneously opens articulated objects such as door and drawer. However,

since the strategy was only applied to the fixed-base manipulator, the workspace

of the manipulator should be considered before opening such objects. Stuede

et al [18] proposed a unified approach including impedance controller of mobile

manipulator and robust door handle detection based on convolutional neural

network. Although the method [18] was successfully applied to the push-type

door, the method had limitations to opening the pull-type door.

On the other hand, the motion planning approaches have been developed.

Chitta et al. [14] developed a planner that efficiently generates the whole-body

motion of the mobile manipulator for door opening by combining the graph

search algorithm and IK solver. The planner can handle both push and pull-

type door. Furthermore, Gray et al. [4] extended the previous work to enable

the mobile manipulator to open the spring-loaded door by using the contact

for holding the door. Arduengo et al. [5] proposed a unified framework that

includes detecting the door and handle, estimating the model of the door, and

planning the motion for door opening. The framework utilizes a concept of task

space region which represents the end-effector constraint. Jiao et al. [6] proposed

a planner that computes the whole-body motion of the mobile manipulator to

manipulate articulated objects by utilizing a virtual kinematic chain connecting

the robot and object. However, these methods [4–6,14] need to plan additional

motion to traverse through the door because the goal of them is to open the

door or articulated object to a predefined angle. More generally, Jorgensen et

al. [7] proposed a method that plans a loco-manipulation motion of the hu-

8

manoid considering the reachability of the arm and footstep given a predefined

end-effector path. Also, Murooka et al. [8] developed a loco-manipulation plan-

ner that first computes the 2D pose path of the object and then obtains a se-

quence of footsteps and re-grasping poses. Based on the computed sequence, the

whole-body configuration of the humanoid is computed by using the quadratic

programming-based IK solver. Although these approaches [7, 8] can generate

the whole-body loco-manipulation motion of the humanoid, they only cover

the part of door operation that opens the door to a certain angle.

However, the plan-and-act approach is suited for well-defined and struc-

tured environment. To deal with uncertain and dynamic environment, many

researchers developed methods belonging to the sequential sense-plan-and ap-

proach [15] which exploits the environmental feedback information and gener-

ates the modified motion in real-time. Lee et al. [20] proposed model predictive

control (MPC) framework that generates the whole-body motion of aerial ma-

nipulator. The framework considers the aerial manipulator and the door as

a whole articulated body and incorporates several constraints including self-

collision and collision between the robot and door. Recently, Ito et al. [19]

proposed a learning-based method that predicts the behavior of the robot from

the sensory data and generates the motion to open and pass through the door

in real-time.

2.2 Proposed framework

This section describes the proposed framework which computes the collision-

free path of the mobile manipulator passing through the door and thereafter

9

reaching the goal position. Rather than searching for the entire joint space of the

mobile manipulator, the proposed framework is designed to sequentially execute

two steps denoted as S1 and S2 which generate the motion for the mobile robot

and manipulator, respectively. The first step S1 generates the collision-free

motion of the robot and door angle, assuming that the manipulator maintains

its home configuration except during door traversal. Next, the second step S2

computes the synchronized motion of the manipulator for the generated motion

of the mobile robot and door in S1. In S2, the motion of the manipulator

is computed by using the IK solver while considering the collision between

the manipulator and environment including the door and wall. The schematic

description of two steps is shown in Fig. 2.1.

2.2.1 Computing path for mobile robot and door angle - S1

To obtain the path of the mobile robot and door angle, the navigation problem

of the mobile robot is formulated as the problem of the graph search. The

graph search algorithm constructs the graph by propagating the states to their

successors via actions. Then, the path with the minimum cost is found by

searching for the constructed graph. To this end, the elements required for the

graph search, including the state, action, and cost are described as follows.

2.2.1.1 State

The search space S ∈ R3 × I is four dimensional space. The state is expressed

as s = (x, y, θ, a) ∈ S. (x, y, θ) is the pose of the mobile robot and a is called

area indicator. The area indicator a expresses which area the current pose of the

10

𝑎 = 0 𝑎 = 1 𝑎 = 2 𝑎 = 3 𝑎 = 4

Start

Goal

Figure 2.2: Illustration of the area indicator. The value of the area indicator
is decided by where the robot is located with respect to the door. The yellow
area shows the area corresponding to each value of the area indicator. As the
indicator changes from 0 to 4, the robot moves towards the target position after
passing through the door.

𝑎 = 1 𝑎 = 2 𝑎 = 3

Figure 2.3: The area indicator a from 1 to 3 implicitly shows the range of the
reachable door angles. Given the pose of the mobile base, the range shown in red
can be calculated by checking whether the door handle is within the workspace
boundary of the manipulator and the collision between the door and mobile
robot.

mobile robot belongs to. The value of the area indicator is determined according

to the pose of the mobile robot and the angle of the door, as shown in Fig. 2.2.

In Fig. 2.2, the value of the area indicator is defined as 0 when the robot is

far from the door. At this position, the door handle is outside the workspace of

the manipulator. This implies the process of the robot approaching the door.

Next, when the robot is located outside the line of the door and can reach the

door handle, a is 1. When the robot is located inside the line of the door but

11

does not yet cross over the doorsill, a is 2. As the robot moves to open and

pass through the door, the indicator changes from 1 to 2. At this point, two

states can be generated that have the same pose of the mobile robot, but have

two different indicators of 1 and 2. Then, when the robot is located beyond the

doorsill but still can reach the door handle, a is 3. This indicates the process of

the robot closing the door. Finally, when the robot is placed between the door

and goal position, the value of a is defined as 4. This refers to the process of

the robot reaching the goal position.

In fact, the indicator from 1 to 3 is an alternative to directly including the

door angle as an element of the state. If the pose of the mobile robot is given,

all possible angles of the door are checked and labeled as from 1 to 3. Then, the

angles belonging to the same indicator are grouped into the range, as shown in

Fig. 2.3. From a practical point of view, the range is computed by checking a

finite set of the door angles obtained from discretizing the possible range of the

door angle at a certain interval, e.g., 1 degree or 2 degrees.

The concept of the area indicator provides several advantages. First, it can

handle both “pull” and “push”-type door. As the indicator changes from 1 to

3, it shows the process of the robot opening, passing through, and closing the

“pull”-type door. On the contrary, as the indicator changes from 3 to 1, it

expresses the task for “push”-type door. Second, all sub-tasks related to the

door can be described. They include approaching the door, opening the door,

traversing through the door, closing the door, and finally moving toward the

goal position. Third, the state can be concisely expressed by including the area

indicator without directly including the door angle as an element of the state.

12

Figure 2.4: Example of a set of feasible actions for the given pose of the robot.

2.2.1.2 Action

To transit any state to its successor state, the action should be defined. Since

the area indicator of the state is a variable automatically determined by the

pose of the mobile robot, the action is defined only for the pose of the mobile

robot. Thus, the concept of the lattice [21] is adopted in order to discretize the

state space while considering non-holonomic constraints for the mobile robot,

such as car-like or differentially-driven mobile robot. After defining a set of

the feasible actions, as shown in Fig. 2.4, the lattice graph composed of the

discretized states is constructed by executing the actions to the states.

Every transition between the two states is feasible when their area indicators

are equal to 0 or 4 because the action of the robot is not related to the door.

However, when the area indicator is 1 to 3, the reachable door angles of a

state and its successor state should overlap, as shown in Fig. 2.5(a). This is

because the door angle should not change discontinuously in the process of the

robot opening and closing the door. From a practical point of view, since the

reachable angle range is calculated as a set of discretized angles not as the

inequality bounds of the angle, at least one discrete value of the door angle

13

𝑎 = 1 𝑎 = 1

(a)

𝑎 = 0 𝑎 = 1

(b)

𝑎 = 3 𝑎 = 4

(c)

Figure 2.5: Illustration of the state transitions depending on the value of the
area indicator: (a) In the process of the robot opening the door, the ranges of
the reachable angles for two consecutive states should overlap as shown in blue;
(b) When the robot approaches the door to open it, i.e., for the area indicator of
the successor state to be 1, the range of the door angle should contain 0 degrees;
(c) When the robot closes the door and moves towards the goal position, i.e.,
for the area indicator of the successor state to become 4, the range of the door
angle for the predecessor state should contain 0 degrees.

should overlap to become a valid transition.

Furthermore, when the robot starts to open the door, i.e. the area indicator

changes from 0 to 1, the successor state should contain 0 degrees in its set of

the reachable door angles, as shown in Fig. 2.5(b). Likewise, when the robot

finishes to close the door and starts to move towards the goal position, i.e. the

area indicator changes from 3 to 4, the predecessor state whose area indicator

is 3 should contain 0 degrees in its set of the feasible door angles, as shown in

Fig. 2.5(c).

14

2.2.1.3 Cost

The transition cost from the state s to its successor state ssucc, denoted as

c(s, ssucc), is expressed as

c(s, ssucc) =

caction + cmap + cdoor if a = 1, 2, 3

caction + cmap otherwise
(2.1)

where caction is the cost to transit to the successor state by executing the pre-

defined action of the mobile robot. This term is proportional to the weighted

sum of the translational and rotational displacement [22]. Second, cmap is the

cost based on the costmap which indicates how close the robot is to the ob-

stacle [14]. Lastly, cdoor is the cost to represent how properly the door handle

is positioned from the base of the manipulator at the given pose of the mobile

robot when the area indicator of the current state includes from 1 to 3. cdoor is

designed by utilizing the information of the reachability [23] which represents

the quality of the pose of the end-effector based on the number of IK solutions.

The reachability of our robot is illustrated in Fig. 2.6. Thus, cdoor is defined as

a second-order polynomial function of the distance from the base of the manip-

ulator to the door handle. cdoor has the minimum value at the region of high

reachability as

cdoor = K(d− dmin)2, (2.2)

where K is the positive coefficient and d is the distance between the base of the

manipulator and door handle at the current pose of the mobile robot. Based

on the reachability data, dmin is set as 0.4 m. If the robot can reach the door

15

Figure 2.6: Visualization of the reachability of our robot in OPENRAVE [23].
Left figure shows the colored surfaces depending on the density levels of the
reachability. Right figure shows the surface cut by a vertical plane at the base
of the manipulator (red: high reachability, blue: low reachability).

handle at several door angles, all costs for the corresponding door angles are

calculated and the minimum cost is selected among them.

To guide the search for the graph, the heuristic should be defined. The

heuristic is an estimated cost from the current state to the goal state. In the

proposed framework, the heuristic h(s) is designed as the sum of the estimated

translational displacements from the current state to the goal state and com-

puted as

h(s) =
4∑

i=a

di, (2.3)

where di is the estimated displacement for the area indicator i, shown in Fig.

2.7, and a is the current state’s area indicator. Especially, di implies the distance

from current state to reach the region of the next area indicator.

In order to obtain the optimal path, the heuristic h(s) should satisfy an

inequality as

h(s) ≤ h(ssucc) + c(s, ssucc), (2.4)

where ssucc is the successor of the state s and c(s, ssucc) is the transition cost.

16

𝒅𝟏(𝒔) 𝒅𝟐(𝒔)

𝒓𝒓𝒐𝒃𝒐𝒕

𝒓𝒓𝒐𝒃𝒐𝒕 𝒅𝟎

𝑑1

𝑑4

𝑑2

𝑑0

𝑑3

Figure 2.7: Illustration of each term of the heuristic. When the area indicator
is 0, d0 is computed as the distance from the current pose to the pose in front
of the door handle. d1 is the distance from the current pose to the pose outside
the door at the current heading angle of the robot. d2 is distance to the center
of the door. d3 is the distance to cross over the doorsill. d4 is the distance to
the target pose.

The inequality implies that “heuristic difference never overestimates the tran-

sition cost” and represents the condition called consistency. Additionally, the

heuristic h(s) should satisfy an inequality expressed as

h(s) ≤ c(s, s1) + c(s1, sg). (2.5)

The inequality implies that “heuristic is never larger than the true cost of reach-

ing the goal state” and represents the property called admissibility. Based on

the two inequalities, consistent heuristic is always admissible. Therefore, the

consistency of the heuristic in (2.3) will be proven as follows. First, if the area

indicator is 0, as shown in Fig. 2.8(a), the difference of the heuristic for two

states is d0−d
′
0. d0 is the distance between the current state and the state located

in front of the door handle. The transition cost c(s, s
′) is caction + cmap + cdoor.

Based on the triangle inequality, the heuristic is consistent. Next, if the area

indicator is 1, as shown in Fig. 2.8(b), the heuristic difference is d1 − d
′
1. d1

17

is the distance between the position p1 between the current state. p1 is the

center of the circle located along the line between s and s
′ and the radius of

the circle is same as the width of the robot. Since the value of c(s, s
′) is at

least caction = d1 − d
′
1, the heuristic is proven to be consistent. When the area

indicator is 2, the heuristic difference d2 − d
′
2 is less than or equal to c(s, s

′).

d2 is the distance from the current state to the axis of the door. Furthermore,

if the area indicator is 3, the difference of the heuristic is less than or equal to

the c(s, s
′). d3 is the distance between the current state to the axis l3 in Fig.

2.8(d). l3 is the axis located away from the axis of the door by the width of

the robot. Lastly, the heuristic difference of the states with the area indicator

of 4 is d4 − d
′
4. d4 is the distance between the current state and the goal state.

Based on the triangle inequality, the heuristic is consistent.

2.2.1.4 Search

Based on the designed components of the graph including the state, action,

and cost, the graph is constructed and searched in order to obtain the optimal

path. The initial state s0 is defined as (x0, y0, θ0, a0) where (x0, y0, θ0) is the

initial pose of the mobile robot and a0 is its area indicator. The goal state sg

is defined as as (xg, yg, θg, ag) where (xg, yg, θg) is the target pose of the mobile

robot and ag is its area indicator. The search algorithm used in this paper is

Anytime Repairing A∗ (ARA∗) [24]. The ARA∗ quickly finds the initial solution

path which can be sub-optimal, then refines it towards the optimal path for

the remaining planning time. The solution path can be obtained by using the

other variants of A∗ algorithm, such as Anytime Dynamic A∗ [25] and Lifelong

Planning A∗ [26].

18

(1/22)

𝑑0

𝑑0
′𝑑0

𝑐𝑎𝑐𝑡𝑖𝑜𝑛

𝒔′

𝑝0

𝒔

(a) a = 0

(2/22)

𝑑1

𝑑1
′

𝒔

𝒔′

𝑐𝑎𝑐𝑡𝑖𝑜𝑛
𝑝1

(b) a = 1

(3/22)

𝑑2

𝒔

𝒔′

𝑑2
′

𝑐𝑎𝑐𝑡𝑖𝑜𝑛

(c) a = 2

(4/22)

𝑑3

𝒔

𝑑3
′

𝑐𝑎𝑐𝑡𝑖𝑜𝑛

𝒔′

𝑙3

(d) a = 3

(5/22)

𝑑4
′𝑑4

Goal

𝒔

𝒔′

𝑐𝑎𝑐𝑡𝑖𝑜𝑛

(e) a = 4

Figure 2.8: Illustration of the states depending on the value of the area indicator.
From (a) to (e), the two states with the same area indicators are demonstrated
in order to prove the consistency of the heuristic.

The output of the search is the path from the start pose to the target

pose of the mobile robot with the corresponding area indicators. Since the area

indicator represents a finite set of valid door angles, the door angle with the

minimum cost is selected after they are evaluated by cdoor. Consequently, the

paths for the mobile robot and door angle can be obtained.

19

2.2.2 Computing path for arm configuration - S2

In order to compute the path for the joint position of the manipulator, the path

for the position of the door handle is first computed from the path for the door

angle obtained in S1 with the given information of the door model. Then, the

joint position of the manipulator grasping the door handle is computed by the

IK solver at the corresponding pose of the mobile robot. Since the manipulator

with more than 7 degrees of freedom (DOFs) has many IK solutions, the IK

solution is selected such that it is furthest from the joint limits and closest to

the previous IK solution among 5 IK solutions in this paper. At this point, we

do not consider the case that the IK solution does not exist because we assume

that the IK solution grasping the door handle always exists if the door handle

is within the workspace boundary of the arm. It may fail to compute the IK

solution even though the workspace boundary is computed conservatively based

on the reachability data. However, this limitation, as also mentioned in [27], is

not handled for now and will be dealt with in future work, including the analysis

of the reachability. On the other hand, the end-effector of manipulator needs

to move to regrasp the door handle on the other side of the door when the line

of the door meets the mounted position of the manipulator, as shown in Fig.

2.9. The regrasping motion is planned by the sampling-based motion planners,

such as Rapidly-exploring Random Trees.

Consequently, the whole body motion of the mobile manipulator is generated

by combining the path for the pose of the mobile robot, obtained in S1, and

the path for the joint position of the manipulator, obtained in S2.

20

(a) (b)

Figure 2.9: Regrasping the door handle on the other side of the door is necessary
in case of (a) pull-type door and (b) push-type door.

2.3 Results

The proposed framework was validated through various simulations and real

experiment using the differentially-driven mobile manipulator consisting of the

four-wheel mobile base Husky (Clearpath Robotics. Co.) and the 7-DOFs ma-

nipulator Panda (Franka Emika. Co.). The specification of the computer is

i7 4.2 GHz with 16 GB RAM. The external libraries were utilized, including

SBPL [22] for the graph search algorithm in S1 and TRAC-IK [28] for com-

puting IK solution in S2.

2.3.1 Application to pull and push-type door

Motion planning for our mobile manipulator was performed by using the pro-

posed framework in order to validate that it is possible to address the navigation

problem including the tasks for both pull and push-type door. The snapshots

for them are shown in Fig. 2.10. Figure 2.10(a) shows the result of the pull-type

21

door. The inputs to the framework were the start state s0 = (1.0, 4.0, 0.0, 0) and

goal state sg = (4.0, 1.0, 0.0, 4). The door length is set as 1.0 m. The compu-

tation time was recorded as 4.56 s for S1 and 0.71 s for S2. On the other

hand, the snapshots of the result for the push-type door are depicted in Fig.

2.10(b). The start and goal state were defined as s0 = (1.0, 1.0, 0.0, 0) and

sg = (4.0, 4.0, 0.0, 4), respectively. The planning time for S1 was 4.40 s and

the computation time for S2 was 0.65 s. In the case of the push-type door,

the path for the area indicator started at 0, changed to 3 when the robot was

in front of the door, 2 when the robot is located inside the line of the door,

1 when the robot is outside the line of the door, and 4 when the robot moves

toward the target position. Therefore, the results indicate that the motion of

the mobile manipulator executing the tasks for both pull and push-type door

can be planned by the proposed graph search using the concept of the area

indicator.

2.3.2 Experiment in cluttered environment

As the experimental environment in the previous section did not have any ob-

stacle except the wall, two experiments were conducted to show the effectiveness

of the proposed algorithm. The obstacles were placed at the sides of the door in

order to make it difficult for the robot to pass through the door. The snapshots

of the results are shown in Fig. 2.11. The inputs to the algorithm were the

start state s0 = (1.0, 4.0, 0.0, 0) and goal state sg = (4.0, 4.0, 0, 4). The length

of the door and width of obstacle were set as 1.0 m. The computation time was

recorded was 7.8 s for S1 of Fig. 2.11(a), and 11.1 s for S1 of Fig. 2.11(b). Even

though the time for computing the path increased as the environment became

22

Start

Goal
𝑿

𝒀

(a)

Start

Goal

𝑿

𝒀

(b)

Figure 2.10: Snapshots of simulation from the proposed framework for (a) pull-
type door and (b) push-type door. Red lines indicate the path of the mobile
robot.

complex, the whole-body motion that the robot approaches, passes through the

door, and reaches the goal position was successfully computed.

2.3.3 Experiment with different robot platform

The results in Sec. 2.3.1 and 2.3.2 were computed for the differentially-driven

mobile manipulator. However, in order to show that the proposed algorithm is

not dependent on the type of the robot, the additional experiment was con-

ducted to apply for the different platform shown in Fig. 2.12(a). The robot

in Fig. 2.12(a) has an omni-directional mobile robot called KUKA Omnirob

and a 7-DOF manipulator called KUKA LWR. The snapshots of the result

23

GoalStart

𝑿

𝒀

(a)

GoalStart

𝑿

𝒀

(b)

Figure 2.11: Snapshots of simulation from the proposed framework for the pull-
type door with obstacles.

are shown in Fig. 2.12(b). The inputs to the algorithm were the start state

s0 = (1.0, 4.0, 0.0, 0) and goal state sg = (4.0, 4.0, 0, 4). The length of the door

and width of obstacle were set as 1.0 m. The computation time was recorded

was 6.5 s for S1. From the experimental result, the proposed algorithm can be

applied for any type of mobile manipulator.

2.3.4 Comparison with separate planning by existing works

The previous works [4–6, 14] handled single or few sub-problems related to

the door. As mentioned in Sec. 1.2, one can utilize the separate planning that

addresses each sub-problem and combines each path of sub-problem into a uni-

fied one. Even though the separate planning consisting of the existing meth-

ods [14,24] can solve the navigation problem addressed in the proposed frame-

work, it has several limitations. To show this, an additional experiment was

performed to solve the problem of S1 by the separate planning based on the

24

(a)

GoalStart

𝑿

𝒀

(b)

Figure 2.12: Additional experiment was conducted with (a) omni-directional
mobile manipulator and snapshots of simulation is shown in (b).

graph search. The problem of S1 can be divided into 4 sub-problems denotes

as SP1, SP2, SP3, and SP4 : SP1 - Depart from the initial position and ap-

proach the door, SP2 - Open the door to the desired angle, SP3 - Pass through

the door and close it, and SP4 - Arrive at the target position. To obtain the

continuous path, the final position of the path for each sub-problem was set as

the start position for the next sub-problem. The state spaces of SP1 and SP4

were three-dimensional which are the poses of the mobile robot since SP1 and

SP4 were the navigation problem to reach the target pose of the mobile robot.

The start pose of SP1 was the same pose in Sec. 4.1 and the target pose of SP1

was determined by randomly sampling the pose where the door handle is within

the workspace boundary of the manipulator. The state spaces of SP2 and SP3

were the same as [14], which include the pose of the mobile robot and binary

variable compactly representing the door angle. The desired door angle of SP2

was defined as 135 degrees. For fair comparison, the action and cost designed

25

Table 2.1: Comparison with the separate planning
Door type Pull-type door
Approach Separate planning Ours

Success rate (%) 80 100

Planning time (s) SP1 SP2 SP3 SP4 Total 4.561.53 0.37 36.83 0.94 39.67
Cost 31195 26393 47110 46227 150925 99266

Number of states 21.6 7.6 18.8 26.1 74.0 35
Path length (m) 7.68 6.34

Door type Push-type door
Approach Separate planning Ours

Success rate (%) 76 100

Planning time (s) SP1 SP2 SP3 SP4 Total 4.401.74 1.75 5.90 0.81 10.2
Cost 35417 23036 50331 33673 142457 88507

Number of states 19.2 12.4 13.1 15.5 60.2 47
Path length (m) 7.96 6.24

in Sec. 3.1 were utilized for constructing the graph. The ARA∗ was adopted for

the graph search. The maximum computation time was limited as 100 s. The

graph search of the separate planning for both pull and push-type door was

conducted for 25 trials, respectively. The results of the trials are summarized

in Table 2.1.

Regarding the result of the pull-type door in Table 2.1, the success rate

of planning the problem of S1 by the separate planning within 100 s was

recorded as 80 %. The failure of the search occurred because the initial pose of

SP2 was randomly sampled. Specifically, the sampled pose might be possible to

solve SP2, but could arrive at the unfavorable pose, which is the initial pose of

SP3. Furthermore, SP3 included narrow passage and considered the constraint

that the door handle is within the workspace of the arm. These features made

it difficult to search for the path of SP3 within the predefined time period.

26

The proposed framework required the planning time of 4.56 s, whereas the

separate planning required the average planning time of 39.67 s. The path cost

computed from our framework was 99266, whereas the path cost obtained from

separate planning was 150925 on average, which is 1.52 times more than the

proposed framework. The number of states composed of the solution path from

the proposed method is less than half that of the separate planning. The length

of the path from our framework was obtained as 6.34 m, which 1.34 m shorter

than the path from the separate planning.

On the other hand, the success rate of solving S1 for the push-type door was

recorded as 76 % in the separate planning. The failure cases were also due to

the influence of the randomly sampled initial pose for SP2. The planning time

of the proposed framework recorded 4.40 s, while that of the separate planning

recorded 10.2 s on average. The path cost computed from the proposed frame-

work was 88507, which is about 0.6 times less than the separate planning. The

number of states consisting of the solution path from the proposed framework

was 47, whereas the separate planning had 60.2 states on average. In terms of

path length, the proposed framework computed the path of 6.24 m, while the

path from the separate planning was measured as 7.96 m on average.

Additionally, to visualize the difference of the solution path, three paths

including two example paths obtained by the separate planning and one path

obtained by our framework are shown in Fig. 2.13. As shown in Fig. 2.13, the

separate planning computed more complex path of the mobile robot to open

and pass through the door than our method because the separate planning

randomly sampled the initial pose of SP2 and defined the desired door angle

of SP2 as a fixed value.

27

Start

Goal

(a)

Start

Goal

(b)

Figure 2.13: Paths of the mobile robot obtained by the proposed framework
and separate planning for (a) pull-type door and (b) push-type door. The blue
line indicates the path from the proposed framework. The dotted lines show
the paths from the separate planning.

Consequently, it was validated through the results in Sec. 2.3.1 and 2.3.2

that the proposed framework computed the path reliably and efficiently due

to the following characteristics. First, the complexity of the state was reduced

by defining the area indicator expressing the range of the door angle rather

than directly including the door angle as a component of the state. Second,

the graph was searched efficiently because the heuristic in Eq. (2.3) properly

describes the estimated displacement from the current pose to the goal pose.

Especially, since the heuristic includes the estimated distance from the current

pose to the region where the state has the next area indicator, the state can be

easily propagated to the successor state with the next area indicator.

28

0 s 40 s 55 s 80 s 105 s

130 s 155 s140 s 180 s 205 s

(a)

Figure 2.14: Snapshots of the real experiment results from the proposed frame-
work for pull-type door

2.3.5 Experiment with real robot

The proposed framework was applied to the scenario in real indoor environment.

Based on the computed path from the proposed framework, the trajectory was

generated considering the velocity limits of the manipulator and the mobile

robot. The robot was controlled by using the quadratic programming-based

controller such as [29]. The snapshots of the experiment, shown in Fig. 2.14,

indicate that the robot successfully executed the tasks including approaching

the door, passing through the door, and reaching the target position.

2.4 Conclusion

This chapter proposes a framework to solve the navigation problem including

door traversal for the mobile manipulator. The framework computes the whole-

body motion of the mobile manipulator in two steps, instead of exploring the

whole-body configuration space of the mobile manipulator. The first step is to

formulate the navigation problem including the process of passing through the

29

door as a graph search problem, and find the path of the mobile robot and

the angular path of the door by the graph search algorithm. In particular, the

search space is reduced by introducing a component of the state, called area

indicator, which compactly expresses the range of the reachable door angles as

an integer. Also, the area indicator implicitly shows the process of approaching,

opening, traversing through, closing the door, and reaching the target position.

In the second step, the path for the arm configuration grasping the door handle

is computed by the IK solver. The effectiveness of the proposed framework

was demonstrated through several simulations and real experiment with the

differentially-driven mobile manipulator. Future work will involve the contact

motion planning of the dual-arm mobile manipulator to compensate for the

reaction force of the door when the door is heavy or has the stiffness.

30

Chapter 3

WHOLE-BODY CONTROLLER : WEIGHTED

HIERARCHICAL QUADRATIC PROGRAM-

MING

Robots with high Degrees of Freedom (DOFs) such as mobile manipulators and

humanoids are designed for human-centered environments. To control these

robots, whole-body control frameworks [9, 10] have been used to perform vari-

ous prioritized tasks to consider motion distribution with kinematic redundancy.

However, in practice, depending on the scenarios (e.g., locomotion, manipu-

lation, and loco-manipulation), it is difficult to generate natural whole-body

behavior only with whole-body controllers. This is because typical whole-body

controllers produce joint motion minimizing the same metric for all prioritized

tasks. For example, when the mobile manipulator tracks the desired trajectory

by using a whole-body, it often comes into singular configuration or reaches the

boundary of the workspace due to dynamic and kinematic difference of mobile

base and manipulator [30,31]. Also, during locomotion phase of the humanoid,

31

5

Dual-arm

relative motion

Balance

Standing

posture

Task Hierarchy

Level 1

Level 2

Level 3

Equally weighted

Dominant on

lower-body

Joint Weights

Dominant on

right-arm & waist

Figure 3.1: An example application of the proposed method with individual
weighting matrix for each task priority: a box-taping scenario of humanoid.

the movement of the upper body by whole-body control may adversely affect

walking performance [32].

In this chapter, we propose a novel Weighted Hierarchical Quadratic Pro-

gramming (WHQP) framework to characterize joint movement for each task

priority. By combining two concepts of HQP [12] and weighted least-squares

norm [33], it can handle various inequality and equality tasks with differently

weighted joint motion for each priority effectively. Consequently, the proposed

controller can generate natural whole-body behavior without additional sub-

tasks which restrict undesirable movements, as shown in Fig. 3.1.

3.1 Related works

HQP has been actively studied in that it can handle both equality and inequality

tasks while ensuring strict priorities of tasks. Kim et al. [34] proposed an HQP-

based task transition method that can insert, remove, swap the priorities of the

32

tasks while ensuring continuous control inputs. Tassi et al. [35] extended HQP

in order to produce an impedance-like motion under external disturbance by

augmenting the variable for Cartesian velocity. To enhance the computational

efficiency, Lee et al. [36] utilizes operational space formulation [37] so that the

size of the decision variable in QP is reduced when controlling the whole-body

of the humanoid.

On the other hand, the weighted least-squares norm which is based on the

weighted pseudo inverse can treat the redundancy of the robots without addi-

tional constraints. Dariush et al. [38] penalized the motion of joints by design-

ing a weighting matrix that determines contribution to the main task accord-

ing to the extent of the proximity to collision in order to avoid self-collision

or obstacle. Similarly, Farelo et al. [39] generated optimized joint motion for

wheelchair-mounted arm by using weighted pseudo-inverse that considers not

only joint limit of arm but also motion limit of wheelchair. Tsuichihara et al. [40]

utilized weighted pseudo-inverse that restricts chest motion of humanoid to im-

prove stability in manipulation. Park et al. [41] and Choi et al. [42] combined

the task-priority method and the weighted pseudo-inverse method in order to

generate the joint motion minimizing the residual error caused by singularity-

robust framework. However, since these methods treat the same joint weights

for all tasks, they cannot assign individual joint weights for each task priority.

To tackle this issue, Wu et al. [11] recently proposed a two-level prioritized

whole-body Cartesian impedance controller with individual weighting matrices.

In contrast to aforementioned methods [38–42] with the same weighted joint

distribution for all tasks, the proposed controller used individual weighting ma-

trices to generate different motion patterns for each task. However, it cannot

33

calculate the solution when extending to multiple tasks since the main task

and its null-space are only considered. Also, [11] cannot deal with inequality

constraints.

On the other hand, in terms of generating the whole-body motion, a concept

called inverse reachability map (IRM) [43–45] can be utilized. The IRM is an

inverse kinematic solver that gives the whole-body configuration of the robot.

Burget and Bennewitz [43] proposed a method that generates a whole-body

motion of humanoid robot by using the IRM for calculating the optimal footstep

of the humanoid given the grasp pose. Yang et al. [44] calculated the whole-

body configuration of the humanoid for considering several ground situations

including obstacle and inclined surface. Moreover, Chen et al. [45] calculated

optimal whole-body configuration of the mobile manipulator for the given grasp

pose while maximizing the extended manipulability which incorporates joint

limit and collision. However, the IRM cannot produce the whole-body motion

in real-time as fast as HQP.

3.2 Problem statement

This section provides the modification of the weighted pseudo-inverse to handle

individual weights of joints for each task hierarchy and its limitations.

34

3.2.1 Pseudo-inverse with weighted least-squares norm for each

task

Let us assume that there are p prioritized tasks and p weighting matrices for

each task of n-DOFs redundant robot:

ẋk = Jkq̇, (k = 1, · · · , p) (3.1)

where ẋk ∈ Rmk , Jk ∈ Rmk×n, and q ∈ Rn are the task space velocity, the

Jacobian matrix, and the joint position of the robot, respectively. The priorities

are indicated by the number of subscripts: the smaller the subscript number,

the higher the task priority. Also, the weighting matrix Wk ∈ Rn×n is assumed

to be symmetric and positive definite.

To execute the first task ẋ1 while assigning dominant joints or optimiz-

ing a performance criterion through the weighting matrix W1, an optimization

problem is formulated as
min

q̇1

1
2 q̇T

1 W1q̇1,

s. t. J1q̇1 = ẋ1.

(3.2)

The optimal solution q̇∗
1 ∈ Rn is calculated analytically as

q̇∗
1 = JW1+

1 ẋ1 = W −1
1 JT

1 (J1W −1
1 JT

1)−1ẋ1, (3.3)

where JW1+
1 ∈ Rn×m1 is the weighted pseudo-inverse of J1.

By utilizing the weighted pseudo-inverse solution in (3.3), a solution that

executes multiple tasks with differently weighted joint solution for each task

priority can be computed. Considering the secondary task ẋ2 with the corre-

35

sponding weighting matrix W2, the total solution q̇∗
2 for two prioritized tasks

would be

q̇∗
2 = q̇∗

1 + ˙̃q∗
2, (3.4)

where ˙̃q∗
2 denotes the contribution to the secondary task without modifying the

first task. This can be obtained by solving the following optimization problem

as
min

˙̃q2

1
2

˙̃qT
2 W2 ˙̃q2,

s. t. J1 ˙̃q2 = ẋ1 − J1q̇∗
1 = 0,

J2 ˙̃q2 = ẋ2 − J2q̇∗
1,

(3.5)

The solution for (3.5) is calculated as

˙̃q∗
2 = (J2NW2

1)W2+(ẋ2 − J2q̇∗
1). (3.6)

where NW2
1 = I −W −1

2 JT
1 (J1W −1

2 JT
1)−1J1 ∈ Rn×n is the projector onto the

null-space of J1 weighted by W2. Note that the projector NW2
1 is idempotent,

but not symmetric.

Thus, it is straightforward to obtain a general solution for p prioritized

tasks:

q̇∗
p =

p∑
k=1

(JkNWk
k−1)Wk+(ẋk − Jkq̇∗

k−1), (3.7)

where NW1
0 = I, q̇∗

0 = 0, and NWk
k−1 is the projector onto the null-space of the

augmented Jacobian Jk−1 =
[
JT

1 , JT
2 , . . . , JT

k−1

]T

∈ R
∑k−1

i=1 mi×n weighted

by Wk. At this point, all tasks are assumed to be full rank. The projector NWk
k−1

36

can be computed in two ways as

NWk
k−1 = NWk

[1] NWk

[2] · · ·N
Wk

[k−1] =
k−1∏
j=1

NWk

[j] , (3.8a)

NWk
k−1 = I − JWk+

k−1 Jk−1, (3.8b)

where NWk

[j] = I − (Jj
∏j−1

i=0 NWk

[i])Wk+(Jj
∏j−1

i=0 NWk

[i]), NWk

[0] = I, and NWk

[1] =

I −W −1
k JT

1 (J1W −1
k JT

1)−1J1.

3.2.2 Problem statement

When computing the null-space projection matrix in (3.8), the matrix is asym-

metric and its size remains constant. Owing to these properties, the compu-

tational cost increases exponentially when propagating to multiple tasks. To

improve computational efficiency, [46] proposed a scheme to accelerate the com-

putation by decomposing a symmetric null-space projection matrix. Therefore,

our goal is to efficiently compute weighted least-squares norm solution by trans-

forming the asymmetric null-space projection matrix in (3.8) into a symmetric

matrix. Furthermore, we extend the pseudo-inverse with weighted least-squares

norm for each task priority of Sec. 3.1 to deal with inequality as well as equality

tasks.

3.3 WHQP with equality constraints

This section formulates the WHQP that minimizes the violation of the equality

task in a weighted least-squares norm manner. When formulating the WHQP,

37

Jacobian matrix and joint velocity are transformed into a weighted Jacobian

matrix and joint velocity. This makes the null-space projection matrix symmet-

ric, which enables the proposed solution to be computed more efficiently than

the traditional method using weighted pseudo-inverse.

For the first task ẋ1, the weighted Jacobian matrix J1,W1 and weighted joint

velocity q̇W1 are defined as

J1,W1 = J1W
− 1

2
1 ,

q̇W1 = W
1
2

1 q̇.

(3.9)

Then, the WHQP is formulated as

min
q̇W1 ,s1

1
2∥s1∥22,

s. t. J1,W1 q̇W1 = ẋ1 + s1,

(3.10)

where s1 ∈ Rm1 is the slack variable that alleviates the task ẋ1. Note that the

variable to optimize is not q̇, but q̇W1 .

To solve this problem, the Lagrangian L1 is computed as

L1 = 1
2sT

1 s1 + λT
1 (J1,W1 q̇W1 − ẋ1 − s1), (3.11)

where λ1 ∈ Rm1 is the Lagrange multiplier. From the first-order optimality

conditions, the Lagrangian differentiated by λ1, s1, and q̇W1 should be zero:

∂L1
∂λ1

= J1,W1 q̇W1 − ẋ1 − s1 = 0,

∂L1
∂s1

= s1 − λ1 = 0,

∂L1
∂q̇W1

= JT
1,W1λ1 = 0.

(3.12)

38

To obtain the weighted solution q̇∗
W1

, the pseudo-inverse of the weighted

Jacobian matrix J1,W1 is computed using COD [12, 47] which is cheaper than

computing the singular value decomposition as

J1,W1 =
[
V1,W1 U1,W1

] 0 0

L1,W1 0

 [
Y1,W1 Z1,W1

]T

= U1,W1L1,W1Y T
1,W1 ,

(3.13)

where U1,W1 ∈ Rm1×r1 and V1,W1 ∈ Rm1×(m1−r1) are the orthonormal bases for

the column space of J1,W1 . r1 is the rank of J1,W1 . Y1,W1 ∈ Rn×r1 and Z1,W1 ∈

Rn×(n−r1) are the orthonormal bases for the row space of J1,W1 . L1,W1 ∈ Rr1×r1

is a lower triangular matrix. With this decomposition, the weighted solution

and slack variable satisfying (3.12) are obtained as

q̇∗
W1 = J+

1,W1
ẋ1 = Y1,W1L−1

1,W1
UT

1,W1 ẋ1, (3.14)

s∗
1 = U1,W1UT

1,W1 ẋ1 − ẋ1 = −V1,W1V T
1,W1 ẋ1, (3.15)

where J+
1,W1

denotes the pseudo-inverse of J1,W1 . Based on (3.13) and (3.15), the

last optimality condition of (3.12) is satisfied. In the end, the complete solution

q̇∗
1 for the first task is obtained by transforming the weighted solution to the

original joint space as

q̇∗
1 = W

− 1
2

1 q̇∗
W1 . (3.16)

39

Similarly, the WHQP for the secondary task ẋ2 is formulated as

min
q̇W2 ,s2

1
2∥s2∥22.

s. t. J1,W2 q̇W2 = 0,

J2,W2 q̇W2 = ẋ2 − J2q̇∗
1 + s2.

(3.17)

Similar to (3.6), the weighted solution q̇∗
W2

lies in the null-space of J1,W2 and

at the same time executes the residual task after subtracting the effect of q̇∗
1 on

the secondary task space. It is obtained as

q̇∗
W2 = (J2,W2N1,W2)+(ẋ2 − J2q̇∗

1), (3.18)

where N1,W2 = I − J+
1,W2

J1,W2 is the null-space projection matrix of J1,W2 .

Unlike (3.6), N1,W2 is both idempotent and symmetric. Thus, N1,W2 can be

represented as

N1,W2 = Z1,W2ZT
1,W2 , (3.19)

where Z1,W2 ∈ Rn×(n−r1) is the null-space bases of J1,W2 and obtained by de-

composing J1,W2 . Then, the solution in (3.18) can be represented in a more

efficient form [46] as

q̇∗
W2=Z1,W2(J2,W2Z1,W2)+(ẋ2 − J2q̇∗

1)

=Y2,W2L−1
2,W2

UT
2,W2(ẋ2 − J2q̇∗

1),
(3.20)

where Y2,W2 = Z1,W2 Ỹ2,W2 ∈ Rn×r2 . Ỹ2,W2 ∈ R(n−r1)×r2 , L2,W2 ∈ Rr2×r2 , and

40

U2,W2 ∈ Rm2×r2 are obtained by decomposing J2,W2Z1,W2 ∈ Rm2×(n−r1) as

J2,W2Z1,W2 =
[
V2,W2 U2,W2

] 0 0

L2,W2 0

[
Ỹ2,W2 Z̃2,W2

]T

. (3.21)

Using (3.20), the optimal slack variable s∗
2 is computed as

s∗
2 = J2,W2 q̇∗

W2 − ẋ2 + J2q̇∗
1,

= U2,W2UT
2,W2(ẋ2 − J2q̇∗

1)− ẋ2 + J2q̇∗
1

= V2,W2V T
2,W2(J2q̇∗

1 − ẋ2).

(3.22)

Therefore, the total solution for two prioritized tasks ẋ1, ẋ2 is

q̇∗
2 = W

− 1
2

1 q̇∗
W1 + W

− 1
2

2 q̇∗
W2 . (3.23)

More generally, WHQP for the k-th task ẋk is formulated as

min
q̇Wk

,sk

1
2∥sk∥22.

s. t. Jk,Wk
q̇Wk

= ẋk − Jkq̇∗
k−1 + sk

Jk−1,Wk
q̇Wk

= 0

(3.24)

where Jk−1,Wk
=

[
JT

1,Wk
, JT

2,Wk
, · · · , JT

k−1,Wk

]T

is the augmented Jacobian ma-

trix weighted by W
− 1

2
k .

To solve (3.24), the Lagrangian Lk is constructed as

Lk = 1
2sT

k sk + λT
k (Jk,Wk

q̇Wk
− ẋk + Jkq̇∗

k−1 − sk)

+ λT
k−1(Jk−1,Wk

q̇Wk
).

(3.25)

41

Then, the optimality conditions for the k-th task are directly obtained as

∂Lk

∂λk
= Jk,Wk

q̇Wk
− ẋk + Jkq̇∗

k−1 − sk = 0,

∂Lk

∂λk−1
= Jk−1,Wk

q̇Wk
= 0,

∂Lk

∂sk
= sk − λk = 0,

∂Lk

∂q̇Wk

= JT
k,Wk

λk + JT
k−1,Wk

λk−1 = 0.

(3.26)

To calculate the solution, the Jacobian matrices Jk,Wk
, Jk−1,Wk

are decomposed

as in [12]:

Jk,Wk
=

[
Vk,Wk

Uk,Wk

]Nk,Wk
0

Mk,Wk
Lk,Wk

[
Y k−1,Wk

Yk,Wk

]T

=Ek,Wk
Hk,Wk

YT
k,Wk

,

(3.27)

where
Nk,Wk

= V T
k,Wk

Jk,Wk
Y k−1,Wk

∈ R(mk−rk)×
∑k−1

i=1 ri ,

Mk,Wk
= UT

k,Wk
Jk,Wk

Y k−1,Wk
∈ Rrk×

∑k−1
i=1 ri ,

Y k−1,Wk
=

[
Y1,Wk

, · · · , Yk−1,Wk

]
∈ Rn×

∑k−1
i=1 ri ,

Yk,Wk
= Zk−1,Wk

Ỹk,Wk
∈ Rn×rk .

(3.28)

Vk,Wk
, Uk,Wk

, Lk,Wk
, and Ỹk,Wk

are obtained from decomposing Jk,Wk
Zk−1,Wk

.

The basis Y k−1,Wk
is obtained by recursively decomposing k−1 times from J1,Wk

to Jk−1,Wk
. Using the representation of (3.27), the stacked matrix Jk−1,Wk

is

42

described as

Jk−1,Wk
=

E1,Wk

· · · 0
...

0 · · · Ek−1,Wk

H1,Wk
0

...
...

Nk−1,Wk
0

Mk−1,Wk
Lk−1,Wk

Y T

1,Wk

...

Y T
k−1,Wk

= Ek−1,Wk

Hk−1,Wk
Y T

k−1,Wk
.

(3.29)

Then, the weighted solution q̇∗
Wk

satisfying (3.26) is computed as

q̇∗
Wk

= Yk,Wk
L−1

k,Wk
UT

k,Wk
(ẋk − Jkq̇∗

k−1). (3.30)

Next, the optimal slack variable s∗
k is obtained as

s∗
k = Vk,Wk

V T
k,Wk

(Jkq̇∗
k−1 − ẋk). (3.31)

The Lagrange multipliers, λ∗
k and λ∗

k−1, satisfying (3.26) are directly computed

as

λ∗
k = s∗

k, (3.32)

λ∗
k−1 = −J‡T

k−1,Wk
JT

k,Wk
s∗

k, (3.33)

where J‡
k−1,Wk

is the pseudo-inverse matrix of Jk−1,Wk
which fulfills Moore-

Penrose conditions except that Jk−1,Wk
J‡

k−1,Wk
is symmetric. Each component

of the Lagrange multipliers λ∗
k−1 can be obtained recursively in a descending

order as follows:

λ∗
k−1 =

λ∗
k−2

λ∗
k−1

=

−J‡T
k−2,Wk

(JT
k,Wk

s∗
k + JT

k−1,Wk
λ∗

k−1)

−Uk−1,Wk
L−T

k−1,Wk
Y T

k−1,Wk
JT

k,Wk
s∗

k

 (3.34)

43

The obtained Lagrange multipliers are used as an indicator to determine which

task to be deactivated depending on whether they are negative or not in the

following section.

Finally, the total solution for k prioritized tasks is

q̇∗
k = q̇∗

k−1 + W
− 1

2
k q̇∗

Wk

= q̇∗
k−1 + W

− 1
2

k Yk,Wk
L−1

k,Wk
UT

k,Wk
(ẋk − Jkq̇∗

k−1).
(3.35)

Additionally, the solution can be computed in a recursive form as follows:

q̇∗
k = J‡

k,Wk
ẋk, (3.36)

where

J‡
k,Wk

=
[
(I −W

− 1
2

k Yk,Wk
L−1

k,Wk
UT

k,Wk
Jk) J‡

k−1,Wk−1
,

W
− 1

2
k Yk,Wk

L−1
k,Wk

UT
k,Wk

]
ẋk =

[
ẋT

k−1, ẋT
k

]T

.

(3.37)

Since the solution minimizing weighted least-squares norm is the generalized

solution to cover Euclidean least-squares norm solution, the formulas (3.36)

and (3.37) can be utilized to compute the solution of the HQP if the weighting

matrix is set to the identity matrix.

44

3.4 WHQP with inequality constraints

To obtain the optimal solution for p inequality tasks, the WHQP for the k-th

inequality task is formulated by rewriting (3.24) as

min
q̇Wk

,sk

1
2∥sk∥22,

s. t. Jk,Wk
q̇Wk
≤ ẋk − Jkq̇∗

k−1 + sk,

Jk−1,Wk
q̇Wk
≤ ẋk−1 − Jk−1q̇∗

k−1.

(3.38)

The optimality conditions for (3.38) are additionally considered in (3.26) as

follows:
λT

k (Jk,Wk
q̇Wk
− ẋk + Jkq̇∗

k−1 − sk) = 0,

λT
k−1(Jk−1,Wk

q̇Wk
− ẋk−1 + Jk−1q̇∗

k−1) = 0,

λk ≥ 0,

λk−1 ≥ 0.

(3.39)

The conditions of (3.39) denote complementary conditions that if an inequality

task becomes active, that is, it becomes an equality task, its corresponding

Lagrange multiplier must be greater than or equal to zero.

Based on the above conditions, the active-set method [13] is adopted. The

active-set method iterates a loop until the optimal solution and optimal work-

ing set are determined. The working set denotes a set of equality tasks. The

optimal solution indicates that it does not activate or violate any other task ex-

cept the working set. The optimal working set indicates that the corresponding

Lagrangian multipliers are non-negative.

The detailed procedure is described in Algorithm 1. At first, the algorithm

estimates an initial working setW0 for warm-start. Typically,W0 contains only

45

Algorithm 1 WHQP
Input: W0 : an initial working set
Output: q̇∗ : an optimal solution

1: W =W0, iter = 1, q̇ = 0
2: while iter ≤ p− 1 do

// Compute the optimal solution in (3.36)
3: q̇∗ = WHQP equality(J‡

p,Wp
, ẋp,W)

// Compute the step length in (3.40)
4: α, k, r = ComputeStepLength(Jp, ẋp, q̇∗, q̇)
5: q̇ := q̇ + α(q̇∗ − q̇)

// Update the working set
6: if α < 1 then
7: W

⋃
(Jk[r], ẋk[r])

8: continue
9: else

// Check Lagrange multipliers
10: for i = iter to p do
11: λ∗

i−1, s∗
i = ComputeLambda(i)

12: µ, k, r = min (λ∗
i−1, s∗

i)
13: if µ < 0 then
14: W \ (Jk[r], ẋk[r])
15: break
16: end if
17: iter = i
18: end for
19: end if
20: end while

return q̇∗ := q̇

equality tasks if there is no initial guess for the inequality tasks. Given the

working set W, WHQP equality computes the optimal solution by using (3.36)

(see Line 3).

Then, ComputeStepLength finds a step length α in order for the current

solution to step toward the optimal solution without violating the tasks as (see

Line 4)

α = min(1, min
k,r

(αk,r)), (3.40)

46

where

αk,r =

ẋk[r]−Jk[r]q̇(j)

Jk[r](q̇∗(j)−q̇(j)) if Jk[r]q̇(j) ≤ ẋk[r]

1, otherwise.

(3.41)

In (3.40) and (3.41), k and r denote the indices of the task priority and row

of the Jacobian matrix and task vector, respectively. In addition, q̇∗(j) and q̇(j)

represent the optimal solution and current solution at iteration j, respectively.

Calculation of (3.41) is performed for each row of Jp that is not in the working

set W.

Starting at the current solution q̇(j), the solution that is translated toward

the optimal solution q̇∗(j) with a step length α is calculated as follows (see Line

5):

q̇(j+1) = q̇(j) + α(q̇∗(j) − q̇(j)) (3.42)

If the step length is less than 1, the corresponding row of the Jacobian matrix,

Jk[r] and component of the task vector, ẋk[r], are added to the working set,

and a new iteration begins with the new working set (see Line 6-8).

Once the obtained step length is equal to 1, which indicates that the optimal

solution does not activate the remaining inequality tasks, ComputeLambda com-

putes the Lagrangian multipliers using (3.32) and (3.33) (see Line 11). Next,

to ensure that the optimality conditions of (3.39) are satisfied, it is checked

whether or not the minimum Lagrangian multiplier is negative (see Line 12-

13). If there exist any negative Lagrangian multiplier, the corresponding row of

the Jacobian matrix and component of the task vector are removed from the

working set, and the next iteration begins (see Line 14-15).

47

3.5 Experimental results

The WHQP was validated through various experiments using the differentially-

driven mobile base with the 7-DOFs manipulator [10] and the humanoid, DYROS-

JET [48], with 28-DOFs.

3.5.1 Simulation experiment with nonholonomic mobile manip-

ulator

To maximize the dexterity and mobility of the mobile manipulator, the con-

troller should provide different motion patterns depending on the locomotion,

manipulation, and loco-manipulation phases. In particular, because the mobile

manipulator comprises two independent systems (mobile base and manipula-

tor), assigning dominant subsystem for each task priority is effective.

3.5.1.1 Scenario description

To validate this, we designed the following scenario with an 11-DOFs nonholo-

nomic mobile manipulator on simulator, CoppeliaSim. The scenario has two

phases and each phase is performed for 5 sec. In the first phase, the mobile

manipulator reaches the target point above a laptop by tracking the desired

trajectory of the end-effector. Then, the robot begins to keep the end-effector

focused on the moving target point above the laptop while avoiding an obstacle

in the second phase.

48

3.5.1.2 Task and weighting matrix description

During the first phase, the robot has a single task of tracking the end-effector

position trajectory as

J1q̇ = ẋ1 (3.43)

where J1 ∈ R3×11 is the whole-body translational Jacobian of the end-effector

[10] and ẋ1 ∈ R3 is the desired linear velocity of the end-effector.

In the second phase, the robot executes three prioritized tasks. As the high-

est priority task, an 11-DOFs joint limit avoidance task [49] is assigned as

ẋ1 ≤ J1q̇ ≤ ẋ1,

J1 = I11,

ẋ1 = ϵ
q − q

∆t
and ẋ1 = ϵ

q − q

∆t
.

(3.44)

I11 ∈ R11×11 denotes an identity matrix and ẋ1 and ẋ1 ∈ R11 are the lower and

upper bound velocity, respectively. q and q ∈ R11 are the lower and upper limit

of joint position. q ∈ R11 is the current joint position, ϵ is the tuning parameter

and ∆t is the control loop period. Then, the obstacle avoidance is formed as an

1-DOF inequality task [50] with the second priority as

J2q̇ ≤ ẋ2,

J2 = nT Jobs,

ẋ2 = ϵ
d− dthre

∆t
,

(3.45)

where n ∈ R3 is the direction vector from the closest point on the robot to

the obstacle and Jobs ∈ R3×11 is the Jacobian matrix of the closest point. d is

49

the distance between the robot and obstacle and dthre denotes the threshold

distance. Finally, the lowest priority task is designed as the 3-DOFs gaze task

[51] which aligns the target point with the line of sight from the end-effector.

The gaze task is defined as

J3q̇ = ẋ3,

J3 = pee,t × (pee,l × Jw)− pee,l × Jv,

ẋ3 = −λ(pee,l × pee,t),

(3.46)

where pee,l = pl − pee and pee,t = pt − pee. pl ∈ R3 is the position of arbitrary

point on the line of sight, pee ∈ R3 is the position of the end-effector, pt ∈ R3 is

the position of the target point, Jw ∈ R3×11 is the rotational Jacobian matrix,

Jv ∈ R3×11 is the translational Jacobian matrix, and λ is gain constant.

For analyzing the effectiveness of the WHQP, the combinations of the weight-

ing matrices of the three comparative cases are presented in Fig. 3.2. For Phase

1, to check the contribution of the mobile base to the tracking task depending

on the weighting matrix, the weighting matrix is set from the identity matrix

(Case 1) to the mobile-dominant matrix (Case 3). In the case of Phase 2, to

demonstrate the effectiveness of the individual weighting matrix, the weight-

ing matrix of Case 1 is designed as the manipulator-dominant matrix for all

tasks (one weighting matrix for all prioritized tasks). Case 2 assigns the iden-

tity matrix for all tasks (equivalent to pseudo-inverse method [12]). Case 3 uses

individual weighting matrices for each task priority.

50

Case 3

Case 1

Joint Limit

Case 2

Joint Limit

Obstacle

Phase 1 Phase 2

Figure 3.2: Experimental results with a nonholonomic mobile manipulator in
simulation. A scenario composed of two phases is designed: The first phase is
for the robot to approach a laptop. Then, the robot begins to inspect the laptop
while avoiding the obstacle during the second phase.

3.5.1.3 Results

Figure 3.2 illustrates the snapshots of the simulation results and the ratio of the

joint velocity norm between the mobile base, q̇b ∈ R4, and manipulator, q̇m ∈

R7, over time. The ratio is calculated as ∥q̇b∥2
2

∥q̇∥2
2

and ∥q̇m∥2
2

∥q̇∥2
2

, where q̇ =
[
q̇T

b , q̇T
m

]T

.

In Phase 1 of Case 1, the mobile manipulator began to track the trajectory

only by using the manipulator and used both the mobile robot and manipulator

together after the arm was stretched around 1.5 sec, which comes into the

51

singular configuration. In practice, this phenomenon occurs frequently due to

the difference in dynamics and performance between the mobile base and the

manipulator [11, 52]. However, since the robot tracked the trajectory with the

mobile base moving relatively more than the manipulator in Case 2 and only

the mobile base moving in Case 3, the robot did not reach the singular posture.

After the end of Phase 1, the robot began to align the line from the end-

effector with the blue ball over the laptop with the desired trajectory of the

target point while avoiding the obstacle around 6 sec. In Case 1, the resul-

tant posture reached the joint limit and singularity because all the tasks were

executed by the manipulator. In Case 2, the configuration of the manipulator

reached the joint limit and singularity even though the mobile robot helped to

avoid the obstacle. This implies that the weighting matrices given in Case 2 did

not properly distribute the movement between the mobile base and manipula-

tor. In contrast, the gaze task was executed by the manipulator and the obstacle

was avoided by the mobile robot in Case 3. Since the whole-body motion was

properly distributed by assigning individual weighting matrices for each task

priority, the robot could execute the tasks successfully without additional con-

sideration of the necessary constraints.

Therefore, setting individually proper weighting matrices for given tasks is

very effective for performing various and complex scenarios for the redundant

robot.

52

3.5.2 Real experiment with nonholonomic mobile manipulator

3.5.2.1 Scenario description

In this section, a typical delivery scenario consisting of locomotion, manipula-

tion, and loco-manipulation phases was designed with a real robot. The scenario

has three phases. The first phase is for the robot to execute locomotion task for

15 sec. The second phase is to perform manipulation task of picking up a box

from 15 sec to 42 sec. In the last phase of loco-manipulation, the robot delivers

the box in front of the door from 42 sec to 50 sec.

3.5.2.2 Task and weighting matrix description

Each phase includes the same task hierarchies: a joint limit avoidance task

(the first priority) and tracking task for the trajectory of the end-effector (the

second priority). The joint limit avoidance task (J1 ∈ R11×11 and [ẋ1, ẋ1] ∈ R11)

is same as (3.44). The second priority task is to track the desired trajectory of

the end-effector as

J2q̇ = ẋ2,

J2 =

Jv

Jw

 and ẋ3 =

ṗee,d

δΦ

 ,
(3.47)

where J2 ∈ R6×11 is the whole-body Jacobian of the end-effector, ṗee,d ∈ R3 is

the desired linear velocity of the end-effector, and δΦ ∈ R3 is the orientation

error.

To generate various types of motion patterns, different weights are assigned

53

Preference

Position Task

Orientation Task

Phase 1 Phase 2 Phase 3

Figure 3.3: Experimental results with a nonholonomic mobile manipulator in
delivery scenario.During Phase 1, the robot dominantly used the mobile robot
to reach the target position. Then, the robot only exploited the manipulator to
approach and pick up the box. For the last phase, the robot stacked the box on
the other boxes by using the whole-body coordinately.

to the tracking task (J2, ẋ2) for each phase:

W2 =

0.001I4 0

0 I7

→
I4 0

0 0.001I7

→
I4 0

0 I7

 (3.48)

In the first phase, the weighting matrix is set such that the trajectory is dom-

inantly tracked by the mobile robot. Then, the robot mainly exploits the ma-

nipulator to track the trajectory in the second phase. In the last phase, the

weights are equally distributed to the manipulator and mobile base.

3.5.2.3 Results

As depicted in Fig. 3.3, from 0 to 15 sec, the robot tracked the desired locomo-

tion trajectory through mobile dominant behavior1. Then, our WHQP-based

controller generated the motions of the manipulator to accurately pick up a box

during the manipulation phase. Finally, the robot succeeded in placing a box
1Although we set a weighting matrix for the movement of the mobile robot alone during the

locomotion phase, the manipulator moved slightly. This is due to the low tracking performance
of a mobile robot caused by the difference in control frequency between a mobile robot (10
Hz) and manipulator (1000 Hz).

54

on the stacked boxes using whole-body motion from 42 to 50 sec.

3.5.3 Real experiment with humanoid

3.5.3.1 Scenario description

Similar to Sec. 3.5.1 and 3.5.2, we validated the performance of the WHQP by

implementing the inverse kinematics controller for a humanoid. A box-taping

scenario was designed by using the 16-DOFs upper body of the humanoid for

15 sec.

3.5.3.2 Task and weighting matrix description

The humanoid executes two prioritized tasks. The first task is to maintain the

initial position of the left hand as

J1q̇ = ẋ1,

J1 =
[
Jleft, 06×7, Jwaist

]
and ẋ1 =

ṗleft,d

δΦleft

 ,
(3.49)

where J1 ∈ R6×16 is the Jacobian matrix for the left hand, Jleft ∈ R6×7 is the

Jacobian matrix from the left shoulder to the left hand, and Jwaist ∈ R6×2 is the

Jacobian matrix for the waist roll and yaw joint. ṗleft,d ∈ R3 and δΦleft ∈ R3 are

the desired linear velocity and orientation error for the left hand, respectively.

Then, the relative motion task [53] between the right and left hand is assigned

55

Figure 3.4: Experimental results with a humanoid in box-taping scenario

as the second priority:

J2q̇ = ẋ2,

J2 =
[
−Jleft, Jright, Jwaist

]
and ẋ1 =

ṗrel,d

δΦrel

 ,
(3.50)

where J2 ∈ R6×16 is the Jacobian matrix for the relative motion, Jright ∈ R6×7

is the Jacobian matrix from the right shoulder to the right hand. ṗrel,d ∈ R3

and δΦrel ∈ R3 are the desired relative linear velocity and relative orientation

error, respectively.

Since the joints for executing two prioritized tasks share waist and left arm

joints, individual weighting matrices are assigned for each task, as follows:

W1 =

0.01I7

I7

I2

 and W2 =

I7

0.01I7

0.01I2

 (3.51)

The weighting matrix is set such that the left arm is predominantly used for

the first priority task (W1) and the waist and right arm are predominantly used

for the relative motion task of the second priority (W2).

56

3.5.3.3 Results

Figure 3.4 depicts the snapshots of box-taping scenarios and a motion ra-

tio for the left-arm, right-arm, and waist. Thanks to the WHQP formulation

with weighting matrices, the humanoid robot achieved dexterous manipulation

through whole-body behavior. Consequently, the WHQP for a nonholonomic

mobile manipulator and a humanoid presented in Sec. 3.5.1 and 3.5.2, respec-

tively, can deal with complex real-world scenarios without any additional con-

straints or planners.

3.6 Discussions and implementation details

To validate the computational efficiency of the WHQP, the computation time

for the equality tasks was compared with those of the two methods in Sec.

3.2.1: weighted pseudo-inverse (3.7) with (3.8a) and (3.7) with (3.8b). The total

number of DOFs was set to 30, and the number of task hierarchies p ranged from

1 to 10. Also, the task dimension mk was uniformly distributed depending on the

number of task hierarchies,
∑p

k=1 mk ≈ 30. We randomly generated Jacobian

matrices with full rank and task vectors and performed 500 calculations for

each number of task priorities. Finally, an Intel Core i7 with a 16 GB RAM

computer was used.

3.6.1 Computation cost

As shown in Fig. 3.5, the WHQP exhibits a low computation time even when

the number of task hierarchies increases. This is because the null-space projec-

57

6

Figure 3.5: Computation time for the equality tasks with respect to the number
of task hierarchies

tion matrix is decomposed into the product of the orthogonal bases. Thus, the

size of the inverse matrix is reduced when recursively propagating to compute

the solution of a low priority task. In contrast, the other two approaches have a

higher computation time than that of the WHQP because the null-space projec-

tion matrix of the weighted pseudo-inverse is inherently asymmetric. Therefore,

the size of the inverse matrix cannot be reduced.

On the other hand, the proposed WHQP has inherently higher computation

cost than the HQP as shown in Fig. 3.5. When computing the total solution for

k-th task in (3.35), the operation of the COD is performed k(k + 1)/2 times,

whereas the HQP performs k operations of the COD. This is because the null-

space matrix Zk−1,Wk
is obtained by recursively decomposing from J1,Wk

to

Jk−1,Wk
.

58

3.6.2 Composite weighting matrix in same hierarchy

Since our formulation handles one weighting matrix at each level, a composite

weighting matrix is required if there are two or more tasks at the same task level.

In practice, we present a simple construction method using a linear combination

[38].

W = a1W1 + a2W2 + · · ·+ anWn, (3.52)

where
∑n

i=1 ai = 1 and 0 ≤ ai ≤ 1. The magnitude of ai indicates which

weighting matrix is more dominant at the same level.

3.6.3 Nullity of WHQP

If the remaining nullity of the WHQP is 02, the result of the WHQP becomes

the same as that of the original HQP solver. It is evident that a weighted

Euclidean norm is equivalent to a normal Euclidean norm when the matrix

is not redundant [54]. Therefore, to enhance the effectiveness of the weighting

matrices of tasks in the WHQP, it is recommended to configure a set of the

tasks where the nullity of the controller exists.

3.7 Conclusion

Whole-body controllers with hierarchical optimization have great advantages in

controlling redundant robots, including mobile manipulators and humanoids.

However, the motion generated by these controllers is often undesirable, with-

out additional constraints. In this study, a novel weighted hierarchical quadratic
2This implies

∑p

i=1 ri = n when the number of DOFs of the robot is n.

59

programming method to assign joint weights for each task priority is pro-

posed. The proposed method can be summarized as follows. First, because

our algorithm treats a weighting matrix for each task, it can generate various

whole-body behaviors depending on the scenarios, in comparison with previous

studies. Next, our algorithm using the active-set method can efficiently handle

inequality tasks as well as equality tasks. Finally, we demonstrated the effective-

ness of the proposed controller through several experiments with a real mobile

manipulator and humanoid. With these excellent results, we expect that our

method can be applied to other highly redundant systems, such as aerial manip-

ulators. Our future work will involve the extension of the proposed framework

for automatically generating suitable weighing matrices for each task.

60

Chapter 4

WHOLE-BODY CONSTRAINT : SELF-COLLISION

AVOIDANCE

In this chapter, we present a new self-collision avoidance algorithm for differentially-

driven mobile manipulator. Our focus is on the avoidance of self-collision be-

tween the manipulator and the mobile robot. The goal is to generate a motion

that the manipulator can avoid self-collision without modifying reference mo-

tion of the manipulator. To this end, we propose a concept of distance buffer

border (DBB), a border of the buffer region that the manipulator can reach

around the mobile robot. The region has the thickness of the buffer distance

(See Fig. 4.1(a)). When the manipulator and the mobile robot are close to each

other, in other words, their distance is less than the buffer distance (See Fig.

4.1(b)), the strategy is to position the manipulator outside the DBB by the mo-

tion of the mobile robot. This is realized by generating the force exerted on the

mobile robot because the DBB is attached to the mobile robot and moves with

it (See Fig. 4.1(c)). Therefore, the manipulator can avoid self-collision with the

61

(a) (b) (c)

Offline Self-Collision Avoidance(Online)

EvaluateDBB
FindActingPoint

& GenerateMobAcc
ConstructDBB FindClosestPoints GenerateAvoidanceTask

(d)

Buffer

region

Buffer

distance

Figure 4.1: Overview of the proposed algorithm

mobile robot without modifying reference motion of the manipulator (See Fig.

4.1(d)).

Especially, the direction of the force is determined by considering the follow-

ing two factors. First, the singularity of the differentially-driven mobile robot

due to non-holonomic constraint is considered in order not to lose the con-

trollability of the mobile robot. Second, we consider the reachability of the

manipulator, a representation of the robot’s workspace with the information of

the pose quality. As the direction of the force is determined towards enhancing

the reachability, the resultant configuration of the robot can secure the larger

workspace of the manipulator.

To implement the proposed algorithm on the robot, the avoidance task is

constructed by combining two types of motions depending on whether the link

collides with the mobile robot or not. First, for the link pair including the

mobile robot, the force and the resulting torque are generated and converted

to the accelerations of the mobile robot. Second, for the link pair not includ-

ing the mobile robot, 1-DOF acceleration is generated in a direction that the

distance between the closest points of the link pair increases. Then, the task

is constructed by stacking the two types of accelerations and their Jacobian

62

Table 4.1: Notation and symbols

Symbol Description
< la, lb > a link pair of the link a and the link b
L = Lm ∪ Lc

m a set of potentially colliding link pairs
Lm a subset of L including the mobile robot
Lc

m a complement set of Lm

L(i) =< la, lb > i-th link pair of L
DBBi distance buffer border of i-th link pair in Lm

n DOFs of the mobile manipulator
nm DOFs of the manipulator
Tj j-th equality or inequality task

Tj ≺ Tj+1 Tj has higher priority than Tj+1

matrix. The task is inserted continuously with the highest priority depending

on the distances between the link pairs by using the controller based on Hi-

erarchical Quadratic Programming (HQP) with the continuous task transition

algorithm [55,56].

The remainder of this chapter is organized as follows. First, Sec. 4.2 intro-

duces the DBB and the computation of its score to design the force. Second,

Sec. 4.3 explains our overall strategy for self-collision avoidance. Next, Sec. 4.4

describes the experimental validations of the proposed strategy. Finally, the

paper is concluded in Sec. 4.5. To enhance readability of this paper, Table 4.1

denotes the symbols and their corresponding meanings. Also, bold roman letters

denote vectors and matrices while normal roman letters denote real numbers.

63

4.1 Background & related Works

Self-collision can be avoided by an offline or online motion generation. Plan-

ning collision-free motion is normally implemented offline, whereas online mo-

tion generation is mainly embedded with the controllers. First, in the field of

motion planning, Kuffner et al. [57] presented a motion planning algorithm to

compute dynamically stable and collision-free trajectory for humanoid robots

based on Rapidly-exploring Random Trees (RRT). Oriolo and Mongillo [58]

proposed a randomized planner that resolves the redundancy of non-holonomic

mobile manipulator. The planner allows the mobile robot to be located within

a compatible circle for a given end-effector position so that the inverse kine-

matics solution of the manipulator exists. Regarding pose constraints on the

end-effector, Berenson et al. [59] developed Constrained Bi-directional RRT

(CBiRRT) which plans the trajectory by projecting sampled position onto Task

Space Region (TSR). Burget et al. [60] proposed planning framework called

Bi-directional Informed RRT∗(BI2RRT∗) which can efficiently obtain optimal

paths for mobile manipulation with the task space constraints. However, these

methods are difficult to be implemented in the unstructured and dynamic en-

vironments because the trajectory might have to be regenerated in real time.

Particularly, their computational cost increases for robots with a large number

of DOFs such as humanoids or mobile manipulators.

To overcome these limitations, many reactive methods have been proposed

in order to detect and avoid self-collision in real time. Our proposed method

belongs to this category. Seto et al. [61, 62] designed the outer parts of links

as elastic elements so that the reaction force is generated between elastic el-

ements when the links are close to each other. In [63] and [64], the motion

64

for self-collision avoidance was generated by the gradient of cost function re-

lated to the distances between links. Dariush et al. [65] penalized the motion

of joints using the inverse matrix of weighted Jacobian based on the gradient

of collision function. Fang et al. [50] presented the method to generate relative

motion between the links using the inequality task. However, these methods are

not applicable to non-holonomic mobile manipulators because the methods are

developed for holonomic systems. Specifically, the methods may not instanta-

neously generate motion of the mobile robot in a certain direction because the

non-holonomic constraint is not considered [66,67]. On the other hand, Dietrich

et al. [68, 69] proposed the repulsive force-based approach with efficient damp-

ing design and extended continuous null space projection method. Sugiura et

al. [70] proposed the method using only 1-DOF repulsive force while dynami-

cally swapping priority of the tasks. While the repulsive force-based methods

are conservative and effective solution for avoiding collisions, the methods repel

two proximate links and thus the modified motion may be farther away from

the reference motion more than necessary.

4.2 Distance buffer border and its score computa-

tion

This section introduces the concept of the DBB for generating the force which

enables to avoid self-collision between the manipulator and the mobile robot.

Also, we explain how to compute the score of the DBB in order to determine

the direction and magnitude of the force. In Sec. 4.2.1, all link pairs which can

potentially collide with each other are identified based on the collision model

65

𝑙𝑚

𝑙1

𝑙2

𝑙3

𝑙𝐸𝐸

𝟎. 𝟑𝟑𝟑𝟎
𝐗𝟎

𝒁𝟎

𝐗𝟏, 𝐗𝟐
𝒁𝟏

𝒁𝟐

𝒁𝟑

𝐗𝟑𝐗𝟒

𝒁𝟒

𝟎. 𝟑𝟏𝟔𝟎

𝟎. 𝟑𝟖𝟒𝟎

𝐗𝟓, 𝐗𝟔

𝒁𝟓

𝒁𝟔

𝒁𝟕 𝑿𝟕

𝟎. 𝟎𝟖𝟖𝟎

𝟎. 𝟎𝟖𝟐𝟓

(a)

𝑙𝑚

𝑙1

𝑙2

𝑙3

𝑙𝐸𝐸

(b) (c)

Figure 4.2: Our mobile manipulator system consists of a four-wheel differen-
tially driven mobile robot called Husky (Clearpath Robotics. Co.) and 7-DOFs
manipulator called Panda (Franka Emika. Co.). (a) Kinematic structure of the
manipulator is shown with the scale of meter ; (b) The simplified collision mod-
els of the robot consist of five links; (c) Based on the collision models and joint
range of the manipulator, all link pairs that potentially collide with each other
are identified. Lm(i) denotes the link pair including the mobile robot, whereas
Lc

m(j) denotes the link pair not including the mobile robot.

of the robot. Next, for the link pairs including the mobile robot, we define the

DBB in Sec. 4.2.2. Finally, two factors are introduced to calculate the scores of

the points on the DBB in Sec. 4.2.3.

4.2.1 Identification of potentially colliding link pairs

To decrease the computational cost for checking self-collision, simplified colli-

sion models are designed by using the convex shapes based on the kinematic

structure of the manipulator. Fig. 4.2(a) and Fig. 4.2(b) show the kinematic

structure of our robot and collision models of the robot, respectively. Utilizing

these models and the joint position ranges of the manipulator, the link pairs

which never collide with each other can be precomputed by randomly sampling

66

the joint position of the manipulator. From this analysis, the link pairs poten-

tially colliding with each other are identified. The set of the link pairs is defined

as follows.

L = {< lm, lEE >, < lm, l3 >, < l1, lEE >, < l1, l3 >, < l2, lEE >}, (4.1)

where l• denotes an individual link in Fig. 4.2(b). Because the avoidance motion

is generated differently depending on whether or not the link pair includes the

mobile robot lm, the set L is divided into two subsets, namely Lm and its

complement Lc
m, and shown in Fig. 4.2(c) as follows.

Lm = {< lm, lEE >, < lm, l3 >}

Lc
m = {< l1, lEE >, < l1, l3 >, < l2, lEE >}.

(4.2)

In (4.2), we denote each element of subset as Lm(i) and Lc
m(j) respectively.

Therefore, to avoid self-collision, we generate a force on the mobile robot for

Lm as discussed in Sec. 4.3.1 and 1-DOF repulsive acceleration for Lc
m in as

discussed in Sec. 4.3.2.

4.2.2 Distance buffer border

Our avoidance strategy is to move the mobile robot in order to place the manip-

ulator outside a region surrounding the mobile robot with a thickness equal to

the buffer distance. To this end, we define a border of the region as the distance

buffer border(DBB) of Lm. Geometrically, the DBB represents a group of 3D

points located away from the mobile robot lm by the buffer distance.

67

(b)(a) (b)(b)

Figure 4.3: Visualization of Pi and DBBi for Lm(i). (a) Red volume represents
Pi which is a point set around the mobile robot; (b) Red hyperplanes represent
the distance buffer borders of Lm. The buffer distance db is set to 0.15m and
the tolerance ϵ is set to 0.01m.

Algorithm 2 ConstructDBB
Input: Pi : a set of points on the manipulator’s link for Lm(i)
Output: DBBi : distance buffer border of Lm(i)

1: for each pi in Pi do
2: dm ← DistanceToMobile(pi, lm)
3: if ∥dm − db∥ ≤ ϵ then
4: Store pi in DBBi

5: end if
6: end for

Algorithm 2 describes the construction of the DBB in detail and is imple-

mented offline. The input for the algorithm is the set of stored points on the

manipulator’s link for Lm. For each link pair in Lm, the two closest points are

calculated after randomly sampling the joint positions of the manipulator. The

point on the link of the manipulator is then stored to the set. This process re-

peats until the set contains a sufficient number of points. For the i-th link pair

in Lm, each set is denoted by Pi as shown in Fig. 4.3. The algorithm operates

as follows.

First, for each point pi of Pi, the DistanceToMobile function calculates the

distance between pi and the mobile robot (see Line 2). Second, if the distance

68

is within a bounded range, then the point pi is stored in the DBB (see Line

3-4). After these procedures are repeated, the DBB is constructed as shown in

Fig. 4.3(b) and defined as follows :

DBBi ∋ ∀pi

s. t. ∥dm − db∥ ≤ ϵ, pi ∈ Pi

(4.3)

where DBBi denotes the DBB for Lm(i), pi ∈ R3 is the position on the link of

the manipulator, dm is the minimum distance between pi and lm, db is buffer

distance, and ϵ is tolerance value. To accomplish our strategy, we generate a

force on the mobile robot based on the DBB. The direction of the force is defined

to begin at a point on the DBB and head toward a point on the manipulator.

The point on the DBB becomes the acting point of the force as shown in Fig.

4.1(c). In the following subsection, we propose a score for evaluating every point

on the DBB to select the acting point.

4.2.3 Evaluation of distance buffer border

To select the point on the DBB that satisfies the desired capabilities of the

force, the DBB is evaluated based on a score consisting of two factors: the

singularity of the differentially driven mobile robot and the reachability of the

manipulator.

4.2.3.1 Singularity of the differentially driven mobile robot

First, the singularity of the differentially driven mobile robot is considered to

prevent the force from generating the motion of the non-holonomic mobile robot

69

{𝑾}

𝑿

𝒀
𝑏

𝑟

wheel-axis

ሶ𝜽𝒍

ሶ𝜽𝒓

Figure 4.4: Schematic drawing of the differentially driven mobile robot. pc is
the control point of the mobile robot in the world frame {W } and po,c is the
planar vector from the center of the mobile robot, po, to pc in {W }. b and
r are the distance between the wheel and center of the mobile robot and the
radius of the wheel, respectively. θ̇r and θ̇l are the spinning velocities of the
right and left wheel, respectively.

along the singular direction. Fig. 4.4 shows the kinematic modeling of two-wheel

differentially driven mobile robot which simplifies that of four-wheel differen-

tially driven mobile robot [71]. The differentially driven mobile robot is subject

to a constraint in terms of the velocity as follows.

−ẋosin(ϕ) + ẏocos(ϕ) = 0 (4.4)

where ẋo and ẏo are planar velocity of the center of the mobile robot and ϕ is

the heading angle of the robot from the X-axis in the world frame as shown

in Fig 4.4. Physically, (1) means that there is no velocity component parallel

to the wheel-axis at the center of the differentially-driven mobile robot. The

constraint is non-integrable, thus termed as non-holonomic constraint [72,73].

The velocity relationship between the control point and the configuration

70

of the differentially driven mobile robot is given by

ṗc = Jc(qc)q̇b, (4.5)

where ṗc =
[
ẋc ẏc

]T

∈ R2 is the planar velocity of the control point of the

mobile robot. q̇b =
[
θ̇r θ̇l

]T

∈ R2 is spinning velocity of the wheels and the

subscripts r and l of θ̇ denote the right and left wheel, respectively. Jc(qc) ∈

R2×2 is Jacobian matrix given by

Jc(qc) =

c(b cos ϕ− yo,c) c(b cos ϕ + yo,c)

c(b sin ϕ + xo,c) c(b sin ϕ− xo,c)

 , (4.6)

where c = r/2b, r is the radius of the wheel, b is the distance between the wheel

and the center of the mobile robot, and qc =
[
po,c ϕ

]T

. po,c =
[
xo,c yo,c

]
are the coordinates of the control point from the center of the mobile robot in

the global frame and ϕ is the orientation of the mobile robot.

To identify the singularity, we derive the determinant of the product of the

Jacobian matrix Jc(qc) as

det(JcJT
c) = 4b2c4(xo,c cos ϕ + yo,c sin ϕ)2. (4.7)

According to (4.7), the Jacobian matrix Jc(qc) loses rank when

xo,c cos ϕ + yo,c sin ϕ = 0. (4.8)

Geometrically, the left side of (4.8) represents the distance between the con-

71

trol point and the line of the wheel-axis. As the value of (4.8) tends to zero,

meaning the control point is located on the wheel-axis, the control point of the

differential-driven mobile robot cannot instantaneously move along the wheel-

axis [74].

Thus, assuming that each point pi of DBBi is set to the control point of

the mobile robot, we can measure how close it is to the singularity by setting

qc =
[
xi yi 0

]T

where xi and yi are the coordinates along X-axis and Y-

axis, respectively. For our robot, r is set to 0.165m and b is set to 0.51m. In

Fig. 4.5(a), the points of DBB1 are evaluated by using (4.7). As shown in Fig.

4.5(a), the determinant value is symmetric about X-axis.

4.2.3.2 Reachability of the manipulator

Second, the reachability of the manipulator is considered in order for the force

to place the manipulator in the suitable workspace. The reachability is defined

as the density of Inverse Kinematics(IK) solutions for the pose of the end-

effector [23]. Reachability is computed by uniformly sampling the pose of the

end-effector over the entire workspace and recording the number of IK solutions

for each pose. The reachability of our robot is illustrated in Fig 4.6. One can

see that the value of reachability increases and then decreases as the pose of the

end-effector moves outwards from the base of the manipulator. Based on this

observation, reachability can be expressed as a scalar concave function of the

distance from the base of the manipulator. Among the various types of concave

functions, the following second-order polynomial function was selected in this

paper.

72

(a) (b)

(c)

Figure 4.5: All the points in DBB1 are colored depending on (a) the determinant
value in (4.7), (b) the reachability in (4.9), and the score in (4.10) (yellow: high,
blue: low)

R(pi) = −A(∥pi − pbase∥2 −B)2 + C, (4.9)

where R(pi) : R3 → R+ maps points on the DBB to reachability values, pbase ∈

R3 is the position of the base of the manipulator, and A, B, C are positive

coefficients of the polynomial. Based on the reachability data in Fig. 4.6, we set

A to 525.9 /m2, B to 0.575 m, and C to 100. Fig. 4.5(b) presents the reachability

value for each point of DBB1. Although reachability is originally defined for the

pose of the end-effector, the reachability of other link of the manipulator can

also be obtained using kinematics information.

73

(a) (b)

Figure 4.6: Visualization of reachability shown in OPENRAVE [75]. (a) the con-
tour of reachability of the end-effector; (b) the reachability cut by a horizontal
plane at the base of the manipulator is colored (right, red: high, blue: low).

4.2.3.3 Score of the DBB

We compute a score for every point on the DBB denoted as S(pi) ∈ R. A score

is expressed as

S(pi) = sign(xi)det(JcJT
c)R(pi) (4.10)

where

sign(x) =

1 x ≥ 0

−1 x < 0.

(4.11)

Note that the function sign ensures that the DBB has a point of global maxi-

mum score as shown in Fig. 4.5(c).

74

Algorithm 3 Self-Collision Avoidance
Input: A set of link pairs L = Lm ∪ Lc

m; DBBs of the links DBB
1: while IsControl() do
2: UpdateKinematics(q)

// Avoidance between mobile robot and manipulator
3: for each Lm(i) do
4: (pa,i, pb,i)← FindClosestPoints(Lm(i))

// pa,i on mobile robot, pb,i on manipulator
5: pact,i ← FindActingPoint(q, pb,i,DBBi)
6: ẍm ← GenerateMobAcc(pact,i, pb,i)
7: end for

// Avoidance between links of manipulator
8: for each Lc

m(j) do
9: (pa,j , pb,j)← FindClosestPoints(Lc

m(j))
10: ẍr ← GenerateRepAcc(pa,j , pb,j)
11: end for

// Insert the task continuously to the controller
12: if ∥ẍm∥2 > 0 or ∥ẍr∥2 > 0 then
13: Tsca ← GenerateAvoidanceTask(ẍm, ẍr)
14: SoT ← UpdateSoT(Tsca)
15: u← HQPSolver(SoT) // See (4.29)
16: else
17: u← HQPSolver(SoT) // See (4.26)
18: end if
19: end while

4.3 Self-collision avoidance algorithm

In this section, we explain how to avoid self-collision for the differentially driven

mobile manipulator. Algorithm 3 details the procedure. First, the FindClosest-

Points function calculates the closest pair of points for each link pair. The link

pair in Lm then generates the acceleration of the mobile robot, whereas the

acceleration of the manipulator is generated for Lc
m. For the subset Lm, the

FindActingPoint function determines the acting point of the force based on the

computation for the score of the DBB. Next, the GenerateMobAcc function

generates the force and the resulting torque exerted on the mobile robot and

75

converts them to the linear and angular acceleration of the mobile robot as

ẍm ∈ R2 (see Line 5-6 and Sec. 4.3.1). On the other hand, for the subset Lc
m,

the GenerateRepAcc function generates a 1-DOF repulsive acceleration which

pushes the two proximal links of the manipulator away from each other and

stacks the accelerations for k link pairs of Lc
m as ẍr ∈ Rk (see Line 10 and

Sec. 4.3.2). Then, the GenerateAvoidanceTask function combines these accel-

erations and constructs the task for avoiding self-collision, Tsca, as an equality

task (see Line 13 and Sec. 4.3.3). Finally, the UpdateSoT function inserts the

task Tsca as a top priority in the original SoT by using the continuous task

transition scheme, as summarized in Line 14-15 and Sec. 4.3.4. In the following

subsections, each function in the Algorithm 3 is described in detail.

4.3.1 Generation of the acceleration for the mobile robot

This subsection describes the generation of the force. The direction of the force

is designed to start from the selected point on the DBB and heads to the closest

point on the manipulator. Thus, we focus on how to select the acting point of

the force that satisfies the following requirements.

First, the acting point should be located with the same height of the closest

point on the manipulator because the force should act on a horizontal plane

to move the mobile robot. Second, the acting point should be selected so that

the force has two orthogonal components that play different roles. As shown

in Fig. 4.7(a), the direction of the force can be decomposed into two orthogo-

nal directions. One is the direction of the line connecting the closest point on

the manipulator and the DBB. The other is its normal direction. The former

increases the distance between the mobile robot and the manipulator as the

76

(a) (b)

(c) (d)

Figure 4.7: Illustration of the direction of force considering collision between
the end-effector lEE and mobile robot lm. DBBxy,1 denotes the points whose
heights are same as that of the closest point pb,1 on the end-effector. The points
are colored by the score(yellow: high, blue: low). (a) The direction of the force
starts from the acting point pact,1 and points toward pb,1. The force can be
decomposed into two orthogonal components; (b) One of them moves the mobile
robot away from the end-effector; (c) The other direction places the high-score
part of DBB closer to the end-effector; (d) By combining these components,
self-collision between the end-effector and mobile robot can be avoided.

DBB moves closer to the manipulator as shown in Fig. 4.7(b). On the other

hand, as shown in Fig. 4.7(c), the latter places the manipulator closer to the

DBB with high score in order to avoid selecting the acting point i.e. the control

point of the mobile robot near the singularity and enhance the reachability of

the manipulator. Combining two orthogonal components, self-collision between

the manipulator and the mobile robot can be avoided in Fig. 4.7(d).

The FindActingPoint function (see Algorithm 4 and Fig. 4.8) finds the act-

ing point that satisfies these requirements. Algorithm 4 operates as follows.

77

First, the TransformToWorld function transforms the points of DBBi to be ex-

pressed in the world frame. Next, the FindSameHeight function finds the points

in DBBi whose height are same as that of the closest point pb,i on the manip-

ulator, which satisfies the first requirement (see Line 1-3). The obtained points

are denoted as DBBxy,i. Then, for the second requirement, we calculate the

acting point on DBBxy,i that the generated force can have two orthogonal com-

ponents. Among the points in DBBxy,i, the point pn,i closest to the point pb,i

is identified (see Line 4). Starting at pn,i, the position of point pt,i translated

along the tangential direction ti with a step size αi as follows (see Line 5 and

Fig. 4.8(a)):

pt,i = pn,i + αi(
∇S(pn,i) · ti

∥∇S(pn,i)∥
)ti,

ti⊥(pn,i − pb,i), ∥ti∥2 = 1,

(4.12)

where the inner product of ∇S(pn,i) and ti determines the direction of ti to

the higher score of the DBB. The step size αi is calculated as

αi ∝
di

|S(pn,i)|
. (4.13)

where di is the distance of the i-th link pair of Lm. Therefore, the acting point

pact,i is calculated as that with the shortest distance from pt,i to DBBxy,i (see

Line 6). In (4.13), as the distance between the manipulator and mobile robot

decreases, the step size decreases to generate both orthogonal directions of the

force. However, a larger step size can be used to proceed more rapidly toward

a higher score of the DBB when the distance increases. Additionally, the step

size increases as the absolute value of the score of point pn,i decreases to zero,

78

Algorithm 4 FindActingPoint(q, pb,i,DBBi)
1: zb,i ← height of pb,i

2: DBBi ← TransformToWorld(q,DBBi)
3: DBBxy,i ← FindSameHeight(zb,i, DBBi)
4: pn,i ← FindMinDistancePoint(DBBxy,i, pb,i)
5: pt,i ← Equation (4.12) and (4.13)
6: pact,i ← FindMinDistancePoint(DBBxy,i, pt,i)
7: return pact,i

(a) (b)

Figure 4.8: Illustration of finding the acting point. (a) The acting point on
the DBB is selected as the closest to the point pn,1 which is translated along
the tangential direction t1 with a step size α1; (b) With a large step size, the
generated force may not have a component along the direction connecting the
closest point on the manipulator and DBB.

indicating that the point pn,i is near the singularity. To prevent obtaining a

step size that is too small or too large as shown in Fig. 4.8(b), the step size is

bounded by lower and upper limits.

After finding the acting point, the GenereateMobAcc function first computes

the force as follows:

fm,i = fmax(1− di

db
) pb,i − pact,i

∥pb,i − pact,i∥2
, (4.14)

where fm,i ∈ R3 is the force for the i-th link pair and fmax is the maximum

force. Fig. 4.9 presents the variables in (4.14) when the link pair Lm(1) is

79

𝒑𝒄

𝒑𝒃

𝜃

𝑓

𝑚

{𝑾}

𝑿

𝒀

⊙

𝒆𝒙

𝒆𝒛

\documentclass{article}
\usepackage{amsmath}
\usepackage{xcolor}
\usepackage{bm}

\pagestyle{empty}
\begin{document}

$\color{white}\bm{p_{a,1}}$

\end{document}

𝑿
𝒀

{𝑾}

Figure 4.9: Illustration of generating the desired force and resulting torque for
the link pair Lm(1). When the end-effector and mobile robot are close to each
other, the force fm,1 and resulting torque τm,1 with respect to the center of
the mobile robot, po, are generated. The generated force and resulting torque
are projected onto the acceleration directions of the mobile robot under the
non-holonomic constraint. The directions are expressed as the unit vectors, ex

and ez.

considered.

The resultant force for all link pairs in Lm is calculated by adding each force

as follows:

fm =
N(Lm)∑

i=1
fm,i, (4.15)

where fm ∈ R3 and N(Lm) are the resultant force and number of link pairs in

Lm, respectively.

To realize the resultant force, the corresponding accelerations and corre-

80

sponding Jacobian matrices are derived as follows:

ẍm =
[
v̇d ẇd

]T

, (4.16)

where

mv̇d = fm · ex, (4.17)

Iẇd = (
N(Lm)∑

i=1
(pact,i − po)× fm,i) · ez. (4.18)

In (4.17) and (4.18), m ∈ R, v̇d ∈ R, and ex ∈ R3 are the mass of the mobile

robot, desired linear acceleration, and a unit vector perpendicular to the rolling

axis of the wheel and pointing forward, respectively. In addition, I ∈ R, ẇd ∈ R,

and ez ∈ R3 are the moment of inertia, desired angular acceleration, and a unit

vector perpendicular to the ground and pointing upward, respectively. By (4.17)

and (4.18), the resultant force can be converted into the desired linear and

angular accelerations. The Jacobian matrix of the differentially driven mobile

robot can be expressed as

Jm =
[

Jm O2×nm

]
,

Jm =

 r
2

r
2

r
2b − r

2b

 ,

(4.19)

where Jm ∈ R2×2 and O2×nm ∈ R2×nm are the Jacobian matrix of the mobile

robot and the zero matrix, respectively.

81

4.3.2 Generation of the repulsive acceleration for the other link

pair

To avoid the self-collision of Lc
m, we design a 1-DOF repulsive acceleration to

push the link pair away from each other.

Let’s consider that the distance of the j-th link pair in Lc
m is less than the

buffer distance. The task for avoiding self-collision with the repulsive accelera-

tion ẍr,j ∈ R1 and Jacobian Jr,j ∈ R1×n is designed as follows.

ẍr,j = uT
j (kp

pb,j − pa,j

∥pb,j − pa,j∥2
− kv(ṗb,j − ṗa,j), (4.20)

Jr,j = uT
j (Jb,j − Ja,j),

uj = pb,j − pa,j

∥pb,j − pa,j∥2

(4.21)

where kp and kv are gains, uj ∈ R3 is the unit vector from pa,j to pb,j , and

Ja,j and Jb,j ∈ R3×n are translation Jacobian matrices for points pa,j and pb,j ,

respectively. For convenience, we define the link to which pb,j belongs as being

farther from the base of the manipulator than the link to which pa,j belongs.

When k link pairs in Lc
m are considered, the repulsive acceleration and

Jacobian matrix are stacked as

ẍr =
[
ẍr,1, · · · , ẍr,j , · · · , ẍr,k,

]T

(4.22)

Jr =
[
JT

r,1, · · · , JT
r,j , · · · , JT

r,k

]T

, (4.23)

where ẍr ∈ Rk and Jr ∈ Rk×n are the stacked accelerations and Jacobian,

82

respectively.

4.3.3 Construction of an acceleration-based task for self-collision

avoidance

Based on the obtained accelerations and Jacobians in 4.3.1 and 4.3.2, we con-

struct a task, Tsca, for avoiding self-collision of all link pairs by stacking them

as follows.

ẍsca =

ẍm

ẍr

 , (4.24)

Jsca =

Jm

Jr

 , (4.25)

where ẍsca ∈ R(2+k) is the desired acceleration for the avoidance task and

Jsca ∈ R(2+k)×n is the corresponding Jacobian matrix.

4.3.4 Insertion of the task in HQP-based controller

To insert the designed task, Tsca, a controller is designed based on the HQP

with the continuous task transition approach developed in our previous work

[55], [56]. HQP is a cascade of QP formulation for dealing with prioritized

SoT [12,76]. The main characteristic of the controller with the continuous task

transition method is that the continuity of control inputs is always guaranteed

even if arbitrary tasks are inserted and removed from the existing SoT. In

particular, by using an activation parameter that interpolates feasible solution

83

Continuous TransitionActivated Deactivated

Distance (m)

𝟎. 𝟎𝟓 𝟎. 𝟏𝟓𝟎. 𝟎𝟕𝟓 𝟎. 𝟏 𝟎. 𝟏𝟐𝟓
𝟎

𝟎. 𝟓

𝟏

V
a

lu
e

o
f

Figure 4.10: Value of the activation parameter depending on the distance of the
link pair.

between existing SoT and new SoT, the method can generate continuous control

inputs without modifying the control structure.

We consider the HQP formulation of a single equality task, T2, with ẍd2 ∈

Rm2 and J2 ∈ Rm2×n, as follow:

min
q̈,u,w2

∥w2∥2,

s. t. Mq̈ + Cq̇ + g = u

J2q̈ + J̇2q̇ + w2 = ẍd2

(4.26)

where M ∈ Rn×n, C ∈ Rn×n, g ∈ Rn, and q̇ =
[
q̇T

b q̇T
m

]T

∈ Rn are the

inertia matrix, Coriolis and centrifugal matrix, gravity vector, and joint velocity

vector of the non-holonomic mobile manipulator, respectively [77]. In addition,

w2 ∈ Rm2 is a slack variable for T2 and u ∈ Rn is the control torque vector for

the robot.

The activation parameter, β, is determined based on the distance between

each link pair. Fig. 4.10 presents the activation trajectory when using a cubic

spline to insert Tsca smoothly. When the distance is less than the buffer distance

of 0.15m, β gradually increases, and the avoidance task begins to be inserted.

84

In addition, if the distance is less than 0.05m, β is set to 1 so that the task for

avoiding self-collision is fully considered. Because the avoidance tasks for Lm

and Lc
m are stacked according to (4.24), we construct a diagonal matrix B from

the activation parameters as follows.

B =

βm 0 0 · · · 0

0 βm 0 · · · 0

0 0 βr,1 · · · 0
...

...
... . . . 0

0 0 0 0 βr,k

, (4.27)

where B ∈ R(2+k)×(2+k) is the diagonal matrix of the activation parameters, βm

is the activation parameter for the link pairs of Lm, and βr,j is the activation

parameter for the j-th link pair in Lc
m. When considering multiple link pairs of

Lm, we choose the maximum value among the activation parameters as

βm = max (β1, · · · , βN(Lm)). (4.28)

Based on the activation parameter matrix B, the HQP formulation for

inserting the self-collision avoidance task as the higher-priority task than T2

(Tsca ≺ T2), can be represented as

85

min
q̈,u,w2

∥w2∥2,

s. t. Mq̈ + Cq̇ + g = u

J2q̈ + J̇2q̇ + w2 = ẍd2

Jscaq̈ + J̇scaq̇ + (I2+k −B)Jscaq̈∗
2 + w∗

sca = Bẍsca

(4.29)

where w∗
sca ∈ R2+k is the optimal slack variable vector for the self-collision

avoidance task Tsca, I2×k ∈ R(2+k)×(2+k) is an identity matrix, and q̈∗
2 is the

optimal solution of (4.26). Thus, if B is a zero matrix, then the feasible solution

of (4.29) is the same as that of (4.26). When B is the identity matrix, the

solution of (4.29) is strictly satisfied with the priority order, Tsca ≺ T2. In

addition, when β gradually increases 0 to 1, the feasible solution of (4.29) can be

derived by interpolating the solution of the HQP of T2 and the HQP with Tsca ≺

T2. Consequently, the HQP-based controller with the continuous task transition

method can insert a self-collision avoidance task without a discontinuous control

input.

4.4 Experimental results

The self-collision avoidance algorithm was verified through various experiments

using a differentially driven mobile robot with a 7-DOFs robotic manipulator.

The subsections below describe the details of our system configuration and the

experimental results for the robot. It is worthwhile to note that the video clips

of the experiments described in this paper are available in [78].

86

4.4.1 System overview

Our mobile manipulator consists of the velocity-controlled four-wheel differen-

tially driven mobile robot called Husky (Clearpath Robotics. Co.) and a 7-DOFs

robot arm manipulator called Panda (Franka Emika. Co.). The specification of

the computer for the controller is an Intel i7 4.2 GHz CPU with 16 GB of RAM

and the control frequencies of the manipulator and mobile robot are 1 kHz and

10 Hz, respectively. The desired velocity command for the mobile robot is com-

puted from the desired torque calculated in (4.29) by applying the admittance

control law [79].

4.4.2 Experimental results

4.4.2.1 Self-collision avoidance while tracking the predefined trajec-

tory

To validate the effectiveness of the proposed method, we conducted a compar-

ative experiment using the repulsive force-based method [68, 69]. This exper-

iment was designed for the end-effector to track a predefined trajectory that

approaches the mobile robot. The task for trajectory tracking of the end-effector

is denoted as Tee ∈ R6 and the task for the repulsive force-based method is de-

noted as Trep ∈ R3. The target position is -0.2 m along the Y-axis from the

end-effector. The left snapshots in Fig. 4.11(a) and (b) show the initial posi-

tions. The red dots and arrows depict the target position and desired trajectory,

respectively. The trajectory was generated for a time period of 30 s using a cubic

spline function.

87

t = 15s t = 30s

𝑿

𝒀
𝒁

t = 0s

(a)

t = 15s t = 30st = 0s

𝑿

𝒀
𝒁

(b)

Figure 4.11: Snapshots during experiments in which the end-effector tracks a
predefined trajectory: (a) The proposed method generates force to move the
mobile robot back, enabling the manipulator to not only avoid self-collision but
also reach the target position; (b) The repulsive-force based method pushes the
manipulator from the mobile robot so that the manipulator cannot reach the
target position.

The experimental results are presented in Fig. 4.11 and 4.12. In Fig. 4.11(a),

as the end-effector moves close to the mobile robot, force is exerted to move

the mobile robot back. As a result of the force, the end-effector reaches the

target position while avoiding self-collision. In contrast, in Fig. 4.11(b), because

repulsive force is generated to push the end-effector away from the mobile robot,

self-collision is avoided, but the end-effector can not reach the target position.

The distances between the link pairs are shown in Fig. 4.12(a). Because the

distances are less than 0.15 m, the self-collision avoidance tasks (Tsca and Trep)

are inserted continuously with top priority. In Fig. 4.12(b), the repulsive force-

based method has a position error, while the proposed method does not.

88

Activation

Buffer

(a) (b)

Figure 4.12: Experimental results of self-collision avoidance while tracking the
predefined trajectory. (a) Distances of the link pairs (Lm(1),Lm(2)); (b) The
norm of the position error

4.4.2.2 Self-collision avoidance while manually guiding the end-effector

In this experiment, the end-effector was manually guided by an operator to

approach the mobile robot to validate reactive self-collision avoidance during

human–robot interaction. In the initial state, no tasks are executed other than

the gravity compensation of the manipulator. Two directions are considered:

the lateral direction and the front direction. The left snapshots in Fig. 4.13

show the initial positions of the mobile manipulator and the guiding directions

are depicted by red arrows.

As shown in Fig. 4.13(a), self-collision between the manipulator and mo-

bile robot are avoided by generating a force exerted on the mobile robot. As

shown in Fig. 4.13(b), as the manipulator approaches the mobile robot, the

mobile robot moves back to avoid self-collision. Fig. 4.14 presents the distances

between the links of the manipulator and mobile robot and the values of the ac-

tivation parameter. As the distance decreases below the buffer distance of 0.15

m, the value of the activation parameter increases accordingly and the self-

89

t = 7s t = 12st = 0s

(a)

t = 7s t = 12st = 0s

(b)

Figure 4.13: (a) the snapshots during the experiment that the manipulator
approaches the mobile from the lateral direction and (b) the front direction.
Red arrows show the guiding directions

Activation

Buffer

(a) (b)

Figure 4.14: (a) The distances between the link pairs (Lm(1),Lm(2), and L(3));
(b) The value of the activation parameter

90

(a) (b)

Figure 4.15: Experimental results of self-collision avoidance while manually
guiding the end-effector. (a) The desired linear accelerations multiplied by acti-
vation parameter; (b) The desired angular accelerations multiplied by activation
parameter.

collision avoidance task, Tsca, is inserted continuously as shown in Fig. 4.14(b).

In Fig. 4.15, the command values of the linear and angular accelerations of

the HQP-based controller are plotted. Therefore, self-collision can be avoided

regardless of the approach direction of the manipulator, which is an advantage

over existing methods [62,69] that do not consider the non-holonomic constraint

of the differentially driven mobile robot.

4.4.2.3 Extension to obstacle avoidance when opening the refriger-

ator

In this subsection, we extend our method to obstacle avoidance. The proposed

method was tested in a reactive scenario representing a typical example of

mobile manipulation. We consider the scenario of opening the refrigerator as

shown in Fig .4.16(a). We assume that the end-effector achieves a fixed grasp on

the door of the refrigerator, meaning there is no relative motion between them.

In this respect, collision between the door and mobile robot is considered. We

91

𝑿𝒀
{𝑾}

𝒁

(a) (b)

t = 5s t = 9st = 0s

(a)

𝑿𝒀
{𝑾}

𝒁

(a) (b)

t = 5s t = 9st = 0s

(b)

Figure 4.16: (a) Illustration of the scenario of the mobile manipulator opening
a refrigerator; (b) Collision models including the door of the refrigerator are
shown. The collision model for the door is colored with magenta.

(a)

(b)

t = 0s t = 10s t = 15s t = 20s t = 30s

t = 30st = 20st = 15st = 10st = 0s

(a)
(a)

(b)

t = 0s t = 10s t = 15s t = 20s t = 30s

t = 30st = 20st = 15st = 10st = 0s

(b)

Figure 4.17: Simulation results of opening a refrigerator. (a) Snapshots of open-
ing a refrigerator with obstacle avoidance; (b) Snapshots of opening a refriger-
ator without obstacle avoidance

used a hyper-ellipsoid to design a collision model for the door as shown in Fig.

4.16(b).

To open the refrigerator, a control strategy based on adaptive control [80,81]

was utilized. The strategy estimates the radial direction of the door based on

the force measured at the end-effector so that the end-effector can open the

door even with the incomplete knowledge regarding door models. The strategy

uses only the manipulator to open the door, meaning the robot may collide with

92

Activation

Buffer

(a) (b)

Figure 4.18: Simulation results of opening the refrigerator. (a) The distance be-
tween the door and the mobile robot; (b) The value of the activation parameter

t = 0s

t = 0s

(a)

(b)

t = 10s

t = 10s t = 20s t = 30s

t = 30s

t = 40s

t = 20s
(a)

t = 0s

t = 0s

(a)

(b)

t = 10s

t = 10s t = 20s t = 30s

t = 30s

t = 40s

t = 20s

(b)

Figure 4.19: Experimental results of opening a refrigerator. (a) Snapshots of
opening a refrigerator with obstacle avoidance; (b) Snapshots of opening a re-
frigerator without obstacle avoidance

93

the door depending on the initial pose of the mobile robot. We validated our

extension to obstacle avoidance by comparing the results of experiment with

and without obstacle avoidance. The scenario of opening the refrigerator was

validated in both simulation and experiment.

The simulation results are presented in Fig 4.17 and 4.18. In Fig.4.17(a),

the mobile robot moves back and turns clockwise as the door moves closer to

the mobile robot. In contrast, the door collides with the mobile robot at 30

s in Fig. 4.17(b). As the distance between the door and mobile robot is less

than the buffer distance in Fig. 4.18(a), the obstacle avoidance task is inserted

continuously as shown in Fig. 4.18(b).

The experimental results are presented in Fig. 4.19. As shown in Fig. 4.19(a),

as the distance between the door and robot decreases, the mobile robot begins

to move back at 20 s and the manipulator opens the door completely at 40

s, while avoiding collision. In contrast, in Fig. 4.19(b), the manipulator stops

opening the door at 30 s because the robot is about to collide with the door.

4.4.3 Discussion

The experimental results in Sec. 4.4.2 demonstrate that the proposed method

can place the manipulator outside the DBB. Specifically, the proposed method

has the following advantages. First, the force can generate motion for the dif-

ferentially driven mobile robot with non-holonomic constraint as shown in Sec.

4.4.2.2. This is because the acting point is selected such that it is away from the

singularity of the mobile robot. Second, the proposed method can be applied to

holonomic mobile manipulators if the score of the DBB is designed to include

94

only the reachability of the manipulator. Finally, command values are free from

chattering and vibration problems caused by the mobile robot unlike repulsive

force-based method [82]. This is because the continuous task transition of (4.26)

can calculate continuous control input. Therefore, the desired accelerations of

the mobile robot are smooth, as shown in Fig. 4.15.

From a practical perspective, a trade-off relationship exists between the den-

sity of the DBB and the discontinuous position of the acting point. The denser

the DBB, the more computational cost increases. However, with a denser DBB,

the position of the acting point can be obtained more continuously. According

to our practical experience, the proper number of points in the DBB is approx-

imately 50,000 for running the algorithm at a control frequency of 1 kHz.

4.5 Conclusion

We presented a reactive self-collision avoidance algorithm for differentially driven

mobile manipulators. The proposed algorithm generates a force exerted on a

mobile robot so that a manipulator can not only avoid self-collision with the

mobile robot, but also can track the desired trajectory. The force is designed

based on the concept of the DBBs and their score measurement. The two factors

for evaluating the score of the DBB are the determinant value of the Jacobian

matrix of the non-holonomic mobile robot and the reachability of the end-

effector. Based on these two factors, the force can generate the desired motion

of a non-holonomic mobile robot without considering the singularity and can

secure the workspace. Based on the force and resulting torque, an avoidance

task is formulated and inserted into the HQP-based controller with a contin-

95

uous task transition algorithm. The results of several experiments validated

the proposed self-collision avoidance algorithm with a continuous task transi-

tion algorithm. Our future work will involve extending the proposed method

to other mobile platforms like car-like robots. Additionally, we will apply the

proposed algorithm to a wider range of mobile manipulation tasks that require

the consideration of both self-collision and obstacles.

96

Chapter 5

CONCLUSIONS

This thesis proposes a strategy for generating the task-oriented whole-body

motion of the mobile manipulator while considering kinematic and dynamic

constraints. Since the mobile manipulators have both mobility and dexterity,

they have the extended workspace and can execute numerous kinds of tasks that

are difficult for the fixed-base manipulator. However, due to several features

including high DOFs and different inertia characteristics, it is time-consuming

and challenging to generate the whole-body motion while considering numerous

constraints. Thus, it is effective to apply the task-oriented approach depending

on the goal and enforced constraint of the assigned task. To this end, there are

three strategies for generating the whole-body motion of mobile manipulator

as follows.

First, the motion planner is proposed that addresses the problem of the nav-

igation including passing through the door. The planner computes the whole-

body path of the mobile manipulator in two consecutive steps which plan sep-

97

arately for the mobile robot and the manipulator. Especially, in the first step,

the planner reduces the search space by defining a component of the state

that compactly represents the range of the reachable door angles as an integer

value. In the second step, the planner utilizes the IK solver to obtain the joint

configuration which grasps the door handle. The effectiveness of the proposed

framework was demonstrated through several simulations and real experiment

with the differentially-driven mobile manipulator.

Next, the motion generation method is proposed based on hierarchical quadratic

programming to assign individual joint weights for each task priority. The

method formulates the optimization problem in weighted joint space. This re-

duces the size of the inverse matrix so that computational cost is decreased

compared to traditional approach. Also, the method can deal with both equal-

ity and inequality tasks by utilizing the active-set method. The effectiveness

of the method was demonstrated through several experiments with the mobile

manipulator and humanoid.

Finally, the method to generate the motion to avoid self-collision is presented

for the differentially-driven mobile manipulators. The method exerts the force

on the mobile robot in order to place the manipulator outside the region which

is a 3D curved surface enclosing the mobile robot. The direction and amplitude

of the force is determined by considering the non-holonomic constraint of the

mobile robot and reachability of the manipulator. The results of several scenar-

ios show that the mobile manipulator can avoid self-collision without modifying

the predefined motion of the manipulator.

Even though the proposed strategies show the effectiveness for generating

the task-oriented whole-body motion, there still remain further researches to

98

enhance the performance in the future. For the motion planner related to door

opening, re-planning framework should be developed in order to respond to the

changes and uncertainty of the environment. Next, for the HQP-based motion

generation method, the method for determining suitable weights is required

depending on the assigned tasks. At last, for the self-collision avoidance method,

learning-based method for calculating the distance between the links because

the calculation by the conventional library using FCL is still expensive.

99

Bibliography

[1] E. Asadi, B. Li, and I.-M. Chen, “Pictobot: A cooperative painting robot

for interior finishing of industrial developments,” IEEE Robotics & Au-

tomation Magazine, vol. 25, no. 2, pp. 82–94, 2018.

[2] R. Jamisola, M. J. Ang, D. Oetomo, O. Khatib, T. M. Lim, and S. Y. Lim,

“The operational space formulation implementation to aircraft canopy pol-

ishing using a mobile manipulator,” in Robotics and Automation (ICRA),

2002 IEEE International Conference on. IEEE, 2002, pp. 400–405.

[3] H. Gao, C. Ma, L. Ding, H. Yu, K. Xia, H. Xing, and Z. Deng, “Dynamic

modeling and experimental validation of door-opening process by a mobile

manipulator,” IEEE Access, vol. 7, pp. 80 916–80 927, 2019.

[4] S. Gray, S. Chitta, V. Kumar, and M. Likhachev, “A single planner for

a composite task of approaching, opening and navigating through non-

spring and spring-loaded doors,” in 2013 IEEE International Conference

on Robotics and Automation, 2013, pp. 3839–3846.

[5] M. Arduengo, C. Torras, and L. Sentis, “Robust and adaptive door opera-

tion with a mobile robot,” Intelligent Service Robotics, vol. 14, pp. 409–425,

2021.

100

[6] Z. Jiao, Z. Zhang, X. Jiang, D. Han, S. Zhu, Y. Zhu, and H. Liu, “Consoli-

dating kinematic models to promote coordinated mobile manipulations,” in

2021 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, 2021, pp. 979–985.

[7] S. J. Jorgensen, M. Vedantam, R. Gupta, H. Cappel, and L. Sentis, “Find-

ing locomanipulation plans quickly in the locomotion constrained mani-

fold,” in 2020 IEEE International Conference on Robotics and Automation

(ICRA), 2020, pp. 6611–6617.

[8] M. Murooka, I. Kumagai, M. Morisawa, F. Kanehiro, and A. Kheddar,

“Humanoid loco-manipulation planning based on graph search and reach-

ability maps,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.

1840–1847, 2021.

[9] Y. Lee, S. Kim, J. Park, N. Tsagarakis, and J. Lee, “A whole-body con-

trol framework based on the operational space formulation under inequal-

ity constraints via task-oriented optimization,” IEEE Access, vol. 9, pp.

39 813–39 826, 2021.

[10] S. Kim, K. Jang, S. Park, Y. Lee, S. Y. Lee, and J. Park, “Whole-body con-

trol of non-holonomic mobile manipulator based on hierarchical quadratic

programming and continuous task transition,” in IEEE International Con-

ference on Advanced Robotics and Mechatronics. IEEE, 2019, pp. 414–419.

[11] Y. Wu, E. Lamon, F. Zhao, W. Kim, and A. Ajoudani, “Unified approach

for hybrid motion control of moca based on weighted whole-body cartesian

impedance formulation,” IEEE Robotics and Automation Letters, vol. 6,

no. 2, pp. 3505–3512, 2021.

101

[12] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic pro-

gramming: Fast online humanoid-robot motion generation,” The Interna-

tional Journal of Robotics Research, vol. 33, no. 7, pp. 1006–1028, 2014.

[13] J. Nocedal and W. Stephen J., Numerical Optimization. Springer, 2006.

[14] S. Chitta, B. Cohen, and M. Likhachev, “Planning for autonomous door

opening with a mobile manipulator,” in 2010 IEEE International Confer-

ence on Robotics and Automation, 2010, pp. 1799–1806.

[15] D. Kappler, F. Meier, J. Issac, J. Mainprice, C. G. Cifuentes, M. Wüthrich,

V. Berenz, S. Schaal, N. Ratliff, and J. Bohg, “Real-time perception meets

reactive motion generation,” IEEE Robotics and Automation Letters, vol. 3,

no. 3, pp. 1864–1871, 2018.

[16] J. Lee, A. Ajoudani, E. M. Hoffman, A. Rocchi, A. Settimi, M. Ferrati,

A. Bicchi, N. G. Tsagarakis, and D. G. Caldwell, “Upper-body impedance

control with variable stiffness for a door opening task,” in 2014 IEEE-RAS

International Conference on Humanoid Robots, 2014, pp. 713–719.

[17] Y. Karayiannidis, C. Smith, F. E. V. Barrientos, P. Ögren, and D. Kragic,

“An adaptive control approach for opening doors and drawers under un-

certainties,” IEEE Transactions on Robotics, vol. 32, no. 1, pp. 161–175,

2016.

[18] M. Stuede, K. Nuelle, S. Tappe, and T. Ortmaier, “Door opening and

traversal with an industrial cartesian impedance controlled mobile robot,”

in 2019 International Conference on Robotics and Automation (ICRA),

2019, pp. 966–972.

102

[19] H. Ito, K. Yamamoto, H. Mori, and T. Ogata, “Efficient multitask learning

with an embodied predictive model for door opening and entry with whole-

body control,” Science Robotics, vol. 7, no. 65, 2022.

[20] D. Lee, H. Seo, D. Kim, and H. J. Kim, “Aerial manipulation using model

predictive control for opening a hinged door,” in 2020 IEEE International

Conference on Robotics and Automation (ICRA), 2020, pp. 1237–1242.

[21] M. Likhachev and D. Ferguson, “Planning long dynamically feasible ma-

neuvers for autonomous vehicles,” The International Journal of Robotics

Research, vol. 28, no. 8, pp. 933–945, 2009.

[22] “Search-based planning library.” [Online]. Available:

https://github.com/sbpl/sbpl

[23] R. Diankov, “Automated construction of robotic manipulation programs,”

Ph.D. dissertation, Carnegie Mellon University, Pittburgh, PA, September

2010.

[24] M. Likhachev, G. J. Gordon, and S. Thrun, “Ara∗ : Anytime a∗ with

provable bounds on sub-optimality,” in Advances in Neural Information

Processing Systems, S. Thrun, L. Saul, and B. Schölkopf, Eds., vol. 16.

MIT Press, 2003.

[25] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, “Any-

time dynamic a*: An anytime, replanning algorithm,” in Proceedings of the

Fifteenth International Conference on International Conference on Auto-

mated Planning and Scheduling, ser. ICAPS’05. AAAI Press, 2005, p.

262–271.

103

[26] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning a*,” Artificial

Intelligence, vol. 155, no. 1, pp. 93–146, 2004.

[27] S. Tonneau, N. Mansard, C. Park, D. Manocha, F. Multon, and J. Pettré,

Robotics Research: Volume 2. Springer Ibnternational Publishing, 2018,

ch. A Reachability-Based Planner for Sequences of Acyclic Contacts in

Cluttered Environments, pp. 287–303.

[28] P. Beeson and B. Ames, “Trac-ik: An open-source library for improved

solving of generic inverse kinematics,” in 2015 IEEE-RAS 15th Interna-

tional Conference on Humanoid Robots, 2015, pp. 928–935.

[29] K. Jang, S. Kim, S. Park, J. Kim, and J. Park, “Weighted hierarchical

quadratic programming: assigning individual joint weights for each task

priority,” Intelligent Service Robotics, vol. 15, p. 475–486, 2022.

[30] D. Omrčen, L. Žlajpah, and B. Nemec, “Autonomous motion of a mo-

bile manipulator using a combined torque and velocity control,” Robotica,

vol. 22, no. 6, p. 623–632, 2004.

[31] G. Antonelli and S. Chiaverini, “Fuzzy redundancy resolution and motion

coordination for underwater vehicle-manipulator systems,” IEEE Transac-

tions on Fuzzy Systems, vol. 11, no. 1, pp. 109–120, 2003.

[32] J. Wang, S. Kim, S. Vijayakumar, and S. Tonneau, “Multi-fidelity reced-

ing horizon planning for multi-contact locomotion,” in 20th IEEE-RAS

International Conference on Humanoid Robots, 2021.

[33] T. F. Chan and R. V. Dubey, “A weighted least-norm solution based

scheme for avoiding joint limits for redundant joint manipulators,” IEEE

104

Transactions on Robotics and Automation, vol. 11, no. 2, pp. 286–292,

1995.

[34] S. Kim, K. Jang, S. Park, Y. Lee, S. Y. Lee, and J. Park, “Continuous task

transition approach for robot controller based on hierarchical quadratic

programming,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp.

1603–1610, 2019.

[35] F. Tassi, E. De Momi, and A. Ajoudani, “Augmented hierarchical quadratic

programming for adaptive compliance robot control,” in 2021 IEEE In-

ternational Conference on Robotics and Automation (ICRA), 2021, pp.

3568–3574.

[36] Y. Lee, J. Ahn, J. Lee, and J. Park, “Computationally efficient hqp-based

whole-body control exploiting the operational-space formulation,” in 2021

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2021, pp. 5197–5202.

[37] J. Park and O. Khatib, “Contact consistent control framework for hu-

manoid robots,” in Proceedings 2006 IEEE International Conference on

Robotics and Automation, 2006. ICRA 2006., 2006, pp. 1963–1969.

[38] B. Dariush, Y. Zhu, A. Arumbakkam, and K. Fujimura, “Constrained

closed loop inverse kinematics,” in IEEE International Conference on

Robotics and Automation. IEEE, 2010, pp. 2499–2506.

[39] F. Farelo, R. Alqasemi, and R. Dubey, “Optimized dual-trajectory tracking

control of a 9-dof wmra system for adl tasks,” in 2010 IEEE International

Conference on Robotics and Automation, 2010, pp. 1786–1791.

105

[40] S. Tsuichihara, A. Yamaguchi, J. Takamatsu, and T. Ogasawara, “Using

a weighted pseudo-inverse matrix to generate upper body motion for a

humanoid robot doing household tasks,” in IEEE International Conference

on Robotics and Biomimetics, 2015, pp. 333–338.

[41] J. Park, Y. Choi, W. K. Chung, and Y. Youm, “Multiple tasks kinematics

using weighted pseudo-inverse for kinematically redundant manipulators,”

in IEEE International Conference on Robotics and Automation, vol. 4,

2001, pp. 4041–4047 vol.4.

[42] Y. Choi, Y. Oh, S. R. Oh, J. Park, and W. K. Chung, “Multiple tasks

manipulation for a robotic manipulator,” Advanced Robotics, vol. 18, no. 6,

pp. 637–653, 2004.

[43] N. Vahrenkamp, T. Asfour, and R. Dillmann, “Robot placement based on

reachability inversion,” in 2013 IEEE International Conference on Robotics

and Automation, 2013, pp. 1970–1975.

[44] F. Zacharias, C. Borst, and G. Hirzinger, “Capturing robot workspace

structure: representing robot capabilities,” in 2007 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, 2007, pp. 3229–3236.

[45] F. Chen, M. Selvaggio, and D. G. Caldwell, “Dexterous grasping by ma-

nipulability selection for mobile manipulator with visual guidance,” IEEE

Transactions on Industrial Informatics, vol. 15, no. 2, pp. 1202–1210, 2019.

[46] A. Escande, N. Mansard, and P. Wieber, “Fast resolution of hierarchized in-

verse kinematics with inequality constraints,” in IEEE International Con-

ference on Robotics and Automation. IEEE, 2010, pp. 3733–3738.

106

[47] G. Golub and C. Van Loan, Matrix Computations. Baltimore, MD: John

Hopkins University Press, 1996.

[48] J. Sim, S. Kim, S. Park, S. Kim, M. Kim, and J. Park, “Design of jet hu-

manoid robot with compliant modular actuators for industrial and service

applications,” Applied Sciences, vol. 11, no. 13, 2021.

[49] A. Rocchi, E. M. Hoffman, D. G. Caldwell, and N. G. Tsagarakis, “Opensot:

A whole-body control library for the compliant humanoid robot coman,”

in IEEE International Conference on Robotics and Automation, 2015, pp.

6248–6253.

[50] C. Fang, A. Rocchi, E. M. Hoffman, N. G. Tsagarakis, and D. G. Cald-

well, “Efficient self-collision avoidance based on focus of interest for hu-

manoid robots,” in IEEE-RAS International Conference on Humanoid

Robots. IEEE, 2015, pp. 1060–1066.

[51] O. Kanoun, F. Lamiraux, and P.-B. Wieber, “Kinematic control of redun-

dant manipulators: Generalizing the task-priority framework to inequality

task,” IEEE Transactions on Robotics, vol. 27, no. 4, pp. 785–792, 2011.

[52] Y. Jia, N. Xi, Y. Cheng, and S. Liang, “Coordinated motion control of a

nonholonomic mobile manipulator for accurate motion tracking,” in 2014

IEEE/RSJ International Conference on Intelligent Robots and Systems,

2014, pp. 1635–1640.

[53] H. A. Park and C. G. Lee, “Dual-arm coordinated-motion task specification

and performance evaluation,” in 2016 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 2016, pp. 929–936.

107

[54] J. Park, W. Chung, and Y. Youm, “Weighted decomposition of kinematics

and dynamics of kinematically redundant manipulators,” in Proceedings of

IEEE International Conference on Robotics and Automation, vol. 1, 1996,

pp. 480–486 vol.1.

[55] S. Kim, K. Jang, S. Park, Y. Lee, S. Y. Lee, and J. Park, “Continuous task

transition approach for robot controller based on hierarchical quadratic

programming,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp.

1603–1610, 2019.

[56] S. Kim, K. Jang, S. Park, Y. Lee, S. Y. Lee, and J. Park, “Whole-body

controller for non-holonomic mobile manipulator based on hqp with con-

tinuous task transition,” in Advanced Robotics and Mechatronics (ARM),

2019 IEEE International Conference on. IEEE, 2019, pp. 414–419.

[57] J. J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue,

“Dynamically-stable motion planning for humanoid robots,” Autonomous

Robots, vol. 12, pp. 105–118, 2002.

[58] G. Oriolo and C. Mongillo, “Motion planning for mobile manipulators along

given end-effector paths,” in Robotics and Automation (ICRA), 2005 IEEE

International Conference on. IEEE, 2005, pp. 2154–2160.

[59] D. Berenson, J. Chestnutt, S. S. S., J. J. Kuffner, and S. Kagami, “Pose-

constrained whole-body planning using task space region chains,” in Hu-

manoid Robots (Humanoids), 2009 9th IEEE-RAS International Confer-

ence on. IEEE, 2009, pp. 181–187.

[60] F. Burget, M. Bennewitz, and W. Burgard, “Bi2rrt*: An efficient sampling-

based path planning framework for task-constrained mobile manipulation,”

108

in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International

Conference on. IEEE, 2016, pp. 3714–3721.

[61] F. Seto, K. Kosuge, and Y. Hirata, “Real-time self-collision avoidance

system for robots using robe,” The International Journal of Humanoid

Robotics, vol. 1, no. 3, pp. 533–550, 2004.

[62] F. Seto, K. Kosuge, and Y. Hirata, “Self-collision avoidance motion control

for human robot cooperation system using robe,” in Intelligent Robots and

Systems (IROS), 2005 IEEE/RSJ International Conference on. IEEE,

2005, pp. 50–55.

[63] O. Stasse, A. Escande, N. Mansard, S. Miossec, P. Evrard, and A. Kheddar,

“Real-time (self)-collision avoidance task on a hrp-2 humanoid robot,” in

Robotics and Automation (ICRA), 2008 IEEE International Conference

on. IEEE, 2008, pp. 3200–3205.

[64] M. Schwienbacher, T. Buschmann, S. Lohmeier, V. Favot, and H. Ulbrich,

“Self-collision avoidance and angular momentum compensation for a biped

humanoid robot,” in Robotics and Automation (ICRA), 2011 IEEE Inter-

national Conference on. IEEE, 2011, pp. 581–586.

[65] B. Dariush, G. Bin Hammam, and D. Orin, “Constrained resolved accel-

eration control for humanoids,” in Intelligent Robots and Systems (IROS),

2010 IEEE/RSJ International Conference on. IEEE, 2010, pp. 710–717.

[66] A. De Luca, G. Oriolo, and P. Robuffo Giordano, “Kinematic modeling and

redundancy resolution for nonholonomic mobile manipulators,” in Robotics

and Automation (ICRA), 2002 IEEE International Conference on. IEEE,

2006, pp. 1867–1873.

109

[67] A. De Luca, G. Oriolo, and P. Robuffo Giordano, “Kinematic control of

nonholonomic mobile manipulators in the presence of steering wheels,” in

Robotics and Automation (ICRA), 2002 IEEE International Conference

on. IEEE, 2010, pp. 1792–1798.

[68] A. Dietrich, T. Wimböck, H. Täubig, A. Albu-Schäffer, and G. Hirzinger,

“Extensions to reactive self-collision avoidance for torque and position con-

trolled humanoids,” in Robotics and Automation (ICRA), 2011 IEEE In-

ternational Conference on. IEEE, 2011, pp. 3455–3462.

[69] A. Dietrich, T. Wimböck, A. Albu-Schäffer, and G. Hirzinger, “Integration

of reactive, torque-based self-collision avoidance into a task hierarchy,”

IEEE Transactions on Robotics, vol. 28, no. 6, pp. 1278–1293, 2012.

[70] H. Sugiura, M. Gienger, H. Janssen, and C. Goerick, “Reactive self colli-

sion avoidance with dynamic task prioritization for humanoid robots,” The

International Journal of Humanoid Robotics, vol. 7, no. 1, pp. 31–54, 2010.

[71] G. Campion, G. Bastin, and B. Dandrea-Novel, “Structural properties and

classification of kinematic and dynamic models of wheeled mobile robots,”

IEEE Transactions on Robotics and Automation, vol. 12, no. 1, pp. 47–62,

1996.

[72] A. M. Bloch, M. Reyhanoglu, and N. H. McClamroch, “Control and sta-

bilization of nonholonomic dynamic systems,” IEEE Transactions on Au-

tomatic Control, vol. 37, no. 11, pp. 1746–1757, 1992.

[73] G. Campion, B. d’Andrea Novel, and G. Bastin, “Modelling and state feed-

back control of nonholonomic mechanical systems,” in IEEE Conference

on Decision and Control. IEEE, 1991, pp. 1184–1189.

110

[74] Y. Yamamoto and Y. Xiaoping, “Coordinating locomotion and manipula-

tion of a mobile manipulator,” IEEE Transactions on Automatic Control,

vol. 39, no. 6, pp. 1326–1332, 1994.

[75] R. Diankov and J. Kuffner, “Openrave : A planning architecture for au-

tonomous robotic,” Robotics Institute, Carnegie Mellon University, Tech.

Rep. CMU-RI-TR-10-29, 2008.

[76] S. Hong, K. Jang, S. Kim, and J. Park, “Regularized hierarchical quadratic

program for real-time whole-body motion generation,” IEEE/ASME

Transactions on Mechatronics, 2020.

[77] G. D. White, R. M. Bhatt, C. P. Tang, and V. N. Krovi, “Experimental

evaluation of dynamic redundancy resolution in a nonholonomic wheeled

mobile manipulator,” IEEE/ASME Transactions on Mechatronics, vol. 14,

no. 3, pp. 349–357, 2009.

[78] S. Kim, https://github.com/ggory15/weightedhqp, 2021.

[79] A. Dietrich, K. Bussmann, F. Petit, P. Kotyczka, C. Ott, B. Lohmann,

and A. Albu-Schäffer, “Whole-body impedance control of wheeled mobile

manipulators,” Autonomous Robots, vol. 40, no. 3, pp. 505–517, 2016.

[80] Y. Karayiannidis, C. Smith, F. E. Viña, P. Ogren, and D. Kragic, ““open

sesame!” adaptive force/velocity control for opening unknown doors,” in

Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International

Conference on. IEEE, 2012, pp. 4040–4047.

[81] Y. Karayiannidis, C. Smith, F. E. V. Barrientos, P. Ögren, and D. Kragic,

“An adaptive control approach for opening doors and drawers under un-

111

certainties,” IEEE Transactions on Robotics, vol. 32, no. 1, pp. 161–175,

2016.

[82] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile

robots,” in Autonomous robot vehicles. Springer, 1986, pp. 396–404.

112

초 록

모바일 매니퓰레이터는 모바일 로봇에 장착된 매니퓰레이터입니다. 모바일 매

니퓰레이터는고정형매니퓰레이터에비해모바일로봇의이동성을제공받기때문

에 다양하고 복잡한 작업을 수행할 수 있습니다. 그러나 두 개의 서로 다른 시스템

을 결합함으로써 모바일 매니퓰레이터의 전신을 계획하고 제어할 때 여러 특징을

고려해야 합니다. 이러한 특징들은 여자유도, 두 시스템의 관성 차이 및 모바일

로봇의 비홀로노믹 제한 조건 등이 있습니다. 본 논문의 목적은 기구학적 및 동적

제한조건들을 고려하여 모바일 매니퓰레이터의 전신 동작 생성 전략을 제안하는

것입니다.

먼저,모바일매니퓰레이터가초기위치에서문을통과하여목표위치에도달하

기 위한 전신 경로를 계산하는 프레임워크를 제안합니다. 이 프레임워크는 로봇과

문에 의해 생기는 기구학적 제한조건을 고려합니다. 제안하는 프레임워크는 두 단

계를 거쳐 전신의 경로를 얻습니다. 첫 번째 단계에서는 그래프 탐색 알고리즘을

이용하여 모바일 로봇의 자세 경로와 문의 각도 경로를 계산합니다. 특히, 그래

프 탐색에서 area indicator라는 정수 변수를 상태의 구성 요소로서 정의하는데,

이는 문에 대한 모바일 로봇의 상대적 위치를 나타냅니다. 두 번째 단계에서는 모

바일 로봇의 경로와 문의 각도를 통해 문의 손잡이 위치를 계산하고 역기구학을

활용하여 매니퓰레이터의 관절 위치를 계산합니다. 제안된 프레임워크의 효율성

113

은 비홀로노믹 모바일 매니퓰레이터를 사용한 시뮬레이션 및 실제 실험을 통해

검증되었습니다.

둘 째, 최적화 방법을 기반으로한 전신 제어기를 제안합니다. 이 방법은 등식

및 부등식 제한조건 모두에 대해 가중 행렬을 반영한 계층적 최적화 문제의 해를

계산합니다. 이 방법은 모바일 매니퓰레이터 또는 휴머노이드와 같이 자유도가

많은 로봇의 여자유도를 해결하기 위해 개발되어 작업 우선 순위에 따라 가중치가

다른 관절 동작으로 여러 작업을 수행할 수 있습니다. 제안된 방법은 가중 행렬

을 최적화 문제의 1차 최적 조건을 만족하도록 하며, Active-set 방법을 활용하여

등식 및 부등식 작업을 처리합니다. 또한, 대칭적인 영공간 사영 행렬을 사용하여

계산상 효율적입니다. 결과적으로, 제안된 제어기를 활용하는 로봇은 우선 순위에

따라 개별적인 관절 가중치를 반영하여 전신 움직임을 효과적으로 보여줍니다.

제안된 제어기의 효용성은 모바일 매니퓰레이터와 휴머노이드를 이용한 실험을

통해 검증하였습니다.

마지막으로, 모바일 매니퓰레이터의 동적 제한조건들 중 하나로서 자가 충돌

회피 알고리즘을 제안합니다. 제안된 방법은 매니퓰레이터와 모바일 로봇 간의

자가 충돌에 중점을 둡니다. 모바일 로봇의 버퍼 영역을 둘러싸는 3차원 곡면인

distance buffer border의 개념을 정의합니다. 버퍼 영역의 두께는 버퍼 거리입

니다. 매니퓰레이터와 모바일 로봇 사이의 거리가 버퍼 거리보다 작은 경우, 즉

매니퓰레이터가 모바일 로봇의 버퍼 영역 내부에 있는 경우 제안된 전략은 매니

퓰레이터를 버퍼 영역 밖으로 내보내기 위해 모바일 로봇의 움직임을 생성합니다.

따라서 매니퓰레이터는 미리 정의된 매니퓰레이터의 움직임을 수정하지 않고도

모바일 로봇과의 자가 충돌을 피할 수 있습니다. 모바일 로봇의 움직임은 가상의

힘을가함으로써생성됩니다.특히,힘의방향은차동구동이동로봇의비홀로노믹

제약 및 조작기의 도달 가능성을 고려하여 결정됩니다. 제안된 알고리즘은 7자유

도 로봇팔을 가진 차동 구동 모바일 로봇에 적용하여 다양한 실험 시나리오에서

114

입증되었습니다.

주요어: 모바일 매니퓰레이터, 전신 제어, 경로 계획

학번: 2016-26043

115

ACKNOWLEGEMENT

7년이라는 석박사 학위과정을 수행하면서 많은 분들의 도움과 응원이 있었

기에 끝까지 마무리할 수 있었습니다. 특히, 입학할 당시에 로봇에 대한 부족한

지식으로 인해 연구 주제에 대해 고민하고 헤매고 있을 때 지켜봐 주시고 지도해

주신 박재흥 교수님께 감사의 말씀드립니다. 그런 시간을 보내지 않았다면 지금의

모습으로 성장할 수 없었다고 생각합니다.

같이연구실생활했던선배분들에게먼저감사함을표시하고싶습니다.소셜로

봇 팀을 만들어 같이 밤을 지새우며 연구에 몰두하고 연구을 포함하여 생활에서도

멘토 역할을 해주신 상현형, 같이 술 한잔 하면서 노래방을 항상 가고싶게 만드는

순욱형,술먹고싶다고하면바로달려와주셔서 1차에서만끝낼수가없게만드는

투자의 귀재 민곤형, 연구 상담뿐만 아니라 취업에서도 많은 도움을 주신 이수형,

수학적인 질문을 해도 항상 진지하게 고민해주신 호상형, 긴말 필요없이 모든 걸

다 갖추신 범영형, 성수동 핫플레이스 카페 CTO로 활약중이신 현준형, 육아로

바쁘셨지만 가끔 고민 상담도 해주신 수민누나, 연구실 신입생 시절 졸업하시면

서 많은 걸 알려주신 세호형, 항상 뚝심있게 MPC를 진지하게 연구하신 민성형,

장난은 많이 치시지만 다방면으로 많은 걸 알려주신 원제형 감사합니다.

다음으로 동기를 포함하여 동기같이 지내준 분들에게 감사함을 전하고 싶습

니다. 나의 영원한 술메이트이자 하드웨어와 소프트웨어를 모두 잘하는 재훈, 7년

116

내내 자리 한번 안 바꾸고 내 옆자리에서 동고동락한 승연, 연구와 육아로 바쁘

지만 광교에 오면 누구보다 반가운 준우, 독일에서 연구원으로 활약중인 재석이

감사합니다.

소셜팀후배들에게도감사한마음을표현하고싶습니다.연구실에서모두가필

요로 해서 도울 일이 있으면 항상 도맡아서 해주는 수한, 가끔 술친구가 되주면서

모션플래닝으로이끌어준지영, 3층의분위기메이커로활약해준형철,힘든내색

없이굳은일을도맡아서해준명수,뚝심있게자기연구를잘수행하는해성,말수

가적지만연구앞에서는누구보다진지하고열정적인재현,바빠서먼저챙겨주진

못하지만 항상 먼저 안부를 물어주는 상엽에게도 감사함을 전하고 싶습니다.

진지한 모습이 매력적인 RRT 달인 민수, 운동도 잘하고 술도 잘먹는 양우,

미국에서 나의 룸메이크로 고생한 동현, 성격이 화끈한 부산사나이 명주, 후배들

을 잘 챙겨주시고 품어주시는 승훈형, 재활로봇팀의 허리를 맡고 계신 주완이형,

체격이 좋지만 누구보다 관심을 갈구하는 준형, 연구실의 미래 랩장으로 도약하고

있는 경재, 운동도 열심히하고 누구보다 햅틱 장비를 잘 만드는 은호, 의외의 모습

을많이가지고있는재용,토카비의뇌를담당하고있는준휘,뚝딱뚝딱잘만들고

추진력이좋은승빈형,연구실의막내지만마음이넓은호균,연구실의딥러닝전문

가 대규, 3층의 터줏대감 역할을 해주시는 현범이형, CPR 로봇의 대가 성문이형,

아바타 대회에서 통역가로 활약한 준혁, 3층에서 항상 열심히하는 관우와 민수,

박사과정 마무리 실험을 많이 도와준 준헌이를 포함하여 모두 감사합니다. 앞으로

좋은 연구성과 기대하겠습니다.

마지막으로, 대학원 생활에만 몰두할 수 있게 다방면으로 도와주시고 항상 지

지해주신 부모님, 독일에서 대학원 다니느라 고생하고 있는 남동생 근한, 행복한

신혼 생활을 하고 있는 여동생 혜린, 매부이자 친구이자 술친구가 되어준 형진에

게도 감사함을 전하고 싶습니다.

	1 INTRODUCTION
	1.1 Motivation
	1.2 Contributions of thesis
	1.3 Overview of thesis

	2 WHOLE-BODY MOTION PLANNER : APPLICATION TO NAVIGATION INCLUDING DOOR TRAVERSAL
	2.1 Background & related works
	2.2 Proposed framework
	2.2.1 Computing path for mobile robot and door angle - S1
	2.2.1.1 State
	2.2.1.2 Action
	2.2.1.3 Cost
	2.2.1.4 Search

	2.2.2 Computing path for arm configuration - S2

	2.3 Results
	2.3.1 Application to pull and push-type door
	2.3.2 Experiment in cluttered environment
	2.3.3 Experiment with different robot platform
	2.3.4 Comparison with separate planning by existing works
	2.3.5 Experiment with real robot

	2.4 Conclusion

	3 WHOLE-BODY CONTROLLER : WEIGHTED HIERARCHICAL QUADRATIC PROGRAMMING
	3.1 Related works
	3.2 Problem statement
	3.2.1 Pseudo-inverse with weighted least-squares norm for each task
	3.2.2 Problem statement

	3.3 WHQP with equality constraints
	3.4 WHQP with inequality constraints
	3.5 Experimental results
	3.5.1 Simulation experiment with nonholonomic mobile manipulator
	3.5.1.1 Scenario description
	3.5.1.2 Task and weighting matrix description
	3.5.1.3 Results

	3.5.2 Real experiment with nonholonomic mobile manipulator
	3.5.2.1 Scenario description
	3.5.2.2 Task and weighting matrix description
	3.5.2.3 Results

	3.5.3 Real experiment with humanoid
	3.5.3.1 Scenario description
	3.5.3.2 Task and weighting matrix description
	3.5.3.3 Results

	3.6 Discussions and implementation details
	3.6.1 Computation cost
	3.6.2 Composite weighting matrix in same hierarchy
	3.6.3 Nullity of WHQP

	3.7 Conclusion

	4 WHOLE-BODY CONSTRAINT : SELF-COLLISION AVOIDANCE
	4.1 Background & related Works
	4.2 Distance buffer border and its score computation
	4.2.1 Identification of potentially colliding link pairs
	4.2.2 Distance buffer border
	4.2.3 Evaluation of distance buffer border
	4.2.3.1 Singularity of the differentially driven mobile robot
	4.2.3.2 Reachability of the manipulator
	4.2.3.3 Score of the DBB

	4.3 Self-collision avoidance algorithm
	4.3.1 Generation of the acceleration for the mobile robot
	4.3.2 Generation of the repulsive acceleration for the other link pair
	4.3.3 Construction of an acceleration-based task for self-collision avoidance
	4.3.4 Insertion of the task in HQP-based controller

	4.4 Experimental results
	4.4.1 System overview
	4.4.2 Experimental results
	4.4.2.1 Self-collision avoidance while tracking the predefined trajectory
	4.4.2.2 Self-collision avoidance while manually guiding the end-effector
	4.4.2.3 Extension to obstacle avoidance when opening the refrigerator

	4.4.3 Discussion

	4.5 Conclusion

	5 CONCLUSIONS
	Abstract (In Korean)
	Acknowlegement

<startpage>16
1 INTRODUCTION 1
 1.1 Motivation 1
 1.2 Contributions of thesis 2
 1.3 Overview of thesis 3
2 WHOLE-BODY MOTION PLANNER : APPLICATION TO NAVIGATION INCLUDING DOOR TRAVERSAL 5
 2.1 Background & related works 7
 2.2 Proposed framework 9
 2.2.1 Computing path for mobile robot and door angle - S1 10
 2.2.1.1 State 10
 2.2.1.2 Action 13
 2.2.1.3 Cost 15
 2.2.1.4 Search 18
 2.2.2 Computing path for arm configuration - S2 20
 2.3 Results 21
 2.3.1 Application to pull and push-type door 21
 2.3.2 Experiment in cluttered environment 22
 2.3.3 Experiment with different robot platform 23
 2.3.4 Comparison with separate planning by existing works 24
 2.3.5 Experiment with real robot 29
 2.4 Conclusion 29
3 WHOLE-BODY CONTROLLER : WEIGHTED HIERARCHICAL QUADRATIC PROGRAMMING 31
 3.1 Related works 32
 3.2 Problem statement 34
 3.2.1 Pseudo-inverse with weighted least-squares norm for each task 35
 3.2.2 Problem statement 37
 3.3 WHQP with equality constraints 37
 3.4 WHQP with inequality constraints 45
 3.5 Experimental results 48
 3.5.1 Simulation experiment with nonholonomic mobile manipulator 48
 3.5.1.1 Scenario description 48
 3.5.1.2 Task and weighting matrix description 49
 3.5.1.3 Results 51
 3.5.2 Real experiment with nonholonomic mobile manipulator 53
 3.5.2.1 Scenario description 53
 3.5.2.2 Task and weighting matrix description 53
 3.5.2.3 Results 54
 3.5.3 Real experiment with humanoid 55
 3.5.3.1 Scenario description 55
 3.5.3.2 Task and weighting matrix description 55
 3.5.3.3 Results 57
 3.6 Discussions and implementation details 57
 3.6.1 Computation cost 57
 3.6.2 Composite weighting matrix in same hierarchy 59
 3.6.3 Nullity of WHQP 59
 3.7 Conclusion 59
4 WHOLE-BODY CONSTRAINT : SELF-COLLISION AVOIDANCE 61
 4.1 Background & related Works 64
 4.2 Distance buffer border and its score computation 65
 4.2.1 Identification of potentially colliding link pairs 66
 4.2.2 Distance buffer border 67
 4.2.3 Evaluation of distance buffer border 69
 4.2.3.1 Singularity of the differentially driven mobile robot 69
 4.2.3.2 Reachability of the manipulator 72
 4.2.3.3 Score of the DBB 74
 4.3 Self-collision avoidance algorithm 75
 4.3.1 Generation of the acceleration for the mobile robot 76
 4.3.2 Generation of the repulsive acceleration for the other link pair 82
 4.3.3 Construction of an acceleration-based task for self-collision avoidance 83
 4.3.4 Insertion of the task in HQP-based controller 83
 4.4 Experimental results 86
 4.4.1 System overview 87
 4.4.2 Experimental results 87
 4.4.2.1 Self-collision avoidance while tracking the predefined trajectory 87
 4.4.2.2 Self-collision avoidance while manually guiding the end-effector 89
 4.4.2.3 Extension to obstacle avoidance when opening the refrigerator 91
 4.4.3 Discussion 94
 4.5 Conclusion 95
5 CONCLUSIONS 97
Abstract (In Korean) 113
Acknowlegement 116
</body>

