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Zusammenfassung

Wenn man an Roboter denkt, denkt man an menschemahnliche Maschinen mit
sensomotorischen Fahigkeiten. Die Realifat sieht jedoch anders aus. In der In-
dustrie werden meist Knickarm-Roboter mit sechs seriell-angeordneten Gelenken
verwendet. Diese Roboter werden isoliert von der Umgebung hinter Schutzzaunen
platziert. Die Hauptanforderungen an industrielle Roboter sind hohe Geschwind-
keit, Prazision und hohe Wiederholgenauigkeit. Zur Beschreibung der Roboter-
struktur und zum Programmieren der Roboterbewegung wird eine Vielzahl an
Koordinatensystemen genutzt. Die Umgebung des Roboters wird durch externe
Sensoren erfasst und die Bauteile werden positionsgetreu platziert.

Im letzten Jahrzehnt wurde eine neue Kategorie von Robotern entwickelt.
Die Hauptaufgabe dieser Roboter ist dem Menschen bei schweren und monoto-
nen Arbeiten zu unterstatzen. Daher werden diese Roboter meist \Kollabora-
tive Roboter" genannt. Die meist benutzte Terminologie in der Wissenschaft ist
\Mensch-Roboter-Interaktion”. Da Kollaborative Roboter au erhalb des Schutz-
zauns agieren, besitzen sie Sensoren, um einen Kontakt mit der Umwelt (z.B. dem
Menschen) zu erkennen. Oft sind Kollaborative Roboter kinematisch redundant,
was bedeutet, dass der Roboter unendlich viele Achsbewegungen nutzen kann um
eine vorbestimmte Werkzeugbewegung auszufshren. Durch die kinematische Re-
dundanz kann ein Roboter oft mehrere Aufgaben gleichzeitig ausfsahren.

Verglichen mit konventionellen Industrierobotern ist das Programmieren der
Roboterapplikation far die Mensch-Roboter-Interaktion komplizierter. Der Pro-
grammierer kann sich nicht nur auf den Roboterprozess konzentrieren, son-
dern muss eine sichere Roboterbewegung gewahrleisten. \Sicher" im Kontext
der Mensch-Roboter-Interaktion bedeutet, dass Klemmgefahren verhindert und
Kontaktkrafte mit dem Menschen minimiert werden mussen. Da Kollaborative
Roboter oft eine hehere Anzahl an Freiheitsgraden besitzen als konventionelle
Industrieroboter, ist es vermeindlich leichter eine passende Roboterbewegung zu
nden. In der Praxis hat sich jedoch die Art der Programmierung nicht geandert.
Obwohl der Roboter durch seine kinematische Redundanz theoretisch mehrere
Aufgaben gleichzeitig bewaltigen kennte, wird ublicherweise nur eine prozessspez-
i sche Aufgabe programmiert. Zudem scheitern traditionelle Regelungsalgorith-
men hau g bei der Bewegungsberechnung, da die Abbildung von Werkzeugbewe-
gung auf Achsbewegungen nicht mehr eindeutig ist.

Die vorliegende Arbeit fokusiert sich auf grundlegende Themen der Roboter-
modellierung und -regelung, mit Schwerpunkt auf Mensch-Roboter-Interaktion.
Die Arbeit stellt eine Methodik zur Analyse der Manipulierbarkeit des Roboters
bereit. Diese Methodik wird erweitert, um zu untersuchen ob ein Roboter auch
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mehrere Aufgaben gleichzeitig bewaltigen kann. Die Regelungsalgorithmen dieser
Arbeit erleichtern die Programmierung von Roboterapplikationen far die Mensch-
Roboter-Interaktion. Ein weiterer Fokus der Arbeit liegt auf der Stabilitat des
Robotersystems wahrend der Regelung.

Die Hauptmethodik der vorliegenden Arbeit ist Di erentialgeometrie. Die Ar-
beit versucht nicht nur die kinematischen Grundlagen far die Bewegungsmodel-
lierung von Robotern zu vermitteln, sondern soll auch zeigen wie die Theorie in der
Praxis auf einem Roboter implementiert werden kann. In den entwickelten Anal-
ysemethodiken wird die Koordinatenabhangigkeit minimiert. Dies ermeglicht es
den Anwendern der Methodiken ihre Analyseergebnisse zu vergleichen. Au erdem
werden weniger erfahrene Roboterprogrammierer befahigt, da die Regelungspa-
rameter wahrend der Laufzeit optimiert werden.



Summary

If people think about robots, they think of human-like machines with equiv-
alent cognitive abilities and sensorimotor skills. The reality looks quite di erent.
Most commonly, robots with six serially arranged joints are installed in industrial
production. They are placed behind safety fences, isolated from their environ-
ment. The main requirements for those robots are fast speed, high accuracy, and
repeatability. Coordinates are used to describe the kinematic structure and to
program the robot motion. The workpiece is placed as accurately as possible and
external sensors are used to capture the environment.

In the last decade, a new sort of robot has evolved. The main purpose of
these robots is to assist the human co-worker, e.g., to take over dull and heavy
tasks. These robots are often called \collaborative robots." The most common
associated terminology in research is \physical Human-Robot Interaction." To
ensure the safety of the human co-worker, collaborative robots are equipped with
safety features, i.e., sensors to detect contact with the environment. Collaborative
robots usually possess more degrees of freedom than conventional robots do. Most
common are seven joints, which makes them kinematically redundant. This means
that the robot can use in nitely many di erent joint motions to achieve a desired
tool motion.

Compared to conventional industrial applications, the programming of collab-
orative robot cells is more complicated since the programmer not only has to focus
on the robot process, but also has to provide a safe and stable robot motion that
does not pose collision and clamping hazards to the human co-worker. Since the
robot is more dexterous and can perform multiple tasks, this is supposed to be
easier in theory. In practice, however, the programming procedure did not change
compared to conventional robots. In most cases, it is only possible to assign one
main task to the robot and the kinematic redundancy is not used to manage ad-
ditional subordinate tasks simultaneously. Even worse, the kinematic redundancy
impedes robot programming since an unique relation between tool motion and
joint motion does not exist anymore.

This thesis focuses on fundamental topics of robotic manipulation in physi-
cal Human-Robot Interaction. Contributions on dexterity, stability, and safety
are presented. The thesis proposes a method to analyze the ability of a robot
to perform a task. The method is extended to analyze multi-task control. Con-
trol approaches are developed that facilitate and speed up the programming of
applications in physical Human-Robot Interaction.

The key method of this thesis is di erential geometry. Hereby, the thesis tries
to help understanding the kinematic foundations and demonstrates how to apply
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the theory to a real robot. For users of the presented methods, the results are
comparable since the coordinate dependency is kept at a minimum. Moreover, less
experienced robot programmers are enabled since the control approaches auto-tune
the control parameters during run-time.
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CHAPTER 1

General Introduction

1.1 Motivation

The main requirements for industrial robots are low cycle times, repeatability, and
high process quality. Since these robots operate at maximum speed, safety fences
are used to protect the human co-worker from possible collisions with the robot.
If a person enters the robot cell, the robot motion is stopped as fast as possible
and the robot brakes are activated.

For the programming of industrial robots, usually coordinate frames are used.
During the process, the robot aligns a body- xed coordinate frame (e.g., placed
on the end-e ector) with a world- xed coordinate frame (e.g., placed on the work-
piece). Additionally, the programmer decides how the robot end-e ector should
move towards the workpiece, e.g., in a linear, point-to-point or circular motion.
Once all coordinate frames have been placed, the robot program is transferred to
the controller. The Cartesian distance between the coordinate frames is interpo-
lated and a feasible joint con guration for each Cartesian position is computed.
This is usually done by solving the inverse kinematic problem for each Cartesian
position. Lastly, the resulting joint trajectory is post-processed in order to achieve
a robot motion with high performance (e.g., high Cartesian position accuracy,
fast joint motion, or low jerk). For the robot process, positioning mechanisms
and external sensors are used to ensure that the workpiece is placed in the exact
position.

During recent years, a new generation of robots has been developed. Such
collaborative robots are often placed next to human co-workers. For this reason,
those robots need to incorporate safety features and guarantee stability in order
to enable an operation without a safety fence. For example, torque sensors incor-
porated in the robot structure are used to detect collisions with the environment
along the whole robotic arm. Since the human co-worker and the robot share a
workspace, the safety certi cation of collaborative robots is very complicated. All
risks sources have to be identi ed and measures provided to minimize the risks for
the human co-worker.

The torque sensors can additionally be used to \sense" the environment. Costly
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position mechanisms and external sensors can hence be saved. However, the robot
process is still dependent on a deliberate placement of coordinate frames. More-
over, the desired trajectory is calculated oine and cannot be modied during
motion execution. If a collaborative robot is kinematically redundant, more ad-
vanced control is needed since in nitely many sets of joint motions can generate a
desired workspace motion.

The goal of industrial collaborative robots is to automate manual processes
that are usually done by humans, e.g., assembly processes. Humans are capable
of managing multiple tasks simultaneously. These tasks are not only positioning
tasks as for most industrial robots, but also involve interaction with the environ-
ment. The human task performance is enabled by cognition: We perceive our
environment with our eyes and interact with it through our sensorimotor skills.
Hereby, humans often manage to do repetitive tasks without even looking, e.g.,
during assembly line work. These are suitable applications for collaborative robots
with \sensing abilities," e.g., robots with integrated torque sensors.

As collaborative robots are interacting with the environment, they should be
treated as part of the surrounding physics. To enable this goal, some of the
fundamentals of robotic manipulation have to be approached. This thesis will
make contributions to robotic dexterity, stability, and safety.

1.2 Research questions of this thesis

For industrial robotics, it is important to have a measure of \how well" a robot
can perform a given task. This measure is already needed during the design phase
of the kinematic structure since di erent joint type choices will lead to di erent
dexterity results, e.g., through combining linear and rotational joints. Moreover,
for a given customer task, the measure can help to select the right robot. Lastly,
such a measure can be applied online during the operation of the robot and can
indicate that the robot cannot perform its task. This leads to the rst research
guestion. Q1: Can we de ne dexterity of robotic manipulators in a coordinate-
invariant way? (! chapter 2)

The dexterity of robotic manipulators is linked to kinematic singularities: The
robot cannot move along/about singular directions. For an impedance controlled
robot, the robot programmer expresses the desired dynamic task behavior. Near
singular con gurations, the robot is not able to perform the desired task dynamics.
To be productive, industrial applications always assign one main task to the robot.
However, a kinematically redundant robot can perform multiple tasks simultane-
ously. The kinematic redundancy can be used to optimize the robot con guration,
as well as the kinematic and dynamic properties during the process. Since the
main task is essential for the robotic process, it is important to detect and quan-
tify a conict between the main task and subordinate tasks. This leads to the
second research question.Q2: How can we predict and quantify task con icts?
(! chapter 3)

With simple impedance superposition, the control of multiple tasks is straight
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forward since di erent impedances can be superimposed. Through superposition,
all tasks have the same priority level. For industrial applications, however, the
main tasks must not be in uenced by tasks with lower priority. This leads to
the third research question. Q3: How can we resolve task con icts for multi-task
impedance control? (! chapter 3)

Due to its stability properties, an impedance controller is a bene cial control
approach for industrial applications that involve contact with the environment,
e.g., assembly applications. However, an online modi cation of the control param-
eters can violate the passivity properties of the controller. For industrial robots,
a threshold for the commanded motor current or motor torque is typically set. If
the control command would violate the threshold, the robot motion is stopped as
fast as possible and the brakes are activated. Hence, clamping scenarios can arise,
which impede safe physical Human-Robot Interaction (pHRI). This leads to the
fourth research question. Q4: How can we guarantee stability during pHRI?(!
chapter 3)

All industrial applications with pHRI have to be certi ed by the producer of
the robot cell. The risk assessment and risk minimization compromises a high
percentage of the certi cation process. Therefore, pHRI-cells are more expensive
than traditional robot cells. Two major risks are collisions and clamping scenarios.
As for the robot programming, the safety implementation of the application also
has strong dependencies on coordinates, e.g., to monitor the robot velocity or
to predict external forces. However, the current certi cation process does not in
general guarantee a safe robot behavior. It is not possible to predict all risks
in advance, especially in unstructured environments. Moreover, multiple control
parameters have to be adapted during the certi cation process, which requires
experienced robot programmers. This leads to the fth research question.Q5:
How can we facilitate the programming of pHRI applications? (! chapter 4)
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1.3 Thesis overview
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