444 research outputs found

    Utilizing Compliance To Address Modern Challenges in Robotics

    Get PDF
    Mechanical compliance will be an essential component for agile robots as they begin to leave the laboratory settings and join our world. The most crucial finding of this dissertation is showing how lessons learned from soft robotics can be adapted into traditional robotics to introduce compliance. Therefore, it presents practical knowledge on how to build soft bodied sensor and actuation modules: first example being soft-bodied curvature sensors. These sensors contain both standard electronic components soldered on flexible PCBs and hyperelastic materials that cover the electronics. They are built by curing multi-material composites inside hyper elastic materials. Then it shows, via precise sensing by using magnets and Hall-effect sensors, how closed-loop control of soft actuation modules can be achieved via proprioceptive feedback. Once curvature sensing idea is verified, the dissertation describes how the same sensing methodology, along with the same multi-material manufacturing technique can be utilized to construct soft bodied tri-axial force sensors. It shows experimentally that these sensors can be used by traditional robotic grippers to increase grasping quality. At this point, I observe that compliance is an important property that robots may utilize for different types of motions. One example being Raibert\u27s 2D hopper mechanism. It uses its leg-spring to store energy while on the ground and release this energy before jumping. I observe that via soft material design, it would be possible to embed compliance directly into the linkage design itself. So I go over the design details of an extremely lightweight compliant five-bar mechanism design that can store energy when compressed via soft ligaments embedded in its joints. I experimentally show that the compliant leg design offers increased efficiency compared to a rigid counterpart. I also utilize the previously mentioned soft bodied force sensors for rapid contact detection (~5-10 Hz) in the hopper test platform. In the end, this thesis connects soft robotics with the traditional body of robotic knowledge in two aspects: a) I show that manufacturing techniques we use for soft bodied sensor/actuator designs can be utilized for creating soft ligaments that add strength and compliance to robot joints; and b) I demonstrate that soft bodied force sensing techniques can be used reliably for robotic contact detection

    Enabling New Functionally Embedded Mechanical Systems Via Cutting, Folding, and 3D Printing

    Get PDF
    Traditional design tools and fabrication methods implicitly prevent mechanical engineers from encapsulating full functionalities such as mobility, transformation, sensing and actuation in the early design concept prototyping stage. Therefore, designers are forced to design, fabricate and assemble individual parts similar to conventional manufacturing, and iteratively create additional functionalities. This results in relatively high design iteration times and complex assembly strategies

    Development and Integration of Inkjet-Printed Strain Sensors for Angle Measurement of an Origami-Based Delta Mechanism

    Get PDF
    An origami-based parallel mechanism is an excellent solution for various applications where small-scale, low profile and foldability are needed. These mechanisms are composed of rigid and flexible layers designed according to layer-by-layer fabrication methods. In addition, it becomes important to design functional layers that provide user feedback. Here, the design and fabrication of an origami-based 3 Degree-of-Freedom (DoF) Delta mechanism, which has the same traditional kinematics as a Delta mechanism, are presented. A sensor layer was designed composed of 3 strain gauges to measure the angular position of the actuated arm of the mechanism. The strain-gauge patterns were printed on a special Polyethylene terephthalate (PET) using Silver nanoparticle ink with a commercial desktop printer. The integration of these sensors has been studied by placing them in different locations between rigid layers. The sensors' outputs were presented when subjected to step and sinusoidal inputs of the actuated arm. The experiment results show that the developed sensor layer can track the angular position changes of the actuated lower arm, which is a promising result to be used in a control loop in the feature

    Developing Design and Analysis Framework for Hybrid Mechanical-Digital Control of Soft Robots: from Mechanics-Based Motion Sequencing to Physical Reservoir Computing

    Get PDF
    The recent advances in the field of soft robotics have made autonomous soft robots working in unstructured dynamic environments a close reality. These soft robots can potentially collaborate with humans without causing any harm, they can handle fragile objects safely, perform delicate surgeries inside body, etc. In our research we focus on origami based compliant mechanisms, that can be used as soft robotic skeleton. Origami mechanisms are inherently compliant, lightweight, compact, and possess unique mechanical properties such as– multi-stability, nonlinear dynamics, etc. Researchers have shown that multi-stable mechanisms have applications in motion-sequencing applications. Additionally, the nonlinear dynamic properties of origami and other soft, compliant mechanisms are shown to be useful for ‘morphological computation’ in which the body of the robot itself takes part in performing complex computations required for its control. In our research we demonstrate the motion-sequencing capability of multi-stable mechanisms through the example of bistable Kresling origami robot that is capable of peristaltic locomotion. Through careful theoretical analysis and thorough experiments, we show that we can harness multistability embedded in the origami robotic skeleton for generating actuation cycle of a peristaltic-like locomotion gait. The salient feature of this compliant robot is that we need only a single linear actuator to control the total length of the robot, and the snap-through actions generated during this motion autonomously change the individual segment lengths that lead to earthworm-like peristaltic locomotion gait. In effect, the motion-sequencing is hard-coded or embedded in the origami robot skeleton. This approach is expected to reduce the control requirement drastically as the robotic skeleton itself takes part in performing low-level control tasks. The soft robots that work in dynamic environments should be able to sense their surrounding and adapt their behavior autonomously to perform given tasks successfully. Thus, hard-coding a certain behavior as in motion-sequencing is not a viable option anymore. This led us to explore Physical Reservoir Computing (PRC), a computational framework that uses a physical body with nonlinear properties as a ‘dynamic reservoir’ for performing complex computations. The compliant robot ‘trained’ using this framework should be able to sense its surroundings and respond to them autonomously via an extensive network of sensor-actuator network embedded in robotic skeleton. We show for the first time through extensive numerical analysis that origami mechanisms can work as physical reservoirs. We also successfully demonstrate the emulation task using a Miura-ori based reservoir. The results of this work will pave the way for intelligently designed origami-based robots with embodied intelligence. These next generation of soft robots will be able to coordinate and modulate their activities autonomously such as switching locomotion gait and resisting external disturbances while navigating through unstructured environments

    1D Printing of Recyclable Robots

    Get PDF

    A Bio-Inspired Algorithm and Foldable Robot Platform for Collective Excavation

    Get PDF
    abstract: Existing robotic excavation research has been primarily focused on lunar mining missions or simple traffic control in confined tunnels, however little work attempts to bring collective excavation into the realm of human infrastructure. This thesis explores a decentralized approach to excavation processes, where traffic laws are borrowed from swarms of fire ants (Solenopsis invicta) or termites (Coptotermes formosanus) to create decision rules for a swarm of robots working together and organizing effectively to create a desired final excavated pattern. First, a literature review of the behavioral rules of different types of insect colonies and the resulting structural patterns over the course of excavation was conducted. After identifying pertinent excavation laws, three different finite state machines were generated that relate to construction, search and rescue operations, and extraterrestrial exploration. After analyzing these finite state machines, it became apparent that they all shared a common controller. Then, agent-based NetLogo software was used to simulate a swarm of agents that run this controller, and a model for excavating behaviors and patterns was fit to the simulation data. This model predicts the tunnel shapes formed in the simulation as a function of the swarm size and a time delay, called the critical waiting period, in one of the state transitions. Thus, by controlling the individual agents' behavior, it was possible to control the structural outcomes of collective excavation in simulation. To create an experimental testbed that could be used to physically implement the controller, a small foldable robotic platform was developed, and it's capabilities were tested in granular media. In order to characterize the granular media, force experiments were conducted and parameters were measured for resistive forces during an excavation cycle. The final experiment verified the robot's ability to engage in excavation and deposition, and to determine whether or not to begin the critical waiting period. This testbed can be expanded with multiple robots to conduct small-scale experiments on collective excavation, such as further exploring the effects of the critical waiting period on the resulting excavation pattern. In addition, investigating other factors like tuning digging efficiency or deposition proximity could help to transition the proposed bio-inspired swarm excavation controllers to implementation in real-world applications.Dissertation/ThesisMasters Thesis Mechanical Engineering 201

    Design and operation of MinIAQ: An untethered foldable miniature quadruped with individually actuated legs

    Get PDF
    This paper presents the design, development, and basic operation of MinIAQ, an origami-inspired, foldable, untethered, miniature quadruped robot. Instead of employing multilayer composite structures similar to most microrobotic fabrication techniques, MinIAQ is fabricated from a single sheet of thin A4-sized PET film. Its legs are designed based on a simple four-bar locomotion mechanism that is embedded within its planar design. Each leg is actuated and controlled individually by separate DC motors enabling gait modification and higher degree of freedom on controlling the motion. The origami-inspired fabrication technique is a fast and inexpensive method to make complex 3D robotic structures through successive-folding of laser-machined sheets. However, there is still a need for improvement in modulating and extending the design standards of origami robots. In an effort to addressing this need, the primitive foldable design patterns of MinIAQ for higher structural integrity and rigidity are presented in detail. The current robot takes less than two hours to be cut and assembled and weighs about 23 grams where 3.5 grams is the weight of its body, 7.5 grams is its motors and encoders, 5 grams is its battery, and about 7 grams is its current on-board electronics and sensors. The robot is capable of running about 30 minutes on a single fully charged 150mAh single cell LiPo battery. Using the feedback signals from the custom encoders, MinIAQ can perform a trot gait with a speed of approximately 0.65 Bodylengths/sec, or equivalently 7.5 cm/s. © 2017 IEEE

    Functional Soft Robotic Actuators Based on Dielectric Elastomers

    Get PDF
    Dielectric elastomer actuators (DEAs) are a promising soft actuator technology for robotics. Adding robotic functionalities--folding, variable stiffness, and adhesion--into their actuator design is a novel method to create functionalized robots with simplified actuator configurations. We first propose a foldable actuator that has a simple antagonistic DEA configuration allowing bidirectional actuation and passive folding. To prove the concept, a foldable elevon actuator with outline size of 70 mm × 130 mm is developed with a performance specification matched to a 400 mm wingspan micro air vehicle (MAV) of mass 130 g. The developed actuator exhibits actuation angles up to ± 26 ° and a torque of 2720 mN·mm in good agreement with a prediction model. During a flight, two of these integrated elevon actuators well controlled the MAV, as proven by a strong correlation of 0.7 between the control signal and the MAV motion. We next propose a variable stiffness actuator consisting of a pre-stretched DEA bonded on a low-melting-point alloy (LMPA) embedded silicone substrate. The phase of the LMPA changes between liquid and solid enabling variable stiffness of the structure, between soft and rigid states, while the DEA generates a bending actuation. A proof-of-concept actuator with dimension 40 mm length × 10mm width × 1mm thickness and a mass of 1 g is fabricated and characterized. Actuation is observed up to 47.5 ° angle and yielding up to 2.4 mN of force in the soft state. The stiffness in the rigid state is ~90 × larger than an actuator without LMPA. We develop a two-finger gripper in which the actuators act as the fingers. The rigid state allows picking up an object mass of 11 g (108 mN), to be picked up even though the actuated grasping force is only 2.4 mN. We finally propose an electroadhesion actuator that has a DEA design simultaneously maximizing electroadhesion and electrostatic actuation, while allowing self-sensing by employing an interdigitated electrode geometry. The concept is validated through development of a two-finger soft gripper, and experimental samples are characterized to address an optimal design. We observe that the proposed DEA design generates 10 × larger electroadhesion force compared to a conventional DEA design, equating to a gripper with a high holding force (3.5 N shear force for 1 cm^2) yet a low grasping force (1 mN). These features make the developed simple gripper to handle a wide range of challenging objects such as highly-deformable water balloons (35.6 g), flat paper (0.8 g), and a raw chicken egg (60.9 g), with its lightweight (1.5 g) and fast movement (100 ms to close fingers). The results in this thesis address the creation of the functionalized robots and expanding the use of DEAs in robotics
    • …
    corecore