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Zusammenfassung

Wenn man an Roboter denkt, denkt man an menschenähnliche Maschinen mit
sensomotorischen Fähigkeiten. Die Realität sieht jedoch anders aus. In der In-
dustrie werden meist Knickarm-Roboter mit sechs seriell-angeordneten Gelenken
verwendet. Diese Roboter werden isoliert von der Umgebung hinter Schutzzäunen
platziert. Die Hauptanforderungen an industrielle Roboter sind hohe Geschwind-
keit, Präzision und hohe Wiederholgenauigkeit. Zur Beschreibung der Roboter-
struktur und zum Programmieren der Roboterbewegung wird eine Vielzahl an
Koordinatensystemen genutzt. Die Umgebung des Roboters wird durch externe
Sensoren erfasst und die Bauteile werden positionsgetreu platziert.

Im letzten Jahrzehnt wurde eine neue Kategorie von Robotern entwickelt.
Die Hauptaufgabe dieser Roboter ist dem Menschen bei schweren und monoto-
nen Arbeiten zu unterstützen. Daher werden diese Roboter meist “Kollabora-
tive Roboter” genannt. Die meist benutzte Terminologie in der Wissenschaft ist
“Mensch-Roboter-Interaktion”. Da Kollaborative Roboter außerhalb des Schutz-
zauns agieren, besitzen sie Sensoren, um einen Kontakt mit der Umwelt (z.B. dem
Menschen) zu erkennen. Oft sind Kollaborative Roboter kinematisch redundant,
was bedeutet, dass der Roboter unendlich viele Achsbewegungen nutzen kann um
eine vorbestimmte Werkzeugbewegung auszuführen. Durch die kinematische Re-
dundanz kann ein Roboter oft mehrere Aufgaben gleichzeitig ausführen.

Verglichen mit konventionellen Industrierobotern ist das Programmieren der
Roboterapplikation für die Mensch-Roboter-Interaktion komplizierter. Der Pro-
grammierer kann sich nicht nur auf den Roboterprozess konzentrieren, son-
dern muss eine sichere Roboterbewegung gewährleisten. “Sicher” im Kontext
der Mensch-Roboter-Interaktion bedeutet, dass Klemmgefahren verhindert und
Kontaktkräfte mit dem Menschen minimiert werden müssen. Da Kollaborative
Roboter oft eine höhere Anzahl an Freiheitsgraden besitzen als konventionelle
Industrieroboter, ist es vermeindlich leichter eine passende Roboterbewegung zu
finden. In der Praxis hat sich jedoch die Art der Programmierung nicht geändert.
Obwohl der Roboter durch seine kinematische Redundanz theoretisch mehrere
Aufgaben gleichzeitig bewältigen könnte, wird üblicherweise nur eine prozessspez-
ifische Aufgabe programmiert. Zudem scheitern traditionelle Regelungsalgorith-
men häufig bei der Bewegungsberechnung, da die Abbildung von Werkzeugbewe-
gung auf Achsbewegungen nicht mehr eindeutig ist.

Die vorliegende Arbeit fokusiert sich auf grundlegende Themen der Roboter-
modellierung und -regelung, mit Schwerpunkt auf Mensch-Roboter-Interaktion.
Die Arbeit stellt eine Methodik zur Analyse der Manipulierbarkeit des Roboters
bereit. Diese Methodik wird erweitert, um zu untersuchen ob ein Roboter auch
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mehrere Aufgaben gleichzeitig bewältigen kann. Die Regelungsalgorithmen dieser
Arbeit erleichtern die Programmierung von Roboterapplikationen für die Mensch-
Roboter-Interaktion. Ein weiterer Fokus der Arbeit liegt auf der Stabilität des
Robotersystems während der Regelung.

Die Hauptmethodik der vorliegenden Arbeit ist Differentialgeometrie. Die Ar-
beit versucht nicht nur die kinematischen Grundlagen für die Bewegungsmodel-
lierung von Robotern zu vermitteln, sondern soll auch zeigen wie die Theorie in der
Praxis auf einem Roboter implementiert werden kann. In den entwickelten Anal-
ysemethodiken wird die Koordinatenabhängigkeit minimiert. Dies ermöglicht es
den Anwendern der Methodiken ihre Analyseergebnisse zu vergleichen. Außerdem
werden weniger erfahrene Roboterprogrammierer befähigt, da die Regelungspa-
rameter während der Laufzeit optimiert werden.



Summary

If people think about robots, they think of human-like machines with equiv-
alent cognitive abilities and sensorimotor skills. The reality looks quite different.
Most commonly, robots with six serially arranged joints are installed in industrial
production. They are placed behind safety fences, isolated from their environ-
ment. The main requirements for those robots are fast speed, high accuracy, and
repeatability. Coordinates are used to describe the kinematic structure and to
program the robot motion. The workpiece is placed as accurately as possible and
external sensors are used to capture the environment.

In the last decade, a new sort of robot has evolved. The main purpose of
these robots is to assist the human co-worker, e.g., to take over dull and heavy
tasks. These robots are often called “collaborative robots.” The most common
associated terminology in research is “physical Human-Robot Interaction.” To
ensure the safety of the human co-worker, collaborative robots are equipped with
safety features, i.e., sensors to detect contact with the environment. Collaborative
robots usually possess more degrees of freedom than conventional robots do. Most
common are seven joints, which makes them kinematically redundant. This means
that the robot can use infinitely many different joint motions to achieve a desired
tool motion.

Compared to conventional industrial applications, the programming of collab-
orative robot cells is more complicated since the programmer not only has to focus
on the robot process, but also has to provide a safe and stable robot motion that
does not pose collision and clamping hazards to the human co-worker. Since the
robot is more dexterous and can perform multiple tasks, this is supposed to be
easier in theory. In practice, however, the programming procedure did not change
compared to conventional robots. In most cases, it is only possible to assign one
main task to the robot and the kinematic redundancy is not used to manage ad-
ditional subordinate tasks simultaneously. Even worse, the kinematic redundancy
impedes robot programming since an unique relation between tool motion and
joint motion does not exist anymore.

This thesis focuses on fundamental topics of robotic manipulation in physi-
cal Human-Robot Interaction. Contributions on dexterity, stability, and safety
are presented. The thesis proposes a method to analyze the ability of a robot
to perform a task. The method is extended to analyze multi-task control. Con-
trol approaches are developed that facilitate and speed up the programming of
applications in physical Human-Robot Interaction.

The key method of this thesis is differential geometry. Hereby, the thesis tries
to help understanding the kinematic foundations and demonstrates how to apply
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the theory to a real robot. For users of the presented methods, the results are
comparable since the coordinate dependency is kept at a minimum. Moreover, less
experienced robot programmers are enabled since the control approaches auto-tune
the control parameters during run-time.



Contents

1 General Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research questions of this thesis . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The influence of coordinates in robotic dexterity analysis 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Kinematic foundations . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Left and right invariant representation of twists . . . . . . . 8
2.1.3 Metric property of SE(3) . . . . . . . . . . . . . . . . . . . 8
2.1.4 Dexterity and Manipulability . . . . . . . . . . . . . . . . . 9

2.2 Dexterity measures in the literature . . . . . . . . . . . . . . . . . 11
2.2.1 Velocity Manipulability Ellipsoid . . . . . . . . . . . . . . . 12
2.2.2 Specific aspects of J(q)J(q)

T
. . . . . . . . . . . . . . . . . 13

2.2.3 Tensors for robotic dexterity analysis . . . . . . . . . . . . . 15
2.3 Dexterity analysis for dynamic robot tasks . . . . . . . . . . . . . . 16

2.3.1 Screws: Geometric representation of Lie algebra structure . 18
2.3.2 Dexterity analysis . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Towards coordinate-invariant dexterity analysis . . . . . . . 24

3 Shaping impedances to comply with constrained task dynamics 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Task hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Task conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Cartesian impedance control based on potential energy functions . 28
3.2.1 Passivity property for passive environments . . . . . . . . . 31
3.2.2 Nullspace projection . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Detection of task conflicts . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Shaping impedance to comply with constrained task dynamics . . 37

3.4.1 Incorporating constrained task masses . . . . . . . . . . . . 38
3.4.2 Incorporating constrained task inertias . . . . . . . . . . . . 39
3.4.3 Damping design . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.4 Extension to multi-task control . . . . . . . . . . . . . . . . 44
3.4.5 Comparison of task hierarchy . . . . . . . . . . . . . . . . . 44



viii CONTENTS

3.4.6 Hierarchical passivity check . . . . . . . . . . . . . . . . . . 45
3.5 Experiments on a real robot . . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 Experiment 1: Move end-effector on a line and hold elbow
position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.2 Experiment 2: Move end-effector on a circle, hold elbow
position, and hold end-effector orientation . . . . . . . . . . 54

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6.1 Limitations and further work . . . . . . . . . . . . . . . . . 61
3.6.2 Parallel control with threading . . . . . . . . . . . . . . . . 62
3.6.3 Selecting the right thresholds for conflict detection . . . . . 62

3.7 Discussion: Similarities to human-motor-control . . . . . . . . . . . 62

4 Energy budgets for coordinate invariant robot control in pHRI 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Safe pHRI: Classical approach . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Certification process of pHRI cells . . . . . . . . . . . . . . 70
4.2.2 Specific aspects of the safety implementation . . . . . . . . 75

4.3 Coordinate invariant control of robot energy . . . . . . . . . . . . . 81
4.3.1 Control of potential energy . . . . . . . . . . . . . . . . . . 81
4.3.2 Energy transfer during interaction . . . . . . . . . . . . . . 82
4.3.3 Energy budget for safe pHRI . . . . . . . . . . . . . . . . . 84
4.3.4 Derivation of a safe energy budget . . . . . . . . . . . . . . 86

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.2 Towards safe pHRI in changing work environments . . . . . 92

5 General Conclusion 93

Appendices 95

A Dexterity Analysis 97
A.1 det(J(q)J(q)

T
) for different body coordinate frames . . . . . . . . 97

A.2 J(q)J(q)
T

for different sets of joint coordinates . . . . . . . . . . . 97
A.3 Quadratic form Λ−1 . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.4 Bi-invariant matrix Λ−1

ε . . . . . . . . . . . . . . . . . . . . . . . . 99

B Lie algebra structure of translations and rotations 103

C Tensor Geometry 105
C.1 Tensor definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

C.1.1 Covariant tensors . . . . . . . . . . . . . . . . . . . . . . . . 105
C.1.2 Contravariant tensors . . . . . . . . . . . . . . . . . . . . . 105
C.1.3 Mixed tensors . . . . . . . . . . . . . . . . . . . . . . . . . . 105

C.2 Example of tensor contraction . . . . . . . . . . . . . . . . . . . . . 106



CONTENTS ix

D Impedance control based on potential energy function 107
D.1 Translational potential energy function . . . . . . . . . . . . . . . . 107
D.2 Rotational potential energy function . . . . . . . . . . . . . . . . . 108
D.3 Time differentiation of energy functions with time-varying stiffness 109

D.3.1 Translational potential energy function . . . . . . . . . . . . 109
D.3.2 Rotational potential energy function . . . . . . . . . . . . . 111

E Bond Graphs 113
E.1 Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
E.2 Connection via multi-bonds . . . . . . . . . . . . . . . . . . . . . . 113
E.3 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

F Shaping Impedances 115
F.1 Controller parameters . . . . . . . . . . . . . . . . . . . . . . . . . 115

G Energy Budgets 117
G.1 Set-up for collision measurements . . . . . . . . . . . . . . . . . . . 117
G.2 Controller parameters . . . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography 134





CHAPTER 1

General Introduction

1.1 Motivation

The main requirements for industrial robots are low cycle times, repeatability, and
high process quality. Since these robots operate at maximum speed, safety fences
are used to protect the human co-worker from possible collisions with the robot.
If a person enters the robot cell, the robot motion is stopped as fast as possible
and the robot brakes are activated.

For the programming of industrial robots, usually coordinate frames are used.
During the process, the robot aligns a body-fixed coordinate frame (e.g., placed
on the end-effector) with a world-fixed coordinate frame (e.g., placed on the work-
piece). Additionally, the programmer decides how the robot end-effector should
move towards the workpiece, e.g., in a linear, point-to-point or circular motion.
Once all coordinate frames have been placed, the robot program is transferred to
the controller. The Cartesian distance between the coordinate frames is interpo-
lated and a feasible joint configuration for each Cartesian position is computed.
This is usually done by solving the inverse kinematic problem for each Cartesian
position. Lastly, the resulting joint trajectory is post-processed in order to achieve
a robot motion with high performance (e.g., high Cartesian position accuracy,
fast joint motion, or low jerk). For the robot process, positioning mechanisms
and external sensors are used to ensure that the workpiece is placed in the exact
position.

During recent years, a new generation of robots has been developed. Such
collaborative robots are often placed next to human co-workers. For this reason,
those robots need to incorporate safety features and guarantee stability in order
to enable an operation without a safety fence. For example, torque sensors incor-
porated in the robot structure are used to detect collisions with the environment
along the whole robotic arm. Since the human co-worker and the robot share a
workspace, the safety certification of collaborative robots is very complicated. All
risks sources have to be identified and measures provided to minimize the risks for
the human co-worker.

The torque sensors can additionally be used to “sense” the environment. Costly
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position mechanisms and external sensors can hence be saved. However, the robot
process is still dependent on a deliberate placement of coordinate frames. More-
over, the desired trajectory is calculated offline and cannot be modified during
motion execution. If a collaborative robot is kinematically redundant, more ad-
vanced control is needed since infinitely many sets of joint motions can generate a
desired workspace motion.

The goal of industrial collaborative robots is to automate manual processes
that are usually done by humans, e.g., assembly processes. Humans are capable
of managing multiple tasks simultaneously. These tasks are not only positioning
tasks as for most industrial robots, but also involve interaction with the environ-
ment. The human task performance is enabled by cognition: We perceive our
environment with our eyes and interact with it through our sensorimotor skills.
Hereby, humans often manage to do repetitive tasks without even looking, e.g.,
during assembly line work. These are suitable applications for collaborative robots
with “sensing abilities,” e.g., robots with integrated torque sensors.

As collaborative robots are interacting with the environment, they should be
treated as part of the surrounding physics. To enable this goal, some of the
fundamentals of robotic manipulation have to be approached. This thesis will
make contributions to robotic dexterity, stability, and safety.

1.2 Research questions of this thesis

For industrial robotics, it is important to have a measure of “how well” a robot
can perform a given task. This measure is already needed during the design phase
of the kinematic structure since different joint type choices will lead to different
dexterity results, e.g., through combining linear and rotational joints. Moreover,
for a given customer task, the measure can help to select the right robot. Lastly,
such a measure can be applied online during the operation of the robot and can
indicate that the robot cannot perform its task. This leads to the first research
question. Q1: Can we define dexterity of robotic manipulators in a coordinate-
invariant way? (→ chapter 2)

The dexterity of robotic manipulators is linked to kinematic singularities: The
robot cannot move along/about singular directions. For an impedance controlled
robot, the robot programmer expresses the desired dynamic task behavior. Near
singular configurations, the robot is not able to perform the desired task dynamics.
To be productive, industrial applications always assign one main task to the robot.
However, a kinematically redundant robot can perform multiple tasks simultane-
ously. The kinematic redundancy can be used to optimize the robot configuration,
as well as the kinematic and dynamic properties during the process. Since the
main task is essential for the robotic process, it is important to detect and quan-
tify a conflict between the main task and subordinate tasks. This leads to the
second research question. Q2: How can we predict and quantify task conflicts?
(→ chapter 3)

With simple impedance superposition, the control of multiple tasks is straight
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forward since different impedances can be superimposed. Through superposition,
all tasks have the same priority level. For industrial applications, however, the
main tasks must not be influenced by tasks with lower priority. This leads to
the third research question. Q3: How can we resolve task conflicts for multi-task
impedance control? (→ chapter 3)

Due to its stability properties, an impedance controller is a beneficial control
approach for industrial applications that involve contact with the environment,
e.g., assembly applications. However, an online modification of the control param-
eters can violate the passivity properties of the controller. For industrial robots,
a threshold for the commanded motor current or motor torque is typically set. If
the control command would violate the threshold, the robot motion is stopped as
fast as possible and the brakes are activated. Hence, clamping scenarios can arise,
which impede safe physical Human-Robot Interaction (pHRI). This leads to the
fourth research question. Q4: How can we guarantee stability during pHRI? (→
chapter 3)

All industrial applications with pHRI have to be certified by the producer of
the robot cell. The risk assessment and risk minimization compromises a high
percentage of the certification process. Therefore, pHRI-cells are more expensive
than traditional robot cells. Two major risks are collisions and clamping scenarios.
As for the robot programming, the safety implementation of the application also
has strong dependencies on coordinates, e.g., to monitor the robot velocity or
to predict external forces. However, the current certification process does not in
general guarantee a safe robot behavior. It is not possible to predict all risks
in advance, especially in unstructured environments. Moreover, multiple control
parameters have to be adapted during the certification process, which requires
experienced robot programmers. This leads to the fifth research question. Q5:
How can we facilitate the programming of pHRI applications? (→ chapter 4)
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1.3 Thesis overview

Q1: Can we define dexterity of robotic manipulators in a 
coordinate-invariant way? 

• Decomposition of se(3) in translations and rotations
• Use of appropriate metric and scale choices
• Dexterity analysis for a kinematically redundant robot

ℂ

Motivation

"A redundant robot can have multiple tasks."

Q3: How can we resolve task conflicts?
• Impedance shaping for constrained task dynamics
• Damping design, compliant with task behavior
• Experiments on the KUKA LBR iiwa

Q5: How can we facilitate the programming of pHRI
applications?

• Fixed causality of energy flow during contact
• Energy budgets for coordinate invariant and safe pHRI
• Experiments on the KUKA LBR iiwa

Q4: How can we guarantee stability during pHRI?
• Controller decomposition into energetic sub-systems
• Passivity analysis: monitoring of energy flow 
• Hierarchical passivity check to detect and correct     

non-passive actions C
o
n
tr
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l

MethodsContributions

Coordinate -
based 

processes
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interfaces

Standards/
Regulations

Separation/ 
Workspaces

Differentiable 
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Inter-
connection

Q2: How can we predict and quantify task conflicts? 
• Adaptation of the dexterity measure (Q1) to detect 

multi-task conflicts
• Constrained masses for translational tasks;    

constrained inertias for rotational tasks

A
n
al
ys
is

Customer 
applications
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The influence of coordinates in robotic

dexterity analysis
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Stramigioli S (2020) The influence of coordinates in robotic manipulability anal-
ysis. Mechanism and Machine Theory 146. doi: 10.1016/j.mechmachtheory.2019.
103722



6 Ch 2: The influence of coordinates in robotic dexterity analysis

2.1 Introduction

2.1.1 Kinematic foundations

The set of all robot configurations q can be associated to the manifold Q. The set
of all homogeneous transformations H constitutes the manifold SE(3). The robot
workspace W can be associated to a sub-manifold of SE(3). Both manifolds can
be seen in fig. 2.1.

Figure 2.1: Two differential manifolds in robotics: The set of all joint configurations form the
manifold Q and the set of all homogeneous transformations form the manifold SE(3). Charted
elements of Q form the joint space and are locally isomorphic to Rn. Charted elements of W
form the workspace and are locally isomorphic to R6.

The trajectory of the robot can be represented as a smooth curve on Q and
the trajectory of the end-effector as a smooth curve on W ⊆ SE(3). If the curve
parameter is time t ∈ R, the instantaneous robot configuration and the instanta-
neous homogeneous transformation are q(t) ∈ Q and H(t) ∈ SE(3), respectively.
If the end-effector behavior is the main interest, the programmer of the robot
wants to describe the workspace trajectory H(t). For position-controlled robots,
the task of the robot controller is to transform H(t) to a feasible joint trajectory
q(t) which can be directly controlled.

The tangent space to the smooth manifold Q at joint configuration q is denoted
TqQ. Since SE(3) is not only a smooth manifold but also a group, SE(3) is called
a “Lie group.” The tangent space to the identity element e of the group is denoted
TeSE(3). For SE(3), the identity element is the 4× 4 identity matrix. Elements
of TqQ and TeSE(3) are called “tangent vectors.”

TeSE(3) has the structure of a Lie algebra, indicated as se(3). The properties
of se(3) are shown in appendix B and will be analyzed in more detail in chapter
2.3. TeSE(3) has the structure of a vector space with three operations: vector
addition, scalar multiplication, and vector product. Vector addition and scalar
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multiplication are part of the vector space structure and multiplication exists since
TeSE(3) is a Lie algebra. The space of linear maps from TeSE(3) to real numbers
is called the “co-tangent space” T ?e SE(3). Also T ?e SE(3) has the structure of a
Lie algebra, indicated as se?(3). Moreover, T ?e SE(3) is a vector space which is
called the “co-vector space.”

Coordinates result from a bijective map that assigns a tuple of real numbers
to a point on the manifold. Joint coordinates are a map of a point on Q and
task coordinates are a map of a point on SE(3). The parameterization of joint
coordinates is dependent on the type of joints, e.g., angles in [rad] are mostly
used for revolute joints and distances in [m] are mostly used for linear joints.
Task coordinates can be associated to Cartesian coordinate frames. A Cartesian
coordinate frame is a set of three mutually orthonormal vectors with unit length.
The coordinate frame can either be attached to the moving robot body or placed
stationary in the workspace. The former is called a “body-fixed coordinate frame”
and the latter is called an “inertial coordinate frame.”

For each time instant, the current point on SE(3) represents a change of motion
from a reference coordinate frame (body-fixed or inertial) to the current value
H(t) ∈ SE(3). H(t) incorporates translations p(t) ∈ R3 and rotations R(t) ∈
SO(3). Translations p(t) can be represented by the Cartesian coordinate frame
with axes unit [m].

Rotations are elements of smooth manifolds and can be represented globally
and locally. For global representations, there is a bijective relation between all
elements of the manifold and their coordinate representation. The matrix R(t)
is a global representation of SO(3) with nine-parameters. For local representa-
tions, the mapping only exists for a subset of rotations. Moreover, representation
singularities can occur. In robotics, often Euler angles are used, which are local
representations with three parameters. A comparison of all rotation representa-
tions can be found in Shuster (1993).

One can find a local coordinate representation of tangent vectors with respect
to the coordinate-induced bases. Tangent vectors of TqQ are locally isomorphic to
Rn, with n being the number of robot joints. The local coordinate representation
of TqQ yields the joint velocity q̇ ∈ Rn of the robot. Tangent vectors of TeSE(3)
are called “twists.” A twist can either be expressed in a fixed inertial coordinate
frame (called “spatial twist”) or in a moving body-fixed coordinate frame (called
“body twist”). The spatial twist is calculated by ḢH−1 ∈ se(3) and the body
twist is calculated by H−1Ḣ ∈ se(3). Here, the notation of the dependency on
t was dropped for simplicity. Tangent vectors of TeSE(3) are locally isomorphic
to R6. If TeSE(3) is associated with R6, the 0-element of the Lie algebra is the
zero vector. The twists ḢH−1 and H−1Ḣ can be represented as six-dimensional
vectors. The vector components then correspond to the standard basis of se(3)
(Zefran and Kumar, 1997; Zefran et al., 1999). In this work ξs ∈ R6 will be denoted
as the vector form of the spatial twist ḢH−1 and ξb ∈ R6 will be denoted as the
vector form of the body twist H−1Ḣ. The coordinate dependency of both twists
will be shown in more detail in the next subchapter.
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2.1.2 Left and right invariant representation of twists

The position of a point expressed in the body-fixed coordinate frame “b” is de-
noted bp ∈ R3. This point, written in homogeneous coordinates, can be expressed
with respect to the inertial coordinate frame “0” by using the homogeneous trans-
formation matrix 0Hb ∈ SE(3):(

0p
1

)
= 0Hb

(
bp
1

)
. (2.1)

For a fixed point on the robot body, time differentiation of eq. (2.1) yields:(
0ṗ
1

)
= 0Ḣb

(
bp
1

)
. (2.2)

Here, 0Ḣb(t) ∈ TH(t)SE(3) is the tangent vector to a point on the workspace
trajectory. In eq. (2.2), a dependency on “b” and “0” still exists. To resolve the
dependency on the body-fixed coordinate frame, the point bp (in homogeneous
coordinates) can be transformed to inertial coordinates:(

0ṗ
1

)
= 0Ḣb(0Hb)

−1︸ ︷︷ ︸
Spatial twist

(
0p
1

)
. (2.3)

This yields the spatial twist ḢH−1 ∈ TeSE(3), which is derived by “right trans-
lation” (Park et al., 1993) to the identity of the group, i.e., the matrix H−1 is
multiplied from the right. Here, the notion of the dependency on coordinates was
dropped for simplicity. As can be seen in eq. (2.3), the spatial twist does not
depend on the choice for a body-fixed coordinate frame. Hence, the spatial twist
is called a “right invariant representation” of Ḣ.

To resolve the dependency on the inertial coordinate frame, eq. (2.2) can be

multiplied by (0Hb)
−1

from the left:(
bṗ
1

)
= (0Hb)

−1 0Ḣb︸ ︷︷ ︸
Body twist

(
bp
1

)
. (2.4)

This yields the body twist H−1Ḣ ∈ TeSE(3), which is derived by “left trans-
lation” (Park et al., 1993) to the identity of the group, i.e., the matrix H−1 is
multiplied from the left. Again, the notion of the dependency on coordinates was
dropped for simplicity. The body twist is called a “left invariant representation”
of Ḣ.

2.1.3 Metric property of SE(3)

In robotics, it is often desired to talk about the length1 or the norm of a vector.
However, the scalar product structure of R3 cannot be generalized for TeSE(3).

1To talk about the length of a vector, an inner product has to be defined first.
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Since TeSE(3) can be associated with R6, it incorporates a (pseudo-)inner product
structure with a quadratic form g ∈ SE(3). If g is non-degenerate, it is called a
“pseudo-metric” and if g is positive definite it is called a “metric.”

Definition 2.1 Given a R-vector space V , a pseudo-inner product with bi-linear
pseudo-metric g will be defined by imposing two conditions on g:

1. Symmetry: ∀v, w ∈ V : g(v, w) = g(w, v)

2. Non-degeneracy:

g̃ : V → V ?

v 7→ g̃(v)
∃ g̃−1 : V ? → V

(v, w) 7→ g(v, w) := g̃(v)(w) and g̃−1 ◦ g = idV

A stronger requirement than non-degeneracy is positive definiteness, which yields
an inner product with metric ḡ:

ḡ(v, v) ≥ 0 and ḡ(v, v) = 0⇒ v = 0

As shown in sec. 2.1.2, the twists ∈ TeSE(3) can either be derived by right or
left translation of Ḣ(t) ∈ TH(t)SE(3) to the identity element of the group. Hence,
the (pseudo-)inner product on se(3) will also have two classes of (pseudo-)metrics:
right and left invariant (pseudo-)metrics. A (pseudo-)metric that is right and left
invariant is called “bi-invariant.”

As shown in Murray et al. (1994), any bi-invariant quadratic form in se(3) can
be represented by a linear combination of the “Killing form” and the “Hyperbolic
form”:

M = γ

(
0 0
0 I

)
︸ ︷︷ ︸
Killing form

+ β

(
0 I
I 0

)
︸ ︷︷ ︸

Hyperbolic form

. (2.5)

Here, I ∈ R3 is the identity matrix and the scalars γ and β are scale choices.

2.1.4 Dexterity and Manipulability

Dexterity analysis makes a statement about how “well” or “badly” the robot can
be moved along different workspace trajectories. Since the trajectory is a curve
in SE(3) (upper part of fig. 2.1), dexterity is an intrinsic condition of the robot
and must be invariant of the coordinate choice of the user. More specifically, the
dexterity analysis must be invariant of the chosen joint coordinates to describe the
kinematic structure and the task coordinates (body-fixed or inertial) to describe
the workspace behavior (lower part of fig. 2.1).

In the literature, dexterity measures have different purposes and should support
the user during every phase of the robot’s life cycle. These phases can roughly be
divided in:
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1. Design phase → 2. Kinematic and Dynamic analysis
→ 3. Task planning → 4. Control and operation.

During the first phase, the designer mostly analyzes the available workspace vol-
ume2 of the robot and checks if the robot can reach a set of goal coordinate frames
(Park, 1995). During the kinematic and dynamic analysis, the robot structure
is optimized such that the robot is able to produce desired velocities, accelera-
tions, and forces in certain given directions (Zefran et al., 1999). The dynamics of
the robot are mostly calculated by placing body-fixed coordinate frames on each
link such that the coordinate frame origin coincides with the respective center of
mass. Since the designer adapts the kinematic structure during these two phases,
the position of the body-fixed coordinate frames changes. Changing the inertial
coordinate frame, however, should not change the results of the robot dynamic
calculation. It is therefore desired that the dexterity measure should be invariant
of the inertial coordinate frame (left invariant) (Park et al., 1993). The third phase
involves the planning of the robot cell. For a given robot task, a dexterity measure
should support the user to select the right robot. In most cases, the exact tool
dimensions are not known in this phase. Hence, the dexterity measure should be
invariant to the body-fixed coordinate frame (right invariant) (Park and Brockett,
1994). For the last phase, a dexterity measure can observe (and at best predict)
a bad robot condition, i.e., a kinematic singularity or a task conflict3.

In the literature, the terminology “manipulability analysis” is often used in-
stead of “dexterity analysis.” Hereby, manipulability addresses a part of dexterity.
More precisely, manipulability can also be called “local dexterity” since it is applied
in the latter three phases of the robot life cycle. The purpose of manipulability
measures is to determine if the robot is close to a kinematic singularity (Park and
Brockett, 1994).

The main aim of this chapter is to show the relations between dexterity analysis
and the choice of both coordinate types, i.e., joint coordinates and task coordi-
nates (fig. 2.1). In a first step, the heavily used “Velocity Manipulability Ellipsoid”
(Yoshikawa, 1985b) is analyzed and it is shown that different ellipsoids can arise
for one and the same robot. The reasons can be illustrated with the help of tensor
analysis. In a further step, a dexterity measure is derived that describes a dynamic
characteristic and can be applied to kinematically redundant robots with mixed
joint types. For a given control input, the robot end-effector will produce gener-
alized motions that are associated to the robot task. With the help of screws, the
end-effector motion can be decomposed into translational and rotational motions.
The analysis of the robot’s ability to produce end-effector motions has dependen-
cies on task coordinates. It will be shown that for purely rotational end-effector
motions, the dependency on task coordinates can be removed. For translational
end-effector motions, specific directions have to be chosen for dexterity analysis.
Summarized, the main contributions of this chapter are:

• Overview of the most frequently used dexterity measures in the literature.

2To talk about a volume, a volume form on a manifold has to be defined first.
3It will be shown in chapter 3 that both are strongly related.
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• Derivation of the Velocity Manipulability Ellipsoid and identification of co-
ordinate dependencies.

• Analysis of the differential geometric workspace structure to understand the
relations to coordinates.

• Derivation and representation of a coordinate invariant dexterity measure
for rotational task motions.

• Illustration of possibilities and constraints for the analysis of translational
task motions.

The results of this chapter are partly reported in Lachner et al. (2020).

2.2 Dexterity measures in the literature

The manipulability measures in the literature are strongly related to the Jacobian
matrix J(q)H ∈ R6×n. J(q)H maps joint velocities to a six-dimensional vector
of task velocities V . The first three rows of J(q)H can be derived by ∂L(q)/∂q
and yield the time differentiation of the position p = L(q) ∈ R3, i.e., the linear
velocity ṗ ∈ R3. The last three rows can be derived with the time derivative of
the rotation matrix and by using the skew-symmetric representation of the angular
velocity w ∈ R3 (Siciliano et al., 2009):

V = J(q)H q̇. (2.6)

V is often called “spatial velocity” but should not be confused with twists. For
the derivation of a twist, no time differentiation is needed. Through the analyti-
cal derivation of linear velocities and geometrical derivation of angular velocities,
J(q)H will be called “Hybrid Jacobian Matrix.”

A geometric solution of the Jacobian matrix that incorporates the structure of
a Lie Group is the matrix J(q)G ∈ R6×n. J(q)G maps joint velocities q̇ ∈ Rn to
spatial twists in vector form ξs ∈ R6:

ξs = J(q)G q̇. (2.7)

The columns of J(q)G are the twist axes of the robot joints in the configuration q
(Murray et al., 1994). In the following, J(q)G will be called “Geometrical Jacobian
Matrix.” As shown in sec. 2.1.2, ξs is an element of the Lie algebra and can be
derived by right translation of Ḣ(t) to the identity element of the group and the
homogeneous transformation H(t) can be integrated from it.

Due to the differentiation of the forward kinematic map L(q), J(q)H of eq.(2.6)
has a dependency on the body-fixed coordinate frame and the inertial coordinate
frame. This must be considered when using J(q)H for dexterity analysis. For
manipulability analysis, J(q)H was examined in Salisbury and Craig (1982), Paul
and Stevenson (1983), and Angeles (2014). For simplicity, J(q) := J(q)H in the
sequel of chapter 2.2.
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A lot of authors have proposed many different dexterity measures (tab. 2.1).
As already mentioned, there are different objectives behind the measures: Some
focus on the design phase of the robot, some focus on kinematic/dynamic analysis,
while others focus on control. While a lot of measures were proposed in the 1980’s,

Table 2.1: Dexterity measures proposed for different objectives: Design (D), kinematic/dynamic
analysis (A), and control (C). The measures in the upper part of the table include a matrix
and an operation, performed on that matrix. The abbreviations for the matrix operations are:
cond2(•) is the condition number based on the matrix 2-norm, det(•) the matrix determinant,
eig(•) eigenvalue decomposition, and svd(•) singular value decomposition. The work in the lower
part of the table reports the geometric fundamentals of dexterity analysis in SE(3).

Author, Year Measure D A C

Salisbury and Craig (1982) cond2(J(q)) X
Paul and Stevenson (1983) |det(J(q))| X

Asada (1983) eig((J(q)M(q)
−1
J(q)

T
)
−1

) X
Hogan (1984) eig(J(q)M(q)

−1
J(q)

T
) X X

Yoshikawa (1985b)
√
det(J(q)J(q)T ) X

Yoshikawa (1985a) det(J(q)(M(q)TM(q))
−1

J(q)T ) X
Ma and Angeles (1991) svd(J(q))→ σmax

σmin
X X

Paden and Sastry (1988) X
Park et al. (1993) Fundamentals of X

Park and Brockett (1994) dexterity analysis in SE(3) X X
Park (1995) X

Zefran et al. (1999) X

the geometric fundamentals of dexterity analysis in SE(3) were reported later
in the 1990’s. The dexterity measures in the upper part of tab. 2.1 ignore the
dependencies on coordinates. The dexterity measures in the lower part consider
task coordinates but not the dependency on joint coordinates. Paden and Sastry
(1988) derived a bi-invariant dexterity measure. All other dexterity measures in
the lower part of the table consider invariance to the inertial coordinate frame (left
invariance). Hence, it was identified a lack of dexterity measures for kinematically
redundant robots that take into account joint coordinates and task coordinates.
Moreover, the dexterity measures in the lower part of tab. 2.1 focus on design
and kinematic analysis, but not on control. The derived dexterity measure of this
chapter will be applied for torque control of a kinematically redundant robot in
chapter 3.

2.2.1 Velocity Manipulability Ellipsoid

The quadratic form J(q)J(q)
T

is probably the most frequently used measure
of dexterity. It was originally proposed by Yoshikawa (1985b) and e.g., applied
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in Klein and Blaho (1987), Baillieul (1987), Chiu (1988), Burget and Bennewitz

(2015), and Su et al. (2019). Hereby, J(q)J(q)
T

is the core of the “Velocity
Manipulability Ellipsoid” (Yoshikawa, 1985b), which is often recommended for
manipulability analysis of kinematically redundant robots (n > 6) (Burget and
Bennewitz, 2015; Chen et al., 2015; Duan et al., 2019).

The derivation of this ellipsoid starts by visualizing the velocities q̇ as a sphere.
The used sphere equation is

q̇T q̇ = 1. (2.8)

As a next step of the derivation, a Jacobian (pseudo-)inverse has to be defined
which maps task velocities V to joint velocities q̇. If J(q) is square and has full
rank, the Jacobian inverse is uniquely defined, since the mapping is bijective. In
the kinematically redundant case (n > 6), the mapping is surjective and hence
there are infinitely many solutions of q̇ to produce a desired Cartesian velocity.
To choose a solution among the possible ones, a choice for a cost function can be
made, which is minimized. A typical choice for a cost function is

g(q̇) =
1

2
q̇TWq̇, (2.9)

with W ∈ Rn×n being a symmetric positive definite weighting matrix. The solu-
tion obtained by minimizing eq. (2.9) is the “Generalized Inverse” (Siciliano et al.,
2009) of J(q):

J(q)
#

= W−1J(q)
T

(J(q)W−1J(q)
T

)
−1
. (2.10)

Choosing W equal to the Identity matrix yields the “Moore-Penrose Inverse”
(Penrose, 1955) J(q)†. By using J(q)†, one obtains the solution q̇ that minimizes
g(q̇) = 1

2 q̇
T q̇. This choice is heavily used to determine joint velocities for a given

set of task velocities:
q̇ = J(q)

†
V . (2.11)

Substituting eq. (2.11) in eq. (2.8) results in a workspace ellipsoid:

V T (J(q)J(q)
T

)
−1
V = 1. (2.12)

The shape and orientation of the ellipsoid is determined by the matrix J(q)J(q)
T

.

It will be shown in the next chapter that the choice J(q)
†

has consequences when
using eq. (2.12) for the analysis of robots with different joint coordinate units.

2.2.2 Specific aspects of J(q)J(q)T

The quadratic form J(q)J(q)
T

is incorporated in the manipulability measure (tab.
2.1):

R 3 w =

√
det(J(q)J(q)

T
), (2.13)

where det(•) is the determinant of a matrix. The determinant of a matrix is equal
to the product of its eigenvalues. A definition of eigenvalues can be found in
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Figure 2.2: 3-DOF planar robot with different set of joint coordinates: blue set (θ1, θ2, θ3) with
unit [rad] and red set (p1, p2, p3) with unit [m]. The values of the joint coordinate sets can be
seen in appendix A.2.

Dubrovin et al. (1984). It will be shown in sec. 2.3.2 that eigenvalues of quadratic
forms have dependencies on a chosen (pseudo-)metric.

Since w is independent of the choice of the body-fixed coordinate frame (ap-
pendix A.1) and can be applied for kinematically redundant robots, it is often
recommended for the analysis of mobile robots (Siciliano and Khatib, 2008; Sicil-
iano et al., 2009; Burget and Bennewitz, 2015; Duan et al., 2019).

The matrix J(q)J(q)
T

has dependencies on joint coordinates. In fig. 2.2,
a robot with different sets of joint coordinates is illustrated. Assigning different
sets for the same robot yields different values of J(q)J(q)

T
and in its eigenvalue

decomposition. If the set of coordinates is chosen such that not all coordinates bear
the same unit, the matrix product J(q)J(q)

T
even cannot be calculated because

a mismatch of units arises (cf. previous work of Schwartz et al. (2002), Merlet

(2006), and appendix A.2). This has the consequence that J(q)J(q)
T

cannot be
computed for a mobile robot without separating base and robot arm.

If a Generalized Inverse of a non-square J(q) is used (eq. (2.10)), any positive
definite weighting matrix can be chosen. Without a meaningful choice, the result-
ing pseudo-inverse of J(q) incorporates no physical meaning (Azad and Babič,
2019).

Fig. 2.3 shows different manipulability ellipsoids for the same robot with the
same body-fixed coordinate frame ΨTask. One ellipsoid has a randomly chosen
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weighting matrix Wrand, with values given in appendix A.2. This illustrates how
the obtained results critically depend on the choice of joint coordinates and the
weighting matrix W . In theory, one could even modify the elements of the weight-
ing matrix to obtain any desired result (fig. 2.3). It is therefore necessary to men-

tion the specific choices made when using J(q)J(q)
T

for manipulability analysis.
Without that information, the result of the analysis cannot be compared between
different users.
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Figure 2.3: Velocity Manipulability Ellipsoids: blue ellipsoids for joint coordinate set (θ1, θ2, θ3)
and red ellipsoid for joint coordinate set (p1, p2, p3). The ellipsoids drawn solid have W = I.
The blue ellipsoid with dotted line has W = Wrand. Wrand and the values for the axes lengths
and axes directions can be seen in appendix A.2.

2.2.3 Tensors for robotic dexterity analysis

Tensors are the basic objects of a coordinate invariant formulation of linear alge-
bra and are represented by arrays and matrices. They can furthermore be made
position dependent on a manifold and are then called “tensor fields.” The dual
objects of vectors are called “co-vectors.” Often, no separation between vectors
and co-vectors is made in robotics. Therefore, important information about the
underlying elements gets lost. Tensor analysis separates these elements according
to their transformation properties which make their physical nature explicit (ap-
pendix C.1). Using the rules of tensor contraction, the coordinate dependency of
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mathematical equations can be checked (appendix C.2). This knowledge will be

used to analyze the derivation of J(q)J(q)
T

(sec. 2.2.1). Literature on tensors
can be found in Boothby (1975), Dubrovin et al. (1984), and Frankel (2011).

The vector q̇ and its transpose representation q̇T in eq. (2.8) is a tensor of type(
1
0

)
. To contract these two tensors to a scalar value, a quadratic form of type(

0
2

)
is needed (cf. appendix C.2). The mass matrix M(q) is such a tensor, which

can be seen in eq. (2.14) for kinetic co-energy4:

R 3 T =
1

2
q̇TM(q)q̇. (2.14)

This means that whatever joint coordinates are chosen, T will always have the
same value because any change of coordinates for q̇ will imply a change of coordi-
nates for M(q). The set of q̇ satisfying

q̇TM(q)q̇ = 1 (2.15)

is an ellipsoid in the space of joint velocities at the configuration q. It is an
important first result that unlike eq. (2.8) with weighting matrix W = I, the
ellipsoid in eq. (2.15) is relating the change of joint velocities to a change of the
components ofM(q) such that the scalar image of the quadratic form is coordinate
invariant. Therfore, the ellipsoid can be computed, even if not all elements of q̇
have the same units.

After a specific choice for a weighting matrix in eq. (2.10), joint velocities q̇ can
be determined which are inserted into eq. (2.15). This results in another workspace
ellipsoid:

V T (J(q)M(q)
−1
J(q)

T
)
−1
V = 1. (2.16)

This ellipsoid was called “Generalized Inertia Ellipsoid” in Asada (1983) and was
recommended to be used for the design phase of the robot. Compared to the
ellipsoid in eq. (2.12), this ellipsoid can be computed no matter which joint co-
ordinates are used to represent the kinematic structure. Moreover, this ellipsoid
incorporates dynamic characteristics of the robot. Nevertheless, this ellipsoid is
only well-defined for fullrank J(q). The matrix elements of

Λ = (J(q)M(q)
−1
J(q)

T
)
−1

(2.17)

grow without bound near singular configurations.

2.3 Dexterity analysis for dynamic robot tasks

In the sequel of this chapter, the Lie group structure of SE(3) will be utilized
and the Geometrical Jacobian Matrix J(q)G (eq. (2.7)) will be used. To make the
notation light it will be defined: J(q) := J(q)G.

4Kinetic co-energy is a quadratic form in flow (generalized velocity) and kinetic energy is a
quadratic form in effort (generalized momentum) (Paynter et al., 1961)
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To talk about the length or the norm of a vector, an inner product with metric
g has to be used (sec. 2.1.3). For robotic dexterity analysis, the question arises:
What would be a suitable choice for g? In the literature, g is often chosen to be
the identity matrix due to the scalar product structure of R3, with orthogonal
bases b1 = (1, 0, 0), b2 = (0, 1, 0), and b3 = (0, 0, 1). However, the inner product
structure on R3 cannot be similarly used for se(3), since the orthogonality has
dependencies on the chosen coordinate frame (Lipkin and Duffy, 1988; Murray
et al., 1994).

For the joint space, the mass matrix M(q) is a

(
0
2

)
-tensor that creates a

natural bijective relation between the vector space TqQ and the co-vector space
T ?qQ. Since M(q) is positive-definite, it can always be inverted. M(q)−1 can be
mapped5 to the workspace (fig. 2.4):

Λ−1 = J(q)M(q)−1J(q)T . (2.18)

Figure 2.4: Graphical commutative diagram with tangent spaces TqQ and TeSE(3) and co-
tangent spaces T ?qQ and T ?e SE(3) for the joint space (left) and workspace (right), respectively.

The quadratic form Λ−1 maps (generalized) momentum P to twists ξ. Starting from T ?e SE(3),
the composition of Λ−1 is represented by the orange arrows.

Λ−1 is a

(
2
0

)
-tensor. Since Λ−1 is induced by the use of the metric M(q)−1

in the joint space, it is invariant to the change of the inertial coordinate frame
(left invariant).

With fig. 2.4, the reason for the dependency of J(q)J(q)
T

on joint coordinates
becomes clear: Eq. (2.12) uses the identity matrix as metric and therefore can
only be used if the chosen parameterization has the same unit for all robot joints.

Λ−1 maps (generalized) momenta P ∈ se?(3) to twists. In the further pro-
ceeding of this chapter maximum decoupling will be presumed and the coupling
terms incorporated in Λ−1 will be ignored. In the work of Hogan (1984), Λ−1

5Also called “pulled back.”
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is called “mobility end-point tensor.” The matrix is associated to an admittance,
which has “effort” as input and “flow” as output. It shows the admittance of the
robot as seen from the task momentum. Also Khatib uses Λ−1 for his Operational
Space Control Framework (Khatib, 1980, 1987). In Khatib (1995), Λ−1 was used
to examine the inertial properties of the end-effector dynamics. Khatib and Sentis
(2004) extended this work by analyzing the dynamic relation of a subordinate task
and a main task (sec. 3.3).

For torque controlled robots, the dexterity of the robot is dependent on the
inertial properties of the robot. Hence, the matrix Λ−1 is a good candidate for
dynamic dexterity analysis. Compared to the quadratic form J(q)J(q)T (sec.
2.2.1), it brings three essential benefits: Firstly, through appropriate mapping
between TeSE(3) and T ?e SE(3), the calculation of Λ−1 doesn’t need an inversion
of J(q) (fig. 2.4). Secondly, Λ−1 is independent of the chosen joint coordinates,
used to represent the kinematic structure of the manipulator (appendices A.2 and
A.3). Thirdly, Λ−1 incorporates dynamic data and is therefore beneficial for the
use of torque controlled robots. If it is desired to represent parts of Λ−1 in R3,
SE(3) has to be decomposed into translational and rotational subgroups and their
respective sub-algebras have to be analyzed. The attributes of the translational
and rotational sub-algebras can be seen in appendix B.

2.3.1 Screws: Geometric representation of Lie algebra
structure

Any element of se(3) has a geometric line in 3D-space associated with it. Hereby,
the rotational part of the twist characterizes the direction of the line and the
motion along the line. This geometric line will be called “a screw” and will be
represented in Plücker coordinates with axis representation.

Definition 2.2 A screw motion is defined as an instantaneous (pure) rotation
about an axis together with an instantaneous (pure) translation along the same
axis. Moreover, a pitch h ∈ R is defined as the ratio between translational motion
v and rotational motion w:

ξ =

(
v
w

)
︸ ︷︷ ︸
rotation

+ h

(
w
0

)
︸ ︷︷ ︸

translation

.

Literature on “screw theory” can be found in Murray et al. (1994) and Stramigioli
and Bruyninckx (2001a).

It can be seen in appendix B that se(3) can be restricted to pure translations,
i.e., twists with infinite pitch (eq. (B.4)). While a pure rotation (a twist with zero
pitch) characterizes the line, a pure translation (twist with infinite pitch) is not
bounded by a line.

Since the input of the map Λ−1 (eq. (2.18)) is a momentum P, we are
also interested in momentum screws. The fact that momentum is physically
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Figure 2.5: Representation of a momentum screw. The screw consists of linear momentum along
the screw axis and rotational momentum about this axis. The pitch of the momentum screw
is the ratio of angular momentum and linear momentum. A pure rotational momentum is a
momentum screw with infinite pitch.

equal to a wrench and hence can be represented by a screw was shown in
Stramigioli and Bruyninckx (2001b). The decomposition of momentum is dual
to the decomposition of twists, with linear momentum p ∈ R3 and rotational
momentum (r ×p) ∈ R3:

P =

(
p

r ×p

)
︸ ︷︷ ︸

linear momentum

+ h

(
0
p

)
︸ ︷︷ ︸

rotational momentum

. (2.19)

In fig. 2.5, a momentum screw is visualized with linear momentum p along the
screw axis. After choosing a point on the screw axis, the rotational momentum
can be calculated by r ×p.

The knowledge gained from the Lie algebra structure (appendix B) and the
association of se?(3) with momentum screws will be used for dexterity analysis in
the next sub-chapter.

2.3.2 Dexterity analysis

For dexterity analysis, often eigenvalue decomposition on a quadratic form is per-
formed (tab. 2.1). Based on the eigenvalues and the direction of the corresponding
eigenvectors, the robot dexterity can be represented as a sphere or an ellipsoid
(fig. 2.3).

In tensor language, the commonly used “eigenvalue equation” (Lang, 1987) can
be written as:

T am ua = λ um, (2.20)



20 Ch 2: The influence of coordinates in robotic dexterity analysis

where T am is a linear operator with corresponding eigenvector ua. The scalar λ
is called the “eigenvalue” associated with um. It can be seen that this equality

only holds for tensor T am of type

(
1
1

)
. To make eq. (2.20) work for a tensor T ka

of type

(
2
0

)
, a quadratic form can be used to lower one index of T ka and obtain

a linear operator (appendix C.2). A common choice is to use a (pseudo-)metric
gmk, which is defined on the same vector space as the tensor T ka. Eq. (2.20) can
therefore be rewritten:

gmk T
ka ua = λ um. (2.21)

This is an important finding since the eigenvalues of a quadratic form—with ref-
erence to a (pseudo-)metric—are generally speaking the eigenvalues of a linear
operator which arises through tensor contraction. The tensor contraction is well
defined since the quadratic form and the (pseudo-)metric are defined on the same
vector space.

For the analysis of the translational and rotational sub-algebras of se(3), the
bi-invariant quadratic form M (eq. (2.5)) will be used and specific scale choices

will be made to apply tensor contraction on the

(
2
0

)
-tensor Λ−1.

Dexterity analysis for rotational tasks

For the analysis of rotational tasks, a first choice has to be made for the scale in
eq. (2.5): β = 0, γ = 1. For γ = 1, MK is called “Standard bi-invariant metric
on SO(3)” in Park et al. (1993), Park and Brockett (1994), Park (1995), and is

equal to the Euclidean metric. MK is a

(
0
2

)
-tensor that can be used for tensor

contraction on one index of Λ−1:

(Λ−1
ε )

k

i = (Λ−1)
kj

(MK)ij . (2.22)

The action of MK can directly be seen: After tensor contraction, the block matrix
Λ−1 only contains one non-zero (3× 3)-block, which is denoted Λ−1

ε,3D ∈ R3×3.

For a given rotational momentum R3 3m = (r ×p) (momentum screw with
infinite pitch), the angular velocity w ∈ R3 of the end-effector can be calculated
by:

w = Λ−1
ε,3D m. (2.23)

As can be seen in fig. 2.5, a rotational momentum is not bounded by a line. To
calculate a rotational momentum, a choice for a point r ∈ R3 is needed.

Since Λ−1
ε,3D is a

(
1
1

)
-tensor, the dependency on the choice for the body-fixed

coordinate frame has been removed (appendix A.4). Once considering MK as ref-
erence, eigenvalue decomposition on Λ−1

ε,3D can be applied and can be represented
as an ellipsoid (fig. 2.6). The ellipsoid is determined by the lengths and directions
of the semi-axes. The axes point along the eigenvectors of Λ−1

ε,3D. The eigenvalues
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(a) Ellipsoid in xz-view (b) Ellipsoid in yz-view

Figure 2.6: Rotational Dynamic Dexterity Ellipsoid for a 8-DOF robot, with two translational
coordinates and one rotational coordinate for the robot base and five rotational coordinates
for the robot arm. The ellipsoid shows how well the robot can generate rotational motion
in respective task coordinate indicated by the drawn task coordinate frame. About the blue
coordinate-axis, high rotational motions can be produced, e.g., by turning the last joint. For
rotational motion about the green coordinate-axis, high masses have to be moved. The red
coordinate-axis shows the degenerating direction (cf. yz-view right). Moving the task coordinate
on the end-effector body results in the same ellipsoid (cf. appendix A.4).

of Λ−1
ε,3D determine the semi-axes length of the ellipsoid. The ellipsoid in fig. 2.6

shows how well a robot can transform rotational momentum to rotational motion.
If J(q)H is used for the calculation of Λ−1

ε,3D, the ellipsoid remains the same even
if the coordinate frame on the robot body changes (appendix A.4).

Dexterity analysis for translational tasks

In the first step of the analysis of translational tasks, β = 1, γ = 0 (eq. (2.5)) and
the Hyperbolic form MH is used for tensor contraction:

(Λ̄−1)
k

i = (Λ−1)
kj

(MH)ij . (2.24)
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Now, Λ̄−1 is an anti-symmetric matrix. In a second step, MK (β = 0, γ = 1) can
be used and tensor contraction on Λ̄−1 can be applied:

(Λ−1
p )

il
= (Λ̄−1)

k

i (MK)kl. (2.25)

With this contraction, the pure translational part of Λ−1 is extracted. Hence, the
matrix Λ−1

p only contains one non-zero (3 × 3)-block, which is denoted Λ−1
p,3D ∈

R3×3. Compared to Λ−1
ε,3D, the tensor Λ−1

p,3D is of type

(
0
2

)
.

For a given linear momentum p ∈ R3 (momentum screw with zero pitch), the
linear velocity ṗ ∈ R3 of the end-effector can be calculated by:

ṗ = Λ−1
p,3D p. (2.26)

As can be seen in fig. 2.5, p specifies the direction of the momentum screw axis.
The direction and magnitude of p is equal even though the co-vector is shifted
along the line.

The matrix Λ−1
p,3D can be analyzed along specific directions. With given task

direction u ∈ R3, the scalar mass mu ∈ R can be calculated that counteracts a
linear momentum (Wassink and Stramigioli, 2007):

mu = (uTΛ−1
p,3Du)

−1
. (2.27)

In the literature, the scalar mu is often used for safety considerations in pHRI, as
will be shown in chapter 4.

2.4 Conclusion

The first aim of this chapter is to make the reader aware of the influence of co-
ordinates in robotic dexterity analysis. The context is not new in differential
geometry, but often disregarded in robotics. First, an analysis of the dexterity
measure J(q)J(q)T is performed. For the design process of a robot, J(q)J(q)T

can be used to examine the robot’s ability to transform joint velocities to task
velocities. It therefore incorporates kinematic characteristics of the robot. The
limitations of this measure are shown: J(q)J(q)T is not comparable for users
with different coordinate choices. Moreover, for kinematically redundant robots,
it depends on a choice for a cost function and a weighting matrix for the Jacobian
pseudo-inverse. J(q)J(q)T cannot be used for robots with mixed joint coordinates
(e.g., mobile robots).

The second aim of this chapter is to show how these limitations can be removed
by applying tensor analysis. The derivation of Λ−1 is shown, which is invariant of
joint coordinates. The key features of this matrix are:

1. Λ−1 shows a physically consistent mapping between the two robotic spaces.
The choice of M(q)−1 as a metric in the Q-space enables a “natural scaling”
of translational and rotational motion.
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2. The matrix assigns a physical relationship to a robotic task: It shows how
well a robot can resolve (task) momentum and therefore incorporates a dy-
namic characteristic.

3. The values of the matrix elements in Λ−1 are unique, no matter what set of
joint coordinates are chosen to describe the kinematic structure.

4. The proposed dexterity measure can also be applied to kinematically redun-
dant robots. Hereby, the values of the matrix elements in Λ−1 are unique
because no inversion of the Jacobian matrix is needed.

5. An analysis of Λ−1 can be applied for robots with mixed joint parameters,
e.g., mobile robots, without separating base and robot arm.

6. Λ−1 can be used as basis for dexterity analysis. The analysis of Λ−1 has a
dependency on task coordinates.

The manifold SE(3) incorporates no bi-invariant metric. Therefore, se(3) had
to be decomposed and the linear and rotational sub-algebras had to be analyzed
separately. The structure of both sub-algebras were shown and their geometric
properties were represented by screws. The main findings are:

1. By choosing the Euclidean metric as reference, it is possible to extract the
rotational part of Λ−1. The values of the matrix elements in Λ−1

ε are unique,
no matter what joint coordinates are taken and wherever the task coordinate
is placed.

2. Λ−1
ε describes the dynamic ability of the robot to perform a rotational task:

It shows how well the robot can transform rotational momentum to rotational
motion.

3. Λ−1
ε can be used for dexterity analysis of purely rotational tasks. Once con-

sidering the Euclidean metric as reference, the Eigenvalues and Eigenvectors
of Λ−1

ε can be calculated to plot a coordinate invariant Rotational Dynamic
Dexterity Ellipsoid.

4. On SE(3), no coordinate invariant way exists to extract the translational
part of Λ−1.

5. Linear momentum is independent of the position on the screw axis. Λ−1
p can

be analyzed by assigning specific directions. The scalar mass counteracting
the linear momentum is often used for safety analysis.

2.4.1 Limitations

One practical limitation of the proposed dexterity measure is its use of the inverse
mass matrix M(q)

−1
as metric. For users without access to the robot dynamics,

extensive work has to be done to identify the data. However, multiple identification
methods exist (cf. overview provided in Siciliano and Khatib (2008)).
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2.4.2 Towards coordinate-invariant dexterity analysis

Most industrial robots have six degrees of freedom and consist of purely revolute
joints. Therefore, the choice for an appropriate dexterity measure is easy since
(far away from singularities) the mapping between workspace and joint space is
bijective. This means that the Jacobian inverse is unambiguously defined and
hence no cost function and weighting matrix has to be chosen. To enlarge the fea-
sible workspace, kinematically redundant robots can be used. Often, these robots
don’t posses unitary joint types. An example is a mobile robot with robot arm
and platform. The dexterity measure should treat such a robot as one kinematic
structure and the analysis should not be separated for robot arm and platform.

Traditional robot applications have stationary workspaces. Since the robot
position and the workpiece have a fixed positions in space, the robot process is
programmed by using coordinate frames. If the position and orientation of the
coordinate frames remains constant, the dexterity of the robot might be described
as a function of the stationary or body-fixed coordinate frame and the fixed robot
posture. An example is screw fastening, where the dexterity along the screw axis
could be described. Collaborative robots, however, interact with the environment
(e.g., the human). Now the workspace is not fixed anymore, since it is influenced
by the environment. As a consequence, the coordinate frames and the robot
trajectory cannot remain constant and have to be adapted during task operation.
An example is a humanoid robot with a robotic hand that picks the workpiece
differently each cycle. For such an example, the dexterity measure should be
applicable, even though the coordinate frames change.
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3.1 Introduction

For traditional industrial robots, usually one process-specific task is assigned.
Since these robots have high inertia and operate at high speed, the robot cell
is surrounded by a safety fence. Before the robot is installed, extensive planning
has to be performed via CAD tools and simulations. The goal of the planning
phase is to ensure that the robot trajectories are within the robot workspace and
are not restrained by physical obstacles. Once the planning phase is finished, the
set-up begins and the robot motion is programmed. Unfortunately, kinematic sin-
gularities are encountered often during programming. It is the task of the robot
programmer to determine suitable singularity-free trajectories.

In the meanwhile, a considerable number of collaborative robots exist (Interna-
tional Federation of Robotics, 2019a). Since these robots operate next to a human
co-worker, additional features are required, specifically stability and safe behav-
ior in contact (Stramigioli, 2001). Often, these robots are mobile and possess a
high number of degrees of freedom. This makes them more dexterous and hence
they are able to perform multiple simultaneous tasks. Next to kinematic singular-
ities, conflicts between multiple simultaneous tasks impede robot programming.
Therefore, the controller has to be reactive and the control parameters have to be
adapted autonomously during task execution.

Impedance control, originally proposed by Hogan (1984), is a well-established
control method for robot applications that involve physical interaction. The con-
trol method already implements many of the required features for collaborative
robots: 1) An impedance-controlled robot can be used in contact and out of con-
tact with the environment (Hogan, 1985a); 2) The control method has beneficial
stability properties and hence can be used for interaction with most environments
(Hogan, 1988); 3) Multiple impedances can be superimposed, even if they are
non-linear (Hogan, 1985b); 4) To control kinematically redundant robots, no in-
verse kinematics are needed and hence the robot can go in and out of singularities
without further singularity handling by the controller (Mussa-Ivaldi and Hogan,
1991).

Nevertheless, impedance control also has its limitations. If multiple impedances
are superimposed, they usually influence each other. This has the consequence that
the desired end-effector behavior might suffer (Hermus et al., 2022). Moreover, for
a given task, advanced knowledge is needed to select feasible impedance parame-
ters. For non-expert users, the selection and composition of appropriate impedance
parameters is not trivial (Hogan, 1985a; Buchli et al., 2011; Martin-Martin et al.,
2019).

Chapter 2 addressed the foundations of robot dexterity and showed how kine-
matic singularities can be detected. This chapter will show how a physical thresh-
old can be set up to help the robot programmer detect a kinematic singularity
before it occurs. The methodology will be extended to detect conflicts between
multiple simultaneous tasks.
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3.1.1 Task hierarchy

For kinematically redundant robots, infinitely many sets of joint velocities exist
that create a desired task velocity. It is possible to search for the joint velocity set
that also fullfills additional tasks. To find a unique joint velocity set, an optimiza-
tion problem may be formulated. Most commonly, nullspace projection methods
are used that resolve the redundancy via the Jacobian pseudo-inverse (eqs. (2.9)
- (2.11)) and the choice for a “nullspace projection matrix” (Khatib, 1987; Naka-
mura et al., 1987; Siciliano and Slotine, 1991). Another common approach uses
quadratic programming. Dedicated solvers are applied to minimize an objective
function (Faverjon and Tournassoud, 1987; Kanoun et al., 2011). For all those
control approaches, a task hierarchy is established with a main task as highest
priority and subordinate tasks with lower priority. The subordinate task of lowest
priority usually controls the motion in the nullspace of J(q).

The priorities are usually assigned by the programmer of the robot applica-
tion. Hereby, implementations with “soft” and “strict” hierarchies exist (Dietrich
et al., 2015). Especially the implementation of strict hierarchies is computationally
expensive (Kanoun et al., 2011; Escande et al., 2014).

In this chapter, task priorities are labeled with a superscript. The superscripts
are numbered from 1 (main task) to 2 (subordinate task with second highest
priority) to i ∈ R (task with lowest priority).

3.1.2 Task conflicts

Depending on the task (i.e., task dimension, desired kinematic/dynamic behav-
ior, goal position) and the given kinematic structure (i.e., degrees of freedom,
kinematic/dynamic ability, available workspace), the robot might not be able to
perform multiple tasks simultaneously. If a task hierarchy is established, tasks
with lower priority will be sacrificed during a task conflict. For many applications,
however, it is crucial that the robot indicates that not all tasks are mutually com-
patible. There are only few methods in the literature that can be used during
robot operation to predict a task conflict (Schettino et al., 2021).

The main contribution of this chapter is an extension for a Cartesian impedance
controller that shapes impedances in order to handle conflicts between multiple
tasks with different priorities. The optimization is executed in parallel to the
control structure. This has computational advantages and is especially useful for
robots with many DOF. The controller ensures the stability of the robot by mon-
itoring the transmitted power through what will be introduced as virtual springs
and the supplied power from the controller to the robot. In case excessive power
would be supplied to the robot, the impedance optimization is adapted to guar-
antee stability. This makes the control method suitable for robots that involve
pHRI. The method is validated on a real robot and compared to well-established
control methods. Table 3.1 shows an overview of the symbols, superscripts, and
supscripts used throughout this chapter. The results of this chapter are partly
reported in Lachner et al. (2022).
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Table 3.1: Overview of the used symbols, superscripts, and subscripts.

Symbols
′ Impedance shaping
ˆ Inertia shaping (Khatib, 1987)
˜ Screw-symmetric matrix form

Superscripts, indicating task priority
1 Main task

2− i Subordinate tasks
c Task consistency

Subscripts, indicating task attribute
p Translational task
ε Rotational task

Control torques of experiments
τ imp Impedance superposition
τnp Nullspace projection
τ ′ Impedance shaping

3.2 Cartesian impedance control based on poten-
tial energy functions

The equation of motion for a robot with n joints can be represented by

M(q)q̈ + c(q, q̇)q̇ + g(q) = τ imp + τ ext, (3.1)

with M(q) ∈ Rn×n being the symmetric and positive definitive inertia matrix and
g(q) = ∂Ug(q)/∂q ∈ Rn being the force resulting from the gravitational potential
energy Ug(q). The centrifugal/Coriolis matrix c(q, q̇) ∈ Rn×n is defined via the

Christoffel symbols (Murray et al., 1994) such that Ṁ(q) = c(q, q̇) + c(q, q̇)
T

holds, which implies that q̇T (Ṁ(q) − 2c(q, q̇))q̇ = 0. The control torque of the
robot is τ imp ∈ Rn. τ ext ∈ Rn are the total resultant effects of all external forces
as torques acting on the joints. With the definition of c(q, q̇), the robot is passive
with respect to torque input τ imp + τ ext and motion output q̇. The passivity
property of the robotic system will be treated in more detail later in the chapter.

In eq. (2.7), a stationary inertial coordinate frame “0” was chosen to calculate
the Geometrical Jacobian Matrix. Instead of an inertial coordinate frame, a body-
fixed coordinate frame “b” can also be chosen. This yields the “Geometrical Body
Jacobian Matrix” (Murray et al., 1994) Jb(q)G that maps joint velocities q̇ to
body twists in vector form ξb ∈ R6:

ξb = Jb(q)G q̇. (3.2)

The vector ξb is expressed in the body-fixed coordinate frame with respect to
the inertial coordinate frame. The columns of Jb(q)G are the twist axes of the
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robot joints with respect to the body-fixed coordinate frame in the configuration
q. Jb(q)G is related to J(q)G (eq. (2.7)) by:

Jb(q)G = Ad−1
(0Hb) J(q)G, (3.3)

where Ad−1
(0Hb) = Ad(bH0) ∈ R6×6 is the inverse of the “Adjoint Matrix” (Murray

et al., 1994):

Ad(0Hb) =

(
0Rb

0p̃b
0Rb

0 0Rb

)
. (3.4)

0Rb ∈ SO(3) and 0p̃b ∈ R3 are the rotation matrix and the position (in skew-
symmetric matrix form) between the body-fixed coordinate frame and the inertial
coordinate frame.

In the rest of the chapter, all entities will be expressed in body-fixed coordi-
nates. Hence, to make the notation light it will be defined: J(q) := Jb(q)G and
ξ := ξb.

For a Cartesian impedance controller, the task is represented by a virtual
spring that pulls the robot body (e.g., end-effector body) from its current pose “b”
towards a desired equilibrium pose “e.” The homogeneous transformation between
“b” and “e” can be represented by the matrix bHe ∈ SE(3). bHe incorporates
the displacement ∆p = (0pe −0 pb) ∈ R3 and the rotation bRe ∈ SO(3):

bHe =

(
bRe ∆p

0 1

)
. (3.5)

Here, the equilibrium position is denoted with 0pe and the selected position on
the robot body is denoted with 0pb.

As discussed in sec. 2.1.1, global and local representations of rotations exist.
bRe is a unique and global representation of the rotation between “b” and “e.” An-
other global representation of rotations are unit-length quaternions. The rotation
matrix bRe can be transformed to unit-length quaternions by using:

ε̃ η = log(bRe), (3.6)

with scalar rotation angle η ∈ R and unit-axis of rotation ε̃ = −ε̃T ∈ so(3),
in skew-symmetric matrix form. The unit-length quaternion bQe can then be
calculated by:

bQe = cos(
η

2
)− ε sin(

η

2
). (3.7)

For the experiments of this thesis (sec. 3.5 and sec. 4.3.3), the algorithm to compute
unit-length quaternions was based on Allmendinger (2015).

Due to the virtual spring, the robot is exposed to a potential energy function
U : SE(3)→ R where U has a translational and rotational part coupled together.
Commonly, the translational part of U is a function of the displacement ∆p and
the translational stiffnessKp ∈ R3×3. In the experiments of this chapter (sec. 3.5),
Kp is chosen to be a diagonal matrix. The rotational part of U can be expressed
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as a function of the unit-axis ε and the rotational stiffness Kε ∈ R3×3. Also Kε is
chosen to be a diagonal matrix. Both, Kp and Kε are expressed in the body-fixed
coordinate frame. The total potential U = Up +Uε, with respect to the body-fixed
coordinate frame, is chosen to be:

U(∆p, ε) =
1

2
∆pT Kp ∆p︸ ︷︷ ︸

Up

+

+ 2 εT Kε ε︸ ︷︷ ︸
Uε

.

(3.8)

To ensure asymptotic convergence towards the equilibrium pose, a virtual
damper is introduced that acts on the body twist ξ and/or the robot velocity
q̇. For now it will be assumed that the controller directly damps q̇ and a more
advanced damping design method will be presented in sec. 3.4.3. The dissipation
can be described by a Rayleigh function R : Rn → R. One simple choice for such
a function is:

R(q̇) =
1

2
q̇TBq q̇, (3.9)

with positive definite damping matrix Bq ∈ Rn×n.
The control wrench F imp ∈ se?(3) that is supposed to minimize the potential

energy function U(∆p, ε) can be derived by computing the differential of U(∆p, ε)
(appendix D). In the further proceeding of this chapter, the centrifugal/Coriolis
effects will be neglected1. Since the robot is exposed to gravity, the controller has
to compensate the gravitational potential energy by creating an artificial potential
field that counterbalances the physical potential energy Ug(q). The control torque
τ imp ∈ Rn can be calculated as follows:

τ imp = J(q)
T
F imp − ∂R(q̇)

∂q̇
+
∂Ug(q)

∂q
. (3.10)

For an impedance-controlled robot, multiple tasks can be assigned. Each task
can be expressed as a virtual spring-damper-system that acts on a point on the
robot structure. This point usually coincides with the center of a body-fixed
coordinate frame, placed on one of the robot bodies. Care has to be taken if
multiple spring-damper-systems act on different points on the robot body. For
different points, the Body Jacobian Matrices are different. First, each set of task
torques has to be calculated that balances the individual spring-damper-system.
Afterwards, the individual task torques can be superimposed. The same procedure
has to be done if multiple spring-damper-systems act on points, placed on different
robot body parts.

Through the superposition, an impedance controller assigns the same priority
to a main task and all other (subordinate) tasks. How much these tasks influence
each other depends on the equilibrium pose, the magnitude of the impedances,
and the DOF of the robot (Hermus et al., 2022).

1A power continuous solution to compensate the centrifugal/Coriolis effects via feedback com-
pensation can be found in Wu (2016)
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3.2.1 Passivity property for passive environments

A controlled robotic system consists of multiple subsystems, i.e., the controller,
the robot, and the environment (fig. 3.1).

Figure 3.1: Subsystems of a robotic system. The controller supplies power (τ imp)
T
q̇ to the

robot. The robot consists of motors and the kinematic structure. If the robot interacts with
the environment, power (F ext)

T
ξ is exchanged with the environment. A negative sign indicates

power flow from the controller to the robot and power flow from the environment to the robot,
respectively. All elements with Bond Graph notation are shown in Appendix E.

The power supply from the controller to the robot can be described with two
conjugate “power variables” (Stramigioli, 2001): τ imp (effort) and q̇ (flow). For
robots that interact with the environment (e.g., during pHRI), energy is exchanged
via the two conjugate power variables: F ext (effort) and ξ (flow).

During an unstable behavior, the controller transfers excessive power to the
robot that may not be needed for the desired control actions. If the stability of
a robotic system must be guaranteed, it is necessary to supervise and control the
energy flow from the controller to the robot in order to prevent excessive energy
transfers (Stramigioli, 2001). For robots that interact with unknown environments,
Stramigioli (2015) has formally proven the necessity of passivity-based control.

A robotic system is a dynamical system with input and output ports (fig. 3.1).
Moreover, a robotic system is a dissipative system since a part of the electrical
and mechanical free energy is dissipated by heat production through resistors and
friction, respectively. It is shown in Willems (1972) that for dynamical dissipative
systems, a finite storage function always exists which is the energy of the system.
These dynamical dissipative systems can only store a part of the supplied energy
and can only supply a part of what has been stored. For an impedance-controlled
robot, the stored energy can be described by its energy function, called “storage
function” S ∈ R. Here, S is composed of the storage function of the robot Srob ∈ R
and the storage function of the controller Sctrl ∈ R. The controlled robotic system
is passive with respect to the interaction port (ξ,F ext) (fig. 3.1) if the robot and the
controller are passive (Stramigioli, 2015) and are connected in a power continuous
way.

A robot is a passive system since the storage function Srob =
1

2
q̇TM(q)q̇ +

Ug(q) that describes the system has a lower bound due to physical reasons (Wyatt
et al., 1981; van der Schaft, 2016).

In the concept of “control by interconnection” (Stramigioli, 2001; van der
Schaft, 2016), a controller is not only seen as a simple signal processor but has a
physical interpretation assigned to it. The controller itself can consist of multiple
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physical interpretable subsystems. An impedance controller consists of multiple
virtual energetic subsystems that are interconnected with each other and preserve
energy continuity. The subsystems can either supply energy, route energy among
subsystems, store energy, or dissipate energy (Califano et al., 2021). The storage
function of the controller Sctrl can be described with energy functions and energy
dissipation can be described with Rayleigh functions.

The storage function of the controller Sctrl is the sum of the potential energy
functions, i.e., Sctrl = U(∆p, ε)−Ug(q). Since only robots with rotational joints
are considered in this chapter, Ug(q) has a lower bound.

Definition 3.1 For a given storage function Sctrl, a controller is said to be
strictly output passive with respect to power port (q̇,−τ ) if:

Ṡctrl ≤ −τT q̇.

The energy flow Ṡctrl from the robot to the controller (fig. 3.1) can be calculated
by time differentiation of Sctrl:

Ṡctrl = (
∂Up

∂∆p
)
T

∆̇p+ (
∂Uε
∂ε

)
T

ε̇− (
∂Ug(q)

∂q
)
T

q̇. (3.11)

Note that ε̇ ∈ R3 can be calculated with eq. (D.10). Considering that the con-
trol torques τ imp are supposed to minimize the potential energy functions (ap-
pendix D), the supplied power from the robot to the controller is:

−τ impT q̇ = (
∂Up

∂∆p
)
T

∆̇p+ (
∂Uε
∂ε

)
T

ε̇

− (
∂Ug(q)

∂q
)
T

q̇ + (
∂R(q̇)

∂q̇
)
T

q̇.

(3.12)

By comparing eq. (3.11) and eq. (3.12) with the passivity condition of def. 3.1,
and considering the boundedness of Ug(q), it can be concluded that the controller
is strictly output passive with respect to interaction port (q̇,−τ imp).

Bond Graphs, originally invented by Paynter et al. (1961), provide a graphical
representation to analyze the interconnection and power flow between multiple
subsystems. An advantageous feature of Bond Graphs is that they can be used
independently of the system domain (e.g., mechanical, electrical or chemical). It
should be noted that Bond Graphs have also additional advantages that will not
be used in this thesis, e.g., they simplify the derivation of differential equations of
a given system.

Fig. 3.2 shows the Bond Graph representation of a simple controlled robotic
system. The potential energy function Ug(q) and the centrifugal/Coriolis terms
c(q, q̇) of the robot are defined in eq. (3.1). The controlled potential energy func-
tion U(∆p, ε) is defined in eq. (3.8) and the Rayleigh function R(q̇) is defined in
eq. (3.9). All elements of the Bond Graph model are explained in Appendix E. A
more rigorous treatment of modelling and control of physical systems with Bond
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Figure 3.2: Bond Graph model of a simple robot connected to potential energy due to a virtual
spring. All elements with Bond Graph notation are shown in Appendix E.

Graphs can be found in Duindam et al. (2009) and Folkertsma and Stramigioli
(2015).

The power flow in the Bond Graph model is represented with double-lined
arrows, called “multi-bonds.” The direction of the multi-bonds shows the posi-
tive direction of power flow. The origin of the flow variable q̇ (and equally the
destination of the effort variable) is represented by a thin line attached to the
multi-bond, which is called “causal stroke.” For the simple Bond Graph example,
it can be seen that the subsystems of the controller share the same flow-variable,
indicated by a 1-junction, which represents the robot’s joint motion q̇. Hence,
the 1-junction sums the efforts of the individual subsystems (individual torques of
eq. (3.10)). These efforts can be derived by the partial derivative of Ug(q), the par-
tial derivative of R(q̇), and by the differential of U(∆p, ε) (appendix D). In Bond
graph notation, stored potential energy is represented by a C-element. For the
potential energy function U(∆p, ε), the Body Jacobian Matrix J(q) (eq. (3.3)),

together with its transpose J(q)
T

, establishes a power continuous transformation
of power conjugate variables (ξ,F imp) in the workspace to the power conjugate
variables (q̇, τ ) in the joint space. In Bond Graph notation, a power continuous
transformation that can be modulated is represented by a “modulated transformer
element” (Duindam et al., 2009) MTF . In this example, the power continuous
transformation is modulated by the joint configuration q.

With q̇ being a flow, the Bond Graph model shows the causality of energy flow
between the subsystems of the controller and the robot. The robot, represented
by the inertial element I rob, starts moving since it is exposed to potential energy
U(∆p, ε). Once the robot moves, power is virtually flowing between the sub-
systems of the controller and energy is transferred via the power port (q̇, τ imp).
Once q̇ 6= 0, a part of the stored potential energy is dissipated, represented by
the Rayleigh function R(q̇). This shows that for a given Bond Graph model of a
controlled robotic system, the passivity analysis can be made by visual inspection.
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3.2.2 Nullspace projection

To map joint torques to workspace wrenches, a solution for the Generalized Inverse
of J(q) has to be found (eq. (2.10)). As shown in Khatib (1987), a solution for
the Jacobian right-inverse J̄(q) ∈ Rn×6 that satisfies the system dynamics is:

J̄(q) := M(q)
−1
J(q)T (J(q)M(q)

−1
J(q)

T
)
−1
. (3.13)

Outside singularities, the transpose of J̄(q) can be used to determine workspace
wrenches for a given set of joint torques.

All torques that balance workspace wrenches lie in the Row Space of J̄(q)T .
There are additional torques that can be controlled without producing undesired
workspace wrenches (or accelerations). These torques lie in the Nullspace of J̄(q)T .

In linear algebra, a projection is a linear map from a (co-)vector space onto
itself. A projection matrix P ∈ Rn×n is idempotent, which means PP = P
(Dubrovin et al., 1984). The projection matrix onto the Row Space of J̄(q)T is:

P = J(q)T J̄(q)T . (3.14)

The complementary projection matrixN ∈ Rn×n, that projects onto the Nullspace
of J̄(q)T , is:

N = I − J(q)T J̄(q)T . (3.15)

By using nullspace projection, a hierarchy between multiple sets of task torques
can be established. Here, two main implementation possibilities exist: the “suc-
cessive” and the “augmented” methods (Dietrich et al., 2015). Since the successive
method doesn’t guarantee the decoupling of all tasks, the priority assignment is
called “soft.” Augmented methods, however, assign “fixed” task priorities by
decoupling all task hierarchies (Flacco et al., 2012). In this work, successive pro-
jectors will be used, which assign a soft priority to each individual task torque.
An overview and comparison of both nullspace projection methods can be found
in Dietrich et al. (2015).

A main task (related to the Jacobian matrix J1(q) ∈ R6×n and torque τ 1 ∈ Rn)
and a subordinate task (related to the Jacobian matrix J2(q) ∈ R6×n and torque
τ 2 ∈ Rn) can be composed by using the nullspace projection matrix of eq. (3.15):

τ np = τ 1 +N1 τ 2. (3.16)

Here, τ np ∈ Rn is the command torque which ensures that subordinate task
accelerations do not interfere with the main task. This projection method can be
extended by exploiting the nullspace of J̄2(q)T to implement further tasks with
lower priority.

On the right hand side of fig. 3.3, an exemplary projection τ np = Nτ imp is
illustrated. It can be seen that the nullspace projection is not power continuous
since it only acts on the effort part of the interaction port (q̇,−τ imp). Due to
the projection, the passivity property of the Cartesian impedance controller is
violated. Hence, if a stable interaction with the robot has to be guaranteed,
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Figure 3.3: Conceptual block diagram of a Cartesian impedance controller with separated paths
for forward path dynamics and impedance (inspired by Hogan (2014) and Dietrich et al. (2016)).
The output of the simple impedance controller is −τ imp. This torque is modified by the nullspace
projector N . Since the motion input is not modified by the nullspace projection method, power
continuity is not preserved.

controller extensions have to be provided to ensure the stability of the robot, e.g.,
via energy tank methods (Dietrich et al., 2016, 2017; Garofalo and Ott, 2018;
Shahriari et al., 2018, 2020).

3.3 Detection of task conflicts

To be effective, a robot must always fulfill its main task (superscript 1). For a
robot with many DOF, additional tasks (task 2 ... task i) can be assigned that
can be used to select the robot configuration, perhaps to optimize its kinematic
and dynamic properties during the process (Ajoudani et al., 2015; Busson et al.,
2017). In the rest of the chapter, a conflict between a main task and a subordinate
task or a conflict between subordinate tasks with different priorities is called “task
conflict.”

Fig. 3.4 shows a robotic massage assistant as an example application of multiple
tasks. The main task is to move the robotic hand on the patient’s body. A
massage force is generated by selecting a trajectory with virtual (rest) position in
the patients body and by selecting the appropriate impedance parameters. The
user can assign multiple subordinate tasks. One such task could be to keep the
robot elbow at a fixed position in order to prevent large joint displacements that
could harm the patient. Another task could be to hold an initial end-effector
orientation that is selected by the physiotherapist. However, these tasks could be
sacrificed if necessary in order to guarantee that the robot stays on the allowed
path. For this application, the robot stability is safety-critical and has to always
be guaranteed.

For applications like the one shown in fig. 3.4, it might be desirable to indicate
to the user that not all tasks are compatible with the main task or with tasks of
higher priority. The user therefore has to find an appropriate measure to quantify a
task conflict. This chapter will use the knowledge of chapter 2 to detect kinematic
singularities. The singularity measure will then be modified in order to predict
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Figure 3.4: Robotic massage application developed by team iYU Pro of KUKA Innovation
Award 2019 (Eyssautier and Eyssautier, 2021). The trajectory is the main task that should not
be affected by additional tasks with lower priority.

task conflicts.
In sec. 2.3 the quadratic form Λ(q)

−1
is derived (fig. 2.4 and eq. (2.18)). With

respect to the chosen reference point, the matrix Λ(q)
−1

is a block matrix and
can be partitioned into four blocks: two 3 × 3 matrices describing the coupling
terms between translational and rotational components; the matrix Λp(q)

−1 ∈
R3×3 mapping linear momentum to linear velocities; the matrix Λε(q)

−1 ∈ R3×3

mapping angular momentum to angular velocities.
As shown in chapter 2, Λ(q)

−1
is a good candidate for manipulability analysis,

i.e., to detect kinematic singularities. Near singular configurations, the singular
values of Λ(q)

−1
go to zero.

Eq. (3.16) can be extended to:

τ np = τ 1 + N1 J2(q)
T︸ ︷︷ ︸

(J2(q)(N1)T )
T

F 2 (3.17)

Here, J2(q)T of a subordinate task is multiplied with the nullspace projection
matrix N1 of the main task (eq. (3.15)). The range of the matrix

J2c(q)T = N1 J2(q)
T

(3.18)

is the space of all torques that balance subordinate task wrenches without affect-
ing the main task. The superscript “2c” should indicate the consistency of the
subordinate task with the main task. Similar, the range of the matrix

J2c(q) = J2(q)(N1)
T

(3.19)
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is the space of all subordinate task motions that are consistent with the task
motions of the main task (Siciliano and Slotine, 1991; Khatib and Sentis, 2004;
Sentis and Khatib, 2005, 2006).

A task conflict can be detected by analyzing the rank of J2c(q). During a task
conflict, the matrix J2c(q) becomes rank-deficient. The matrix J2c(q) represents
a kinematic characteristic, i.e., the mapping of joint motions to task motions that
are consistent with task motions of higher priority. For torque controlled robots,
the ability of a robot to perform multiple tasks is dependent also on the inertial
properties of the robot. In chapter 2, the mobility end-point tensor (eq. (2.18))
was analyzed to detect kinematic singularities, i.e., conflicts in a single task. This
matrix can be modified such that the inertial properties of a subordinate task are
decoupled from the inertial properties of the main task (Sentis and Khatib, 2005).
Therefore, J2c(q) can be used to derive the quadratic form:

Λ2c(q)
−1

= J2c(q) M(q)
−1
J2c(q)

T ∈ R6×6. (3.20)

The matrices J2c(q) and Λ2c(q)
−1

also suffer from kinematic singularities. The
rank of these matrices is now additionally influenced by the nullspace projector

N1. In the following, Λ2c(q)
−1

will be analyzed to quantify a task conflict (Sentis
and Khatib, 2005, 2006; Schettino et al., 2021).

With respect to the chosen reference point, the matrix Λ2c(q)
−1

is also a block

matrix. The matrix Λ2c
p (q)

−1 ∈ R3×3 maps linear momentum to consistent linear

velocities and the matrix Λ2c
ε (q)

−1 ∈ R3×3 maps angular momentum to consistent
angular velocities.

As can be seen in eq. (3.8), the impedance potential energy is separated into Up
with translational stiffnessKp and Uε with rotational stiffnessKε. Since these two
impedances should be separately modified during task execution, it makes sense

to also separate the task conflict detection by analyzing Λ2c
p (q)

−1
and Λ2c

ε (q)
−1

,
respectively.

3.4 Shaping impedance to comply with con-
strained task dynamics

As can be seen in fig. 3.3, the impedance source can be specified independently
of the forward path dynamics. Usually, the impedance parameters are initial-
ized at the beginning of the application and stay constant during task execution.
For multiple tasks, however, the impedances have to be adapted during task con-
flicts. This chapter presents an algorithm that shapes the impedances according
to constrained task dynamics along/about specific directions. The conflict detec-
tion is separated for translational and rotational task dynamics, represented by

Λ2c
p (q)

−1
and Λ2c

ε (q)
−1

. In case of a task conflict, the stiffnesses Kp and Kε

are scaled down to comply with tasks of higher priority. The derived damping
design method takes into account the modified stiffnesses. Moreover, the damping
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design method is extended to handle joint motions that do not affect the task
motions. The impedance shaping approach modifies the elastic potential in the
virtual springs. The presented method ensures that the passivity of the impedance
controller is not violated (def. 3.1). The impedance optimization can be executed
in parallel to the forward path dynamics, which has computational advantages.
This will be shown later in the experiments on a real robot (sec. 3.5).

3.4.1 Incorporating constrained task masses

For a given unit direction uj ∈ R3, the constrained task mass (CTM) can be
calculated by:

R 3 mcon
j = (uTj Λ2c

p (q)
−1
uj)
−1
. (3.21)

The unit vectors uj are chosen to be the three principal vectors2 of Λ2c
p (q)

−1
, hence

j = {1, 2, 3}. The magnitude of mcon
j gives information about a task conflict along

the direction uj : A low value of mcon
j will show a feasible task direction, while

a high value of mcon
j shows that a high CTM is counteracting the task (Sentis

and Khatib, 2006). This chapter will present one way to determine a high or
low value. At least for industrial robots, a relation between available payload
and robot weight exists. While a CTM of 8 kg might show a task conflict for a
lightweight robot, this value might be low for a robot with a payload of 1000 kg.
Hence, a translational task conflict can be defined by comparing mcon

j with the

weight of the robot mrob ∈ R. In case of a task conflict:

mcon
j > a mrob. (3.22)

Here, a > 0 being the scalar weight-ratio for the conflict detection. The choice
for an appropriate weight-ratio will be illustrated in sec. 3.5.1 and discussed in

sec. 3.6. Since Λ2c
p (q)

−1
incorporates mass information of the robot at hand, the

measure can be used for a lightweight robot like the KUKA LBR iiwa, as well as
for a high-payload robot like the KUKA KR 1000 titan.

In case of a task conflict (eq. (3.22)), the task stiffnesses have to be modified in
order to avoid accelerations along conflicting directions. Since the coordinates of

the translational stiffness Kp and Λ2c
p (q)

−1
are usually not aligned, coordinates

have to be transformed. For each unit vector uj with respective CTM, a scalar
stiffness kuj ∈ R is produced:

kuj = uTj Kp uj . (3.23)

If a task conflict occurs (eq. (3.22)), a new task stiffness k′uj = γ kuj ∈ R will be
assigned by using the scaling function γ : R→ R:

γ =


1 , if mcon

j ≤ a mrob

a mrob

mcon
j

, else.
(3.24)

2For Λ2c
p (q)

−1
the right and left principal vectors are the same.
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Since the lower condition of eq. (3.24) is always < 1 during a task conflict, kuj
will be scaled down in order to comply with the main task. As the last step, the
translational task stiffness has to be transformed back to align with the original
coordinates of Kp. This will produce a new stiffness matrix K ′p ∈ R3×3:

K ′p =

3∑
i=1

uj k
′
uj u

T
j . (3.25)

In the rest of the chapter, all variables rendered time-varying through the
impedance shaping approach will be indicated with a prime superscript (′). An
overview of the stiffness scaling approach is illustrated in fig. 3.5. With the scaling

Figure 3.5: The process of scaling: The directions of mcon
j and k are usually not aligned (left

side of figure). In the first step, the task stiffness is transformed using the principal directions of

Λ2c
p (q)

−1
. This yields the scalar stiffness kuj along uj (right side of figure). In case of a conflict,

represented by a high CTM value, the task stiffness kuj is scaled down. Afterwards, the task
stiffness is transformed back to the original coordinates. This yields a new stiffness k′ that is
consistent with the constraint (left side of figure).

approach, the translational part of the initial task potential (eq. (3.8)) changes to:

U′p =
1

2
∆pT K ′p ∆p. (3.26)

3.4.2 Incorporating constrained task inertias

For angular momentum m1 ∈ R3 that affects the main task, the angular velocity
response w1 ∈ R3 can be represented by the equation

w1 = Λ1
ε(q)

−1
m1, (3.27)

where Λ1
ε(q)

−1
can be interpreted as an ellipsoid. The derivation and application

of this ellipsoid was shown in chapter 2 (fig. 2.6).

Inverting the singular values of Λ1
ε(q)

−1
yields the three inertia values I1

l (l =
{1, 2, 3}). Fig. 3.6 shows an ellipsoid that describes the ability of an end-effector
to produce motion (blue ellipsoid). The semi-axis lengths of this ellipsoid are
determined by the magnitudes of I1

l . The axes point along the principal vectors

of Λ1
ε(q)

−1
.
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Figure 3.6: Rotational manipulability ellipsoids for a main task (a) and subordinate task that is
consistent with the main task (b). (a) The blue ellipsoid shows the inertia values counteracting
the main task. For representation, the inertia values were multiplied by a factor of 5. Since
the robot could rotate easily about all three principal axes, low inertia values arose. (b) The
orange ellipsoid represents the consistency of the subordinate task with the main task. For
representation, the CTI-values were divided by a factor of 600. Since it was possible to maintain
the main task positions while moving about the yellow and blue principal axes, low CTI-values
arose. Since the robot could not perform rotations about the red principal axis, high CTI-values
arose.

For the rotational subordinate task (superscript 2), the manipulability measure

is modified to predict task conflicts: Λ2
ε(q)

−1 → Λ2c
ε (q)

−1
(eq. (3.20)). With the

three principal vectors3 of Λ2c
ε (q)

−1
, represented by ur ∈ R3, the constrained task

inertia (CTI) can be calculated:

R 3 Icon
r = (uTr Λ2c

ε (q)
−1
ur)
−1
. (3.28)

In sec. 3.4.1, it is shown that the CTM can be related to the scalar weight of the
robot. Since the inertia values of a robot are usually different for each direction it
is not possible to determine a direction-independent threshold.

In this chapter, a rotational task conflict is defined to occur if:

Icon
r > b Icon

min, (3.29)

3For Λ2c
ε (q)

−1
the right and left principal vectors are the same.
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with b > 1 being a threshold scalar eccentricity4 of an ellipsoid that represents the
CTI. In fig. 3.6, an ellipsoid can be seen that shows the consistency of a subordinate
elbow task with a main task related to the end-effector (orange ellipsoid). Here,
Icon
r is equal to one semi-axis length of the ellipsoid. Icon

min ∈ R is the length of
the minor semi-axis. An eccentric ellipsoid shows that the subordinate task is
affecting the main task. The major semi-axis shows directions with high CTI,
counteracting the subordinate task. During a kinematic singularity or a task
conflict, the magnitude of Icon

r about the conflicting direction becomes unbounded.
The choice for an appropriate eccentricity threshold will be illustrated in sec. 3.5.2
and discussed in sec. 3.6.

For the given kinematic structure and the given end-effector position p1 ∈ R3

in fig. 3.6, the elbow position p2 ∈ R3 can be easily manipulated about the yellow
principal axis, i.e., by rotating joints two and six. Hence, a small CTI about this
direction arises. To rotate the elbow position around the blue principal axis, higher
inertia values counteract the task since the robot has to move many joints. The
major semi-axis (red principal axis) points along a singular direction and hence
the elbow cannot be manipulated about this direction.

As in sec. 3.4.1, coordinates are transformed such that Kε is aligned with the

principal directions of Λ2c
ε (q)

−1
. This yields the scalar stiffness kur ∈ R about the

direction ur:
kur = uTr Kε ur. (3.30)

If a task conflict occurs, a new task stiffness R 3 k′ur = µ kur is produced using
the scaling function µ : R→ R:

µ =


b Icon

min

Icon
r

, if
Icon
r

Icon
min

> b

1 , else.

(3.31)

In the upper condition of eq. (3.31), it can be seen that for all directions where the
CTI is b times bigger than the minimal CTI, the rotational stiffness kur about this
direction will be scaled down. Lastly, the rotational task stiffness is transformed
back to the original coordinates to yield a new stiffness matrix K ′ε ∈ R3×3:

K ′ε =

3∑
k=1

ur k
′
ur u

T
r . (3.32)

With this scaling, the rotational part of the initial task potential (eq. (3.8)) changes
to:

U′ε = 2 εT K ′ε ε. (3.33)

If no task conflict appears (upper condition of eq. (3.24) and lower condition of
eq. (3.31)), Kp = K ′p and Kε = K ′ε. During a task conflict, the matrices K ′p and
K ′ε are not necessarily diagonal anymore. However, these matrices are symmetric

4Ratio between major and minor semi-axes.
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and positive-definite, which is a necessary feature for the damping design method
in the next subchapter (Ott, 2008).

With U′p (eq. (3.26)) and U′ε (eq. (3.33)), the control wrench (F imp)
′

can be
calculated based on appendix D.

3.4.3 Damping design

The damping design in this subsection is split in two parts: Firstly, a damping
design method is shown that can be used for a main task and a subordinate task;
Secondly, this method is extended to control the remaining joint motions of the
robot that do not affect the task dynamics of the main task and the subordinate
task.

In robotics, constant damping matrices are often used which have a negative
effect on the robot’s performance. A more effective method is to express the
translational and rotational damping matrices Bp ∈ R3×3 and Bε ∈ R3×3 as
functions of the desired compliant behavior, represented by K ′p and K ′ε, and take
into consideration inertial information about the robot, represented by Λp(q) ∈
R3×3 and Λε(q) ∈ R3×3. The damping design can be derived by formulating the
homogeneous equation of the error dynamics (Albu-Schaffer et al., 2003). The
singular vectors of Bp and Bε are then aligned with those of K ′p, K

′
ε, Λp(q)

and Λε(q). A damping coefficient ζ ∈ R can be defined to have a (sub-)critical
damping for each singular direction. Modifying the method in Albu-Schaffer et al.
(2003), the damping matrices are calculated by:

Bp =
√

Λp(q)Dζ

√
K ′p +

√
K ′pDζ

√
Λp(q) , (3.34a)

Bε =
√

Λε(q)Dζ

√
K ′ε +

√
K ′εDζ

√
Λε(q) , (3.34b)

where Dζ = diag{ζ}, with 0 ≤ ζ ≤ 1 determining the desired damping behavior.
The square roots of the matrices in eq. (3.34) can be calculated by taking the
square roots of each singular value of the respective matrix. Afterwards, the
matrices are transformed back to original coordinates. It is worth mentioning that
a threshold for the singular values of Λp(q) and Λε(q) has to be set since some
singular values grow without bound as singular configurations are approached.
The damping design of eq. (3.34) has the advantage that the damping behavior is
automatically adapted if the task stiffness is scaled during a conflict.

The passivity condition of def. 3.1 only guarantees passivity of the controller
with respect to the interaction port but does not take into account internal en-
ergy exchange of the robot due to joint motion. This is especially important for
kinematically redundant robots for which a nullspace in J(q) exists. Hence, joint
damping has to be included to avoid oscillations.

Assigning a fixed set of joint dampers will usually conflict with the main task
and subordinate tasks. Therefore, a joint damping design method has to be found
that does not affect the desired workspace behavior. For a given damping matrix
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B ∈ R6×6 that incorporates the damping matrices of eq. (3.34):

B =

(
Bp 0
0 Bε

)
, (3.35)

this matrix can be mapped into the joint space:

Bq = J(q)
T
B J(q). (3.36)

Since B is physically a (twice covariant) tensor, the mapping of eq. (3.36) always
exists (Frankel, 2012). One can use the mapping of eq. (3.36) for a main task as well
as for a subordinate task (indicated with superscript 1 and 2, respectively). For the
resulting matrices B1

q and B2
q , both joint damping matrices can be superimposed:

Bsu
q = B1

q +B2
q . (3.37)

If two matrices with different rank are multiplied, the result is equal to the
minimum of both ranks. By analyzing eq. (3.36), it can be seen that the matrix
B is of rank six and the matrix J(q) is of rank r ≤ 6. Therefore, the matrix Bq

is also of rank r. Through the superposition of the damping matrices B1
q and B2

q

(eq. (3.37)), the rank of matrix Bsu
q is not necessarily equal to the highest rank

of its superimposed components. It turns out that through the superposition, the
rank of Bsu

q is rmax ≤ n. This leaves a (n − rmax)-dimensional nullspace, which
can be revealed by diagonalizing the symmetric matrix Bsu

q with the orthogonal
matrix UB ∈ Rn×n:

B̄su
q = UT

B B
su
q UB =

β1 ... 0

0
. . . 0

0 ... βn

 . (3.38)

The number of zero values on the main diagonal of B̄su
q is equal to the dimension of

the nullspace. To control this nullspace, a nullspace damper βns ∈ R+ is assigned
for each zero entry in B̄su

q :

βs =

{
βs , if βs > 0

βns , else.
(3.39)

This is done for 1 ≤ s ≤ n. By selecting appropriate values for βns, the user can
influence the dynamic response to external forces, e.g., during pHRI applications.
For 0 < βns < 1, the robot can be moved along the directions indicated by those
columns of UB that are associated with zeros on the main diagonal of B̄su

q . For
βns > 1, the robot will show a highly damped behavior.

As a last step, the resulting matrix is transformed back to the original coordi-
nates:

Bq
′ = UB B̄

su
q UT

B . (3.40)

Note that this method will automatically identify a nullspace. If no nullspace
exists, Bq

′ = Bsu
q . With the damping design method, the Rayleigh function

changes to:

R(q̇) =
1

2
q̇TBq

′ q̇. (3.41)
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3.4.4 Extension to multi-task control

So far the impedance shaping method of secs. 3.4.1 and 3.4.2 handles one sub-
ordinate task in order to comply with the main task. A robot with many DOF,
however, can handle multiple tasks (Scheurer et al., 2016). These tasks may again
have different priorities. For i-number of tasks with the successive nullspace pro-
jection method, eq. (3.17) can be extended:

τ np = τ 1 +N1(τ 2 +N2(τ 3 + ...+N i−1(J i(q)
T
F i )...)). (3.42)

The control torque of a task i that is consistent with i−1 tasks with higher priority
can be calculated with:

τ ic = (

i−1∏
j=1

N j)J i(q)
T

︸ ︷︷ ︸
(Ji(q)(

∏i−1
j=1N

j)
T

)
T

F i. (3.43)

Here, the control torque of task i is multiplied with the product of all nullspace
projection matrices N1N2...N i−1 of higher priority. The range of the matrix

J ic(q) = J i(q) (

i−1∏
j=1

N j)
T

(3.44)

is the space of all subordinate task motions that are consistent with i − 1 task
motions of higher priority (Sentis and Khatib, 2005, 2006). Consequently, the

quadratic form Λic(q)
−1 ∈ R6×6 can be calculated that is consistent with i − 1

tasks:
Λic(q)

−1
= J ic(q) M(q)−1 J ic(q)

T
. (3.45)

With respect to the body-fixed coordinate frame, Λic(q)
−1

is again a block matrix

which incorporates the 3 × 3-matrices Λic
p (q)

−1
and Λic

ε (q)
−1

. With these two
matrices a conflict can again be separately detected for translational and rotational
tasks. If a conflict is detected, the scaling method of secs. 3.4.1 and/or 3.4.2
and the damping method of sec. 3.4.3 can be performed. Finally, the control
torques resulting from all individual impedances can be superimposed, which yields
τ ′ ∈ Rn.

3.4.5 Comparison of task hierarchy

Predictability is a very important feature of industrial robot applications. For
robots that perform multiple tasks, it is therefore desired that the robot indicates
that not all tasks are mutually compatible (sec. 3.1.2). The task conflict detection
of eqs. (3.22) and (3.29) can be used for all multi-task control approaches, e.g., for
impedance superposition and nullspace projection.
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For the successive nullspace projection approach, the priority assignment can
be achieved by nested summation of tasks, expressed as torques, with different pri-
orities (eq. (3.42)). The damping torque that controls the motions in the nullspace
of J i(q) (eq. (3.43)) is the lowest priority and will be multiplied with the product of
all nullspace projection matrices N1N2...N i that are associated to the preceding
tasks.

For the impedance shaping method, the task conflict detection and the control
reaction are unified in one approach. The task hierarchy is implicitly assigned
through the impedance shaping method (secs. 3.4.1 and 3.4.2). The resulting
task torques with different task priority are superimposed. The damping design
takes into account the modified stiffnesses during a task conflict. Moreover, the
damping design automatically handles joint motions that do not affect the task
dynamics. Compared to the nullspace projection method, this is done without
explicitly assigning an additional (lowest) priority. The priority assignment can
be visualized as a triangle (fig. 3.7). While the main task has the highest priority,
subordinate tasks may or may not be feasible without affecting the main task or
tasks with higher priority.

Figure 3.7: Triangle of priority. From left to right, the priority of different tasks is listed in
descending order. The control wrenches are calculated based on appendix D. While the main
task always has to be respected, subordinate tasks may be sacrificed and therefore have lower
priority. The damping task incorporates the desired Cartesian damping behavior for all task
hierarchies.

3.4.6 Hierarchical passivity check

To make a statement about the overall passivity of the controller, each physi-
cally interpretable and power continuously connected subsystem of the Cartesian
impedance controller can be analyzed separately. Since torque controlled robots
with revolute joints are considered in this chapter, the gravity compensation is
lossless with respect to

(
q̇, g

)
. Hence, the subsystem to compensate for gravita-

tional effects does not have to be handled in the further analysis.
Through the scaling approach, the controller has additional time-varying com-

ponents. If the controller handles one main task and one subordinate task, these
additional time-varying components are K2

p
′

and K2
ε
′
. Through the scaling ap-

proach (sec. 3.4), these two matrices are not necessarily diagonal any more. Since

K2
p
′

and K2
ε
′

are symmetric, the matrices have dependent (off-diagonal) elements.

To apply partial differentiation of U2′(∆p2, ε2) with respect to K2
p
′

and K2
ε
′
, a

local parametrization of R3
+ has to be found, such that K2

p
′

and K2
ε
′

are diagonal
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matrices. The spectral decomposition of a given stiffness matrix K ′ ∈ R3×3 is:

K ′ = R K̄ RT , (3.46)

with R ∈ SO(3) being the rotation matrix, K̄ = diag(k̄) ∈ R3×3 being a diagonal
positive-definite stiffness matrix, and k̄ ∈ R3 being a vector that incorporates the
three scalar stiffness values. If K ′ is time-varying, K̄ and R are time-varying.
However, R has dependent matrix elements. To apply partial differentiation,
another global representation of rotations has to be chosen. The exponential
coordinates for rotation were shown in sec. 3.2. Eq. (3.6) can be rearranged to:

R(ε, η) = exp(ε̃η). (3.47)

Here, ε̃ is the skew-symmetric matrix representation of the unit-axis ε ∈ R3,
and η ∈ R is the rotation angle. To calculate exp(ε̃η), “Rodrigues’ formula”
(Rodrigues, 1816; Murray et al., 1994) can be used:

exp(ε̃η) = I − ε̃ sin(η) + ε̃2(1− cos(η)). (3.48)

With eqs. (3.46) and (3.47), the potential function U2′ assigned to a sub-
ordinate task can be represented as the sum of the translational potential
U2

p(∆p2, ε̄p, η̄p, k̄
2
p) and the rotational potential U2

ε (ε2, ε̄ε, η̄ε, k̄
2
ε ):

U2
p(∆p2, ε̄p, η̄p, k̄

2
p) =

1

2
(∆p2)

T
exp(˜̄εpη̄p) diag(k̄2

p) exp(˜̄εTp η̄p) ∆p2; (3.49a)

U2
ε (ε2, ε̄ε, η̄ε, k̄

2
ε ) = 2 (ε2)

T
exp(˜̄εεη̄ε) diag(k̄2

ε ) exp(˜̄εTε η̄ε) ε
2. (3.49b)

Time differentiation of Sctrl′ = U1 + U2′ yields:

Ṡctrl′ = (
∂U1

p

∂∆p1
)

T

˙∆p1 + (
∂U1

ε

∂∆ε1
)
T

ε̇1

+ (
∂U2

p
′

∂∆p2
)

T

˙∆p2 + (
∂U2

ε
′

∂ε2
)

T

ε̇2

+ (
∂U2

p
′

∂k̄2
p

)

T

˙̄k2
p + (

∂U2
p
′

∂ε̄p
)

T

˙̄εp + (
∂U2

p
′

∂η̄p
)

T

˙̄ηp︸ ︷︷ ︸
Ṡ?p

+ (
∂U2

ε
′

∂k̄2
ε

)

T

˙̄k2
ε + (

∂U2
ε
′

∂ε̄ε
)

T

˙̄εε + (
∂U2

ε
′

∂η̄ε
)

T

˙̄ηε︸ ︷︷ ︸
Ṡ?ε

.

(3.50)

The solution for the time differentiation of Up(∆p, ε̄p, η̄p, k̄p) and Uε(ε, ε̄ε, η̄ε, k̄ε)
can be found in appendix D.3.

The sign of Ṡ?p and Ṡ?ε in the lower terms of the right side of eq. (3.50) is in
general unknown. If the stiffness of the subordinate (translational or rotational)
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task is scaled down during a task conflict, the respective subsystem extracts energy.
As long as energy is extracted, the subsystem is passive with respect to

(
q̇,−τ ′

)
.

After a conflict, the stiffness is scaled up and the subsystem actively gains energy.
If the subsystems actively gains energy, the controller does not necessarily have to
be active with respect to port

(
q̇,−τ ′

)
. The power supplied by the controller is:

−τ ′T q̇ = (
∂U1

p

∂∆p1
)

T

˙∆p1 + (
∂U1

ε

∂∆ε1
)
T

ε̇1

+ (
∂U2

p
′

∂∆p2
)

T

˙∆p2 + (
∂U2

ε
′

∂ε2
)

T

ε̇2

+ (
∂R(q̇)′

∂q̇
)
T

q̇︸ ︷︷ ︸
positive semi-definite

.

(3.51)

By comparing the passivity definition of def. 3.1 with eq. (3.50) and eq. (3.51), it
can be concluded that the controller is passive (or at least lossless) with respect
to the port

(
q̇,−τ ′

)
if:

Ṡ?p + Ṡ?ε ≤ (
∂R(q̇)′

∂q̇
)
T

q̇. (3.52)

To avoid excessive energy injection through port
(
q̇,−τ ′

)
, the controller has to

detect and correct non-passive actions. The dissipated energy (right hand side of
eq. (3.52)) is monitored and the scaling of subsystems that actively gain energy is
stopped as long as the passivity condition of def. 3.1 is violated. For each control
cycle, the stiffness of the previous control cycle Kpre′ is stored before the scaling
approach of sec. 3.4 is applied. By setting K ′ = Kpre′, the time derivative of the
stiffness matrices is equal to the zero matrix and hence no more energy is injected
by this subsystem.

There may be situations, however, where the dissipated energy is large enough
that not all active actions have to be stopped. In this case it is desirable to handle
the scaling in a hierarchical manner. The control algorithm is depicted in fig. 3.8.

3.5 Experiments on a real robot

In the experiments, the example application of fig. 3.4 will be used with two dif-
ferent end-effector trajectories which are considered to be the main task. An
impedance controller is a promising solution for such an application since it in-
volves pHRI. If additional subordinate tasks are assigned, multiple conflicting
impedances will yield a high Cartesian error for the main task. As anticipated,
nullspace projection methods should reduce this error. In this sub-section, these
two traditional control methods are compared with the new impedance shaping
method of sec. 3.4.
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Figure 3.8: Algorithm for a hierarchical passivity check to control a main task and i-number
of subordinate tasks. If the passivity condition is violated, the stiffness of the active subsystem
with lowest priority is not increased. The same passivity check is performed for all other tasks,
proceeding from the next higher priority task to the highest priority task. The output of the
algorithm is an array with stiffness matrices that guarantee passivity. These matrices are then
used to calculate the impedance control torque.

For comparison, the Cartesian error e ∈ R based on the Euclidean 2-norm is
calculated. Moreover, for the complete application, the root-mean-squared-error
is used:

RMSE =

√
1

ans
(e2

1 + e2
2 + ...+ e2

l ), (3.53)

with ans being the number of control cycles for each experiment.
Simple impedance superposition was based on the elastic potential approach

presented in eqs. (3.8) - (3.10). For the experiments with the nullspace projection
method, the successive projection method was used. For further information about
implementation details of nullspace projection methods, please see Han and Park
(2013).

For a simple impedance controller, the objective is to control the compliant and
viscous behavior. There are also controllers that shape the desired inertial behav-
ior, represented by Λ(q) (Ott, 2008). In the example of the Operational Space Con-

trol framework, the control wrench F imp is modified such that F̂ imp = Λ(q)F imp.
This method, called “non-linear dynamic decoupling” in Khatib (1987), helps im-
prove the accuracy of the robot with respect to the main task and subordinate
tasks. For the nullspace projection method, this method was used. In the fol-
lowing, all variables for which the decoupling is applied are indicated with a hat-
symbol (tab. 3.1). The advantages and disadvantages of non-linear decoupling are
presented in Dietrich et al. (2021).
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Two experiments with the KUKA LBR iiwa R820 were performed using the
Fast-Research-torque-interface (C++) with a fixed sample rate of 5 ms (Schreiber
et al., 2010). The initial configurations and the control parameters can be seen
in appendices F.1 and F.2. All control torques in this section are elements of
Rn. For simplicity, the torques to compensate centrifugal/Coriolis effects and
gravitational effects are left out of the equations. Fig. 3.9 shows the structure

Figure 3.9: Control structure for the impedance controller based on the elastic potential. The
controller had three extensions: For the nullspace projection method the impedance torque was
multiplied with the nullspace projector (extension 1); As long as the shaped impedances did
not violate the passivity of the controller (extension 3), the impedances of task 2 to task i were
optimized to be consistent with the main task and tasks with higher priority (extension 2).

of the controller used for the experiments. The basis for all experiments was the
Cartesian impedance controller. Three controller extensions were implemented.
The first extension was only used for the experiments with the nullspace projection
method. The second and third extensions were only used for the novel impedance
shaping method. The controller was implemented on a Quad-Core Linux-PC with
Intel i3-2100 processor and CPU at 3.10GHz. For the impedance shaping method,
the kinematics, dynamics, and optimized impedances were computed in parallel
using the C++ boost library (Demming and Duffy, 2012). For the nullspace
projection method and the impedance shaping method, the computation time
tCMP from input data q, q̇ to output command τ was tracked using the “high
resolution clock”-method of boost/chrono.
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3.5.1 Experiment 1: Move end-effector on a line and hold
elbow position

For the first experiment (fig. 3.10), the robot end-effector had to move along the
x-direction of the inertial coordinate frame (main task) while holding the elbow
at the initial position (subordinate task). To take into account transient behavior
when the robot starts moving, the end-effector motion was repeated three times
back and forth. For both tasks, only a translational potential U1

p and U2
p was

applied. In this subsection, the superscript i will appear in equations that are
calculated for the main task and the subordinate task.

Figure 3.10: Experiment 1: The robot had to move along the x-axis of the base coordinate frame
(main task) while keeping the elbow at the initial position (subordinate task). For a chosen
point on the elbow body, the CTM for the task was represented along the principal vectors of

Λ2c
p (q)

−1
.

Following appendix D.1, the control torques τ i of the virtual translational
springs were derived by computing the differential of Ui

p (appendix D.1):

τ i = J i(q)
T
(
−Ki

p ∆pi

∆p̃i Ki
p ∆pi

)
. (3.54)

Here, ∆p̃i is the skew-symmetric matrix form of ∆pi. For both tasks, the trans-
lational Cartesian damping matrix Bi

p was calculated based on eq. (3.34). With
this matrix, the six-dimensional matrix form of eq. (3.35) was produced, where
all entries of Bi

ε were set to zero. Therefore, the damping torque τ iB could be
calculated by:

τ iB = J i(q)
T
Bi ξi. (3.55)
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The joint damper torque τBq was calculated with

τBq = βns In, (3.56)

where βns ∈ R was a scalar damper value assigned to all joints (Appendix F.1)
and In ∈ Rn×n was the identity matrix.
For simple impedance superposition, the torques of eqs. (3.54) - (3.56) were su-
perimposed:

τ imp = τ 1 − τ 1
B + τ 2 − τ 2

B − τBq . (3.57)

For the nullspace projection method, a task priority was assigned by introducing
the nullspace projectors N1 and N2 which were calculated based on eq. (3.15).
The final control torque for the nullspace projection method was calculated by
modifying eq. (3.57):

τ np = τ̂ 1 − τ̂ 1
B +N1 (τ̂ 2 − τ̂ 2

B −N2 τBq ). (3.58)

In comparison to the nullspace projection method, the impedance shaping method
implemented the task prioritization by using the optimized stiffness K2

p
′

to calcu-

late the task torque τ 2′ (sec. 3.4.1). Moreover, the novel damping design method
of sec. 3.4.3 was applied which yielded the damping torque:

τBq

′ = Bq
′ q̇. (3.59)

The final control torque for the impedance shaping method was:

τ ′ = τ 1 + τ 2′ − τBq

′. (3.60)

While the robot was moving along the line, a task conflict appeared and the
subordinate task, associated with a point on the elbow, had to be partly sacrificed.

In fig. 3.11, the CTM along the three principal directions of Λ2c
p (q)

−1
can be seen.

A small CTM acted along the yellow principal axis (fig. 3.10) since the elbow could
be moved along this direction without affecting the main task. The CTM along the
red principal axis stayed low over the experiment since the tasks are both feasible,
e.g., by rotating axis 6 of the robot. Since the height of the elbow position could
not be maintained while the end-effector was moving along the line, the direction
along the blue principal axis was in conflict. Moreover, the blue principal axis
pointed along a singular direction (cf. also fig. 3.6).

For the experiments in this chapter, a weight-ratio of a = 0.3 was set (ap-
pendix F). As can be seen in fig. 3.11, only one principal direction was in conflict
and the scaling function along this directions acted on the task stiffness. For the
other directions γ = 1 (eq. (3.24)). With insight derived from various experiments,
the author proposes a weight-ratio of a > 0.1 to users of the method. A weight-
ratio of 0 < a < 0.2 will induce scaling, even for small variations of the CTM
(fig. 3.11, red principal axis).

Fig. 3.12a shows the Cartesian error of both tasks. In fig. 3.12b, the RMSE can
be seen. The theoretical conclusions were confirmed by this experiment: While
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Figure 3.11: Constrained task mass (CTM) vs. time. Plot colors as in the coordinate frame in
fig. 3.10, placed on the robot elbow. Along the blue axis, high CTM acted. While the CTM
along the red axis varied, the CTM along the yellow axis stayed low.

simple impedance superposition showed a large Cartesian error for the main task,
the nullspace projection method reduced this error significantly. Compared to sim-
ple impedance superposition, the nullspace projection method reduced the Carte-
sian error by 87.28%. The effectiveness of the impedance shaping method can also
be seen. Compared to simple impedance superposition, the impedance shaping
method reduced the Cartesian error by 46.24%. As expected, the simple impedance
superposition performed best for the subordinate task since it had the same prior-
ity as the main task. The nullspace projection method and the impedance shaping
method showed similar RMSE for the subordinate task (fig. 3.12b, right bar plot).
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Figure 3.12: Cartesian error and RMSE for the main task and the subordinate elbow task.

For the impedance shaping method, extension 3 of the controller maintained
passivity (def. 3.1). Fig. 3.13 shows the energy flow through the potential energy

Ṡctrl′ and the power supplied from the controller to the robot, calculated by−τ ′T q̇.
As can be seen, the controller stayed passive during the experiment.

Tab. 3.2 shows the minimal, maximal, and mean computation time for the con-
troller with the nullspace projection method (extension 1) and the novel impedance
shaping method (extension 2 and 3). Due to the parallel calculation of kine-
matics, dynamics, and impedance optimization, the impedance shaping method
reduced the mean computation time by 77.23%, compared to the nullspace pro-
jection method.
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Figure 3.13: Since the supplied power was always smaller than the energy flow produced from the
time-varying stiffness, the controller remained passive during the experiment. It is hypothesized
that the brief epochs of positive power (near 8 seconds and 14 seconds) are due to poor friction
compensation during slow joint motions.

Table 3.2: Computation time for the controller with 3926 control cycles.

tcmp Nullspace projection Impedance shaping

min 0.80 ms 0.23 ms

max 1.70 ms 1.40 ms

mean 1.10 ms 0.25 ms

3.5.2 Experiment 2: Move end-effector on a circle, hold el-
bow position, and hold end-effector orientation

For the second experiment (fig. 3.14), the robot end-effector had to move around
a circular (main task). Two additional tasks were assigned: The initial elbow-
position had to be kept constant (task 2) and the initial end-effector orienta-
tion had to be maintained (task 3). Following sec. 3.4.4 and fig. 3.7, task 2 had
higher priority than task 3. To take into account transient behavior, the end-
effector moved four times around the circle. The three different controllers were
implemented again. For the nullspace projection method, holding elbow position
with high impedance magnitude in combination with the additional rotational
task caused oscillations. Hence, the impedance parameters were reduced for the
nullspace projection method (appendix F.2). This shows that expert knowledge
is needed for the nullspace projection method, to find feasible control parameters
for multiple task hierarchies.

The Jacobian matrix J3c(q) ∈ R6×n, associated with task 3, was consistent
with the main task and task 2 (eq. (3.44)). Since the matrix had full rank during
the entire experiment, no joint damping torque was commanded.

As in experiment 1, τ 1 and τ 2 both described virtual translational springs and
were calculated based on eq. (3.54). For task 3, the control torque τ 3 of the virtual
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Figure 3.14: Experiment 2: The robot end-effector had to move around a circle (main task),
while keeping the elbow at its initial position (task 2) and maintaining the initial end-effector
orientation (task 3). For a chosen point on the elbow, the CTM was represented along the

principal vectors of Λ2c
p (q)

−1
. For a chosen point on the end-effector, the CTI was represented

about the principal vectors of Λ3c
ε (q)

−1
.

rotational spring was derived by computing the differential of U3
ε (appendix D.2):

τ 3 = J3(q)
T
(

0

2E(η3, ε3)
T
K3
ε ε

3

)
. (3.61)

Note that E(η3, εt
2) can be calculated with eq. (D.11).

For the damping torques, eq. (3.55) was used again. Here, the damping design
of simple impedance superposition and the nullspace projection method had the
matrices K1

p , K2
p and K3

ε as input.
For simple impedance superposition, all control torques were superimposed:

τ imp = τ 1 − τ 1
B + τ 2 − τ 2

B + τ 3 − τ 3
B . (3.62)

The nullspace projection method assigned a task priority by using the nullspace
projectors N1 and N2 (eq. (3.15)). The final control torque τ np for the nullspace
projection method was:

τ np = τ̂ 1 − τ̂ 1
B +N1 (τ̂ 2 − τ̂ 2

B +N2(τ̂ 3 − τ̂ 3
B)). (3.63)

The impedance shaping method implemented prioritization by including the
optimized stiffnessesK2

p
′
andK3

ε
′
to calculate the control torques and the damping

matrix. The damping design method of sec. 3.4.3 automatically detected that no
additional joint damping was needed (eqs. (3.38)-(3.39)). The final control torque
for the impedance shaping method was:

τ ′ = τ 1 + τ 2′ + τ 3′ − τBq

′. (3.64)
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For task 2, again, a point on the elbow position was chosen (fig. 3.14). As
in experiment 1, a small CTM acted along the yellow and red principal axes of

Λ2c
p (q)

−1
. The blue principal axis pointed along a singular direction. The stiffness

about this direction was therefore scaled down. The scaling factor for the other
two directions was γ = 1.

(a) CTI of orientation task

(b) Scaling function µ

Figure 3.15: CTI (a) and scaling function (b) for the rotational task 3. The plot colors are
consistent with the colors of the coordinate frames in fig. 3.14. The yellow axis showed the minor
CTI, since the orientation about this direction was always consistent with the main task and
task 2. The blue axis showed the major CTI. The stiffness about the red axis was only partly
consistent with the main task and task 2. The direction about the minor CTI was not scaled.

For task 3, a point on the end-effector body was chosen (fig. 3.14). Fig. 3.15a

shows the CTI values for task 3 about the principal axes of Λ3c
ε (q)

−1
. For this

experiment, an eccentricity threshold of 1400 was set (eq.(3.29)). In this way,
a conflict about the blue principal axis direction was deliberately created. This
had consequences for the passivity of the controller, as shown later. With insight
gleaned from various experiments, the authors propose an eccentricity threshold of
b > 2 to users of the presented method. This would be a heuristic threshold to de-
tect an eccentric ellipsoid that represents the rotational task consistency (fig. 3.6).
The yellow principal axis showed the minor CTI since the robot could maintain
orientation about this axis while moving on the circle. Moreover, for the given ori-
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Figure 3.16: Compared to simple impedance superposition, the nullspace projection method
and the impedance shaping method reduced the RMSE of the main task (left bar-plot). The
nullspace projection method and the impedance shaping method also reduced the RMSE of task
2 (middle bar-plot). Impedance superposition had a higher RMSE for task 2 since task 3 was
superimposed. Impedance superposition showed a small error for task 3. Nullspace projection
performed worse for task 3 (right bar-plot).

entation about this axis, the elbow position could be maintained. Consequently,
the stiffness about this direction was not scaled (fig. 3.15b). While moving around
the circle, the CTI about the other two principal axes varied (fig. 3.15a blue and
red colors).

Fig. 3.16 shows the RMSE for the main task and both subordinate tasks.
Again, the simple impedance superposition showed the largest RMSE for the main
task. The nullspace projection method and the impedance shaping method re-
duced the RSME of the main task by 51.02% and 36.73%, respectively. For task
2, the effectiveness of the nullspace projection method and the impedance shaping
method can be seen: They reduced the RSME of task 2 by 42.31% and 34.62%,
respectively. To visualize the error of task 3, the rotation matrix between the
inertial coordinate frame and the body-fixed end-effector coordinate frame in the
equilibrium position was converted to axis-angle representation. The angle was
then used for comparison. As expected, simple impedance superposition had the
lowest RMSE for task 2. For task 2, the impedance shaping method performed
better than the nullspace projection method since the orientation could partly be
maintained (fig. 3.15b).

Fig. 3.17 shows the Cartesian errors for experiment 2, again calculated based on
the Euclidean 2-norm. For the nullspace projection method minor oscillations still
occurred which were a sign of impending instabilities (fig. 3.17, red rectangles).
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Figure 3.17: Cartesian error for all three controllers. For the nullspace projection method, minor
oscillations occurred during the experiment (middle sub-plot, red rectangles).
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Due to the choice of the high eccentricity threshold, task 3 injected substan-
tial energy during the experiments with the impedance shaping method. Without
the passivity check (extension 3), passivity of the controller was lost (fig. 3.18,
upper plot). However, with extension 3, after a task conflict the increase of rota-
tional stiffness was suspended until the dissipated energy was high enough to allow
stiffness scaling. In this way, the passivity of the controller was maintained and
stability for the robotic system could be guaranteed (fig. 3.18, lower plot). Task 2
was not affected and hence the hierarchical passivity check ensured an improved
performance of the main task.

Figure 3.18: Without extension 3, the impedance shaping method violated the passivity of the
controller (upper plot). With extension 3, the supplied power was always smaller than the energy
flow produced from the time-varying stiffness and hence the controller remained passive during
experiment 2 (lower plot). It is hypothesized that the brief epochs of positive power (near 0
seconds and 4 seconds) are due to poor friction compensation during slow joint motions.

Tab. 3.3 shows the minimal, maximal and mean computation time for exper-
iment 2. Again, the nullspace projection method included extension 1 and the
novel impedance shaping method included extensions 2 and 3. Compared to the
nullspace projection method, the novel impedance shaping method reduced the
mean computation time by 74.62%.

3.6 Conclusion

In this chapter, the inertial properties of a robot, expressed in Λic(q)
−1

, were

analyzed to identify if multiple tasks can be performed simultaneously. Λic(q)
−1
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Table 3.3: Computation time for the controller with 4292 control cycles.

tcmp Nullspace projection Impedance shaping

min 1.10 ms 0.26 ms

max 2.60 ms 1.84 ms

mean 1.30 ms 0.33 ms

was analyzed along its principal directions, which yielded task masses and task
inertias, constrained by tasks with higher priority. The key to the impedance
shaping method was to transform the task stiffnesses using the principal directions

of Λic(q)
−1

. In the aligned directions, the task stiffnesses along/about conflicting
directions were scaled. After scaling, the matrices were transformed back to the
original coordinates. The scaling method was included in the damping design in
order to have a constant damping behavior that was independent of scaling. A
great benefit of this general approach is that the impedance shaping method can be
applied to all well-established impedance controller implementations that describe
the elastic potential based on K, e.g., Fasse and Broenink (1997), Caccavale et al.
(1999), Stramigioli (2001), and Natale (2003). The key features of this novel
control approach are:

1. It is possible to assign a relation between available payload and robot weight
for industrial robots. In this work, a relation between virtual constraint
masses and robot weight was assigned. By using this relation, a conflict of
multiple translational tasks can be detected, independent of the robot type.

2. Constrained task inertias were related to a manipulability ellipoid. The ec-
centricity of this ellipsoid gave important information about the consistency
of multiple rotational tasks. This conflict detection is, again, independent of
the robot type.

3. The damping design merges Cartesian damping behavior with joint space
damping that does not interfere with the dynamic task behavior. The
method automatically detects the dimension of the nullspace and automati-
cally adapts the damping design.

4. The method can be extended to multiple tasks. In this case, a fixed priority
is assigned, from a main task with highest priority to subordinate tasks that
can be sacrificed if necessary.

5. The control approach is a promising solution for non-expert users, since it
auto-tunes the selected task impedances to be consistent with tasks of higher
priority.
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6. The controller is a promising solution for applications that involve pHRI,
since it guarantees a passive robot behavior. Compared to nullspace pro-
jection approaches, the method is less dependent on choosing appropriate
impedance parameters to achieve a stable robot behavior.

7. The controller extension parallelizes the calculation of kinematic and dy-
namic data and the optimization of impedance. This has computational
advantages and is especially beneficial for real-time control of robots with
many degrees of freedom.

3.6.1 Limitations and further work

A limitation of the presented approach is its need for kinematic and dynamic data
of the robot. Without access to J(q) and M(q) of the robot, the impedance
shaping approach of sec. 3.4 cannot be performed. However, multiple methods
exist to calculate the kinematic data and identify the dynamic robot parameters
(Siciliano and Khatib, 2008).

This work assigned multiple tasks to the robot. However, a robot can have ad-
ditional physical constraints, e.g., obstacles or safe interaction. These constraints
can again have conflicts between each other. The prioritization of the main task
and the individual constraints depends on the application. In a medical applica-
tion, for example, the main task that controls the tool behavior usually has the
highest priority. For a service robot, compliant behavior in contact might be the
highest priority and the main task can be sacrificed if necessary. A promising
solution to handle multiple constraints can be found in Osorio et al. (2019).

A robot with many degrees of freedom usually has a large nullspace. If small
joint impedances are assigned to the nullspace, the joint motion is not predictable
and can lead to joint limit violations. Therefore, it is beneficial to incorporate
joint limits as hard constraints, e.g., with the method presented in Hjorth et al.
(2021).

The presented approach is an extension for a simple Cartesian impedance con-
troller. Joint impedances are not included since they usually have a negative
influence on the desired Cartesian behavior. There might be situations, however,
where it is desired to control the postural behavior of the robot (Sentis and Khatib,
2006). In that case, the method of Verdi (2017) can be used and included in the
damping design method.

For simple impedance superposition in both experiments, a substantial disrup-
tion of the main task by the elbow task could be seen. Compared to this work,
the authors in Hermus et al. (2022) superimposed different sets of joint stiffnesses
to achieve a predictable joint motion. In both works, the robot had a three-
dimensional translational motion task with comparable impedance values (1500
kg

s2
and 1800/2000

kg

s2
, respectively). This left a four-dimensional nullspace for

additional tasks. Remarkably, Hermus et al. (2022) could show that during force-
ful interaction, small joint stiffness values yielded an error for the main task that
was comparable with nullspace projection. Further work with the controller of this
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chapter could investigate the effect of a meaningful reduction of the subordinate
elbow stiffness, both for a one-dimensional and a four-dimensional nullspace. It
could be hypothesized that for a four-dimensional nullspace (experiment 1 with
circular motion as main task), simple impedance superposition can yield better
results for the main task by an appropriate choice of small task impedances (el-
bow task) and joint impedances (damping task). For a one-dimensional nullspace,
however, it can be assumed that the method presented in this chapter is necessary
to improve the performance of the main task.

3.6.2 Parallel control with threading

To control robots with many DOF, usually high-priced controllers with high com-
putational power are needed. To be able to control such robots with low-cost
controllers, it is necessary to develop algorithms with low computational effort.
The method presented in this chapter proposes an algorithm that increases per-
formance while reducing computation time. This algorithm can, for example, be
implemented on a multi-core micro-controller; at present many low-cost multi-core
micro-controllers are available.

In this chapter, the calculation time of nullspace projection method was com-
pared with the novel impedance shaping method. The parallel computation
through the impedance shaping method reduced computation time significantly
(tabs. 3.2 and 3.3). For non-dynamic tasks, however, the parallel computation
could also be applied for nullspace projection approaches, e.g., by computing the
nullspace projector in a parallel thread.

3.6.3 Selecting the right thresholds for conflict detection

For the detection of a translational task conflict, a relation between constrained
task masses and robot weight was assigned. In both experiments, a reasonably
small mass ratio (a = 0.3) for conflict detection was chosen. However, a high mass
ratio would also be feasible, since the constrained task masses along singularities
or during task conflicts tend to infinity (fig. 3.10).

For the detection of rotational task conflicts, a relation to manipulability ellip-
soids (chapter 2) was established. In experiment 2, a high eccentricity threshold
(b = 1400) was chosen to deliberately violate the passivity condition and show the
effectiveness of controller extension 3 (Passivity check, fig. 3.9). Also, with a small
threshold, the performance of the main task would be improved, since rotational
stiffnesses along the conflicting directions are scaled down (fig. 3.15).

3.7 Discussion: Similarities to human-motor-
control

For constrained tasks, humans rely on mechanical impedance rather than adapting
the trajectory or the contact force (Bennett et al., 1992). Moreover, it can be
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hypothesized that humans also assign priorities to different tasks. Imagine a waiter
carrying a full tray. With the same arm, he can position and stiffen his elbow to
open a door. However, he will let go of the door if the tray threatens to drop.

Human motion planning is encoded in the central nervous system (CNS). Com-
pared to characteristics in today’s robot control, the CNS has slow communication
(≈100 m

s for neurons) and long feedback loop delays (often >200 ms for voluntary
correction) (Burdet et al., 2013). Research showed that the high performance could
arise from parallel control of movement and impedance (Maurice et al., 2018).

Humans regularly encounter instabilities, e.g., during walking (Lee et al., 2016)
or tool use (Rancourt and Hogan, 2001). Impedances embedded in the human
limb are used to regain stability (McIntyre et al., 1996; Burdet et al., 2001). For
walking, this is an essential feature since the regulation of displacement would be
too slow due to the large moment of inertia associated with the body’s center of
mass (Burdet et al., 2013).

Muscle stiffness is produced by deformation of thick and thin muscle-filaments
(Tortora and Derrickson, 2017). The increase of muscle stiffness can then be used
for force production (Bennett et al., 1992). Joint viscosity (damping) can be
adapted during movement and is—compared to the approach in this chapter—
underdamped in general (Perreault et al., 2004). While stiffness and damping can
be controlled independent of the posture, they increase monotonically with applied
external forces (Huang et al., 2020).

Stiffness and damping are related to inertia: The moment of inertia about
a joint contributes to impedance (Burdet et al., 2013). The inertial properties
depend on the configuration of the limb and may be optimized for the current
tasks (Hogan, 1985c). For example, the hand has low inertia to allow rapid re-
sponse. Similar to the control approach in this chapter, humans are aware of their
inertial properties since postures are optimized to comply with given constraints
(Lacquaniti et al., 1993).

The aforementioned relations between human motor control and impedance
control were the main inspiration for this work. The impedance shaping
method presented in this chapter could improve the task performance of a sim-
ple impedance controller, while providing passivity and computational efficiency.
However, to reproduce human-like performance, a lot remains to be done. Further
work should use the controller presented here as a basis for optimization of the
robot impedance behavior during forceful contact tasks.
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4.1 Introduction

As mentioned in sec 3.1, there exist a considerable number of collaborative robots
(International Federation of Robotics, 2019b). However, despite the prognosis
of market researchers, collaborative robot applications are still a minority in the
industrial sector. While 400,000 industrial robots were installed in 2018 (Interna-
tional Federation of Robotics, 2019a), only 12,000 professional service robots were
instated in the same year1 (International Federation of Robotics, 2019b). One
reason is the extensive and complicated certification process required to integrate
a collaborative robot into a manual work process. The process usually begins with
a virtual set-up in simulation. First, risk assessments have to be performed to
identify possible hazards for the human when entering the robot workspace (In-
ternational Organization for Standardization, 2011, 2010). The objective of the
risk assessment is to define how likely it is that the hazards harm the human and
to provide measures to minimize these risks. Next, the real robot is installed and
programmed with a range of velocities. After the robot process is implemented,
the impact force of the robot in case of a collision is verified with a measurement
device (Dombrowski et al., 2018).

The international standard ISO/TS 15066 (International Organization for
Standardization, 2016) defines bio-mechanical limits for each body region of the hu-
man. Thresholds are defined for two different contact scenarios: transient contact
(i.e., collision) and quasi-static contact (i.e., clamping). A collision is a dynamic
impact with the moving robot. A clamping scenario occurs when a robot continues
to follow a pre-planned trajectory even though an obstacle has been encountered.
In the risk assessment, the programmer of the robot application has to decide
which contact scenario is likely to occur. Moreover, the affected body regions have
to be identified for each part of the robot application. In an iterative manner, the
robot velocity is reduced until no bio-mechanical threshold is violated (fig. 4.1).

Typical robot controllers are divided into two successive stages: motion plan-
ning and motion execution. During motion planning, a reference trajectory is
computed for every robot joint. The result is then passed to the motion execu-
tion stage, during which the planned joint trajectories are tracked as accurately
as possible (Siciliano et al., 2009). For pHRI, these controllers rely on the predic-
tion of robot collisions with the environment (Phan et al., 2011; Lee and Song,
2015; Bergner et al., 2019). Since the reference trajectory cannot be modified
during motion, the robot executes a stop reaction if a safety-related signal exceeds
a pre-defined threshold (e.g., the distance between robot and environment is too
small or the collision force with the environment is too large). In ISO 10218-1
(International Organization for Standardization, 2011), robot motion is defined as
the main risk source for the human. Therefore, only stop reactions are considered
to be safe. In constricted workspaces where the robot and human work closely
together, this can easily lead to clamping dangers. Moreover, for situations where
the robot brakes are activated during a quasi-static contact, the human has no

1Excluding autonomously guided vehicles and inspection robots.
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Figure 4.1: Simplified certification process of a collaborative robot cell. The robot movement
is roughly planned in simulation. To satisfy the force thresholds in ISO/TS 15066, possible
contact scenarios are identified and respective body regions are selected. The robot process
is programmed with a range of velocities. Collision measurements are performed in order to
evaluate the robot impact. Iteratively, the velocity of the robot is adapted. To prove compliance
with existing standards and regulations, extensive documentation is needed.

means to escape from a clamping scenario (De Luca et al., 2006).
Reactive control schemes merge the planning and execution phases. Therefore,

it is possible to develop unified strategies for collision detection and reaction (Had-
dadin et al., 2008a). Several approaches for collision detection have been proposed
(Fritzsche et al., 2011; Haddadin et al., 2017; Liang et al., 2020; Birjandi et al.,
2020). If the human and robot share the same workspace, the collision point on
the robot structure is not known in advance. Therefore, it is important that the
detection does not depend on the impact location, nor on the current robot con-
figuration. Different safety-related reaction strategies exist. One approach is to
apply monitoring functions during the robot movement and automatically adapt
the controller parameters during run-time (Haddadin et al., 2008b; Navarro et al.,
2016; Raiola et al., 2018; Muñoz Osorio et al., 2019; Ferraguti et al., 2020). The
goal of those controllers is to limit the potential robot impact in case of an unin-
tended collision. Other work focuses on active robot reactions that are executed
after a collision has been detected (Laffranchi et al., 2009; De Luca and Flacco,
2012; Khan et al., 2014). For unstructured environments, it is important to ensure
that these active reactions do not lead to new risks. Moreover, no controlled robot
reaction is fast enough to have a significant influence on the first collision impact
(Haddadin et al., 2008c,b).

A promising field of research is learning based approaches to support pHRI,



68 Ch 4: Energy budgets for coordinate invariant robot control in pHRI

e.g., imitation learning (Billard et al., 2008; Laskey et al., 2016; Manschitz et al.,
2020) and dynamic motion primitives (Schaal, 2006; Ijspeert et al., 2013). The
goal of these approaches is to demonstrate to the robot human-like interaction and
therefore resolve unsafe behavior.

Learning based approaches often depend on appropriate sensors to monitor the
environment. Even though considerable research in safety-related perception and
vision has been done in recent years (Flacco et al., 2015; Beetz et al., 2015; Flacco
and De Luca, 2017; Charalampous et al., 2017; Chen and Song, 2018; Sadrfaridpour
and Wang, 2018), there is a significant lack of certified sensors, e.g., to calculate
distances, to predict human intentions, and to supervise sharp objects at the robot
end-effector. If such sensor functions should be used for pHRI, they have to fulfill
the strict requirements of ISO 10218-1 and ISO 13849-1. This means that for a
severe and frequently appearing risk, the safety-related software has to be designed
in a redundant manner (i.e. “Category 3”) and the probability that failures of the
safety system remain undetected has to be less than 10−6 (i.e. “Performance Level
d” or “System Integrity Level 2”) (International Organization for Standardization,
2011, 2015). Since these sensors are largely unavailable, ISO/TS 15066 excludes
the use of sharp objects in a pHRI application.

To program collaborative applications, coordinate frames are typically placed
on the robot structure, e.g., to monitor Cartesian velocities or predict external
forces. As may be anticipated, unmonitored body parts on which no coordinate
frame has been placed can easily cause risks for the human. Imagine a service
robot working in a supermarket surrounded by children. To be productive, it is
desired that such a robot moves at high velocity. However, the maximum velocity
of the robot has many constraints. Some of the constraints are robot-related (e.g.,
movement direction and curvature) and others are due to the given environment
(e.g., clamping dangers and number of surrounding people). Therefore, it is hard
to define possible collision points and maximum limits for the robot velocity. For
such applications, intrinsically safe controllers are needed that automatically adapt
the robot behavior and exclude clamping danger.

Physical interaction can be characterized by energy exchange (Colgate and
Hogan, 1988). A major advantage is that energy is a coordinate invariant en-
tity. Energy shaping techniques in robotic control have already been used in 1981
(Takegaki and Arimoto, 1981). However, there is only limited work addressing the
control of energy for safe pHRI. In most energy-related control approaches, the en-
ergy difference between two successive control cycles is compared in order to make
a statement about the passivity of the robot. An introduction to passivity was
given in sec. 3.2.1. Probably the most prominent passivity concept is the “energy
tank” and “energy routing” approach originally proposed by Duindam and Strami-
gioli (2004). This approach can be used for telemanipulation (Franken et al., 2011;
Ferraguti et al., 2013, 2015), to guarantee stability during contact (Schindlbeck
and Haddadin, 2015; Shahriari et al., 2017, 2020), or to render nullspace projection
approaches passive (Dietrich et al., 2016, 2017; Garofalo and Ott, 2018). More-
over, the energy tank concept has been proposed for safe pHRI (Tadele et al.,
2014; Raiola et al., 2018). An energy tank constrains the robot energy to a finite
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amount. During movement, the robot extracts energy from the tank. In all ap-
proaches, the initial amount of energy in the tank is crucial. For pHRI, this can
lead to a conflict: On the one hand, the available energy should be high enough
for the robot to fulfill its task; on the other hand, allowing a high energy value
can pose a risk for the human in case of an unintended collision. Therefore, it
might be worth exploring the allocation of an energy budget for each control cycle
(Groothuis et al., 2018).

Chapters 2 and 3 established methods for the analysis and control of collab-
orative robots. This chapter focuses on the use of collaborative robots in pHRI
applications. The coordinate dependency of the implementation of safety measures
in pHRI applications is addressed. The current certification process is reviewed
with the help of an example application on a real robot. For the certification
process, coordinate frames are used to monitor Cartesian velocities and predict
external forces. It will be shown that for a given robot task these strategies do
not generally predict unsafe robot behavior. The novelty of this chapter is to as-
sign a dynamic relationship to a contact scenario. This means that the contact is
not only defined by the applied robot force but also influenced by the interacting
environment. The control approach of this chapter assigns an energy budget to
the robot to restrict the amount of energy flow in case of a collision. The robot is
exposed to an artificial potential field and auto-tunes this potential field at run-
time to ensure that the energy budget is not violated. Summarized, the main
contributions of this chapter are:

• Illustration of the current certification process of applications with pHRI on
the real robot with state of the art certification equipment.

• Identification of causal energy flow during contact scenario.

• Allocation of safe energy budget to guarantee safe robot behaviors during
collisions and clamping scenarios.

• Significant reduction of the programming complexity of pHRI applications.

• Experimental validation of the novel approach with state of the art certifi-
cation equipment.

The results of this chapter are partly reported in Lachner et al. (2021).

4.2 Safe pHRI: Classical approach

In order to certify a robot application, a risk assessment based on ISO 12100 has
to be performed. The first step of the risk assessment is to list possible risks for
the human. For pHRI, two major hazards are collisions and clamping scenarios,
which will be treated in the remainder of this chapter.
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4.2.1 Certification process of pHRI cells

Each robot application can roughly be divided into transfer motion, approach mo-
tion, and process. During the transfer motion, collisions or clamping scenarios
can occur. The approach motion mostly yields clamping dangers. In fig. 4.2,
an exemplary robot application is shown which will be used in the following to
demonstrate the current certification process. If a pHRI application is placed in

Transfer motion Approach motion

Figure 4.2: A typical robot application is divided into transfer motion and approach motion.
At the end of the transfer motion, the robot is pre-positioned. Relative to this position, the
workpiece is approached.

a restricted and unstructured workspace, the contact scenario cannot be deter-
mined in advance and the programmer of the robot cell has to assume the worst
case scenario. To determine the impact of a collision between the robot and the
human, possibly affected body parts have to be identified. ISO/TS 15066 pro-
vides bio-mechanical thresholds for different body parts of the human. Moreover,
the stiffness k ∈ R of each body part is listed. Note that ISO/TS 15066 permits
contact with face, skull, and forehead. If it is likely that those areas are affected,
equipment has to be provided to protect the human co-worker. For the example
application (fig. 4.2), the upper arm, lower arm, and hand were identified as the
affected body parts. The respective bio-mechanical thresholds and stiffness values
can be seen in tab. 4.12. Note that the transient force and pressure thresholds are
twice as high as the respective quasi-static values.

In the next step of the risk assessment, possible collision points on the robot
structure have to be determined in order to calculate the impact surface area
during contact. The robot programmer analyzes the robot motion and selects the
sharpest points on the robot structure, i.e., the surface with the smallest curvature.
Often, the most exposed surface in the movement direction is selected. For the
example application, the white rounded cover around the cables of the robot flange
was selected as the most exposed surface that is likely to collide with the human
arm during transfer motion (fig. 4.2). During the approach motion, it is possible

2To facilitate comparison, the units of ISO/TS 15066 will be used.
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Table 4.1: Bio-mechanical thresholds, based on ISO/TS 15066, for affected body parts in the
example application. The bold numbers indicate the lowest values that have to be taken into
account.

Transient Quasi-static

F[N] P[N/cm2] F[N] P[N/cm2] k[N/mm]

Up. arm 300 380 150 190 30

Lo. arm 320 360 160 180 40

Hand 280 380 140 190 75

that the human arm or hand becomes clamped between the table and the gripper
jaws, which have a flat surface at the finger tips (fig. 4.2).

To analyze the severity of a collision and to guarantee conformity with ISO/TS
15066, each pHRI application is certified based on measurements. The desired
output of the measurements are impact surface area and collision force. With this
information, contact pressure can be calculated. For the example application, such
measurements were conducted. In fig. 4.3, the measurement setup for the transfer
motion and the approach motion can be seen, with detailed technical specifications
presented in appendix G.1. Two test series were performed, one for the transfer
motion and one for the approach motion.

(a) Collision test with gripper cover during
transfer motion

(b) Collision test with gripper jaws during ap-
proach motion

Figure 4.3: To determine the impact surface area and impact force during transfer motion (a) and
approach motion (b), a collision measurement device was mounted on solid pillars. The robot
application was started and the identified robot part collided with the measurement device.
The tests were conducted with varying robot speeds to determine the maximum admissible bio-
mechanical threshold.

The collision measurements were conducted with a measurement device that
was mounted on a solid steel pillar. This simulated a quasi-static contact in
which the human has no possibility to back up. The measurement device was
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equipped with a force sensor. On top of the force sensor, a spring was attached that
simulated the stiffness of the human body part. The robot collided with a foam
rubber pad that resembled the stiffness of the skin. In the experiments, the spring
constants used were 25 N/mm (arm) and 75 N/mm (hand), for transfer motion
and approach motion, respectively. These values emulated the stiffness values of
the affected body parts, defined in tab. 4.1. The foam rubber had a thickness
of 0.01 m. To assess the impact surface area, a pressure sheet was fixed on the
measurement device during the first test of each series (fig. 4.3). Using the software
of the pressure sheet provider, the impact surface area was determined by outlining
the area manually in the software (thin black line in fig. 4.4). For the experiments,
the impact surface area for the transfer motion was At = 4.15 cm2 (gripper cover)
and for the approach motion Aa = 0.36 cm2 (gripper jaw). As a last step of the risk

(a) Impact surface area for transfer motion:
At = 4.15 cm2

(b) Impact surface area for approach motion:
Aa = 0.36 cm2

Figure 4.4: After scanning the pressure sheet, the respective pressure regions are displayed in
different colors. Yellow represents the area with highest contact pressure. Red indicates the
second highest contact pressure, from high in dark red to low in light red. Green represents area
without contact. A contour was manually drawn to determine the impact area. The impact area
of the gripper cover and one gripper jaw are visualized in (a) and (b), respectively.

assessment, safety measures have to be provided to keep the collision impact within
an acceptable range. For contact scenarios, this means that the bio-mechanical
thresholds of ISO/TS 15066 must not be exceeded. Collaborative robots provide
measures to lower the impact during a contact scenario. For the KUKA LBR iiwa,
integrated torque sensors can be used to detect a collision. Moreover, based on
the torque sensors, external Cartesian forces can be predicted. In the experiments,
a collision detection criterion of torque > 20 Nm was set. If any torque sensor
measured a value above this threshold, a stop reaction was triggered and the
robot brakes were activated. This stop reaction was implemented because ISO
10218-1 argues that the moving robot is a risk and hence only a stopped robot
is safe. At the end of the collision measurements, the maximum robot speed can
be determined such that the collision detection acts quickly enough to stay within
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the bio-mechanical limits.
Every contact scenario has a transient and a quasi-static phase. During each

phase, maximum force and pressure values are tracked. While the maximum
values are considrered over the complete impact time for transient contact, the
maximum quasi-static values are assumed to be established 0.5 seconds after first
contact (International Organization for Standardization, 2016). For the example
application, an unstructured environment and a quasi-static contact scenario for
the transfer and approach motions were considered.

Fig. 4.5a shows the robot end-effector velocity in the direction of movement
during the transfer motion. Approximately 0.3 s after the robot motion started, a
collision with the measurement device occurred. The velocity at the first impact
instant (vcol) was analyzed by detecting large torque deviations in axis 6 of the
robot. In fig. 4.5b, the respective force recordings of the measurement device can
be seen. The recording was automatically started after a force threshold of > 20
N was exceeded. Since the cover of the gripper was rounded and the contact
surface area was relatively large (fig. 4.4a), low transient pressure values and low
quasi-static pressure (QSP) values were observed. The maximum transient force
value was close to the bio-mechanical force threshold of the hand (cf. tab. 4.1 and
fig. 4.5b). Hence, vcol was close to the maximum robot velocity that remained
within the allowable bio-mechanical thresholds if a collision occurred during the
transfer motion. Collaborative robots provide safety-related monitoring functions
that comply with ISO 13849-1 (Ferraguti et al., 2020). For the KUKA LBR iiwa,
one such function can monitor the Cartesian velocity in a given task coordinate
frame. Consequently, vcol would have to be set as safety-monitored velocity. If
this velocity is exceeded, a stop reaction is triggered.
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(a) Velocity during a transfer motion. The velocity at the instant of collision is shown by a red
star.
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(b) Force and pressure during quasi-static contact.

Figure 4.5: (a) For each trial, the velocity at the first impact instant was determined. (b) Force
and pressure distribution for a collision during the transfer motion. While the maximal transient
pressure and maximal quasi-static pressure were far lower than the admissible threshold, the
transient force was close to the permitted threshold of 280 N. Even though the robot moved at
high velocity (fig. 4.5a), the stop reaction reduced the force peak in a short time (cf. F at 0.016 s
≤ t ≤ 0.036 s). Once the brakes were activated, a quasi-static force of ≤ 94.74 N and quasi-static
pressure of ≤ 10.13 N were maintained (red dots).

Fig. 4.6a shows the robot end-effector velocity in the movement direction of the
approach motion. Unlike the transfer motion, high QSP values were observed since
the gripper jaws had a small contact surface area (cf. fig. 4.4b and fig. 4.6b). The
robot velocity was iteratively adapted, until the QSP approximated the threshold
for the lower arm (cf. tab. 4.1 and fig. 4.6b). Note that vcol does not necessarily
represent peak velocity since velocity oscillations due to the impedance controller
can occur (cf. fig. 4.6a between 2.25 s and 2.3 s). In the example application,
transient force values were critical for collisions with round robots parts (e.g., the
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gripper cover), while QSP values had to be considered for parts with small impact
surface areas (e.g., the gripper jaws).
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(a) Velocity at the collision instant during an approach motion.
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(b) Force and pressure during quasi-static contact.

Figure 4.6: The robot velocity was iteratively adapted until the contact pressure value met the

bio-mechanical threshold of 180
N

cm2
. All other force and pressure values were far lower than the

allowed thresholds (tab. 4.1).

4.2.2 Specific aspects of the safety implementation

As shown in the previous section, the robot programmer has to determine critical
points on the robot structure. For these points, coordinate frames are placed and
the maximal velocity is evaluated. As already mentioned in sec. 2.2.1, different
Jacobian matrices exist. Most commonly, the Hybrid Jacobian Matrix (sec. 2.2)
J(q)H ∈ R6×n is used, which maps joint velocities q̇ ∈ Rn to linear and angular
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Cartesian velocities V ∈ R6 (eq. (2.6)). The matrix J(q)H is expressed in the
body-fixed coordinate frame and expressed with respect to the inertial coordinate
frame.

To analyze a scalar value, the vector V is transformed to a scalar velocity v ∈ R,
usually by using the Euclidean 2-norm. In the kinematically redundant case, there
are infinitely many solutions q̇ to produce a desired Cartesian velocity. Hence, for
a given velocity V the joint velocity of the robot is not unique (eqs. (2.9), (2.10)).
This can lead to high joint velocities which can be a risk for the human. This
raises the question where to put the coordinate frame on the robot structure. For
a poor choice, unmonitored high velocities can cause injuries in case of a collision
(fig. 4.7).
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(a) Velocity monitoring of a redundant robot

(b) Cartesian velocity magnitudes based on a Euclidean 2-norm

Figure 4.7: A redundant 3-DOF robot moving along the y-direction (dotted line in fig. 4.7b).
The given task motion can be produced by infinitely many joint velocities. Two different joint
motions with different elbow velocities are shown. The arrow colors in fig. 4.7a correspond to
the graph colors in fig. 4.7b. All velocities are calculated based on the Euclidean 2-norm. In
the given time frame (vertical blue line in fig. 4.7b), the elbow velocity (blue color) is higher
than the velocity of the end-effector (dark red color). If this velocity is not evaluated during the
certification process, it can represent a risk for the human.

To lower the impact of a collision, often joint torque sensors are used to detect
a contact with the environment. External torques τ ext ∈ Rn are estimated based
on the difference between the measured torques, control torques, and acceleration
estimations and hence require accurate model data. However, τ ext cannot always
be used as a safety measure. For assembly processes, the robot cannot differentiate
between an intended or unintended contact. Another commonly used approach
is to calculate external forces F ext ∈ se?(3) acting on the robot structure. For
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robots with joint torque sensors, F ext can be obtained by using the Generalized
Inverse Jacobian (eq. (2.10)) J(q)#

H ∈ Rn×6:

F ext = (J(q)#
H)

T
τ ext. (4.1)

For a kinematically redundant robot, J(q)#
H is not unique and commonly depends

on the choice for a cost function and a weighting matrix (sec. 2.2.1). J(q)#
H also

depends on the coordinate frame on the robot structure. Moreover, the measure-
ment of τ ext critically depends on the current robot configuration as well as on
the position and direction of the applied force. Along singular directions, no forces
can be detected (fig. 4.8a).

The contact force is frequently described by a linear mass-spring-mass model
(Haddadin et al., 2009; International Organization for Standardization, 2016;
Rosenstrauch and Kruger, 2017). For a given direction, represented by the unit
vector u ∈ R3, the magnitude of the scalar force due to the linear mass-spring-mass
model depends on the robot’s “reflected inertia” (Haddadin et al., 2008b) meff ∈ R
at the contact point (eq. (2.27)) (Wassink and Stramigioli, 2007; Haddadin et al.,
2010; Khatib, 1995):

meff = (uTΛ−1u)
−1
. (4.2)

The “mobility end-point tensor” (Hogan, 1984; Lachner et al., 2020) Λ−1 ∈ R6×6

(eq. (2.18)), derived in sec. 2.3, is a static measure and solely depends on the
robot configuration. Hence, if the contact force is modeled based on Λ−1, different
nullspace motions will cause different predictions of contact forces (fig. 4.8b).
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(a) External forces acting on robot
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(b) Linear force based on mass-spring-mass model

Figure 4.8: (a) While the end-effector is moving upwards along the y-axis, two external forces
(purple and red arrow) act on the robot. If the calculation of F ext is based on joint torque
sensors, the purple force cannot be measured for robot configuration 1. (b) Applying the linear
mass-spring-mass model in Haddadin et al. (2009), the simulated contact force (red color) yields
two different solutions, depending on the robot nullspace motion.

As can be seen in eq. (4.2), the magnitude of meff depends on the direction
of the unit vector u. For the end-effector body, the direction along the linear
end-effector motion can be monitored. However, when selecting other points on
the robot structure, different nullspace motions result in different values of meff

(fig. 4.9). Usually, the normal direction to a point on the impact surface with
the smallest curvature is selected (Wassink and Stramigioli, 2007; Haddadin et al.,
2008b). Near singular configurations, the magnitude of meff is highly sensitive to
small direction changes (fig. 4.9, bottom plot on right side). For a kinematically
redundant robot with an almost round impact surface along the robot structure,
it is difficult to determine an appropriate impact direction.
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(a) Impact direction u on robot body

(b) Magnitude of meff along u

Figure 4.9: Reflected inertia for two different feasible joint space trajectories with coordinate
frames on joint 3 (fig. 4.9a). The magnitude of meff for all unit directions u can be seen in
fig. 4.9b. Rotating the coordinate frame on the selected body yields different solutions of meff.
The yellow direction umax shows the maximal value of meff. The green direction umin, with
minimal value of meff, is perpendicular to umax. The reflected inertia along the current linear
motion uv for the selected point is displayed in red. For two different nullspace motions, different
magnitudes of meff arise. Near singular configurations, a small direction change leads to a high
change in magnitude of meff (fig. 4.9b, lower plot).

In the example application, one coordinate frame was placed on the end-effector
to monitor and adapt its velocity. Additional high velocities, e.g., of the robot el-
bow, were not tracked and can represent an injury risk. Even if all appropriate
coordinate frames have been placed, the clamping danger still exists. To comply
with ISO 10218-1, the robot stops and the brakes are activated if an unintended



4.3 Coordinate invariant control of robot energy 81

contact is detected. This is especially disadvantageous for applications with re-
stricted workspaces. This can be seen in the example application (fig. 4.5b and
fig. 4.6b): The remaining quasi-static force (QSF) values after the robot stopped
were approximately 94.74 N and 65.06 N for the transfer motion and the approach
motion, respectively. For the approach motion, a constant pressure of 180 N/cm2

remained. For the example application, the force and pressure values are in corre-
spondence with ISO/TS 15066. However, a wrong choice of considered body parts
(tab. 4.1) will not eliminate all risks. Even if all affected body parts were identified
correctly and all contact values were in correspondence with ISO/TS 15066, the
programmer has to provide some means to release the human co-worker.

4.3 Coordinate invariant control of robot energy

A collision between a robot and its environment is a dynamic interaction and
hence cannot be described with either velocities or forces alone (Stramigioli, 2015;
Folkertsma and Stramigioli, 2015). A physical contact results in a robot response.
It is important that this reaction should not evoke new dangers for the human
(Haddadin et al., 2017). In the presented approach, the energy of the robot will
be controlled, which is a coordinate invariant measure and therefore does not
depend on the selection of coordinate frames. The controller auto-tunes the total
energy of the robotic system. The compliant robot behavior in quasi-static contact
will protect the human from clamping scenarios.

In the remainder of this chapter, all entities are expressed in the body-fixed
coordinate frame and the Geometrical Body Jacobian of eq. (3.2) is used. To make
the notation light it will be defined: J(q) := Jb(q)G and ξ := ξb.

4.3.1 Control of potential energy

Due to the virtual spring of the impedance controller, the robot is exposed to a
potential energy function (Stramigioli (2001), sec. 3.2). The potential energy can
also be a function of the robot joint displacement ∆q = (qe − q) ∈ Rn and the
joint stiffness Kq ∈ R3×3:

U(∆q) =
1

2
∆qTKq ∆q. (4.3)

Here, qe denotes the equilibrium joint configuration.
For the workspace, several methods exist to describe the potential, e.g., Fasse

and Broenink (1997), Caccavale et al. (1999), Stramigioli (2001), and Natale
(2003). The main difference between the methods lies in the description of the
rotational part of the potential. As shown in sec. 3.2, it is possible to describe a
rotation with unit-length quaternions. The rotation matrix eRb ∈ SO(3) between
the body-fixed coordinate frame (subscript b) and the equilibrium pose (super-
script e) is converted to unit-length quaternion with scalar rotation angle η and
unit-axis ε (eq. (3.6)). Therefore, the total potential U(∆p, ε), expressed in the
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body-fixed coordinate frame, is chosen to be the sum of translational potential Up
and rotational potential Uε:

U(∆p, ε) =
1

2
∆pTKp ∆p︸ ︷︷ ︸

Up

+

+ 2 εT Kε ε︸ ︷︷ ︸
Uε

.

(4.4)

To avoid oscillations, an appropriate damping function has to be found. If the
controller damps the joint velocity q̇, the Rayleigh function R : Rn → R can be
represented by:

R(q̇) =
1

2
q̇TBqq̇. (4.5)

Here, the resistive element Bq ∈ Rn×n can be obtained by using the damping
design method of sec. 3.4.3. First, a Cartesian damping design can be applied
(Albu-Schaffer et al. (2003), eq. (3.34)). Second, the resulting Cartesian damp-
ing matrix can be mapped into the joint space and joint damping values can be
assigned that act on the nullspace of J(q) (eqs. (3.35) - (3.40)).

The control wrench F imp ∈ se?(3) that is supposed to minimize the potential
energy function U(∆p, ε) can be derived by computing the differential of U(∆p, ε)
(appendix D). The control torque τ imp ∈ Rn is calculated with the wrench F imp,
the partial derivative of the gravitational potential energy Ug(q) (eq. (3.1)), and
the partial derivative of R(q̇)(eq. (4.5)):

τ imp = J(q)
T
F imp − ∂R(q̇)

∂q̇
+
∂Ug(q)

∂q
. (4.6)

Here, the centrifugal/Coriolis effects are neglected.

4.3.2 Energy transfer during interaction

The interaction between the robot and its environment can be represented by an
equivalent network (Hogan, 2014; Stramigioli, 2001)(fig. 4.10). For a given joint
configuration and desired impedance behavior, the robot controller calculates a
desired control wrench. The contact between robot and human takes place at the
interaction port (ξ,F imp). In a collision, the energy that is flowing bi-directionally
between the robot and the human can be modeled at this port. If the robot behaves
like a mechanical impedance3, its output (seen from the robot side) is a force
(effort) and the input is a displacement (time-integral of flow). The connected
subsystem (in this case the human) is exposed to this force F imp and influences
the robot displacement.

In a contact scenario, the amount of transferred energy is determined by the
energy of the robotic system, i.e., kinetic co-energy T : Rn → R and potential

3Since humans are soft, the robot behaves like an admittance (as seen from the human side).
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Figure 4.10: Norton equivalent network for contact dynamics between robot and human (inspired
by Hogan (2014)). The robot is modeled as an impedance (left). A collision can be described
at the interaction port (−F imp, ξ): The robot exerts a force, while the human is influencing the
robot position (right). During transient contact, the energy flow is mainly determined by the
energy in the robotic system, i.e., potential and kinetic co-energy. During quasi-static contact,
ξ = 0 while F imp increases.

energy U(∆q)+U(∆p, ε)+Ug(q). T is a function of the robot massM(q) ∈ Rn×n
and the joint velocity q̇. Hence, for a kinematically redundant robot, T can vary
with the different nullspace motions. Ug(q) depends on the robot configuration.
For pHRI, Ug(q) must always be compensated by the controller to eliminate the
risk due to a collapsing robot (fig. 3.2). The total energy L ∈ R of the robotic
system is:

L = T(q̇,M(q)) + U(∆q) +

U(∆p, ε) + Ug(q).
(4.7)

Hereby, q, p, and ε are usually functions of the control time tc ∈ R.
For an impedance controlled robot, the energy flow from the information

domain (impedance source K,B) to the energy domain (physical interaction
(ξ,F imp)) follows a strict causality. First, the robot is exposed to physical and
virtually controlled potential energy U(∆q) + U(∆p, ε) + Ug(q). Once the robot
starts moving, the potential energy is transferred to kinetic co-energy. In case of a
collision, T is exchanged with the human. Since the skin is deformed, the contact
can be modeled as an energy transfer from T to Uskin ∈ R (International Organi-
zation for Standardization, 2016; Haddadin et al., 2011). In a quasi-static contact,
T ≈ 0 and the human is only affected by the potential energy, which generates a
clamping force at the interaction port. The controlled motion and constant robot
position p leads to an increase of U(∆p, ε) and therefore to an increase of the
clamping wrench F imp.

In the following, an energy budget will be assigned to the robot system in order
to ensure an intrinsically safe robot motion and safe contact behavior. Therefore,
the wrench F imp is automatically limited in case of a clamping scenario.
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4.3.3 Energy budget for safe pHRI

If n > 6, U(∆p, ε) does not affect the nullspace in the J(q). This nullspace
exists for a kinematically redundant robot and–even if damped–can lead to an
increase of T due to nullspace motion. Consequently, if the robot energy should
be controlled, not only potential energy but also T has to be taken into account.
For simplification, Ug(q) will be excluded from the following equations since it
always has to be compensated by the controller, e.g., via energy shaping techniques
(Duindam et al., 2009). The controlled energy Lc ∈ R, expressed in body-fixed
coordinate frame, can be calculated with

Lc =
1

2
q̇TM(q)q̇︸ ︷︷ ︸

T

+
1

2
∆qTKq ∆q︸ ︷︷ ︸

U(∆q)

+

+
1

2
∆pTKp ∆p︸ ︷︷ ︸

Up

+ 2 εT Kε ε︸ ︷︷ ︸
Uε

.

(4.8)

The presented controller will set an energy budget Lmax ∈ R for the robot, satis-
fying

T + U(∆q) + U(∆p, ε) ≤Lmax. (4.9)

If eq. (4.9) is violated, a new elastic potential U?(∆p, ε) = κ U(∆p, ε) and
U?(∆q) = κ U(∆q) can be produced with the scaling function κ : R→ R:

κ =


1 , if Lc ≤Lmax

Lmax −T

U(∆q) + U(∆p, ε)
, if Lc >Lmax

0 , if T >Lmax.

(4.10)

This approach will automatically bound the total energy of the robot. The con-
dition for T > Lmax is necessary for pHRI: If the human were to push the robot
while the scaling function was active, this could result in a high negative κ value,
which would lead to unstable robot behavior. A simpler form of eq. (4.10) was
used in Tadele et al. (2014) and Raiola et al. (2018). This work provides two
necessary extensions.

First, the control inputs pe and bRe will be changed to be a function of what
will be called “effective time,” tc → teff. If no collision happens, tc = teff and teff

will be updated by the sample time of the controller ts ∈ R at the end of each
control cycle. Otherwise, if a contact occurs, the controller does not update teff

and therefore remains in the pose at the contact incident. The time teff can be
calculated by:

R 3 teff =

{
teff = teff + ts , if Lc ≤Lmax

teff = teff , otherwise.
(4.11)

This is a necessary extension, since otherwise the time-dependent control variables
pe and bRe would be updated during contact. After the contact, the potential
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energy U(∆q) + U(∆p, ε) would be very high due to the large displacement be-
tween end-effector pose and equilibrium pose. The energy budget would continue
to be violated and the scaling function κ would continue to act, even though the
robot was not in a contact scenario anymore. This would lead to an undesired and
unpredictable robot motion.

Second, an additional joint potential U•(∆q) ∈ R will be introduced:

U•(∆q) =

0 , if T ≤Lmax

1

2
(q − q•)T Kq

• (q − q•), , if T >Lmax,
(4.12)

with q• ∈ Rn being the joint configuration of the collision incident (T > Lmax),
which is stored until T ≤Lmax. This is the case if the operator pushes the robot,
e.g., when releasing from a clamping scenario. The controller will be extended with
a second scaling function ρ : R→ R, producing a new joint potential (ρ U•(∆q)):

ρ =


1 , if T ≤Lmax

Ω
T

Lmax + U•(∆q)
, if T >Lmax,

(4.13)

where Ω ≥ 1 is a scalar value that determines the desired robot behavior. With
eqs. (4.12) and (4.13), the robot increases the joint stiffness if T would violate the
energy budget Lmax. This is a necessary feature since otherwise the joints could
accelerate without control if the robot was pushed. The effect of this feature can
be seen in the multimedia extension (summary part V) of Lachner et al. (2021).

Finally, the control torque τ imp can be calculated with F imp based on ap-
pendix D, with the partial derivatives of U(∆q) (eq. (4.3)), R(q̇) (eq. (4.5)),
U•(∆q) (eq. (4.12)), and by application of the energy scaling method of eqs. (4.10)
and (4.13):

τ imp = J(q)
T (
κ F imp

)
+ (κ

∂U(∆q)

∂∆q
)− (
√
κ
∂R(q̇)

∂q̇
) + ρ

∂U•(∆q)

∂(q − q•)
=

= J(q)
T

(
− κ Kp ∆p

∆p̃ κ Kp ∆p+ 2 E(η, ε)
T
κ Kε ε

)
+ κ Kq ∆q

−
√
κ Bq q̇ + ρ Kq

•(q − q•).

(4.14)

Here, E(η, ε) can be calculated based on eq. (D.11). Note that for T < Lmax :
q• = q and hence U•(∆q) = 0.

A great benefit of this general approach is that the scaling functions can be
applied no matter how the elastic potential is described. Hence, the presented
controller is a feasible extension for every impedance controller. Moreover, in
the presented version, the scaling parameter κ also affects the damping design in
eq. (3.34) and the desired damping behavior is also ensured if κ < 1. With the
control approach, not only the potential energy can be limited during quasi-static
contact, but also the kinetic co-energy if the robot is pushed.
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4.3.4 Derivation of a safe energy budget

ISO/TS 15066 provides energy thresholds that can be calculated via

Lmax =
F 2

max

2k
. (4.15)

With the minimal force values and stiffness parameters of tab. 4.1, the energy
thresholds can be calculated for the example application of fig. 4.2 (tab. 4.2). These

Table 4.2: Bio-mechanical energy thresholds based on ISO/TS 15066 for affected body parts in
the example application. The bold numbers indicate the lowest values that have to be taken into
account.

LTF [J] LQSF [J]
Up. arm 1.50 0.38

Lo. arm 1.28 0.32

Hand 0.52 0.13

values determine the limit to the bio-mechanical energy that can be exchanged
during the transient (LTF) and quasi-static (LQSF) contact phases. First, the
transient contact phase will be analyzed and Lmax = 0.52 J will be set for the
controller. All other control parameters can be seen in appendix G.2. In the
following, the same collision measurements as in sec. 4.2.1 were performed. As
can be seen in fig. 4.11, the robot automatically limits Lc ≤ 0.52 J. Once Lc

reaches Lmax, the scaling function κ (eq. (4.10)) acts on the impedance potential
U(∆p, ε) and consequently reduces the kinetic co-energy T of the robot.
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(a) Collision scenario during transfer motion.

(b) Collision scenario during approach motion.

Figure 4.11: Energy distribution with active scaling function during transfer motion (a) and
approach motion (b). Once the threshold Lmax is reached, the scaling function κ acts on the
impedance potential Ux = U(∆p, ε) and consequently reduces T. After the first collision instant
(red star), T reduces quickly and Ux approaches Lmax.

Moreover, as long as Lc >Lmax, the controlled position (x- and z-coordinate)
is kept constant (fig. 4.12). Note that if solely the controlled robot pose is kept
constant, the energy constraint Lmax may be violated. This can be seen in the
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example application during quasi-static contact with κ < 1 (fig. 4.11) and static
x/z-coordinate (fig. 4.12).
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(a) Collision scenario during transfer motion.
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(b) Collision scenario during approach motion.

Figure 4.12: Velocity and position with active scaling during transfer motion (a) and approach
motion (b). The robot velocity quickly reduces after the first collision instant (vcol). During the
transfer motion, the robot moves along the x-coordinate of the base frame. During the approach
motion, the robot moves along the z-coordinate of the 0-coordinate frame. The controlled robot
position is kept constant if Lc > Lmax (purple line).

During the transient contact phase, T is exchanged with the human and is
hence the crucial quantity to observe. To comply with ISO/TS 15066, it is neces-
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sary that T ≤ 0.52 J during this phase. For the novel control approach, however,
the robot will never reach this threshold since there will always be a potential
energy content in Lc (cf., T in fig. 4.11).

During the quasi-static contact phase, the potential energy imposes a clamping
force. The calculated energy threshold based on ISO/TS 15066 for this phase is
0.13 J. It could be shown that the novel control approach eliminates the clamping
risk. This can be seen by observing the QSF values during the transfer motion
and QSP values during the approach motion in the example application. While
for the classical approach of sec. 4.2.1, the QSF values after the robot brakes were
activated remained approximately 65 N (fig. 4.6b), these values were limited to
≤ 6.86 N with the novel approach (fig. 4.13a). The same holds for the QSP values
after a collision during the approach motion: While for the classical approach a
constant pressure of approximately 180 N/cm2 remained (fig. 4.6b), this value was
limited to ≤ 19.06 N/cm2 with the novel approach (fig. 4.13b). For the example
application, it can therefore be argued that clamping dangers don’t have to be
taken into account and the double force values can be used to calculate LQSF. This
is the same value as for the transient contact phase: Lmax = LTF = LQSF = 0.52
J. Hence, the presented controller is especially advantageous for approach motions
where the tool tip usually has a small surface area.

The classical approach showed large differences between measurements with
rounded and sharp objects. During the transient contact phase with gripper cover
and gripper jaw, the maximum transient force values were 268.02 N and 100.42 N,
respectively. During the quasi-static contact phase with the same colliding parts,
the maximum QSP values were 22.56 N/cm2 and 180.73 N/cm2 (fig. 4.6b). The
novel control approach yields comparable force peaks during the transient phase
(21.28/22.66 N) and similar maximum force values during the quasi-static phase
(5.78/6.86 N) (cf. fig. 4.13a and 4.13b). Even though the surface area of the grip-
per jaws was small, the pressure values were reduced to ≤ 19.06 N/cm2 (fig. 4.13b).
While every segment of a robot application has to be manually adapted using the
classical approach, the novel controller constrains the robot to a consistent behav-
ior during the whole application. As can be seen in fig. 4.13, the controller is fast
enough to minimize the quasi-static contact values within 0.5 seconds of the tran-
sient contact phase. Moreover, instead of adapting multiple control parameters
in the classical approach (e.g., τmax, vmax, Kq, Kp, and Kε), the approach pre-
sented here requires only one parameter Lmax and auto-tunes the initial control
parameters to guarantee a safe robot behavior.



90 Ch 4: Energy budgets for coordinate invariant robot control in pHRI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100

120

140

max TF/TP
max QSF/QSP
p
F

0

1

2

3

4

5

6

p
 [

N
/c

m
2
]

(a) Collision measurements during transfer motion.
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(b) Collision measurements during approach motion.

Figure 4.13: Force and pressure distribution with active scaling function during transfer motion
(a) and approach motion (b). The maximal transient force values (21.28/22.66 N) and quasi-
static force values (5.78/6.86 N) are in a comparable range for the transfer and approach motions.
All values are far lower than the permitted bio-mechanical thresholds. In practice, the energy
budget could be iteratively adapted and verified based on collision measurements.

4.4 Conclusion

The first aim of this chapter was to make the reader aware of the influence of
coordinates on the implementation of safety measures in pHRI applications. The
current certification process was reviewed with an example application on a real
robot. Coordinate frames had to be placed on the robot structure to monitor
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Cartesian velocities. With collision measurements, the velocity was iteratively
adapted until no bio-mechanical thresholds were violated. For a poor choice of
coordinate frame positions, unmonitored high velocities present risks if unintended
collisions occur. This has especially to be considered for kinematically redundant
robots, for which a motion in the nullspace of J(q) can occur. If joint torque
sensors are used to detect collisions, the reliability of the detection depends on the
current robot configuration.

The second aim of this chapter was to present a novel approach that removed
these limitations by assigning an energy budget for impedance controlled robots.
This coordinate invariant control approach facilitates the certification process of
pHRI applications. The key features of this control approach are:

1. The energy budget is a coordinate invariant quantity that acts on the whole
robot. No coordinate frames have to be placed on the robot structure. For
kinematically redundant robots, fast nullspace motions are automatically
reduced.

2. The detection of collisions is independent of the current robot configuration.
No external sensors are needed.

3. The controller can be used for all contact scenarios. The transferred energy
during transient contact is limited to a maximal threshold. This energy
scaling method eliminates high static forces in clamping scenarios.

4. During contact, the robot is compliant. If the robot is pushed, its energy
threshold is still guaranteed since an additional joint potential prevents too
high kinetic co-energy. After contact, the robot automatically continues to
move on its pre-planned trajectory.

5. This new approach facilitates the current certification process: Instead of
adapting multiple control parameters, the presented approach has one con-
trol input Lmax and auto-tunes the other control parameters. The experi-
ments in this paper used a conservative value for Lmax. In practice, Lmax

can be optimized for each part of the robot application based on collision
measurements. In the presented application, this is especially advantageous
to speed up transfer motions.

4.4.1 Limitations

A practical limitation of the presented approach is its need for accurate dynamic
model data for the robot. Without access to M(q) of the robot, T cannot be
calculated accurately. However, multiple methods exist to identify M(q) (cf. the
overview provided in Siciliano and Khatib (2008)). Even with that limitation,
the control approach can still be used for quasi-static contact, since T ≈ 0 and
U(∆p, ε)/U(∆q) can be calculated without dynamic model data.
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The energy threshold Lmax defined in ISO/TS 15066 can also be calculated
based on the minimal pressure values and stiffness parameters of tab. 4.1:

Lmax =
A2P 2

max

2k
. (4.16)

In comparison to eq. (4.15), where Lmax included forces, Lmax in eq. (4.16) de-
pends on the contact surface area A ∈ R. Selecting the gripper jaw surface and
the minimal pressure thresholds of the lower arm would yield LTF = 0.21 J for
the transient contact phase and LQSF = 0.05 J for the quasi-static contact phase.
In contrast to these calculated thresholds, it was shown in sec. 4.3.4 that setting
Lmax = 0.52 J yields far lower QSF and QSP values than allowed by ISO/TS
15066. For a very sharp tool, however, this energy threshold might be too high.
Hence, it can be concluded that one cannot solely rely on the calculations based on
ISO/TS 15066 and that it is still necessary to certify the selected energy thresholds
for each part of the robot application via collision measurements.

Many pHRI applications involve contact, e.g., during assembly processes.
These processes might involve potential energy greater than Lmax. In case of
a clamping scenario before the robot is in contact, it has to be ensured that the
bio-mechanical thresholds are not violated. Hence, strategies have to be applied
to identify the contact phase (Bicchi et al., 1993) and the energy budget has to be
adapted accordingly.

Lightweight robots have low inertia and hence low kinetic co-energy during
movement, which is a beneficial factor for the transient contact phase (De Santis
et al., 2008). Therefore, the presented work is a promising control approach for
these kind of robots. Classical industrial robots, however, move high masses and
therefore have limited application to pHRI. For these robots, external safety mea-
sures are needed that monitor the distance between the robot and the human or
separate their respective workspaces.

4.4.2 Towards safe pHRI in changing work environments

In case the safe distance is violated or the human enters the robot workspace,
classical industrial robots have to stop as quickly as possible. Since clamping risks
are excluded, this is a safe reaction. For pHRI applications, however, extensive
care has to be taken, to minimize the contact force and pressure during clamping
scenarios with the stopped robot. The programming of such applications is much
more sophisticated since the correct placement of the coordinate frames is crucial
for safety. Moreover, the importance of the risk assessment increases, e.g., to
identify all affected body parts. For unstructured environments, the author claims
that it is impossible to predict all risks in advance. Due to the drawbacks of
coordinate-based safety methods shown in this chapter, it should be emphasize to
focus on intrinsic safety mechanisms for pHRI. The author therefore encourages
one to review and revise the definition of a safe reaction in current standards and
regulations, e.g., in ISO/TS 15066, ISO 10218-1, and ISO 10218-2.



CHAPTER 5

General Conclusion

This thesis provides a geometric approach for the analysis and control of kine-
matically redundant robots. By minimizing the coordinate dependency, the pro-
posed methods improve the robot behavior during physical Human-Robot Inter-
action. The key contributions of this thesis include:

• An analysis of the coordinate dependency in robotic dexterity and a pro-
posal of a dexterity measure that can be applied to all kinematic structures,
including robots with mixed joint types.

• An extension for a Cartesian impedance controller, which makes use of the
proposed dexterity measure and enables multi-task control, while preserving
passivity.

• A novel control approach that facilitates the programming and certification
process of pHRI applications and ensures safety through a coordinate invari-
ant approach.

This work postulates that collaborative robots have to comply with the sur-
rounding physics: Firstly, to make general statements about the robot’s abilities,
the analysis must not depend on specific coordinate choices, made by the robot
programmer; secondly, physical attributes have to be assigned to the control pa-
rameters; thirdly, the causality of the robot behavior during physical interaction
has to be respected, which is mainly dictated by energy exchange.

The provided control frameworks make a step towards easy-to-use collabora-
tive robots since the control parameters are auto-tuned during runtime to ensure
performance, stability, and safety. This not only enables programming by inex-
perienced robotic engineers, but also significantly speeds up the commissioning of
such robot cells.

During physical interaction, the robot behavior is dictated by its own dynamics
and the dynamics of the surrounding environment. By definition, dynamic robot
models are a simplification of reality. It is even harder to derive a competent model
of the environment. Therefore, simple impedance control is a beneficial control
approach since it renders the dynamics without involving the inertia matrix. This
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work reduced the Cartesian error of a simple impedance controller at the cost of
the need for a competent dynamic robot model.

The parallel computation of impedance and motion in human motor planning
was the main inspiration for the impedance shaping approach (chapter 3). How-
ever, humans do not re-calculate their desired impedance behavior cyclically, but
utilize sets of impedance parameters which were learned while growing up. Future
work should combine the methodology of this thesis with new advances in learning
and optimization.

Future work can merge the control approaches of chapters 3 and 4. Even
though chapter 4 did not specifically address the passivity property of the con-
troller, chapter 3 showed a solution for how to handle the power flow between the
controller and the robot. Therefore, all time-varying components of the energy
budget method can be identified and the passivation method of sec. 3.4.6 can be
applied.

The proposed methodologies in this thesis can find various applications in
industry to facilitate the planning and programming of collaborative robot cells.
Some of the applications might include:

• At present, customers have to consult robotic experts to find an appropriate
robot for their automation application. The dexterity measure derived in
chapter 2 can be applied in an online tool and empowers the customer to
find the right robot for a given application.

• Even though an impedance-controlled robot can go in and out of singular-
ities without control issues, the end-effector accuracy might suffer and the
kinematic structure might be subject to high stress. The control approach of
chapter 3 does not only reduce this issue, but also enables multi-task control
which is not common yet in industrial robotics.

• By assigning an energy budget to the robot (chapter 4), especially the safety
for unstructured environments can be enhanced. Moreover, such a controller
is beneficial during the programming phase of a robot cell since the robot
can be stopped at each time instant. This can reduce collision hazards with
the environment due to programming errors.
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APPENDIX A

Dexterity Analysis

A.1 det(J(q)J(q)T ) for different body coordinate
frames

The Hybrid Jacobian Matrix Ja(q) ∈ R6×n maps joint velocities to spatial ve-
locities which are expressed in the end-effector coordinate frame “a” with respect
to the inertial coordinate frame “0.” If another body-fixed coordinate frame “c”
should be chosen, the Jacobian matrix Jc(q) ∈ R6×n can be calculated by:

Jc(q) = Ad−1
aHc
Ja(q), (A.1)

where Ad−1
aHc
∈ R6×6 is the inverse of the “Adjoint matrix” (Murray et al., 1994):

AdaHc
=

(
aRc

ap̃c
aRc

0 aRc

)
. (A.2)

Here, aRc ∈ SO(3) and ap̃c ∈ R3 are the rotation matrix and the position (in

skew-symmetric matrix form) between “c” and “a.” The product Jc(q)Jc(q)
T

can be expressed as:

Jc(q)Jc(q)
T

= Ad−1
aHc
Ja(q)Ja(q)

T
Ad−TaHc

. (A.3)

Considering that det(R) = 1, det(p̃) = 0, and therefore det(Ad−1
H ) =

det(Ad−TH ) = 1, it can be concluded:

det(Jc(q)Jc(q)
T

) = det(Ja(q)Ja(q)
T

). (A.4)

This shows that changing the body-fixed coordinate frame doesn’t change the
result of det(J(q)J(q)

T
).

A.2 J(q)J(q)T for different sets of joint coordi-
nates

Figure 2.2 and fig. 2.3 show a 3-DOF planar robot with parameters:
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• l1 = l2 = l3 = 1 m (Link lengths)

• pI1 = pI2 = pI3 = 0.5 m (Center of gravity)

• m1 = m2 = m3 = 1 kg (Link masses)

• I1 = I2 = I3 = 1 kgm2 (Inertia of links),

different sets of joint coordinates:

• Joint coordinate set 1: θ1 = π
9 rad, θ2 = π

4 rad, θ3 = π
3 rad

• Joint coordinate set 2: p1 = 0.34 m, p2 = 0.71 m, p3 = 0.87 m

• Joint coordinate set 3: θ1 = π
9 rad, θ2 = π

4 rad, p3 = 0.87 m,

and randomly chosen weighting matrix Wrand =

3.00 0.00 0.00
0.00 0.3 0.00
0.00 0.00 0.03

. The Hy-

brid Jacobian Matrices for joint coordinate set 1 − 3 in the given configuration
are:

• J(q)1 =

(
−2.07 m

rad −1.73 m
rad −0.82 m

rad
0.79 m

rad −0.15 m
rad −0.57 m

rad

)

• J(q)2 =

(
−2.20 −2.44 −1.64
0.84 −0.21 −1.15

)

• J(q)3 =

(
−2.07 m

rad −1.73 m
rad −1.64

−0.79 m
rad −0.15 m

rad −1.15

)
.

Consequently, the product J(q)J(q)
T

for each joint coordinate set yields:

• J(q)J(q)
T
1 =

(
7.92 m2

rad2 −0.90 m2

rad2

−0.90 m2

rad2 0.97 m2

rad2

)

• J(q)J(q)
T
2 =

(
13.48 0.55
0.55 2.07

)

• J(q)J(q)
T
3 =

(
7.28 m2

rad2 + 2.69 −1.38 m2

rad2 + 1.89

−1.38 m2

rad2 + 1.89 0.65 m2

rad2 + 1.32

)
.

The respective eigenvalues and eigenvectors of J(q)J(q)
T
1 and J(q)J(q)

T
2 are

different:

• Eigenvalues of J(q)J(q)
T
1 : λ1 = 0.86, λ2 = 8.04

• (Right) Eigenvectors of J(q)J(q)
T
1 : u1 =

(
−0.13
−0.99

)
, u2 =

(
−0.99
0.13

)
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• Eigenvalues of J(q)J(q)
T
2 : λ1 = 13.51, λ2 = 2.04

• (Right) Eigenvectors of J(q)J(q)
T
2 : u1 =

(
0.05
−1.00

)
, u2 =

(
−1.00
−0.05

)
The eigenvalues and the determinant of J(q)J(q)

T
3 cannot be calculated because

a mismatch of units arises.

A.3 Quadratic form Λ−1

The mass matrices for joint coordinate set 1− 3 in the given configuration are:

• M(q)1 =

9.11 kgm2

rad 4.93 kgm2

rad 1.37 kgm2

rad

4.93 kgm2

rad 4.00 kgm2

rad 1.50 kgm2

rad

1.37 kgm2

rad 1.50 kgm2

rad 1.25 kgm2

rad



• M(q)2 =

10.32 kg 7.42 kg 2.92 kg
7.42 kg 8.00 kg 4.24 kg
2.92 kg 4.24 kg 5.00 kg



• M(q)3 =

9.11 kgm2

rad 4.93 kgm2

rad 2.74 kgm

4.93 kgm2

rad 4.00 kgm2

rad 3.00 kgm
2.74 kgm 3.00 kgm 5.00 kg

.

Consequently, the matrix Λ−1 for each set of joint coordinates yields Λ−1
1 = Λ−1

2 =
Λ−1

3 = J(q)1M(q)−1
1 J(q)T1 = J(q)2M(q)−1

2 J(q)T2 = J(q)3M(q)−1
3 J(q)T3 =(

0.79 1
kg 0.18 1

kg

0.18 1
kg 0.53 1

kg

)
. It can be seen that the mobility end-point tensor is equal for

all joint coordinate choices.

A.4 Bi-invariant matrix Λ−1
ε

Figure 2.6 shows a 8-DOF robot with joint coordinate set:

p1 = 0 m, p2 = 0 m, θ1 = 0 rad, θ2 = −pi
2
rad, θ3 =

pi

3
rad, θ4 = −pi

2
rad,

θ5 =
pi

3
rad, θ6 = 0 rad,

and two different body-fixed coordinate frames Ψ1 and Ψ2 on end-effector body.
The respective homogeneous transformation matrices 0H1 ∈ SE(3) of Ψ1 and
0H2 ∈ SE(3) of Ψ2 are:

• 0H1 =


0.00 1 0 0.17 m
−0.87 0 −0.50 −0.19 m
−0.50 0 0.87 0.59 m

0 0 0 1
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• 0H2 =


0.50 0.87 0 0.20 m
−0.75 0.43 −0.50 −0.21 m
−0.44 0.25 0.87 0.56 m

0 0 0 1


The Hybrid Jacobian Matrices for the two body-fixed coordinate frames Ψ1 and
Ψ2 for the given joint coordinate set are

• J1(q) = 
1 0 0.19 m

rad 0.19 m
rad

0 1 0.17 m
rad 0 m

rad
0 0 0 m

rad 0 m
rad

0 rad
m 0 rad

m 0 0
0 rad

m 0 rad
m 0 0

0 rad
m 0 rad

m 1 1

0 m
rad 0 m

rad 0 m
rad 0 m

rad
−0.35 m

rad −0.27 m
rad −0.15 m

rad 0 m
rad

−0.16 m
rad −0.02 m

rad −0.09 m
rad 0 m

rad
1 1 1 0
0 0 0 −0.50
0 0 0 0.87


• J2(q) = 

1 0 0.21 m
rad 0.21 m

rad
0 1.00 0.20 m

rad 0.04 m
rad

0 0 0 m
rad 0 m

rad

0 rad
m 0 rad

m 0 0
0 rad

m 0 rad
m 0 0

0 rad
m 0 rad

m 1 1

0 m
rad 0 m

rad 0 m
rad 0.04 m

rad
−0.32 m

rad −0.24 m
rad −0.12 m

rad 0.03 m
rad

−0.18 m
rad −0.04 m

rad −0.11 m
rad 0.02 m

rad
1 1 1 0
0 0 0 −0.50
0 0 0 0.87


The mass matrix in the given configuration is:



A.4 Bi-invariant matrix Λ−1
ε 101

M(q) =



31.57 kg 0 kg 0.54 kgm 0.54 kgm
0 kg 31.57 kg 1.06 kgm 0.03 kgm

0.54 kgm 1.06 kgm 1.27 kgm2

rad 0.09 kgm2

rad

0.54 kgm 0.03 kgm 0.09 kgm2

rad 0.08 kgm2

rad

0 kgm −0.70 kgm −0.12 kgm2

rad 6.44e-5 kgm2

rad

0 kgm −0.41 kgm −0.07 kgm2

rad 0.14e-2 kgm2

rad

0 kgm −0.14 kgm −0.02 kgm2

rad 7.82e-4 kgm2

rad

0 kgm 7.14e-4 kgm 3.59e-4 kgm2

rad 2.39e-4 kgm2

rad

0 kgm 0 kgm 0 kgm 0 kgm
−0.70 kgm −0.41 kgm −0.14 kgm 7.14e-4 kgm

−0.12 kgm2

rad −0.07 kgm2

rad −0.02 kgm2

rad 3.59e-4 kgm2

rad

6.44e-5 kgm2

rad 0.14e-2 kgm2

rad 7.82e-4 kgm2

rad 2.39e-4 kgm2

rad

0.20 kgm2

rad 0.10 kgm2

rad 0.05 kgm2

rad −2.76e-4 kgm2

rad

0.10 kgm2

rad 0.08 kgm2

rad 0.03 kgm2

rad −1.65e-4 kgm2

rad

0.05 kgm2

rad 0.03 kgm2

rad 0.02 kgm2

rad −1.09e-4 kgm2

rad

−2.76e-4 kgm2

rad −1.65e-4 kgm2

rad −1.09e-4 kgm2

rad 2.76e-4 kgm2

rad


The matrix Λ−1

ε for body-fixed coordinate frames Ψ1 and Ψ2 is:

Λ−1
ε,Ψ1

= Λ−1
ε,Ψ2

=

 92.80 rad
kgm2 −11.27 rad

kgm2 18.21 rad
kgm2

−11.27 rad
kgm2 909.38 rad

kgm2 −1568.90 rad
kgm2

18.21 rad
kgm2 −1568.90 rad

kgm2 2720.70 rad
kgm2

.

The respective Eigenvalues and Eigenvectors of Λ−1
ε are the same:

• Eigenvalues: λ1 = 0.37, λ2 = 9.54e-4, λ3 = 1.34e-6

• (Right) Eigenvectors: u1 =

−0.01
0.50
−0.87

 , u2 =

−1.00
0.00
0.01

 , u3 =

0.01
0.86
0.50







APPENDIX B

Lie algebra structure of translations and

rotations

The Lie algebra se(3) can be decomposed into the semi-direct product of a
reducable sub-algebra t and a simple sub-algebra so(3) (Levi, 1905):

se(3) = to so(3). (B.1)

Hereby, the sub-algebra t and the sub-algebra so(3) can be associated to trans-
lational motion v and rotational motion w, respectively. Both sub-algebras are
equipped with a bracket operation.

Definition B.1 For a given R-vector space, a Lie algebra L is equipped with a
Lie bracket [•, •], which satisfies three conditions:

1. Bi-linearity: [•, •] : ∀L ∈ Γ(Rn) : L× L→ L

2. Anti-symmetry: ∀x, y ∈ L : [x, y] = −[y, x]

3. Jacobi identity: ∀x, y, z ∈ L : [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

For twists with only angular components w̃1, w̃2 ∈ so(3), the bracket operation
can be associated with the cross product in R3:

[w̃1, w̃2] = w̃1w̃2 − w̃2w̃1 = (w1 ×w2)∼. (B.2)

Hereby, the operation [˜] converts a vector to a skew-symmetric matrix. The
bracket operation of se(3) represents a generalization of the cross product on R3

for twists ξ̃1, ξ̃2 ∈ se(3) in R6:

[ξ̃1, ξ̃2] =

(
(w1 ×w2)∼ w1 × v2 −w2 × v1

0 0

)
. (B.3)

The sub-algebra t is called “an ideal”:

[t, •] ⊆ t. (B.4)
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In practice this means that any input for the second slot of [t, •] will again yield a
translational motion, e.g.,

[ṽ1, ξ̃2] =

(
0 w2 × v1
0 0

)
⊆ t. (B.5)

The sub-algebra so(3) is called simple and satisfies

[so(3), so(3)] = so(3). (B.6)

This can be seen in eq. (B.2). With the examples of eqs. (B.3) and (B.5), the
expression “semi-direct product” (eq. B.1) can be explained: If rotations are in-
volved, the rotational part of one twist always acts on the translational counterpart
of the other twist.



APPENDIX C

Tensor Geometry

C.1 Tensor definition

Consider a point q on a n-dimensional differentiable manifold Q. For all curves
on this manifold going through point q, a vector space V exists that collects all
contravariant elements tangent to the curves. In the point q also a dual vector
space V∗ exists, collecting all covariant elements.

C.1.1 Covariant tensors

A covariant tensor is a multilinear function of type:

Q : V × ...×V︸ ︷︷ ︸
s many

→ R. (C.1)

The functionQ takes smany elements of V and returns a real number. A covariant
tensor with s = 1 is called a co-vector.

C.1.2 Contravariant tensors

A contravariant tensor is a multilinear function on a covariant tensor:

P : V∗ × ...×V∗︸ ︷︷ ︸
r many

→ R. (C.2)

The function P takes r many elements of V∗ and returns a real number. A
contravariant tensor with r = 1 is called a vector.

C.1.3 Mixed tensors

Mixed tensors are r-times contravariant and s-times covariant:

T : V∗ × ...×V∗︸ ︷︷ ︸
r many

×V × ...×V︸ ︷︷ ︸
s many

→ R. (C.3)
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For function T , the notation

(
r
s

)
can be used. The number (r+s) defines the rank

of the tensor. The tensor can be denoted with r many contravariant superscripts

and s many covariant subscripts. For example, a

(
1
1

)
-tensor with rank 2 has one

contravariant superscript i and one covariant superscript j: T ij .

C.2 Example of tensor contraction

Operations on tensors can be illustrated with an example:

ηk = gikξ
i, (C.4)

with i = k = 1, ..., n. On the right side of eq. (C.4), a contravariant tensor ξi

and a twice covariant tensor gik appears. The left side yields a covariant tensor
ηk. The operation on the appearing tensors can be seen: The tensor gik is used
to transform the contravariant tensor ξi to a covariant tensor ηk. This operation
on tensors is called “contraction.” Contraction sums pairs of equal indices, which
are one upper (contravariant) index and one lower (covariant) index:

ηk =

n∑
i=1

gikξ
i. (C.5)

As a result, the index can be canceled out. Implicitly, the sum symbol is left out.



APPENDIX D

Impedance control based on potential energy

function

The potential energy function U : SE(3) → R is the sum of the translational
potential Up and the rotational potential Uε. The time derivative of Up and
Uε are calculated separately. The resulting differential equations have the form
F T ξ. Hence, the wrench part of the differential equations can be extracted. Since
the control wrench F imp is supposed to minimize the respective potential energy
function:

F imp = F imp
p + F imp

ε = −F , (D.1)

where F imp
p ∈ se?(3) is deduced from the Up and F imp

ε ∈ se?(3) is deduced from
Uε. In the following, all entities are expressed in body-fixed coordinates ”b.” The
equilibrium pose is denoted “e” and the stationary inertial coordinate frame is
denoted “0.” The following convention is used: A (co-)vector 0ae is described in
coordinate frame “e,” relative to coordinate frame “0.”

D.1 Translational potential energy function

For a given diagonal or symmetric stiffness matrixKp ∈ R3×3, the potential energy
function can be formulated as:

Up =
1

2
∆pTKp ∆p, (D.2)

with ∆p = (0pb − 0pe). Time differentiation of Up yields:

U̇p = ∆pTKp(0ṗb −0 ṗe). (D.3)

For a constant equilibrium pose and noting that 0ṗb has a purely linear component
0vb ∈ R3 and a rotational component (0wb ×∆p) ∈ R3:

U̇p = ∆pTKp(0vb − (0wb ×∆p)). (D.4)
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Recalling that the cross product can be represented by a matrix multiplication
and using the skew-symmetric property −0w̃b ∆p = ∆p̃ 0wb:

U̇p = ∆pTKp(0vb + ∆p̃ 0wb). (D.5)

This equation can be expressed in vector form:

U̇p =

(
∆pTKp

∆pTKp ∆p̃

)
︸ ︷︷ ︸

(−F imp
p )

T

T (
0vb
0wb

)
︸ ︷︷ ︸

ξ

. (D.6)

By using the property (∆p̃)
T

= −∆p̃ and for a diagonal or symmetric matrix Kp,
it can be concluded:

F imp
p =

(
−Kp ∆p

∆p̃ Kp ∆p

)
. (D.7)

D.2 Rotational potential energy function

To derive the rotational potential energy function, the rotation matrix bRe ∈
SO(3) is converted to a unit-length quaternion representation with unit-axis bεe ∈
R3 and rotation angle η ∈ R. For a given diagonal or symmetric stiffness matrix
Kε ∈ R3×3, the rotational potential energy function can be formulated as:

Uε = 2 bεe
T
Kε

bεe. (D.8)

Time differentiation of Uε yields:

U̇ε = 4 bεe
T
Kε

bε̇e. (D.9)

Taking into account the derivation provided in Khalil and Dombre (2002):

bε̇e = −1

2
E(η,b εe) ewb, (D.10)

with
E(η,b εe) = ηI −b ε̃e. (D.11)

Substituting eq. (D.10) in eq. (D.9) yields:

U̇ε = −2 bεe
T
Kε E(η,b εe) ewb. (D.12)

This equation can be expressed in vector form:

U̇ε =

(
0

−2 bεe
T
Kε E(η,b εe)

)
︸ ︷︷ ︸

(−F imp
ε )

T

T (
evb
ewb

)
︸ ︷︷ ︸

ξ

. (D.13)

For a diagonal or symmetric matrix Kε, it can be concluded:

F imp
ε =

(
0

2 E(η,b εe)
T
Kε

bεe

)
. (D.14)
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D.3 Time differentiation of energy functions with
time-varying stiffness

D.3.1 Translational potential energy function

As shown in eq. (3.49a), the translational potential energy function with time-
varying components ∆p, ε̄, η̄, and k̄ can be represented by:

Up(∆p, ε̄, η̄, k̄) =
1

2
∆pT exp(˜̄εη̄) diag(k̄) exp(˜̄εT η̄) ∆p. (D.15)

Time differentiation yields:

U̇p = (
∂Up

∂∆p
)
T

∆̇p+ (
∂Up

∂k̄
)
T

˙̄k + (
∂Up

∂ε̄
)
T

˙̄ε+ (
∂Up

∂η̄
)
T

˙̄η. (D.16)

Note that ε̇ was defined in eq. (D.10) and can be found in Khalil and Dombre
(2002). In the following, the individual summands of eq. (D.16) will be derived.
The first summand was shown in eq. (D.6):

(
∂Up

∂∆p
)
T

∆̇p = (−F imp
p )

T
ξ. (D.17)

For the second summand,
∂Up

∂k̄
= [

∂Up

∂k̄1
,
∂Up

∂k̄2
,
∂Up

∂k̄3
]
T

, which can be expanded to

∂Up

∂k̄
= [∆pTr1r

T
1 ∆p,∆pTr2r

T
2 ∆p,∆pTr3r

T
3 ∆p]

T
. Here, ri is the i-th column

of R ∈ SO(3) and k̄i ∈ R is the i-th element of vector k̄. Hence, the second
summand can be written in matrix notation:

(
∂Up

∂k̄
)
T

˙̄k =
1

2
∆pTR ˙̄KRT∆p. (D.18)

For the third summand, Rodrigues’ formula will be needed (eq. (3.48)). Note that

ε̃2 =

ε22 + ε23 ε1ε2 ε1ε3
ε1ε2 ε21 + ε23 ε2ε3
ε1ε3 ε2ε3 ε21 + ε22

. Reforming eq. (D.15) yields:

Up(∆p, ε̄, η̄, k̄) =
1

2
k̄T (�1�

T
1 ,�2�

T
2 ,�3�

T
3 )
T
, (D.19)

where �i =
(
Ii + ˜̄εi sin(η) + (˜̄ε2)i(1− cos(η))

)T
∆p. Here, Ii, ˜̄εi, and (˜̄ε2)i denote

the i-th column of the identity matrix, of the matrix ˜̄ε, and of the matrix ˜̄ε2,
respectively. Using the chain rule and considering that ε̄ = [ε1, ε2, ε3]

T
yields:

∂Up

∂ε̄
=


∂Up

∂�1

∂�1

∂ε1
+
∂Up

∂�2

∂�2

∂ε1
+
∂Up

∂�3

∂�3

∂ε1
∂Up

∂�1

∂�1

∂ε2
+
∂Up

∂�2

∂�2

∂ε2
+
∂Up

∂�3

∂�3

∂ε2
∂Up

∂�1

∂�1

∂ε3
+
∂Up

∂�2

∂�2

∂ε3
+
∂Up

∂�3

∂�3

∂ε3

 . (D.20)
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The matrix elements in eq.(D.20) can be derived as follows:

•
∂Up

∂�i
= k̄i �i;

•
∂�1

∂ε1
= (1− cos(η)) [0, ε2, ε3] ∆p;

•
∂�2

∂ε1
= [ε2(1− cos(η)), 2ε1(1− cos(η)), sin(η)] ∆p;

•
∂�3

∂ε1
= [ε3(1− cos(η)),− sin(η), 2ε1(1− cos(η))] ∆p;

•
∂�1

∂ε2
= [2ε2(1− cos(η)), ε1(1− cos(η)),− sin(η)] ∆p;

•
∂�2

∂ε2
= (1− cos(η))[ε1, 0, ε3] ∆p;

•
∂�3

∂ε2
= [sin(η), ε3(1− cos(η)), 2ε2(1− cos(η))] ∆p;

•
∂�1

∂ε3
= [2ε3(1− cos(η)), sin(η), ε1(1− cos(η))] ∆p;

•
∂�2

∂ε3
= [− sin(η), 2ε2(1− cos(η)), ε2(1− cos(η))] ∆p;

•
∂�3

∂ε3
= (1− cos(η))[ε1, ε2, 0] ∆p.

For the fourth summand, again the chain rule has to applied:

∂Up

∂η̄
=
∂Up

∂�1

∂�1

∂η
+
∂Up

∂�2

∂�2

∂η
+
∂Up

∂�3

∂�3

∂η
. (D.21)

The elements
∂�i
∂η

can be derived as follows:

•
∂�1

∂η
= [(ε22 + ε23) sin(η), ε1ε2 sin(η) + ε3 cos(η), ε1ε3 sin(η)− ε2 cos(η)] ∆p;

•
∂�2

∂η
= [ε1ε2 sin(η)− ε3 cos(η), (ε21 + ε23) sin(η), ε2ε3 sin(η) + ε1 cos(η)] ∆p;

•
∂�3

∂η
= [ε1ε3 sin(η) + ε2 cos(η), ε2ε3 sin(η)− ε1 cos(η), (ε21 + ε22) sin(η)] ∆p.
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D.3.2 Rotational potential energy function

As shown in eq. (3.49b), the rotational potential energy function with time-varying
components ε, ε̄, η̄, and k̄ can be represented by:

Uε(ε, ε̄, η̄, k̄) = 2 εT exp(˜̄εη̄) diag(k̄) exp(˜̄εT η̄) ε. (D.22)

Time differentiation yields:

U̇ε = (
∂Uε
∂ε

)
T

ε̇+ (
∂Uε
∂k̄

)
T

˙̄k + (
∂Uε
∂ε̄

)
T

˙̄ε+ (
∂Uε
∂η̄

)
T

˙̄η. (D.23)

The first summand of eq. (D.23) was shown in eq. (D.13):

(
∂Uε
∂ε

)
T

ε̇ = (−F imp
ε )

T
ξ. (D.24)

The second summand can be derived similar to the translational potential energy
function:

(
∂Uε
∂k̄

)
T

˙̄k = 2 εTR ˙̄KRT ε. (D.25)

For the third summand, again Rodrigues’ formula can be applied. Reforming
eq. (D.22) yields:

Uε(ε, ε̄, η̄, k̄) = 2 k̄T (�1�
T
1 ,�2�

T
2 ,�3�

T
3 )
T
, (D.26)

where �i =
(
Ii + ˜̄εi sin(η) + (˜̄ε2)i(1− cos(η))

)T
ε. Again, Ii, ˜̄εi, and (˜̄ε2)i denote

the i-th column of the identity matrix, of the matrix ˜̄ε, and of the matrix ˜̄ε2,
respectively. Using the chain rule and considering that ε̄ = [ε1, ε2, ε3]

T
,

∂Uε
∂ε̄

=


∂Uε
∂�1

∂�1

∂ε1
+
∂Uε
∂�2

∂�2

∂ε1
+
∂Uε
∂�3

∂�3

∂ε1
∂Uε
∂�1

∂�1

∂ε2
+
∂Uε
∂�2

∂�2

∂ε2
+
∂Uε
∂�3

∂�3

∂ε2
∂Uε
∂�1

∂�1

∂ε3
+
∂Uε
∂�2

∂�2

∂ε3
+
∂Uε
∂�3

∂�3

∂ε3

 . (D.27)

The matrix elements in eq.(D.27) can be derived as follows:

•
∂Up

∂�i
= 4 k̄i �i;

•
∂�1

∂ε1
= (1− cos(η)) [0, ε2, ε3] ε;

•
∂�2

∂ε1
= [ε2(1− cos(η)), 2ε1(1− cos(η)), sin(η)] ε;

•
∂�3

∂ε1
= [ε3(1− cos(η)),− sin(η), 2ε1(1− cos(η))] ε;
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•
∂�1

∂ε2
= [2ε2(1− cos(η)), ε1(1− cos(η)),− sin(η)] ε;

•
∂�2

∂ε2
= (1− cos(η))[ε1, 0, ε3] ε;

•
∂�3

∂ε2
= [sin(η), ε3(1− cos(η)), 2ε2(1− cos(η))] ε;

•
∂�1

∂ε3
= [2ε3(1− cos(η)), sin(η), ε1(1− cos(η))] ε;

•
∂�2

∂ε3
= [− sin(η), 2ε2(1− cos(η)), ε2(1− cos(η))] ε;

•
∂�3

∂ε3
= (1− cos(η))[ε1, ε2, 0] ε.

Similar, for the fourth summand:

∂Uε
∂η̄

=
∂Uε
∂�1

∂�1

∂η
+
∂Uε
∂�2

∂�2

∂η
+
∂Uε
∂�3

∂�3

∂η
. (D.28)

The elements
∂�i
∂η

can be derived as follows:

•
∂�1

∂η
= [(ε22 + ε23) sin(η), ε1ε2 sin(η) + ε3 cos(η), ε1ε3 sin(η)− ε2 cos(η)] ε;

•
∂�2

∂η
= [ε1ε2 sin(η)− ε3 cos(η), (ε21 + ε23) sin(η), ε2ε3 sin(η) + ε1 cos(η)] ε;

•
∂�3

∂η
= [ε1ε3 sin(η) + ε2 cos(η), ε2ε3 sin(η)− ε1 cos(η), (ε21 + ε22) sin(η)] ε.



APPENDIX E

Bond Graphs

E.1 Elements

Tab. E.1 shows the Bond Graph elements that are partly used in this work and
which can be defined by their essential connection between flow and effort.

Table E.1: Essential connection of Bond Graph elements.

Symbol Notation Essential connection

I inertial element flow = 1/I
∫ now

−∞ effort dt

K compliant element effort = K
∫ now

−∞ flow dt

B resistive element effort = B flow

Sf source of flow flow

Se source of effort effort

1 1-junction effort-summing junction

0 0-junction flow-summing junction

TF ideal transformer flow and effort

MTF modulated transformer flow and effort

E.2 Connection via multi-bonds

For multi-dimensional systems, the energy flow is represented by a double-lined
arrow called “power-bond” or “multi-bond.” The multi-bond points in the positive
direction of energy flow. The creator of the Bond Graph model is free to chose the
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direction of power. The origin of the flow is indicated by a vertical line attached
to the multi-bond.

Figure E.1: Multi-bond, indicating the direction of power flow between two sub-systems.

E.3 Causality

Bond graphs can be used to understand the functionality of a physical system
since they make the causality of the physical elements explicit.

Table E.2: Causality of Bond Graph elements.

Symbol Causality

Sf ,Se produces power

R absorbs power

C, I stores power

MTF power in, power out



APPENDIX F

Shaping Impedances

F.1 Controller parameters

Table F.1: Controller parameters for the experiment 1 in sec. 3.5.1. The scalar stiffnesses ki
p/ε

are the elements on the main diagonal of the matrices Ki
p/ε

, respectively.

Experiment 1
Initial configuration (degrees)
q = [−15.80, 30.00, 24.23,−90.49, 6.48,−60.00, 36.48]

Impedances

k1
p = 1500

kg

s2 k2
p = 500

kg

s2

ζ1 = 0.8 ζ2 = 0.8
Trajectory

A = 0.15 m tlin = 3 s
Robot mass mrob = 26.334 kg
Mass ratio a = 0.3
Nullspace dim. 2
Joint damping

βns = 1.2 kgm2/s Bq = βns I
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Table F.2: Controller parameters for the experiment 2 in sec. 3.5.2. The scalar stiffnesses ki
p/ε

are the elements on the main diagonal of the matrices Ki
p/ε

, respectively. Due to instabilities,

the impedances of the experiment were reduced for the nullspace projection method.

Experiment 2
Initial configuration (degrees)
q = [−15.64, 53.09, 24.23,−88.97,−10.21,−69.24, 43.93]

Superposition and Impedance Shaping

k1
p = 1500

kg

s2 k2
p = 800

kg

s2 k3
ε = 60

kgm2

s2

ζ1 = 0.6 ζ2 = 0.6 ζ3 = 0.6
Nullspace projection

k1
p = 1000

kg

s2 k2
p = 500

kg

s2 k3
ε = 40

kgm2

s2

ζ1 = 0.6 ζ2 = 0.6 ζ3 = 0.6
Trajectory

D = 0.07 m tcirc = 5 s
Robot mass mrob = 26.334 kg
Ratios a = 0.3 b = 1400
Nullspace dim. 0
Joint damping

βns = 1.2 Ekgm2/s Bq = βns I



APPENDIX G

Energy Budgets

G.1 Set-up for collision measurements

The set-up for the collision measurement is shown in fig. G.1 and all components
are listed in tab. G.1.

4

5

6

13

2

Figure G.1: Set-up for collision measurements
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Table G.1: Components of measurement set-up, shown in fig. G.1.

Pos. Description Manufacturer

1 LBR iiwa R820 KUKA

2 Pressure sheet “Prescale LLW” Fujifilm

3 Collision measurement device KUKA
FT Delta sensor FT09023 Schunk

Pressure spring D-380 (hand) Gutekunst
and D-339N-03 (arm)

Elastomer NK-SH40-10mm Schippel
Linear bearing LHIRD-12 (3x) MISUMI

Hollow shaft SPJW12-160-M8 (3x) MISUMI

4 Power supply 240VAC-763067 National Instruments

5 Data logger USB-6341 National Instruments
Sensor cable 30053244 National Instruments

FTD-C-H-PS-6

6 Laptop Precision 7520 Dell
Software
LabView National Instruments

(Data acquisition force sensor)
Matlab R2017b Mathworks

(Data processing and visualization)
Software FDP-8010E Fujifilm

(Evaluation contact surface area)

Scanner V37 (Scanning of pressure sheet) Epson

G.2 Controller parameters

To verify the energy budget calculated with the thresholds of ISO/TS 15066,
the controller of sec. 4.3.1 was implemented with initial control parameters given
below:

• Kq = 0
kgm

s2
I7, where I7 ∈ R7×7 is the identity matrix → U(∆q) = 0 J

• Kp = 1500
kg

s2
I3, where I3 ∈ R3×3 is the identity matrix

• Kε = 150
kgm2

s2
I3

• ζ = 0.8

• βns = 0.5
kgm

s
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• Lmax = 0.52 J

• Kq
• = 1

kgm

s2
∗ I7

• Ω = 40

The desired control motion is dependent on teff with motion along the x-coordinate
during the transfer motion and motion along the z-coordinate during the approach
motion. Both coordinates are expressed in the inertial coordinate frame 0. The
first part of the desired control motion of the example application can be seen in
tab. G.2, with parameters below:

• Ax = 0.7 m ; Az = 0.3 m

• tx = 4 s ; tz = 3 s

• xinit = −0.21 m

• yinit = 0.56 m

• zinit = 0.01 m

Table G.2: Desired control motion for the first part of the example application.

Time Desired control motion

0xc = 0xinit − 0.5 Ax (1− cos(π
teff

tx
))

teff ≤ tx
0yc = 0yinit
0zc = 0zinit

0xc = 0xc

tx ≤ teff ≤ (tx + tz)
0yc = 0yinit

0zc = 0zinit −
teff − tx
tz

Az
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Dietrich A, Ott C and Albu-Schäffer A (2015) An overview of null space projections
for redundant, torque-controlled robots. The International Journal of Robotics
Research 34(11): 1385–1400. doi: 10.1177/0278364914566516.

Dietrich A, Ott C and Stramigioli S (2016) Passivation of Projection-Based Null
Space Compliance Control Via Energy Tanks. IEEE Robotics and Automation
Letters 1(1): 184–191. doi: 10.1109/LRA.2015.2512937.

Dietrich A, Wu X, Bussmann K, Harder M, Iskandar M, Englsberger J, Ott C and
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